
VU Research Portal

Understanding (Un)Written Contracts of NVMe ZNS Devices with zns-tools

Tehrany, Nick; Doekemeijer, Krijn; Trivedi, Animesh

2023

Link to publication in VU Research Portal

citation for published version (APA)
Tehrany, N., Doekemeijer, K., & Trivedi, A. (2023). Understanding (Un)Written Contracts of NVMe ZNS Devices
with zns-tools.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 19. Nov. 2023

https://research.vu.nl/en/publications/5a6969bc-a44b-41be-87fc-bf5fe9aea402

Understanding (Un)Written Contracts of NVMe ZNS Devices with zns-tools

Nick Tehrany, Krijn Doekemeijer, and Animesh Trivedi
VU, Amsterdam

Abstract
Operational and performance characteristics of flash SSDs
have long been associated with a set of Unwritten Contracts
due to their hidden, complex internals and lack of control from
the host software stack. These unwritten contracts govern how
data should be stored, accessed, and garbage collected. The
emergence of Zoned Namespace (ZNS) flash devices with
their open and standardized interface allows us to write these
unwritten contracts for the storage stack. However, even with
a standardized storage-host interface, due to the lack of appro-
priate end-to-end operational data collection tools, the quan-
tification and reasoning of such contracts remain a challenge.
In this paper, we propose zns.tools, an open-source frame-
work for end-to-end event and metadata collection, analysis,
and visualization for the ZNS SSDs contract analysis. We
showcase how zns.tools can be used to understand how the
combination of RocksDB with the F2FS file system interacts
with the underlying storage. Our tools are available openly at
https://github.com/stonet-research/zns-tools.

1 Introduction

The emergence of flash solid state drives (SSDs) has resulted
in the redesigning of the host interfaces [49, 53], the block
layer [6,29], I/O schedulers [16,52], file systems [28], applica-
tions [11], and distributed systems [4]. Despite the aforemen-
tioned significant end-to-end changes to leverage the charac-
teristics of flash storage, the reasoning and analysis of modern
flash SSDs are governed by many “unwritten contracts” [15]
regarding how user data should be stored, grouped, accessed,
and deleted. In parts such expectations are considered unwrit-
ten as SSDs themselves are complex with many internal hid-
den details (flash chip sizes, layout, garbage collection (GC)
units, buffer sizes) [30]. Furthermore, the complex architec-
ture of the layered modern storage stack makes the end-to-end
reasoning about the unwritten contracts challenging.

NVMe Zone Namespace Devices and UnWritten
Contracts: To address the challenges of complexity, re-
searchers have advocated for more open interfaces [7, 37, 55],

�✁✂ ✂✂✄

☎✆✝✞

✟✠✡☛✝

☞✝✞✌✝✍

✎ ✏ ✑

✒✓✑✔✕✄✖

�✁✂ ✂✂✄

✗✘✘✙✚✑✎✛✚✓✜ ✗✘✘✙✚✑✎✛✚✓✜

✢✣✤✥✎✘

✦✚✙✧ ✂★✕✛✧✣

✩✪✫ ✂✑✬✧✢✭✙✧✮ ✯✧✰✱✰✲ ✣✳✤✢✧✎✢✙✚✜✧✲ ✜✓✜✧✴

✦✵✦✂

✶✷✸✹ ✺✻✼✽✹✾

✿❀❁❂✹❃ ✼❄❅❅❁❆✽❇

�✓✜✧✦✂

✖✛✮❈✕

✙✚✏✥✏✢

✖✙✓✑✔ ✩✪✫

❉✎★✧✮

�✁✂ ✂✂✄

�✧✜✦✂

Figure 1: ZNS integration at the (a) block layer; (b) file system
level; and (c) application-level (example RocksDB). In all
three cases, an end-to-end written contract analysis is missing.

which has culminated in the Zoned Namespace (ZNS) speci-
fication [5, 44, 50]. Briefly, a ZNS device divides its storage
capacity into multiple zones that can only be sequentially writ-
ten (or appended to), thus closely mimicking how flash chips
internally work. Data can be read from anywhere either se-
quentially or randomly. I/O on different zones is isolated and
done in parallel, thus a zone represents a unit of parallelism.
Beyond these basic read/write operations, ZNS devices have a
number of unique flash/ZNS management-related commands.
Of particular interest is the reset command with zones, which
explicitly resets a zone to be written again. In case there was
any live data, it is the responsibility of the host software (file
system, application) to ensure that the data is copied to a new
zone before resetting the old zone. The significant advantage
of such a design is that it clearly identifies the unit of garbage
collection (zone) and the timing when to reset (under the con-
trol of the host software), both of these details are intricately
complex to reverse engineer [10, 30]. Hence, with ZNS de-
vices, previously “unwritten contracts” are now standardized

“written contracts”, which forces us to re-think the operational
design of our storage stacks [44].

1

ar
X

iv
:2

30
7.

