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Abstract. The Tsetlin Machine (TM) constitutes an emerging machine
learning algorithm that has shown competitive performance on several
benchmarks. The underlying concept of the TM is propositional logic de-
termined by a group of finite state machines that learns patterns. Thus,
TM-based systems naturally lend themselves to low-power operation
when implemented in hardware for micro-edge Internet-of-Things appli-
cations. An important aspect of the learning phase of TMs is stochastic-
ity. For low-power integrated circuit implementations the random num-
ber generation must be carried out efficiently. In this paper, we ex-
plore the application of pre-generated cyclostationary random number
sequences for TMs. Through experiments on two machine learning prob-
lems, i.e., Binary Iris and Noisy XOR, we demonstrate that the accuracy
is on par with standard TM. We show that through exploratory simu-
lations the required length of the sequences that meets the conflicting
tradeoffs can be suitably identified. Furthermore, the TMs achieve ro-
bust performance against reduced resolution of the random numbers.
Finally, we show that maximum-length sequences implemented by linear
feedback shift registers are suitable for generating the required random
numbers.

Keywords: Machine learning · Tsetlin Machine · Cyclostationary ran-
dom number sequences · Linear feedback shift registers

1 Introduction

The Tsetlin Machine (TM) is a novel machine learning (ML) algorithm that
was introduced in 2018 [7]. TMs are based on propositional logic, leading to
primarily Boolean operations. Such operations are in contrast to Deep Neural
Networks (DNNs) where complex arithmetic is needed for Multiply-Accumulate
Units (MACs). Furthermore, as propositional logic forms the basis of the algo-
rithm, TMs have promising interpretability prospects. The unique features of TM
make it suitable for low-energy hardware acceleration on Field Programmable



Gate Arrays (FPGA) and Integrated Circuits (ICs). Through compact imple-
mentation accelerated online training can be enabled for edge-nodes in Internet-
of-Things (IoT) systems. To date TMs have been tested on tabular data, images,
regression, natural language and speech, [3], and have shown competitive per-
formance on several benchmarks in terms of accuracy, memory footprint and
learning speed. For example, the convolutional TM (CTM) has obtained a peak
test accuracy of 99.4% on MNIST, 96.31% on Kuzushiji-MNIST and 91.5% on
Fashion-MNIST [8].

A key aspect of TMs is randomized choices during feedback based training.
Effective randomization is crucial for avoiding deadlocks and overfitting using
the training data. In the original software TM (Python/Cython) implementation
[6], a randomization function is used to create a pseudo random number sequence
[5]. The range of the numbers varies from 0 to RAND MAX, where RAND MAX
is guaranteed to be at least 32767 (two bytes).

Python has a more advanced random sequence generator based on the Mersenne
Twister [12]. This module produces 53-bit precision floating point numbers and
has a period of 219937 − 1. It is also threadsafe and has been extensively tested.

Random sequence generation in hardware is, however, non-trivial. For low-
complexity hardware implementation, the random sequence generation must
be carried out efficiently. Storage of pre-generated random numbers in on-chip
RAM/ROM is an alternative. However, this is only effective if relatively short
sequences can be used. In a highly parallelized TM system, one will also need
concurrent access to several independent random numbers, thus requiring many
such sequences. Multi-word read capabilities from on-chip memory can reduce
the number of sequences needed, but these require significant hardware resource
allocation. Another alternative for random number generation is amplification
of noise from an analog circuit module followed by analog-to-digital conversion.
As true noise is the basis, it is possible to achieve very good stochastic proper-
ties [13]. However, mixed-signal design of the random number generator can lead
to validation complexity as well as uncertainty due to the approximate nature
of analog signals.

The concept of digital Pseudo Random Bit Sequences (PRBSs), typically
implemented by Linear Feedback Shift Registers (LFSR) [9,14] is widely used for
random number generation. LFSRs are suitable for hardware solutions as these
can be implemented in digital and validation-friendly IC design flow. However,
LFSRs usually require high level of switching depending on their sizes when the
randomization process is active, which can consume non-negligible amount of
energy.

In this paper, we aim to study an alternative randomization process suitable
for hardware TM implementation. Core to this process is whether a cyclostation-
ary sequence of pre-generated random numbers could be applied as the source for
random numbers in TMs. Our main contributions are as follows:

– We evaluate if pre-generated cyclostationary sequences - with sequence ad-
dress incremented for each lookup - can be applied for TM training and
achieve accuracy similar to C/Python implementations.



