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Optimizing Fenton-like process, homogeneous at neutral pH for Ciprofloxacin Degradation: 1 

Comparing RSM-CCD and ANN-GA  2 

 3 

Marjan Salari1, Mohammad Reza Nikoo2*, Abdullah Al-Mamun3, Gholam Reza Rakhshandehroo 4, 4 

Mehrdad Ghorbani Mooselu5 5 

Abstract 6 

Antibiotics are considered among the most non-biodegradable environmental contaminants due to their 7 

genetic resistance. Considering the importance of antibiotics removal, this study was aimed at multi-8 

objective modeling and optimization of the Fenton-like process, homogeneous at initial circumneutral pH. 9 

Two main issues, including maximizing Ciprofloxacin (CIP) removal and minimizing sludge to iron ratio 10 

(SIR), were modeled by comparing central composite design (CCD) based on Response Surface 11 

Methodology (RSM) and hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA). Results of 12 

simultaneous optimization using ethylene diamine tetraacetic acid (EDTA) revealed that at pH≅7, optimal 13 

conditions for initial CIP concentration, Fe2+ concentration, [H2O2]/[Fe2+] molar ratio, initial EDTA 14 

concentration, and reaction time were 14.9 mg/L, 9.2 mM, 3.2, 0.6 mM, and 25 min, respectively. Under 15 

these optimal conditions, CIP removal and SIR were predicted at 85.2% and 2.24 (gr/M). In the next step, 16 

multilayer perceptron (MLP) and radial basis  function (RBF) artificial neural networks (ANN) were 17 

developed to model CIP and  SIR. It was concluded that ANN, especially multilayer perceptron (MLP-ANN) 18 

has a decent performance in  predicting response values. Additionally, multi-objective optimization of the 19 

process was performed  using Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II 20 

(NSGA-II) to maximize CIP removal efficiencies while minimizing SIR. NSGA-II optimization algorithm 21 

showed a reliable performance in the  interaction between conflicting goals and yielded a better result than 22 

 
1 Assistant Professor, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran. 
2  Associate Professor, Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman 

(Corresponding Author: m.reza@squ.edu.om). 
3 Associate Professor, Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman. 
4 Professor, Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran. 
5 Ph.D. Research Fellow, Department of Engineering and Science, University of Agder, Norway. 

https://en.wikipedia.org/wiki/Response_surface_methodology
https://en.wikipedia.org/wiki/Response_surface_methodology
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwievZ7z4bzcAhXOAewKHRXUB0AQFjAAegQIAhAB&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGenetic_algorithm&usg=AOvVaw2CKZbuV_upPmA9_ANUgf_4
mailto:s.shojaeezadeh@shirazu.ac.ir


2 
 

the GA algorithm. Finally, TOPSIS method with equal  weights of the criteria was applied to choose the best 23 

alternative on the Pareto optimal solutions of the NSGA-II. Comparing the optimal values obtained by the 24 

multi-objective response surface optimization models (RSM-CCD) with the NSGA-II algorithm showed 25 

that the optimal variables in both models were close and, according to the absolute relative error criterion, 26 

possessed almost the same performance in the prediction of variables. 27 

 28 

Keywords: Pharmaceutical compounds, Ciprofloxacin antibiotic, Homogeneous processes, Multi-29 

objective optimization. 30 

 31 

Introduction 32 

There is a growing tendency in medications usage, especially antibiotics. It is estimated that antibiotics 33 

production is about 100,000-200,000 tons per year (Bajpai et al., 2014). High consumption of antibiotics 34 

and release of their residuals cause environmental problems (Gagnon et al., 2008; Manyi-Loh et al., 2018), 35 

such as drug resistance in humans and also affects non-target pathogens, alters the structure of algae in water 36 

resources, and interferes with the plant's photosynthesis (Wei, 2011; Kovalakova et al., 2020). One of the 37 

famous families of antibiotics is fluoroquinolones. Ofloxacin (OFL), ciprofloxacin (CIP) and norfloxacin 38 

(NOR) are among the antibiotics of this family, widely used in therapeutic fields (Capriotti et al., 2012; 39 

Mayer and Takiff, 2014; Salari et al., 2021a; Rakhshandehroo et al., 2018). Since CIP (Molecular Weight 40 

331.35 g/mol) is the most frequently detected worldwide, it was considered a model compound for antibiotic 41 

agents (Kümmerer, 2009; Lapworth et al., 2012; Li et al., 2018). 42 

In the simple Fenton reaction,  iron ions and hydrogen peroxide are the homogeneous catalysts, which play 43 

the key role in acidic conditions. The hydroxyl radicals are generated by a complex set of reactions during 44 

the Fenton process (Salari et al., 2018a, b, c; Torres-Pinto et al., 2020). The most significant variable in the 45 

Fenton reaction is the pH of the solution. It is believed that the optimum range of pH for this process is 46 

mainly approximately 3 (Mahamuni and Adewuyi et al., 2010). This is mainly because at pH values higher 47 

than 4, due to the ferric hydroxide precipitation, the performance of the Fenton process decreases. Under 48 
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these conditions, fewer free iron ions are catalytically available for decomposition, and as a result, fewer 49 

hydroxyl radicals are produced. According to literature, the Fenton process's optimal conditions depend on 50 

the maximum production of hydroxyl radicals (Neyens and Baeyens, 2003; He and Zhou et al., 2017). 51 