11
86

0v
1

 [
cs

.O
S]

 2
1

Ju
l 2

02
3

https://github.com/stonet-research/zns-tools

Reasoning about the Written ZNS Contracts with Appli-
cations in a Layered Storage Stack: ZNS software support
in the storage stack is still under development. There are mul-
tiple ways through which ZNS contracts can be extended to
an application in an end-to-end manner. Figure 1 shows such
possibilities where ZNS software support is needed at the (a)
block-level, I/O scheduler support with mq-deadline [9]; or (b)
file system level, currently F2FS and Btrfs support ZNS [33];
or (c) application-level direct support, e.g., ZenFS customized
file system backend for RocksDB [5]. In such a layered archi-
tecture, it is challenging to ensure and cross-check if the ZNS
contracts are extended and respected by all layers due to the
semantic gap between the layers. For example, the POSIX
fadvise and fctnl calls are hints to a file system that the
file system is free to ignore. Similarly, ZNS/flash file systems
themselves have complex bookkeeping operations (garbage
collection, log writing, fragmentation) where previously re-
spected hints can be transparently overwritten by a file system
without the application’s knowledge (see below two examples
in contract violation examples). Hence, in this work, we argue,
there is a need to systematically investigate if and how the
new written ZNS contracts are extended to applications.
zns-tools: A Framework to Study Written ZNS Con-

tracts: In this work, we propose a set of open-sourced tools
called zns-tools for the ZNS software stack. Put together,
these tools allow us to collect operational data and events
across the stack in a programmed manner. The collected data
is then analyzed and visualized to identify various contract
violations. More specifically, we are interested in understand-
ing the following previously “unwritten contracts” and how
they are (not) followed across the layers: (1) “Request Scale”
with “Locality”: how data placement decisions are made (that
result in large I/O, and parallel requests with minimal FTL
overheads in ZNS SSDs) and how such allocations look on
ZNS SSDs; (2) “Grouping by death time”: how data group-
ing decisions are made to ensure minimal overheads from
GC-related data movements and overheads; and (3) “Uniform
Data Lifetime”: how a ZNS device’s lifetime is managed
by generating and deleting data with a uniform lifetime, and
subsequently explicitly resetting a zone in a ZNS SSD that
(indirectly) controls wear-leveling on the device.

Example: ZNS Contract violation with RocksDB and
F2FS: Using zns-tools, we identify two such violations
about data grouping in the state-of-the-practice combination
of RocksDB on F2FS with a ZNS SSD. The first issue is
F2FS-specific. F2FS reclassifies the hotness (hot, warm, cold)
of a data block after a round of GC cycle, where the GC al-
ways moves data blocks to cold data. This reclassification
allows previously segregated data blocks under different hot-
ness classes to be co-located in a new segment together, thus
violating hotness hints from RocksDB. The second issue is
RocksDB and F2FS specific. RocksDB writes SSTable to a
file system in two passes, raw data (the table) and a small
footer (less than a page). After writing the raw SSTable data

to hot or cold data, depending on the level of the SSTable ,
RocksDB synchronizes the file causing F2FS to flush the data
to the ZNS device. Upon completion of the flush, RocksDB
writes the footer of the SSTable, containing a checksum,
which is synchronized to the storage. Due to only a single
page for the footer being dirty in the page cache, which is
below the minimum threshold for F2FS of 16 pages, F2FS
sets an inode flag to indicate the data as being hot. As a result,
F2FS writes the footer page to the hot data segment, violat-
ing the contract for the SSTables by ignoring any hints for
the SSTable writes. Both of these incidents are examples of
violating the “Grouping by death time” contract.

In this work we propose a collection of zns-tools that
combined constitute a framework that allows parts-by-parts
building an end-to-end understanding of how data is stored
and managed in a layered storage stack on top of ZNS devices.
The primary goal of the zns-tools framework is to allow build-
ing a complete picture of events across the layers that influ-
ence data placement and movement decisions. Figure 4 shows
on such end-to-end example generated from our framework.
Our key contributions in this work include the following:

• Making a case for building end-to-end operational data
analysis tools to reason about previously unwritten, but
now written ZNS SSDs storage contracts for applica-
tions.

• zns-tools, an end-to-end framework that provides sup-
port for collecting, analyzing, and visualizing ZNS con-
tracts across the layered storage stack.

• Specific demonstration of the framework’s capability on
F2FS with RocksDB applications for an end-to-end vi-
sualization of operational analytics. Figure 4 shows one
such end-to-end example generated from our framework.

• zns-tools are open-sourced and available here: https:
//github.com/stonet-research/zns-tools. This
paper is available under CC-BY 4.0 License.