– We study the impact of the number of elements in the sequence and therefore
the tradeoffs between complexity and learning efficiency of the implementa-
tions.

– We evaluate the impact of the resolution (number of decimals) of the num-
bers in the sequence.

The remainder of this paper is organized as follows. Sec. 2 describes the TM
architecture. Sec. 3 explores how cyclostationary sequences of random numbers
can be applied to the TM. Sec. 4 details our experiment results together with
discussions before we conclude in the final section.

2 Review of the Tsetlin Machine

A TM consists of several teams of Tsetlin Automata (TAs) that operates on
literals, i.e., Boolean inputs and their complements. Each team of TAs forms a
discriminative conjunctive clause by including or excluding literals as shown in
Fig. 1(a). There are m clauses, cj , where j = 1, . . . ,m, and m is an even integer.
Half of the clauses, typically the odd numbered ones, are defined as positive, and
the other half, the even numbered ones, are defined as negative, see Fig. 1(b).
The outputs of the two groups of clauses are assembled in a majority voting unit
to decide for the final classification, as shown in Fig. 1(c).

The TAs employed in a TM are of two-action type, i.e., a Tsetlin Automaton
will either include or exclude a literal from a conjunctive clause. This is achieved
during the learning process. Fig. 2 shows the structure of a single TA with 2N
states. Action 2 (include) is employed if the TA is in one of the states from N +1
to 2N , while the states 1 to N result in Action 1 (exclude).

The input to the TM is a feature vector X = [x1, x2, · · · , xo] consisting of
o propositional Boolean variables, xu ∈ {0, 1}o, u = 1, . . . , o. The negation of
the variables are appended to the input forming a new input vector L with in
total 2o literals: [x1,¬x1, x2,¬x2, ..., xo,¬xo]. The output of a single clause, cj
is given by:

cj =
∧
k∈Ij

lk (1)

Here lk is the literal with index k, and k belongs to Ij ⊆ {1, ...., 2o}. Ij
denotes the set of indexes of all the TAs that select action “include” in cj .

In a basic two-class TM, classification is given by

ŷ =

{
1 if v ≥ 0

0 if v < 0
(2)

where the output sum, v, is defined in Eq. 3.

v =

m/2∑
j=1

c2j−1 −
m/2∑
j=1

c2j (3)



Fig. 1. (a) A TA team forms the clause cj (b) A two-class TM with m clauses. (c) A
q-class TM [7].

A multiclass TM is constituted by several TMs, one for each class, 1 to q.
As shown in Fig. 1(c), the final decision is made by an argmax operator that
classifies the input data according to the highest vote sum [7].

Learning takes place in the TM through a novel finite state learning automata
game [7]. It coordinates the collective of TAs and leverages resource-allocation
and frequent pattern mining principles. Feedback mechanisms are employed and
gives each TA either a reward or penalty, depending on the training input, the
individual clause outputs and the TM output sum, as shown in Fig. 2. If a reward
is applied, the TA will move deeper, i.e. towards state 1 or 2N depending on the
action. With penalty the TA will move towards the center and will eventually
jump to the other side of the action. In addition to the number of clauses, m, the
hyperparameters T (Threshold value) and s determine the stochastic learning
characteristics. As explained in [7], T decides the clause update probability. A
higher T increases the robustness of learning by allocating more clauses to learn
each sub-pattern [1], while greater values of s stimulates a TA team to include
more literals in the clause [7]. Optimum setting of m, T and s is dependent on
the specific ML problem.



Fig. 2. A Tsetlin Automaton for two-action environments [18].

3 Proposed Random Number Generator in TM

In this section, we first give an overview of where stochasticity is employed in the
TM algorithm. We then describe our proposed solution for applying the required
random numbers to the TM. Thereafter, we elaborate how this solution can be
implemented by LFSRs.

3.1 Randomization in Tsetlin Machine

Stochasticity is required by TM during training to avoid deadlocks and overfit-
ting. Furthermore, the randomness helps the TM to allocate pattern recognition
resources in an efficient way [7]. Stochasticity is applied during training at several
different stages of the algorithm:

– Clause selection for update, based on the hyperparameter T, the class sum
v, the clause type (positive/negative), and literal value lk [7].