Although the Fenton process is used in most industrial wastewater treatment plants, it has limitations, such 52 

as pH conditions for the optimal solution, which is typically controlled by adding acid. However, adding 53 

acid for pH adjustment (or pH less than 3) increases the operation costs (Usman et al., 2016). Several studies 54 

investigated Fenton reaction defects, but a notable knowledge gap still exists on the effects of operational 55 

parameters and the feasibility of using various chelating agents (organic ligands) on CIP oxidation during 56 

the process. Chelating agents have been commonly used to achieve a stable amount of Fe (II) in the solution 57 

(Zhou et al., 2013). Over the last two decades, nitrilotriacetic acid (NTA) and ethylene diamine tetraacetic 58 

acid (EDTA) have been extensively applied as Fe (II) stabilizers (Miao et al., 2018). Therefore, in this study, 59 

a comparison was made on CIP oxidation under different pHs using different concentrations of EDTA. 60 

Notably, selecting the type of chelating agent has been based on library studies, ligand structure, commercial 61 

availability, and economic concerns (Messele, 2014; Vicente et al., 2011). In this paper, Response Surface 62 

Methodology (RSM) based on Central Composite Design (CCD) was employed to model and optimize two 63 

main responses, namely, maximizing CIP removal and minimizing sludge to iron ratio (SIR) using EDTA.  64 

Artificial Neural Network (ANN) is an effective tool for nonlinear multivariate modeling, capable of 65 

learning the trend in historical data. Comparing ANN to RSM (i) ANN does not require previous 66 

performance characteristic and (ii) ANN can approximate universally, meaning that almost all nonlinear 67 

functions, including quadratic are approximated, while RSM can be applied just for quadratic 68 

approximations (Desai et al., 2008). Various studies have suggested that an ANN basis requires a much 69 

larger dataset (experiments) than RSM, however, if the dataset is statistically well distributed in the input 70 

domain, ANN would suffice the design of experiments (DOE). Under such conditions, RSM data would be 71 

sufficiently adequate to construct an ANN model. Previous studies have widely compared RSM and ANN 72 

models by the same DOE and optimized the ANN model with a Genetic Algorithm (GA) (Desai et al., 73 
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2008; Jacob and Banerjee, 2016; Talwar et al., 2019; Park et al., 2020; Ahmadi et al., 2021). GA has been 74 

proven to be an ideal technique for solving various optimization problems in biochemical engineering 75 

(Sarkar and Modak, 3003; Nandi et al., 2002). In direct methods, the multi-objective optimization issue was 76 

solved in its original form, i.e., multi-objective. Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 77 

evolutionary algorithm has an excellent overall performance, and it is one of the most popular direct 78 

methods for solving multi-objective optimization problems (Deb et al., 2002). The following are some 79 

recent findings in this field. Vinayagam et al. (2022a) investigated the adsorption of hexavalent Chromium 80 

using a sugar-consumed macroalgae biomass of Ulva prolifera. In this study, Chromium (VI) adsorption 81 

from aqueous solutions was investigated under different conditions of pH, adsorbent amount, stirring speed, 82 

and time to evaluate. Independent variables were optimized using a statistical method (RSM) and ANN tool 83 

using experimental data. Under optimal conditions, the maximum adsorption was reported as 99.11±0.23% 84 

using U.prolifera. Finally, comparing different parameters in RSM and ANN models showed that the ANN 85 

model with a high coefficient (R2
ANN: 0.9844, R2

RSM: 0.9721) and low MSE (MSEANN: 3.7002, MSERSM: 86 

6.2179) is more accurate in response prediction than the RSM model. Thus, the consumed biomass of 87 

U.prolifera may be reliably used as a low-cost adsorbent for Chromium (VI) removal, and the adsorption 88 

process may be modeled and predicted effectively using ANN. In addition, Vinayagam et al. (2022b) 89 

synthesized magnetic activated charcoal/Fe2O3 nanocomposite (AC/Fe2O3NC) using spondias dulcis leaf 90 

extract in an easy and fast method. Their results showed that the predictive ability of ANN (R2= 0.99) was 91 

better than the quadratic RSM model (R2= 0.93). Therefore, this nanosorbent may be used as an excellent 92 

alternative to 2,4-D removal from water bodies. Talwar et al. (2019) investigated the modeling of 93 

metronidazole antibiotic removal using dual degradation of photo-Fenton and photocatalysis by composite 94 

materials consisting of fuller soil and cast sand. The dual process facilitated a significant reduction in 95 

treatment time because 80% of the combination was decomposed with 30 min of reaction. ANN model 96 

coupled with GA was used to optimize input variables such as H2O2 dose, treatment time, number of grains, 97 

pH, etc. The results showed that the maximum degradation was achieved in 120 min with an oxidant dose 98 

of 1050 mg/L, pH 3.5, current intensity 25 W m-2 and A/V ratio 0.273 cm2 mL-1. The simultaneous effect 99 
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of two processes (80% decomposition in 30 min) until each process is applied separately was to reduce the 100 

degradation time and increase the reaction rate constant. The results confirmed applying ANN coupled with 101 