2 Design of zns-tools Framework

zns-tools is a new framework for ZNS SSDs that is de-
signed to collect operational data about the ZNS storage stack
to identify contract violations. It comes with tools that aid
in extracting and visualizing: (C1) where is user data stored
on ZNS SSDs; (C2) how much I/O is triggered to each zone;
(C3) which zones are subjected to GC resets from the soft-
ware stack and how data migrates across zones because of GC.
Currently, there are four tools in the framework, zns.fiemap,
zns.segmap, zns.imap, and zns.trace. They are visual-
ized in Figure 2, and their exact bash command and outputs
are shown in our GitHub repository.

2

https://github.com/stonet-research/zns-tools
https://github.com/stonet-research/zns-tools

ZNS
Device 1

Kernel/
F2FS

Zone 1 Zone 2 Zone 1 - Hot
Segments

Zone 2 - Cold
Segments

zns.fiemap

2 3

1 2 3 1 2 3

1 1 2 3 2

File
inode

inode

Zone 3

NATSB
CP

zns.segmap zns.imap
File
A 1 2

FIEMAP FIEMAP procfs

Seg 1 Seg 2 Seg 3 Seg 4

a b c

Application

zns.trace
d

bpftrace

Zone
1

Zone
2

Zone
3

Zone
ManagementI/O

Application

Block Layer

File
A

File
B

File
A

read reset write

Figure 2: Visual representation of zns-tools with (a) zns.fiemap mapping individual files to zones; (b) zns.segmap mapping
multiple files to zones , segments and their lifetime classifications; (c) the zns.imap tool mapping the inode of a file to its ZNS
zones (d) zns.trace tracing I/O and zone management activity to the ZNS zones.

2.1 zns.fiemap

zns.fiemap (ZNS file-mapping) is a tool that is designed to
extract placement information from the stack to identify how
the “Locality” contract is followed. The placement of files
and data within modern SSDs is not static, and constantly
changes in response to application or file system level events.
Applications can typically provide allocation/location hints
(by means of data temperature), but it is ultimately the file
system that decides about the final data storage location. ZNS
SSDs require any live data to be copied during GC, hence, the
data location changes. Furthermore, any log-structured file
system has its own out-of-place update mechanisms. With
ZNS SSDs and log-structured file system, the location of the
data is thus dynamic and changes constantly. The repeated
execution of zns.fiemap traces the file data movement in
this dynamic environment to identify how data from different
files are grouped in zones. Furthermore, while moving file
extents, if the “Locality” rule is not followed, that leads to
file fragmentation with holes that are known to cause severe
performance degradation [21, 23, 24, 38, 56]. Holes violate
the “Request Scale” contract that recommends large sequen-
tial I/O requests. In ZNS, how a file is stored among zones
also determines the amount of chip-level parallelism, a large
file I/O can extract. Hence, zns.fiemap provides detailed
information about the on-device zone-level placement of files
within various file systems (addressing C1,C3).

zns.fiemap retrieves file location mappings from the
Linux kernel using the ioctl() syscall with the FIEMAP
flag. Support for FIEMAP is not necessary for file systems
for POSIX compliance, however, all currently available file
systems with ZNS support (F2FS and Btrfs) support this flag.
With FIEMAP, file systems implement the tracking of extents,
representing ranges of physically contiguous data for a file,
which are returned to the ioctl() caller. By iterating over
the logical range of a file, zns.fiemap retrieves data map-
pings of all the extents for the particular file. The collected

extents for the targeted file are mapped to their respective
zone(s) containing the file’s data using their logical address
ranges. For example, on a ZNS SSD with a zone size of 1MiB,
logical addresses between [0, 1MiB) fall within the first zone,
[1MiB, 2MiB) on the second zone, and so on. The zone size
and zone size ranges can be queried with the ZNS device
using a zone management command. With all information
about file extents, their addresses, address-to-zone mappings,
zns.fiemap reports a detailed profile of the extent distribu-
tion (min, max, percentiles), hole statistics, and zone-level
placement information. Figure 2 (a) illustrates the operational
aspect of zns.fiemap, retrieving the extent mappings of File
A using ioctl() with the FIEMAP flag, followed by mapping
the three file extents to zones 1 and 2.

2.2 zns.segmap and zns.imap
zns.segmap and zns.imap are tools that collect and quan-
tify metadata around the “Grouping by death time” contract.
This contract is implemented within a file system that uses
application-level lifetime hints (RWH_WRITE_LIFE_* flags
with the fcntl call), or its own data segregation policies
based on data access heatmaps. It recommends that any data
that is about to get deleted, or over-written, should be stored
within a single GC unit. With this design, once data is in-
validated, the GC unit can be simply reset without having to
copy any live data, thus reducing GC overheads. Naturally,
an accurate grouping requires coordinated efforts from the
application, as well as the file system, over a lifetime of the
data/file(s). Furthermore, such groupings should be constantly
evaluated due to the dynamic nature of data placement with
GC events within the file system.
zns.segmap and zns.imap are tools to extract grouping

information for file data and metadata for F2FS. F2FS does
heat-based data grouping in segments. A file can have its data
stored in multiple segments, and a single segment can contain
data from multiple files. By default, F2FS uses 3 classes of