– TA update, based on the s hyperparameter [7].
– Patch selection for CTM [8]: A clause may output 1 for several patches

during the convolution. TM randomly picks a patch among the ones that
made the clause evaluate to 1 and trains the clause accordingly.

– For multiclass TM/CTM [1], [7]: In addition to training the target class, TM
randomly selects a different class, the negative target, to train against, for a
given training example.

– Epoch level: A TM version [15] features randomly (in a user-specified per-
centage) dropping of the clauses per training epoch. This produces more
distinct and well-structured patterns that improve the performance and the
learning robustness. During inference all literals are utilized. In addition,
for each training epoch, the data should be randomly reshuffled [7], which
increases robustness when operating on new input data.

– In the “arbitrarily deterministic TM” [2], the update of a TA only occurs
every d’th time with a probability of 0.5. Here, d is an integer hyperparam-
eter.



The random numbers generated for TMs should follow uniform probability
distribution, according to [7], with range [0, 1). TMs have been implemented in
various programming languages such as Python, C and CUDA utilizing these lan-
guages’ random number generators, and a huge amount of random numbers are
generated for training. However, those approaches are not appropriate for low-
power hardware platforms due to their complexity. In addition, the generation
of random numbers can be energy and computational expensive. We therefore
study below the possibility to simplify the generating process, and evaluate its
impact on the performance of TM.

3.2 Employing pre-generated random number sequences for TM

To simplify the procedure of generating random numbers, we utilize a pre-
generated sequence of random numbers in the range [0, 1) with uniform prob-
ability distribution, instead of generating a random number every time. The
sequence is cyclostationary. That is, it repeats itself when the last element has
been read. This implies that the statistical properties of the sequence vary cycli-
cally with time.

The numpy.random.uniform Python routine [10] was adopted to generate
the numbers in the sequence. Sequences of various lengths were generated and
different number of decimals of the random numbers were tested. For our ex-
periments, we used a single cyclostationary sequence for all the random number
accesses needed in the TM algorithm. The TM Python/Cython code was modi-
fied the following way:

– The rand() function was replaced by a lookup to a pre-generated sequence
of random numbers, addressed by an index counter.

– For each sequence access the index counter was incremented.
– When reaching the last number in the sequence, the index counter was reset,

thus re-accessing the sequence from the beginning.

3.3 Generating cyclostationary random number sequences with
LFSRs

In addition to the pre-generated sequences, to accommodate an effective imple-
mentation of random number generators in hardware, we adopt and study the
potential of Linear Feedback Shift Registers (LFSRs) [14] for TM. An LFSR con-
sists of D-flip-flops connected in series, as a shift register, with feedback from
select D flip-flop outputs, so-called “taps”. The taps are XOR’ed and fed to the
input of the shift register. Fig. 3 shows a 7-bit LFSR implementation where the
taps 7 and 6 are XORed and fed to the input of the first D-flip-flop. We can
describe this by the corresponding feedback polynomial x7 + x6 + 1.

By proper selection of taps, one can implement maximum length sequences (MLS)
with the following properties [14]:

– The period is 2N − 1, where N is the length of the shift register.



Fig. 3. A 7-bit LFSR.

– In each period of an MLS, the number of 1s is always one more than the
number of 0s. This is called the balance property.

– A run is a group of consecutively following 1s or 0s. Among the runs of 1s
and 0s in each period of an MLS, one half of the runs of each kind are of
length one, one-fourth of length two, one-eight of length three, and so on as
long as these fractions represent meaningful number of runs. This is called
the run property.

– The autocorrelation property of an MLS is periodic and binary-valued [14],
as shown in Eq. (4). Higher N implies lower autocorrelation, which in general
is a desired property of random number sequences.

R(n) =

{
1, n = 0

− 1
2N−1 , 0 < n < 2N − 1

(4)

For the NoisyXOR problem, to be detailed in Subsection 4.1, we evaluated
three different LFSRs based on the following MLS feedback polynomials [11]:

– x18 + x7 + 1
– x16 + x12 + x3 + x1 + 1
– x12 + x6 + x4 + x1 + 1

The above sequences have lengths of 262143, 65535 and 4095 respectively and
were chosen based on the results from the general experiments, in Section 4. We
used the open source LFSR Python software in [4] to generate the LFSR random
numbers by reading out the internal register state per clock period. Furthermore,
with this software we also verified the general MLS characteristics of these se-
quences, as described earlier in this section. The random numbers generated by
the LFSRs were scaled to the range [0,1), and the resolution tested were floored
to 2, 3 and 4 decimals. This corresponds to binary number representations of
about 7, 10 and 14 bits respectively. For illustration purposes, Fig. 4 shows an
excerpt from the sequence generated by the 18 bit LFSR. The numbers here are
scaled to the range [0, 1), and the sequence elements from 60000 to 60100 are
shown.