GA to optimize various parameters. Table 1 provides a summary of previous studies conducted in recent 102 

years 103 

Table 1.  Summary of previous studies conducted in recent years 104 

Treatment 

parameters 

Contaminant Main findings References 

Initial CEX concentration 

=15–55 (mg/L), Initial pH= 

3–11, Electrolysis time= 20–

40 (min), and Electrode type 

=  Insulated and non-

insulated) 

 

 

 

 

 

Cephalexin 

Antibiotic 

 

 

 

 

 

This study RSM-CCD, Artificial Neural 

Network (ANN) and Adaptive Neuro 

Fuzzy Inference System (ANFIS) were 

used to evaluated modeling and 

Optimizing removal of CEX antibiotics 

from Water. The results showed that the 

highest rate of CEX antibiotic removal 

by experimental data and predicted 

models were 88.21% and 93.87%, 

respectively. Based on the statistical 

indices were applied for assessment, 

ANFIS implemented better than ANN 

and RSM-CCD models.  

(Arab et al., 2022) 

 

 

 

 

 

 

 

 

 

Initial tetracycline 

concentration = 40–250 

(mg/L), Concentration of 

H2O2= 20–600 (mg/L), and 

Concentration of Fe(II) = 0–

60 (mg/L) 

Tetracycline 

Antibiotic 

 

 

 

 

Under optimal conditions hydrogen 

peroxide 310 (mg/l), Fe2+ 30 (mg/l), 

tetracycline 145 (mg/l), the highest (R2= 

100) efficiencies was 100%  

 

 

(H Mahdi et al., 

2021)  

 

 

 

 

Contact time= 3.65 h,  

Number of beads= 98, 

Concentration of H2O2= 800 

(mg/L). 

 

 

Real 

industrial 

pharmaceuti

cal effluent 

 

 

 

This study, new composite granules was 

used as a surface for TiO2 coating. 

Microbial experiments confirmed the 

effluent discharge according to 

disposable standards, and finally, a 75% 

reduction in COD was achieved in 5 hr.  

(Talwar et al., 

2021) 
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Water treatment residuals 

(WTR) concentration (g/L)= 

10-30, Initial Dye 

concentration (mg/L)= 25-

75, pH=3-5. 

 

Dye removal 

(%) 

The results of this study showed that 

under optimal conditions dye removal 

(%) was by CCD-RSM and ANN 52.0% 

and 52.2% , respectively. This study 

showed that optimization/prediction of 

the dye removal process is possible using 

the RSM-ANN approach. 
 

(Gadekar et al., 

2019) 

Current intensity = 0.25–3 A, 

Reaction time= 10–90 (min), 

Concentration of FeSO4 = 

0.20–1.0 (mM). 

Real textile 

wastewater 

The optimal values of the parameters 

current, reaction time and concentration 

were FeSO4 0.32 A, 90 (min) and 

0.53 (mM), respectively. The results 

indicated that the predicted parameters 

are well consistent with the experimental 

data.  

(Kaur et al., 2019) 

Concentration of TiO2 

(g.L−1) = 0.4-2, pH= 3-11, 

Concentration of Ornidazole 

(g.L−1)= 0.01-0.03, Reaction 

time (min)= 30-180. 

Ornidazole 

Antibiotic 

Optimization and modeling of the 

ornidazole antibiotic were evaluated 

using TiO2 as a photocatalyst and ANN. 

Under optimal conditions, the 

percentage of degradation using BBD, 

simulated with ANN and  with 

experimental run were predicted to be 

84.02, 82.63 and 77.7%, respectively. 

The results indicated that the predictions 

consistented with the experimental 

results.  

(Talwar et al., 

2018) 

 105 

Due to the high and arbitrary use of antibiotics and the impossibility of eliminating such compounds with 106 

common processes in a residential, hospital, or pharmaceutical wastewater treatment plant, investigating 107 

effective and feasible methods is vital (Al Maadheed et al., 2018; Talwar et al., 2020; Salari et al., 2021b). 108 

We analyzed and optimized the effects of environmental component concentrations, namely CIP (mg/L), 109 

ferrous ions [Fe2+] (mM), [H2O2]/[Fe2+] mole ratio, and EDTA (mM) using the response level methodology. 110 

Also, the application of a chelating agent to remove CIP antibiotics from aqueous media under neutral pH 111 
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conditions was investigated. The efficiency of predictive models presented by RSM-CCD and ANN-GA, 112 

NSGA-II were evaluated. The optimal conditions presented by both methods have been experimentally 113 

confirmed. The novelty of this work lies in the comparison of RSM-CCD, ANN-GA, and NSGA-II models 114 

to enhance the Fenton-like process, homogeneous under neutral pH conditions, for CIP degradation. 115 

2. Material and Methods  116 

2.1. Reagents 117 

Analytical grade chemicals were utilized without purification (Table S1).  118 

2.2. Using Chelating-Agent 119 

The use of chelating-agent in oxidation processes is a new and promising technology. In fact, the chelating- 120 

agent is an organic compound with several rings and a high tendency to connect to a metallic element. The 121 

most common metal ligands are oxygen, nitrogen, and sulfur atoms. Aminopolycarboxylic acids are one of 122 

the most important groups of organic chelating agents, which have the ability to capture metal ions (Flora 123 

and Pachauri, 2010). Ethylene Diamine Diacetic Acid (EDDA), Ethylene Diamine Tetra acetic Acid 124 