3

0

5

10

15

20

25

30

(a) RocksDB + F2FS

0

5

10

15

20

25

30

(b) MongoDB + F2FS

0

5

10

15

20

25

30

(c) PostgreSQL + F2FS

0

20

40

60

80

100

(d) RocksDB + (aged) F2FS

Figure 3: Reset visualization using zns.trace for an identical
YCSB workload-A for multiple databases on F2FS. Figure
(d) has a different heatmap scale (0-100).

classification (hot, warm, cold) on two types of data, file data,
and file metadata (inodes). zns.segmap extracts the file-to-
segment mappings using zns.fiemap, and reads the segment
hotness classification from procfs1. To locate the inode in
F2FS, zns.imap firstly reads the F2FS superblock, which is
written at a particular offset within the storage device, fol-
lowed by parsing the superblock to identify the location of the
node address table (NAT), where F2FS stores the block ad-
dresses of inodes, and the last checkpoint. Traversing the NAT,
zns.imap retrieves the block address for the file inode to look
up, followed by issuing a single read request to retrieve the
inode. The retrieved inode is mapped to the zone in which it is
contained. With these tools, we report for each F2FS segment,
its hotness classification, number of file extents, the segment-
to-zone mapping, and the inode-to-zone mapping. With this
information, we can stitch a complete timeline of user data as
it ages in the storage system (Figure 4). Though these tools
are F2FS-specific, they can be extended to other file systems
that do active data segregation. With F2FS, this information
is available in the /proc file system2. The file system-related
metadata is also available as a part of low-level libraries (such
as libext2fs or libf2fs) or can be generated [45]. Figure 2 (b)
and (c) illustrate the design of zns.segmap and zns.imap
tools. They retrieve extents for various files (ioctl() call)
and inodes (FS metadata walks) from F2FS, and retrieve F2FS
segment lifetime classifications and the inode location.

2.3 zns.trace

The zns.trace tool identifies performance-critical “Request
Scale” and “Uniform Data Lifetime” contracts by tracking
ZNS command calls. zns.trace is a combination of a BPF-
trace [19] script and a plotting tool that traces zone-level
ZNS write, append, read, and reset operations (addressing
C2). Tracing such data is useful for investigating the access
patterns to the underlying storage device independently of file
system or application workloads.
zns.trace utilizes BPFtrace [19], which inserts probes

into the Linux kernel functions, that upon being triggered
(i.e., the function being called) initiate data collection. The
tracing script captures the NVMe I/O event with the com-
mand I/O sizes (their histogram) and zone reset calls, and
maps the events to their corresponding zone(s). By analyz-
ing the function arguments, the script identifies the type of
operation, and further extracts data fields based on the re-
quest size. Importantly, the tracing supports ZNS devices in
VMs (apart from just the host), where the zone reset com-
mand sets the function argument for the type of command
to REQ_OP_DRV_OUT, indicating the host driver (e.g., vfio-pci
when using NVMe passthrough to the VM) is responsible
for the request. This case requires to furthermore analyze the
NVMe command and its zone management command field on
the type of zone management action (e.g., close, finish, reset,
open, offline). zns.trace relies on inserting kernel probes
to parse I/O functions, and is therefore currently limited to
kernel-based ZNS tracing. However, ongoing work is extend-
ing the tracing framework for user-level (e.g., SPDK) I/O and
broader zone management request tracing.

To illustrate the utility of zns.trace we run an identical
workload on a number of database/file system and quantify the
workload reset profiles. The number of resets is directly linked
to the number of reset cycles that an SSD can undergo before
exhausting flash chips. The “Uniform Data Lifetime” contract
recommends generating data with a uniform lifetime to evenly
spread the device wear. We run experiments on an emulated
NVMe ZNS device (QEMU v6.0.0) with 64 zones of size
64MiB (4GiB in total). Our workload is a YCSB workload-A
(50% update, 50% read) [8] on RocksDB [13](7.4.3), Mon-
goDB [35](6.06), and PostgreSQL [32](9.6.24) as KV back-
end targets with F2FS as file system. Figure 3 shows our re-
sults. Here each cell represents a zone, and the color indicates
the total number of resets issued to the zone (since startup).
Blue squares indicate a zone to which no reset commands
were issued at all. There are two interesting observations.
Firstly, for an identical workload, the three KV backends
show vastly different profiles. We can see that for this test
configuration PostgreSQL leads to significantly more resets.
Additionally, we can identify that one of the bottom left zones
(zone 2) is in all three cases heavily utilized. This zone corre-

1/proc/fs/f2fs/nvme0n1/segment_info
2We also tried Brtfs with ZNS, but it was unstable.