4 Experimental Results and Discussion

To study the impact of different types of sequences on the performance of TM,
experiments on two different ML problems were performed: The NoisyXOR and
the Binary Iris datasets [7], [6].



Fig. 4. Excerpt from sequence generated by the 18-bit LFSR.

4.1 The Noisy XOR Dataset with Non-informative Features

The artificial dataset of Noisy XOR with non-informative features was one of the
original datasets [6] used for testing the vanilla TM [7]. The dataset consists of
10, 000 examples, and there are twelve Boolean inputs and one Boolean output.
Ten of the inputs are completely random while two inputs follow the XOR-
relation. Of the dataset, 50% is adopted for test and the other 50% for training.
A high level of noise has been introduced in the training dataset by inverting
40% of the outputs. The motivation for this was to examine robustness of the
TM [7]. The dataset is intended to uncover “blind zones” caused by XOR-like
relations [7].

For comparison, the configuration of TM in this experiment is kept exactly
the same as in [7]. The architecture is configured with 20 clauses and an s-value
of 3.9, the threshold T value of 15. Each TA is allocated 100 states. We ran the
TM algorithm for 200 epochs for each training experiment; the training data
was reshuffled for each epoch. We performed 100 iterations of each experiment.
Fig. 5 shows the mean test accuracy for different sequence lengths and different
resolution of the pre-generated random numbers from these experiments.

In the original experiments reported in [7], the average of the test accu-
racy was 99.3%. The 5%-percentile, 95%-percentile, Min and Max accuracy were
95.9%, 100.0%, 91.6% and 100% respectively. Applying the pre-generated cyclo-
stationary random number sequence for the NoisyXOR case, we observe that
sequences with more than about 50k random numbers achieve mean test accu-
racy on par with the original results in [7], as shown in Figure 5. For example,
for a sequence of 100k random numbers with 3 decimals, we obtained an av-
erage test accuracy of 99.5%, 5%-percentile of 97.7%, 95%-percentile of 100%,
minimum accuracy of 93.1%, and maximum accuracy of 100%.

When it comes to resolution, applying a number with only 1 decimal signif-
icantly degrades the accuracy, independently of the sequence length. However,
there are only minor accuracy differences between 2 and more decimals for se-
quence lengths greater than 50k elements. For sequence lengths of 100k and 200k,
we also tested rounding down to the closest decimal of the chosen resolution, i.e.
the numbers were “floored”, as this reflects a close-to-hardware representation.
In this case, comparing to the normal rounding showed negligible difference.



Fig. 5. Average accuracy for NoisyXOR test data versus sequence length and for dif-
ferent random number resolutions.

As the sequence needs to be long to achieve a comparable accuracy, i.e., over
50k numbers, storing it in on-chip RAM/ROM is not attractive. A sequence
of 50k numbers with, e.g., 10 bits representation, would need 0.5Mbit storage.
Furthermore, with highly parallel operation of a TM-based system it is desirable
to operate several such sequences in parallel, requiring more hardware resources.
For this reason, LFSRs are considered as better candidates for random number
generators in TM-based hardware systems. It should be noted, however, that
increased register lengths will result in higher power consumption due to the
digital switching activity. Therefore, TM training circuitry will only be enabled
during training and will be switched off to save power during inference mode. In
an IC, clock and power gating can be employed to enable the LFSRs. Clause and
TA updating can be implemented with a high degree of parallelism, and several
LFSRs can operate concurrently. In this case, the different LFSRs should be
seeded differently, i.e., their start conditions should be different.

In Table 1, it is shown that LFSR registers, with lengths from 16 and up-
wards, provide random numbers that do not degrade the mean test accuracy.
The 12 bit LFSR corresponds to a sequence length of only 4095, and the accuracy
degradation for this is notable and as expected.