(EDTA), Diethylene Triamine Pentaacetic Acid (DTPA), Imino Diacetic Acid (IDA), Hydroxyethyl 125 

Ethylene Diamine Triacetic Acid (HEDTA), and Nitrilotriacetic acid (NTA) are example groups in this 126 

family, while the latter has the most applications (Messele, 2014).  127 

Based on the literature, chelating agents are broadly used, e.g., for metal ions' decomposition, inhibition of 128 

metal-catalyst reaction, removal of metal ions, and increased metal availability. Also, it seems that by 129 

adding chelating agents at pH = 6-7, stable chelates will be formed with iron ions, which makes these ions 130 

available for reaction with hydrogen peroxide (H2O2), producing hydroxyl radicals, and partially preventing 131 

the sequestration of iron ions (Messele, 2014). EDTA organic chelates (Table 2) has a high affinity for 132 

heavy metal ions, especially iron, generating highly stable complexes. It is also found economically 133 

affordable and abundantly available (Messele, 2014).  134 



8 
 

Table 2. Chemical formula and structure EDTA (Adopted from Messele, 2014) 135 

Composition 

name  
Molecular weight Molecular 

formula 

Molecular structure 

Ethylene 

diamine tetra 

acetic acid 

(EDTA) 

292.24 (gr/mol) C10H16N2O8 

OH

O

N

O

N

O

OH

HO

O

OH

 
 136 

2.3. Predictive modeling and optimization methods 137 

2.3.1. Experimental design 138 

When many parameters and relationships affect the response variable, RSM methodology designs the 139 

experiments effectively, and computes the optimal values of several variables simultaneously utilizing 140 

minimal quantitative data, and resources (Ehteshami et al., 2021; Mahmoudpour et al., 2021). Common 141 

subset methods for RSM design include CCD and BBD. A comparison of CCD and BBD experimental 142 

design methods is given in Table S2. Normally, CCD has more features than BBD, but selecting an 143 

appropriate design depends upon the nature of parameters and preliminary information about them. Based 144 

on the explanations provided in Table S2 and considering the number and conditions of independent 145 

variables in our study, CCD method has been selected which has rotation capability and widespread use in 146 

various studies. The CCD can fit a second-order model, and has the necessary features for response level 147 

designs (Shoorangiz et al., 2019; Salari et al., 2021b; Mahmoudpour et al., 2021; Salari 2022). 148 

 Table S3 shows the number of selected levels of Fenton-like homogenous organic decomposition process 149 

using the chelating agent when all experiments are performed at pH≅7. The effective variables and selected 150 

levels for the effective parameters in the experimental design were presented in Table S4, with six 151 

repetitions of the central points, as shown in Table S5. In the CCD design method, the number of required 152 

experiments (N) was defined as N=n0+2K+2K, in which K and n0 are the number of input variables and the 153 

number of central points, respectively.  154 
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Also, each parameter is divided into five different levels (+∝,+1, 0, −1,−∝), where α is the axial point 155 

and its value depends on the number of input variables (Ngan et al., 2014; Rakić et al., 2014). However, 156 

the operating range of the experiments for the independent parameter was determined based on a literature 157 

review and the results of initial experiments, such as one factor at a time. 158 

2.3.2. Artificial neural network (ANN)  159 

ANN model involves 1- data generation, 2- data processing, 3- the network structural design, 4- selection 160 

of the training algorithm, 5- network training, and 6- testing the trained network (Yamashita et al., 2018). 161 

Although several network structures exist for modeling, the most popular ANN structures include 162 

multilayer perceptron (MLP) and radial-based functions (RBF) (Ahari et al., 2013). 163 

Multi-layer perceptron artificial neural network were developed with radial base function taking into 164 

account input factors i.e., initial concentration of CIP (mg/l), iron ion concentration (mM) [Fe+2], molar 165 

ratio [H2O2]/[Fe+2] and concentration of EDTA (mM). We used Matlab® R2015a for the objectives 166 

prediction. The ANN was developed based on the results of 21 experiments, and validated by the results of 167 

9 experiments. 168 

 169 

2.3.2.1. Multilayer perceptron neural network (MLP) 170 

Four models of feed-behind neural networks with three layers (i.e., input, hidden, and output) and various 171 

transmission functions were developed to assign the best transmission functions in the hidden and output 172 

layers. Initially, the cross-validation method was used to obtain the best network design and solve the 173 

problem of data scarcity. After selecting the best models, multi-objective optimization of the process was 174 

performed by two methods, simple GA and NSGA-II. 175 

Data obtained during the experiments were introduced to the network in the form of a 4×30 matrix for the 176 

input and a 1×30 matrix for the output. The data was divided 70%, 20%, 10% into training, testing and 177 

validation sets, respectively. The input layer had 4 neurons, equal to the number of input variables, which 178 
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was optimized after specifying the best network from the four mentioned models. The number of output 179 

parameters directly affects the number of neurons in the output layer. In ANN model, Levenberg-180 