4

/proc/fs/f2fs/nvme0n1/segment_info

31

Flush

mem->L0

0s

Zone Reset 37

Compaction
[31] + [33, 34]

L1->L2

4.31s

41 42

Compaction
[35] + [37, 38]

L1->L2

8.95s

ZNS
Zones

F2FS

RocksDB

HOT Zone WARM Zone COLD Zone Reset Zone Deleted file

Figure 4: (Abridged) End-to-end event timeline visualized
using zns-tools.

sponds to a warm node zone initialized by F2FS, where the
inodes of files are written. Secondly, file system aging has a
significant impact on the reset profile as shown by Figure 3
(d) which has an aged F2FS (10× iterations). Both of these
results make a case for a systematic study of how zone resets
are called or consequently, how data grouping by uniform
lifetime or death time is done.

2.4 RocksDB on F2FS with ZNS Timeline

To demonstrate an end-to-end utility of zns-tools, we build
an end-to-end data placement visualization using RocksDB
on F2FS. Using the RocksDB’s db_bench benchmark with
workloads fillrandom and overwrite fills the F2FS file system
on the ZNS device. Minor modifications (less than 100 LOCs)
to the RocksDB source code are made to trace the activity
of operations, and retrieve the data mapping of the generated
files. On each compaction or flush operation, RocksDB calls
the zns-tools to map all its files. Figure 4 illustrates this end-
to-end timeline (automatically generated from traces) with a
few salient events across the layers (applications, file systems,
and ZNS device) over the lifetime of an SSTable. The timeline
starts at time 0, where data is flushed from memory to level-0
(abbreviated L0) as SSTable 31. The file is stored in the or-
ange zone classified as WARM. Subsequently, F2FS issues a
series of reset calls on several zones. The next logical event
is the compaction of file 31 with 33 and 34 to generate file
37 on L23. While file 37 is written as WARM file, old files in
prior zones are deleted (pink lines). In the next round, file 37
is picked up for compaction with 35 and 38 files to generate
two L2 files (41, and 42). Such a timeline visualization gives
an understanding of how the different RocksDB operation in-
teraction with F2FS affects the utilization of the ZNS storage
space, file classification, and data movement over time, thus
making it easy to spot contract violations visually.

3internal trivial promotion events such as moving 31 from L0 to L1 are
skipped in the visualization for the sake of clarity.

3 Related Work

Flash SSDs with their complex internal logic and “unwritten
contracts” [15] have also been studied in detail for perfor-
mance and operation characterizations [18, 22, 25, 26, 30, 31]
and with the impact of GC operations [17,27,39,47,48]. There
is a rich history of collecting file system traces, analyzing,
and replaying them for understanding the impact of optimiza-
tions [3, 12, 20, 36, 42, 46]. Much of these works only focus
on basic read/write interfaces that are sufficient for HDDs,
but not SSDs. None of these tools track device management-
related operations (reset, open, finish, close), which are now
a critical part of ZNS devices. The libzbd ZNS library also
support a basic GUI visualization tool for zone states [2],
however, it lacks any application or file system level informa-
tion. Beyond these tools, the eBPF-based BCC framework has
emerged as the de-facto API for writing complex, end-to-end
tracking frameworks [1], which we also leverage. Similar to
zns-tools, IOScope uses eBPF-assisted file offset-based I/O
tracing [43]. However, its tracing is limited to the files (at the
VFS level), and does not connect the file to its location, which
can change based on the file system and application level oper-
ations. Several block-level tracking tools exist (BCC’s biotop
and biosnoop, DTraces’s iosnoop), however, they do not link
block-level I/O back to the file system or applications. MapFS
is a file system interface that presents low-level details from
file to storage mappings for applications to manipulate data-
heavy operations via light-weight metadata operations [51].
Prabhakaran et al. [40] introduce techniques to study file sys-
tem behavior with semantic knowledge of events and on-disk
data structure layouts. zns-tools extends such motivation to
include workloads with the new ZNS management operations
as well. HintStore is a flexible framework that is designed
to explore the effectiveness of hints with heterogeneous stor-
age [14]. zns-tools analysis captures the after-effect of the
hints, and its collected data can be used to verify if hints are
implemented in an end-to-end manner. In a distributed setting,
systems like Wintermute [34], Apollo [41], and Beacon [54]
provide a distributed framework for operational data collec-
tion and analysis. In comparison to these works, the focus
of zns-tools is on collecting, analyzing, and visualizing
written ZNS contracts across multiple storage stack layers to
reason about previously unwritten SSD storage contracts.

4 Conclusion and Ongoing Work

In this work, we have presented a case to systematically reason
about previously “unwritten contracts” for flash SSDs on
recently emerged ZNS flash SSD devices. Due to the unique
I/O and management interface of ZNS SSDs, they make such
unwritten contracts, written by putting them under the control
of the host storage stack. To investigate the effectiveness
of ZNS contracts, we have developed and presented a set of
zns-tools to collect, analyze, and visualize ZNS operational

5

data. We are working on tracing events from PostgreSQL,
Aerospike, and scientific workloads on top of BrtFS also,
to develop a broader framework in which such end-to-end
contract analysis can be done.