For the results in Table 1, it should be noted that the sequences also included
the startup transition part. More specifically, the sequences’ probability distri-
bution may not be precisely uniform. To test this further, we applied only 1/4
of the sequence for the 18 bit LFSR as the source for random numbers. In this
case, we found that the mean accuracy was also high (99.9%). The reason for
this is most likely the MLS’s balance and run properties as shown in Section 3.
Moreover, the quarter sequence also contains more than 50k elements.



Table 1. Mean accuracy for NoisyXOR test data versus sequence length for different
number resolutions. MLS/LFSR-based number sequences. The random numbers are
floored.

2 decimals 3 decimals 4 decimals

18 bit LFSR 99.9 99.9 99.9
16 bit LFSR 99.9 99.9 99.8
12 bit LFSR 88.7 85.8 82.0

4.2 The Binary Iris Dataset

The Iris dataset is classical [16] and consists of only 150 examples. It was one
of the datasets used when evaluating the vanilla TM performance [7]. Each
example has four inputs and three possible outputs (classes). In [7], the dataset
was converted into Boolean features the following way: Each input value was
represented by a 4 bit number, i.e. the input sequence was 16 bits in total.
This new dataset was denoted The Binary Iris Dataset. For training we used
80% of the dataset, and we randomly generated 100 different training and test
partitions (ensembles). We adopted 300 clauses per class. The s-value was 3.0,
the threshold T was 10 and each TA had 100 states. We ran the TM for 500
epochs for each data partition.

Fig. 6. Mean accuracy for Binary Iris test data for different sequence lengths and
number resolutions.

In Fig. 6, it is shown the mean accuracy for Binary Iris test data for different
sequence lengths and number resolutions. The original mean test data accuracy



was 95.0% [7]. As we can see from Fig. 6, even very short sequences provide good
accuracy. For 11 elements and below we observed significant accuracy degrada-
tion. Similar to the NoisyXOR dataset, the resolution does not have a huge
impact. However, with only one decimal there is a notable degradation. Thus,
the chosen settings for the Binary Iris dataset are very robust with respect to
the random number sequence.

The IC reported in [17] implements a TM-based classifier for the Binary
Iris case. It the first reported chip based on the TM, and achieves 62.7Top/J
during inference and 34.6Top/J during training. The chip employs one 8-bit
LFSR per TA, and each LFSR is seeded differently. The accuracy of the IC was
somewhat degraded compared with the original software version. The IC shows
approximately 92.5% for the test accuracy. Our simulations show that even with
very short sequence lengths, the TM operates robustly for this dataset. So the
8-bit LFSR with a sequence length of 255 should be sufficient. However, other IC
implementation choices affect the test accuracy. Most important is the number
of clauses applied per class, which for the IC in [17] was significantly less than
for the results reported in [7].

The number of times a sequence is applied during one epoch scales approxi-
mately inversely proportional with the sequence length as expected. The number
of sequence accesses depends on the amount of training examples and the gen-
eral TM configuration (number of clauses, number of classes, T , and s). For the
NoisyXOR case, a 50k element sequence is applied approximately 13.9 times
during one epoch, while the Binary Iris only requires 0.9 times.

Comparing the results from these two data sets, we can conclude that cyclo-
stationary sequences can be used by TM for training purpose. For NoisyXOR,
the sequence should contain more than 50k elements, and the resolution of the
random numbers should be minimum two decimals. For Binary Iris, the required
length is significantly reduced. This indicates that the required sequence length
is to a large degree dependent on the ML problem and the nature of the dataset.
This shows that for any hardware implementations, if the application domain
and the ML problem is known, the random sequence generator can be designed
according to the nature of the problem. The approach may be tested in software
implementations first, and then deployed accordingly in the hardware, which
can best balance the complexity, performance, and power consumption. More
specifically, one can modify the TM code by e.g., exchanging the random func-
tion calls with lookup to a pre-generated number sequence, and perform direct
simulations of the effect of the sequence length and resolution.

5 Conclusions

Based on the empirical results, we conclude that pre-generated cyclostationary
sequences of randomly generated numbers can be employed for TM training with
test accuracy on par with vanilla TM. The required lengths of the sequences de-
pend heavily on the ML problem. Using sequences with just sufficient lengths
can reduce the complexity of the implementation of TM significantly. For hard-



ware implementations, applying cyclostationary sequences from LFSRs is an
attractive and robust solution for the random number sequence generation.
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