Marquardt backpropagation (LMBP) was used for network training, and the output was compared with the 181 

expected output. In this type of neural network, investigating the relative importance of each input variable 182 

on the output response can be estimated from Garson's equation according to equation 1: 183 
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(1)  

Where, Ni, Nh  are the number of neurons in input and hidden layers, Ij shows the relative significance of 184 

jth input variable on the output variable, and W is connection weight. The superscripts 'i', 'h' and 'o' 185 

demonstrate input, hidden, and output layers, while subscripts ‘k’, ‘m’ and ‘n’ illustrate input, hidden, and 186 

output neurons, respectively (Elmolla et al., 2010; Aleboyeh et al., 2008). 187 

 188 

2.3.2.2. Radial basis function (RBF) 189 

In the radial basis function artificial neural network (RBF-ANN), newrb function was used to adjust the 190 

input data. Theoretically, RBF network (like its MLP counterpart) can perform any kind of continuous 191 

nonlinear mapping between inputs and outputs. While MLP networks have public activity functions, the 192 

activation functions are local to these networks. The number of neurons in the hidden layer was obtained 193 

by sensitivity analysis, and neurons in the output layer were equal to the number of outputs. For training, it 194 

is necessary to adjust the activity center together with the weights. Weights and the activity function center 195 

were adjusted by the descending gradient method according to the least sum of squared errors (Al-Shamisi 196 
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et al., 2014), and the optimal artificial neural network was selected based on the least mean squares error 197 

(MSE) and the correlation coefficient (R2). 198 

2.3.2.3. Performance of models 199 

Evaluation of neural network performance has been done through some statistical indicators such as MSE, 200 

root  mean square error (RMSE), R2, and mean absolute relative error (MARE) according to equations 2 to 201 

4: 202 
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 203 

Where, n, 
Obsy  and 

lsymod
 are the number of data, measured and the modeled outputs, respectively. MeanObsy ,  204 

and MeanModely ,  are the average experimental measured values and the average values of model predictions 205 

(Elmolla et al., 2010; Aleboyeh et al., 2008; Shanmugaprakash and Sivakumar, 2013).  206 

 207 

2.3.3. Genetic Algorithm (GA) 208 

A genetic algorithm is a subset of evolutionary computational algorithms that is directly related to artificial 209 

intelligence and uses biological concepts such as inheritance, mutation, sudden selection, natural selection, 210 

and composition. It is often necessary to optimize an objective in relation to several (sometimes) conflicting 211 

goals. There are two general solutions for multi-objective optimization problems 1) decomposition 212 

methods, and 2) direct solution methods (Fan et al., 2017). 213 
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In decomposition methods, a multi-objective optimization problem is first transferred to a single-objective 214 

one. The simplest and the most practical analysis approach is then assigning weights to targets (Coello, 215 

2007), whereby a weight is assigned to each goal based on its importance. Finally, multiplying this weight 216 

by the value of each goal, a simple and solvable goal function is defined for the optimization problem. In 217 

other words, rather than minimizing a number of different objective functions (𝑚𝑖𝑛 𝑓𝑖(𝑥), 𝑖 = 1,2, . . , 𝑛) 218 

the following equation is minimized (Yang and Moodie, 2011): 219 


=

=
n

i
iiwi

xfwxf
1

)(min)(min   (5) 

In the decomposition methods, conversion of a multi-objective problem to a single-objective one causes 220 

loss of some information in the decision space. To overcome this problem, the problem must be solved 221 

several times, which is time-consuming and generates a different answer each time.    222 

One of the advantages of direct methods is fast and accurate operation speed (Yang and Moodie, 2011). In 223 

the NSGA-II method, population members are organized (sorted) according to the non-dominance concept. 224 

The purpose of implementing NSGA-II and GA are to achieve an interaction curve reflecting costs and 225 

benefits (Cámara et al., 2012; Deb et al., 2002; Mooselu et al., 2020).  In this process, the goal is to find a 226 

set of answers that minimizes or maximizes the objective function, while several conflicting goals are 227 

optimized. At this stage, the best ANN models chosen at the previous stage were connected to GA and 228 

NSGA-II algorithms as a fitting function, and the multi-objective optimization process was performed with 229 

GA according to the following formulations:  230 

Design variables: Fe2+ concentration, [H2O2]/[ Fe2+] Mole ratio, EDTA concentration  231 

Minimize − (w1f1(x⃗ )n − w2f2(x⃗ )n)    (6) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 232 

5 mM < Fe2+ Concentration < 21 mM (7) 

2 < [H2O2] /[ Fe
2+] Mole ratio < 4  (8)  
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0 < EDTA Concentration < 2  mM (9) 

In equation 6, wi is the weight of each target (response) with the normalized value of fi(x)n. Indices 1 and 2 233 

reflect CIP removal and SIR reduction, respectively. As mentioned, solving a multi-objective optimization 234 

problem by a single-objective method eliminates part of the decision space and does not reveal all possible 235 

optimal solutions. The main advantage of NSGA-II evolutionary optimization algorithm is its ability to 236 

consider selected responses simultaneously (Deb et al., 2002). The formulation of NSGA-II direct multi-237 

objective optimization algorithm with two objectives was defined as the following equations: 238 

concentration ] Mole ratio, EDTA 2+] /[ Fe2O2oncentration, [Hc 2+Design variables: Fe 239 
 240 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓1(x⃗ ) (10) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2(x⃗ ) (11) 