Acknowledgment: This work in-parts is supported by the
donations from Western Digital.

Availability

https://github.com/stonet-research/zns-tools.

References

[1] BPF Compiler Collection (BCC). https://github.
com/iovisor/bcc, 2023. Accessed: 2023-29-03.

[2] libzbd User Library. https://zonedstorage.io/
docs/tools/libzbd, 2023. Accessed: 2023-29-03.

[3] Akshat Aranya, Charles P. Wright, and Erez Zadok.
Tracefs: A file system to trace them all. In 3rd USENIX
Conference on File and Storage Technologies (FAST 04),
San Francisco, CA, March 2004. USENIX Association.

[4] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D. Davis.
CORFU: A shared log design for flash clusters. In 9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 1–14, San Jose, CA,
April 2012. USENIX Association.

[5] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R. Ganger,
and George Amvrosiadis. ZNS: Avoiding the block
interface tax for flash-based SSDs. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
689–703. USENIX Association, July 2021.

[6] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux block io: Introducing multi-
queue ssd access on multi-core systems. In 6th Inter-
national Systems and Storage Conference, SYSTOR 13.
ACM, 2013.

[7] Matias Bjørling, Javier González, and Philippe Bon-
net. LightNVM: The Linux Open-Channel SSD Subsys-
tem. In Proceedings of the 15th Usenix Conference on
File and Storage Technologies, FAST’17, page 359–373,
Santa clara, CA, USA, 2017.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In ACM Symposium on
Cloud Computing (SoCC), page 143–154, 2010.

[9] Western Digital. Zoned Storage - Write Ordering
Control. https://zonedstorage.io/docs/linux/
sched, 2023. Accessed: 2023-29-03.

[10] Krijn Doekemeijer, Nick Tehrany, Balakrishnan Chan-
drasekaran, Matias Bjørling, and Animesh Trivedi. Per-
formance characterization of nvme flash devices with
zoned namespaces (zns). In (to appear) IEEE Inter-
national Conference on Cluster Computing, CLUSTER
2023, October 31-November 3, 2023, Santa Fe, New
Mexico, USA. IEEE, 2023.

[11] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of development priorities in key-
value stores serving large-scale applications: The
rocksdb experience. In FAST, pages 33–49, 2021.

[12] Daniel Ellard and Margo Seltzer. New NFS tracing tools
and techniques for system analysis. In 17th Large In-
stallation Systems Administration Conference (LISA 03),
San Diego, CA, October 2003. USENIX Association.

[13] Facebook. RocksDB: A Persistent Key-Value Store
for Flash and RAM Storage. https://github.com/
facebook/rocksdb. Accessed: 2023-03-01.

[14] Xiongzi Ge, Zhichao Cao, David H. C. Du, Pradeep
Ganesan, and Dennis Hahn. Hintstor: A framework to
study I/O hints in heterogeneous storage. ACM Trans.
Storage, 18(2):18:1–18:24, 2022.

[15] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. The unwritten contract
of solid state drives. In Proceedings of the Twelfth Eu-
ropean Conference on Computer Systems, EuroSys ’17,
page 127–144, New York, NY, USA, 2017. Association
for Computing Machinery.

[16] Mohammad Hedayati, Kai Shen, Michael L. Scott, and
Mike Marty. Multi-queue fair queueing. In Proceed-
ings of the 2019 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’19, page 301–314,
USA, 2019. USENIX Association.

[17] Jian Hu, Hong Jiang, and Prakash Manden. Understand-
ing performance anomalies of ssds and their impact in
enterprise application environment. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE Joint In-
ternational Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 415–416,
New York, NY, USA, 2012. Association for Computing
Machinery.

[18] H. Howie Huang, Shan Li, Alex Szalay, and Andreas
Terzis. Performance modeling and analysis of flash-
based storage devices. In 2011 IEEE 27th Symposium
on Mass Storage Systems and Technologies (MSST),
pages 1–11, 2011.

6

https://github.com/stonet-research/zns-tools
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://zonedstorage.io/docs/tools/libzbd
https://zonedstorage.io/docs/tools/libzbd
https://zonedstorage.io/docs/linux/sched
https://zonedstorage.io/docs/linux/sched
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb

[19] iovisor. Bpftrace. https://github.com/iovisor/
bpftrace. Accessed: 2023-29-03.

[20] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin
Lee, and Youjip Won. Androstep: Android storage per-
formance analysis tool. In Stefan Wagner and Horst
Lichter, editors, Software Engineering 2013 - Workshop-
band, pages 327–340, Bonn, 2013. Gesellschaft für In-
formatik e.V.

[21] Cheng Ji, Li-Pin Chang, Liang Shi, Chao Wu, Qiao
Li, and Chun Jason Xue. An empirical study of File-
System fragmentation in mobile storage systems. In
8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 16), Denver, CO, June 2016.
USENIX Association.