Subject to: 241 

5 mM < Fe2+  Concentration < 21 mM (12) 

2 < [H2O2]/[ Fe
2+] Mole ratio < 4  (13) 

0 < EDTA Concentration < 2 mM (14) 

 242 

In order to obtain optimal general answers, the population of each generation was considered to be 120, of 243 

which 35% were in the first unfavorable front. Upon reaching the maximum generation condition (100 244 

generations), the final unsuccessful front was obtained in the form of an interaction curve. Then, the 245 

TOPSIS multi-criteria decision-making model was applied to choose the best option among the optimal 246 

solutions (42 answers). 247 

3. Results and Discussion 248 

In this section, changes in CIP antibiotic concentration and SIR were measured at specified time intervals 249 

(25 minutes) considering input variables of ciprofloxacin initial concentration (mg/L), iron ion 250 

concentration [Fe2 +] (mM), molar ratio [H2O2]/[Fe2+]), EDTA concentration (mM) and PH≅ 7. Results are 251 

presented in Table 3.  252 

Table 3. Results obtained based on experimental runs and predicted by (RSM-CCD) 253 
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Run’s 

Number 

Response 1 Response 2 

CIP removal (%) SIR (gr/M) 

1 73.00 2.81 

2 62.00 3.65 

3 90.00 3.60 

4 53.00 3.30 

5 87.91 3.56 

6 80.00 3.62 

7 68.00 4.09 

8 94.00 3.20 

9 83.00 3.18 

10 47.00 3.45 

11 38.00 4.85 

12 79.00 3.36 

13 56.00 3.54 

14 93.00 3.87 

15 87.00 3.40 

16 83.00 2.68 

17 74.30 2.71 

18 53.00 3.02 

19 87.91 3.33 

20 84.60 2.43 

21 65.34 4.23 

22 95.00 3.56 

23 70.27 3.01 

24 78.52 2.24 

25 83.00 3.40 

26 73.00 4.20 

27 87.91 3.56 

28 75.97 3.84 

29 84.32 3.45 

30 58.00 4.09 

 254 

Based on the results and statistical analysis performed on the objectives, the application of a quadratic 255 

statistical model was evaluated based on an appropriate experimental design. The final model was obtained 256 

for the two responses (CIP removal and SIR reduction) as a function of effective coded variables according 257 

to the following equations: 258 

CIP removal (%) 259 

Y1 = +90.29 − 4.52 𝐴 + 1.91 𝐵 + 1.87𝐶 − 8.75 𝐷 − 2.13 𝐴2 − 4.04 𝐵2 − 2.24 𝐶2 − 0.91 𝐷2    (15) 260 

SIR reduction (gr/M) 261 

Y2 = +3.81 + 0.084 𝐵 + 0.40 𝐷 − 0.28 𝐵𝐷 − 0.19 𝐴2 − 0.22 𝐵2 − 0.099 𝐶2 + 0.080 𝐷2            (16) 262 
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In equations (15) and (16), a positive (negative) sign, reflects a direct (inverse) effect of variables on the 263 

target. These equations also illustrate the magnitude of parameters' effect on the target surface and their 264 

interactions with the target relative to one another. Results for the analysis of variance performed on the 265 

models (CIP removal and SIR reduction) for their validation are presented in Table 4. P-values < 0.05 266 

indicate the model variables are appropriate, and p-value values>0.1 indicate that such variables are 267 

inappropriate. 268 

Table 4.  Results for model accuracy based on analysis of variance (ANOVA) 269 

a) CIP removal (%) 270 

Source Sum of Degree of Mean F P-value 
 

 
squares Freedom square value Prob > F 

 

Model 5943.60 8 742.95 28.46 < 0.0001 significant 

A-Initial CIP (mg/L) 491.23 1 491.23 18.82 0.0003  

B- Fe2+ (mM) 87.63 1 87.63 3.36 0.0811  

C-H2O2/Fe2+ 84.08 1 84.08 3.22 0.0871  

D-EDTA (mM) 1838.90 1 1838.90 70.45 < 0.0001  

A2 123.91 1 123.91 4.75 0.0409  

B2 447.22 1 447.22 17.13 0.0005  

C2 138.14 1 138.14 5.29 0.0318  

Residual 548.12 21 26.10    

Lack of Fit 501.51 16 31.34 3.36  0.0927  not significant 

Pure Error 46.61 5 9.32    

 = 0.88     Adequate Precisions= 22.042= 0.91   Adj. R2Std Dev = 5.11    CV% = 6.83     PRESS= 1595.39     R 271 

 272 

     273 

 274 

 275 

 276 

b) SIR reduction  277 

Source Sum of Degree of Mean F P-value   
squares freedom square value  Prob > F 

 