[22] Myoungsoo Jung and Mahmut Kandemir. Revisiting
widely held ssd expectations and rethinking system-
level implications. In Proceedings of the ACM SIG-
METRICS/International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’13,
page 203–216, New York, NY, USA, 2013. Association
for Computing Machinery.

[23] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gre-
gory R. Ganger. Geriatrix: Aging what you see and
what you don’t see. A file system aging approach for
modern storage systems. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), pages 691–704,
Boston, MA, 2018. USENIX Association.

[24] Jaegeuk Kim. DEFRAG.F2FS. https:
//manpages.debian.org/testing/f2fs-tools/
defrag.f2fs.8.en.html, 2021.

[25] Jihun Kim, Joonsung Kim, Pyeongsu Park, Jong Kim,
and Jangwoo Kim. Ssd performance modeling using bot-
tleneck analysis. IEEE Computer Architecture Letters,
17(1):80–83, 2018.

[26] Joonsung Kim, Kanghyun Choi, Wonsik Lee, and Jang-
woo Kim. Performance modeling and practical use
cases for black-box ssds. ACM Trans. Storage, 17(2),
jun 2021.

[27] Tomer Lange, Joseph (Seffi) Naor, and Gala Yadgar.
Offline and online algorithms for ssd management. Proc.
ACM Meas. Anal. Comput. Syst., 5(3), dec 2021.

[28] Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2fs: A new file system for flash stor-
age. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST’15, page 273–286,
USA, 2015. USENIX Association.

[29] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W. Lee, and Jinkyu Jeong. Asynchronous i/o stack:
A low-latency kernel i/o stack for ultra-low latency ssds.
In USENIX Annual Technical Conference, USENIX
ATC 19, page 603–616. USENIX Association, 2019.

[30] Nanqinqin Li, Mingzhe Hao, Huaicheng Li, Xing Lin,
Tim Emami, and Haryadi S. Gunawi. Fantastic ssd
internals and how to learn and use them. In Proceedings
of the 15th ACM International Conference on Systems
and Storage, SYSTOR ’22, page 72–84, New York, NY,
USA, 2022. Association for Computing Machinery.

[31] Shan Li and H. Howie Huang. Black-box performance
modeling for solid-state drives. In 2010 IEEE Inter-
national Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems,
pages 391–393, 2010.

[32] Bruce Momjian. PostgreSQL: introduction and con-
cepts, volume 192. Addison-Wesley New York, 2001.

[33] Aota Naohiro. Btrfs: Zoned block device support
[lwn.net]. https://lwn.net/Articles/833260/,
oct 2020. Accessed: 2023-29-03.

[34] Alessio Netti, Micha Müller, Carla Guillen, Michael Ott,
Daniele Tafani, Gence Ozer, and Martin Schulz. Dcdb
wintermute: Enabling online and holistic operational
data analytics on hpc systems. In Proceedings of the
29th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’20, page
101–112, New York, NY, USA, 2020. Association for
Computing Machinery.

[35] Trong-Dat Nguyen and Sang-Won Lee. Optimiz-
ing mongodb using multi-streamed ssd. In Proceed-
ings of the 7th International Conference on Emerg-
ing Databases: Technologies, Applications, and Theory,
pages 1–13. Springer, 2018.

[36] John K. Ousterhout, Hervé Da Costa, David Harrison,
John A. Kunze, Mike Kupfer, and James G. Thompson.
A trace-driven analysis of the unix 4.2 bsd file system. In
Proceedings of the Tenth ACM Symposium on Operating
Systems Principles, SOSP ’85, page 15–24, New York,
NY, USA, 1985. Association for Computing Machinery.

[37] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. Sdf: Software-
defined flash for web-scale internet storage systems. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, page 471–484, New
York, NY, USA, 2014. Association for Computing Ma-
chinery.

7

https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://manpages.debian.org/testing/f2fs-tools/defrag.f2fs.8.en.html
https://manpages.debian.org/testing/f2fs-tools/defrag.f2fs.8.en.html
https://manpages.debian.org/testing/f2fs-tools/defrag.f2fs.8.en.html
https://lwn.net/Articles/833260/

[38] Jonggyu Park and Young Ik Eom. Fragpicker: A new
defragmentation tool for modern storage devices. In
Robbert van Renesse and Nickolai Zeldovich, editors,
SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021, pages 280–294. ACM, 2021.

[39] Roman Pletka, Ioannis Koltsidas, Nikolas Ioannou, Saša
Tomić, Nikolaos Papandreou, Thomas Parnell, Haralam-
pos Pozidis, Aaron Fry, and Tim Fisher. Management
of next-generation nand flash to achieve enterprise-level
endurance and latency targets. ACM Trans. Storage,
14(4), dec 2018.

[40] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and evolution of
journaling file systems. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference,
ATEC ’05, page 8, USA, 2005. USENIX Association.