Model 7.85 7 1.12 19.71 < 0.0001 significant 

B-Fe2+ (mM) 0.17 1 0.17 2.96 0.0995  

D-Initial EDTA (mM) 3.80 1 3.80 66.78 < 0.0001  

BD 1.27 1 1.27 22.34 0.0001  

A2 1.02 1 1.02 17.84 0.0003  

B2 1.28 1 1.28 22.52 < 0.0001  

C2 0.27 1 0.27 4.69 0.0414  

Residual 1.25 22 0.057 
   

Lack of Fit 0.78 17 0.046 0.49 0.8762 not significant 

Pure Error 0.47 5 0.094 
   

= 0.81     Adequate Precisions = 18.722= 0.86   Adj. R2Std Dev =0.24   CV% = 6.87   PRESS= 2.42     R 278 
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As shown in Tables 3 (a) and (b), and according to the rationale offered by the statistical analysis, obtained 279 

model results are satisfactory and logical. Since AP values for the two targets (CIP removal and SIR 280 

reduction) are both above 4, 22.04 and 18.72, respectively, therefore, it may be concluded that the results 281 

are satisfactory. Figure 1 (a-b) shows the scatter plot of experimentally measured values versus the values 282 

predicted by the models. As shown, there is a reasonable interconnection between the two rationalizing the 283 

results being logical.  284 

 285 

 286 

Figure 1.  Measured values versus predicted values a) CIP removal percentage and b) SIR reduction 287 

 288 

Once the models' accuracy was ensured, a perturbation plot for each target was drawn to measure the 289 

independent parameters' effect on each target and investigated separately (Figure S1). A positive effect of 290 

an independent variable on the intended response means that as the variable increases, so does the response, 291 

and to the contrary, a negative effect of the variable happens when an increase in the variable reduces the 292 

response rate. In Figure S1-a, a relatively high curvature with positive effects on variables B (Fe2+) and C 293 

([H2O2]/[Fe2+] was observed, while variables A (CIP Concentration) and D (EDTA Concentration) impose 294 

negative effects on CIP removal response. 295 

 (b) SIR reduction (a) CIP removal  
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As observed, with increasing EDTA concentration from 0 to 1mM, the CIP decomposition rate increases 296 

from 56% to 95%. This shows a positive effect of EDTA concentration on CIP decomposition. It has also 297 

been reported in previous studies that Fe2+ ions released from minerals with chelating agents leads to an 298 

increase in the homogenous Fenton-like reaction, apparently by weakening metal-oxygen bonds on the 299 

surface of minerals in contact with the chelating agents (Sun et al., 2014; Matta et al., 2008). In addition, at 300 

a pH of about (6.5-7), the EDTA complex apparently completes the Fenton reaction, and causes high 301 

dissolution of Fe2+ ions in the solution, inhibiting sequestration of these ions (Diao et al., 2017). 302 

In this study, the pollutant decomposition rate decrease from 95% to about 38% associated with EDTA 303 

concentration increase from 1 to 2 mM was observed as a significant negative effect. The relatively high 304 

EDTA concentration may explain the reason for consuming a large rate of hydroxyl radical (OH0) produced 305 

in the process. Other studies have suggested that an increase in EDTA concentration above a permissible 306 

level is known as a hydroxyl radical (OH0) consumer; a process that reduces the speed of the Fenton reaction 307 

(Diaoa et al., 2017). Results reveal that soluble Fe2 + ion concentration is maximized in the process at an 308 

EDTA concentration of 1 mM, and at concentrations above 1 mM, a significant decrease would occur. 309 

Under these conditions, Fe3+ ion concentration in the solution has an increasing trend. Notably, the EDTA 310 

concentrations >1 mM inhibit CIP oxidation. Therefore, catalytic behavior is not enhanced by excessive 311 

EDTA, rather, a high concentration of EDTA may inhibit hydroxyl radicals formation. Based on the 312 

literature, the ligand to metal ratio is very important because the production of radicals decreases in the 313 

presence of excess ligand (Messele, 2014; Diaoa et al., 2017). 314 

In the next step, single-objective optimization was performed using the response surface method. Thus, a 315 

maximum CIP removal of 95% was predicted when keeping the variables in the design range with the initial 316 

CIP concentration, [Fe2 +] ion concentration, [H2O2]/[Fe2+] molar ratio, and EDTA concentration variables 317 

as 29.1 mg/L,13.9 mM, 2.7 and 0.81 mM, respectively. 318 

SIR production in Fig. S1-b depicted a relatively high curvature with a positive effect on variable D (EDTA) 319 

and a negative effect on other variables at the corresponding response. As mentioned, the pollutant 320 
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decomposition rate decreases with increasing EDTA concentration from 1 mM to 2 mM. It is mainly 321 

because the number of hydroxyl radicals produced by the Fenton process decreases at relatively high EDTA 322 

concentrations. Apparently as EDTA concentration increases, a large number of radicals are consumed to 323 

destroy EDTA rather than being used for CIP decomposition. Meanwhile, Fe2+ concentration in the medium 324 

is maximized at a certain EDTA concentration (1 mM). However, a significant reduction in the ion's 325 

concentration occurs in the range of 1-2 mM EDTA. On the other hand, under the same conditions, Fe3+ 326 

concentration increases with rising EDTA in the medium. A similar study by Daya et al. (2017) reported 327 

similar behavior for the independent variables. 328 

In summary, it may be concluded that certain concentrations may be used for these organic complexes so 329 

that the modified Fenton reaction might be applied directly to the environmental effluents at a neutral or 330 

slightly alkaline pH. Under the single-objective optimization conditions using a response surface 331 

methodology, the maximum SIR reduction was equal to 2.21 gr/M if the variables were kept in the design 332 

range. Also, optimal values for initial CIP concentration, [Fe2+] ion concentration, [H2O2]/[Fe2+] molar ratio, 333 

and EDTA concentration were predicted as 38.16 mg/L, 5.32 mM, 2.21 and 0.56 mM, respectively. 334 