[41] Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda
Garcia, Keith Bateman, Luke Logan, Jie Ye, Anthony
Kougkas, and Xian-He Sun. Apollo: An ml-assisted
real-time storage resource observer. In Proceedings of
the 30th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’21, page
147–159, New York, NY, USA, 2021. Association for
Computing Machinery.

[42] Drew Roselli, Jacob R. Lorch, and Thomas E. Ander-
son. A comparison of file system workloads. In 2000
USENIX Annual Technical Conference (USENIX ATC
00), San Diego, CA, June 2000. USENIX Association.

[43] Abdulqawi Saif, Lucas Nussbaum, and Ye-Qiong Song.
Ioscope: A flexible i/o tracer for workloads’ i/o pat-
tern characterization. In Rio Yokota, Michèle Weiland,
John Shalf, and Sadaf Alam, editors, High Performance
Computing, pages 103–116, Cham, 2018. Springer In-
ternational Publishing.

[44] Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett,
and Wyatt Lloyd. Don’t be a blockhead: Zoned names-
paces make work on conventional ssds obsolete. In
Proceedings of the Workshop on Hot Topics in Operat-
ing Systems, HotOS ’21, page 144–151, New York, NY,
USA, 2021. Association for Computing Machinery.

[45] Kuei Sun, Daniel Fryer, Joseph Chu, Matthew Lakier,
Angela Demke Brown, and Ashvin Goel. Spiffy: En-
abling File-System aware storage applications. In 16th
USENIX Conference on File and Storage Technologies
(FAST 18), pages 91–104, Oakland, CA, February 2018.
USENIX Association.

[46] Vasily Tarasov, Santhosh Kumar, Jack Ma, Dean Hilde-
brand, Anna Povzner, Geoff Kuenning, and Erez Zadok.

Extracting flexible, replayable models from large block
traces. In William J. Bolosky and Jason Flinn, editors,
Proceedings of the 10th USENIX conference on File and
Storage Technologies, FAST 2012, San Jose, CA, USA,
February 14-17, 2012, page 22. USENIX Association,
2012.

[47] Benny Van Houdt. A mean field model for a class
of garbage collection algorithms in flash-based solid
state drives. In Proceedings of the ACM SIGMET-
RICS/International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’13,
page 191–202, New York, NY, USA, 2013. Association
for Computing Machinery.

[48] Robin Verschoren and Benny Van Houdt. On the en-
durance of the d-choices garbage collection algorithm
for flash-based ssds. ACM Trans. Model. Perform. Eval.
Comput. Syst., 4(3), jul 2019.

[49] Don H Walker. A comparison of nvme and ahci.
https://sata-io.org/sites/default/files/
documents/NVMe%20and%20AHCI_%20_long_.pdf,
Accessed: 2022-05-02.

[50] Western Digital. Ultrastar dc zn540. https:
//www.westerndigital.com/products/
internal-drives/data-center-drives/
ultrastar-dc-zn540-nvme-ssd, Accessed: 2022-
05-02.

[51] Jake Wires, Mark Spear, and Andrew Warfield. Expos-
ing file system mappings with MapFS. In 3rd Workshop
on Hot Topics in Storage and File Systems (HotStorage
11), Portland, OR, June 2011. USENIX Association.

[52] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu
Jeong. D2FQ: device-direct fair queueing for nvme
ssds. In Marcos K. Aguilera and Gala Yadgar, editors,
19th USENIX Conference on File and Storage Technolo-
gies, FAST 2021, February 23-25, 2021, pages 403–415.
USENIX Association, 2021.

[53] NVM Express Workgroup. NVM Express NVM
Command Set Specification 2.0. Standard, January
2022. Available from: https://nvmexpress.org/
specifications.

[54] Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu
Zhang, Xiupeng Zhu, Nosayba El-Sayed, Haidong Lan,
Yibo Yang, Jidong Zhai, Weiguo Liu, and Wei Xue. End-
to-end I/O monitoring on a leading supercomputer. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 379–394, Boston,
MA, February 2019. USENIX Association.

8

https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://nvmexpress.org/specifications
https://nvmexpress.org/specifications

[55] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,
and Vijay Balakrishnan. Autostream: Automatic stream
management for multi-streamed ssds. In Proceedings
of the 10th ACM International Systems and Storage
Conference, SYSTOR ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[56] Lihua Yang, Fang Wang, Zhipeng Tan, Dan Feng, Jiax-
ing Qian, and Shiyun Tu. Ars: Reducing f2fs fragmen-
tation for smartphones using decision trees. In Proceed-
ings of the 23rd Conference on Design, Automation and
Test in Europe, DATE ’20, page 1061–1066, San Jose,
CA, USA, 2020. EDA Consortium.

9

	Introduction
	Design of zns-tools Framework
	zns.fiemap
	zns.segmap and zns.imap
	zns.trace
	RocksDB on F2FS with ZNS Timeline

	Related Work
	Conclusion and Ongoing Work