Regarding the interaction of independent variables on the responses, no interaction was observed among 335 

the variables in CIP removal model (according to equation 15). However, regarding the SIR model (based 336 

on equation 16), the response surface plot of the interaction between the two influential variables of EDTA 337 

and Fe2+ concentrations on the response was investigated simultaneously, while other variables were kept 338 

constant at the center point (Figure 2). 339 
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 340 

 Figure 2. Response surface plot for SIR response as a function of Fe2+ and EDTA concentrations (mM) (
𝐻2𝑂2

𝐹𝑒2+ = 3, 341 

Initial CIP= 56 mg/L) 342 

As shown in Figure 2, increasing EDTA concentration had a positive effect on sludge production. For 343 

example, the sludge production efficiency reaches a maximum of 4.3 (gr/M) with an initial Fe2+ and EDTA 344 

concentrations of 9 mM and 1.5 mM, respectively. In contrast, if the initial Fe2+ concentration is equal to 345 

17 mM, with EDTA concentration decrease from 1.5 mM to 0.5 mM, sludge production decreases to the 346 

rate of 2.71 mM. Furthermore, sludge production decreases with increasing iron concentration from 9 mM 347 

to 17 mM and decreasing EDTA concentration. In other words, to reduce sludge production efficiently, a 348 

simultaneous increase in iron and decrease in EDTA concentrations must be considered. Finally, the results 349 

of analysis of variance (ANOVA) indicated that all independent variables are effective on CIP removal 350 

response, but the initial CIP and EDTA concentrations are the most influential ones. Furthermore, EDTA 351 

and Fe2+ concentrations are the most important independent variables affecting sludge production. 352 

3.1. Multi-objective optimization by RSM-CCD and confirmatory experiments  353 

Design-Expert® Software
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SIR (gr/M)

Design points above predicted value

Design points below predicted value
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Through a set of reactions presented by Haber and Weiss (Eqs. 17-23), the pollutant decomposition and 354 

removal mechanisms may be followed by production of hydroxide radicals (Haber and Weiss, 1934; 355 

Messele et al., 2019). As the radicals are released, they attack organic compounds and eventually, hydrogen 356 

peroxide is converted to water and molecular oxygen (Messele et al., 2019). In the next step, if Fe3+ is 357 

removed, then Fe2+ is gradually released and the reaction stops. Therefore, the main role of EDTA is to 358 

retain Fe3+ in the solution without negatively affecting next steps, even at neutral pH (Messele et al., 2019). 359 

Results indicated that addition of EDTA to the Fenton system actually led to more efficient use of H2O2, 360 

causing an increase in iron-catalyzed H2O2 decomposition to radicals, thereby improving the contaminants 361 

removal, similar to reports by other researchers. This may be considered as a solution to the problems of 362 

traditional Fenton systems ." 363 

Fe2+ + H2O2 → Fe3+ + HO0 + OH− (17) 

Fe2+ + HO0 → Fe3+ + OH− (18) 

Fe3+ + H2O2 → FeOOH2+ + H+ (19) 

FeOOH2+ → Fe2+ + HO2
0 (20) 

Fe2+ + HO2
0 → Fe3+ + HO2

− (21) 

Fe3+ + HO2
0 → Fe2+ + O2 + H+ (22) 

HO0 + H2O2 → H2O + HO2
0 (23) 

Numerous optimal points with high utilities were reported by Design Expert® software for a Homogeneous 364 

Fenton-like process with a chelating agent. Based on the optimization model results, the values for initial 365 

CIP concentration, Fe2+ concentration, the molar ratio [H2O2]/[Fe2+], EDTA concentration, and reaction 366 

time were 14.90 mg/L, 9.20 mM, 3.2, 0.62 mM and 25 minutes, respectively. As shown in Table S5, 367 

predicted models are in close agreement with observational values with an absolute relative error of less 368 

than 5%. 369 

3.2. Initial pH effect in the absence and presence of EDTA  370 
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Before numerical modeling, the role of EDTA was investigated by measuring independent variables under 371 

optimal experimental conditions at different pHs and times to ensure the accuracy of obtained results 372 

(Figure S2). Results showed that the lowest CIP degradation was observed in the homogenous Fenton 373 

process at the absence of EDTA and a pH of 6.5. Similar results have been reported in the Fenton process 374 

by previous researchers (Elmolla and Chaudhuri, 2009; Salari et al., 2018a; Rakhshandehroo et al., 2018; 375 

Shorangize et al., 2019). To consider the bond between Fe and EDTA ions, effects of different pHs on the 376 

Fenton oxidation process were investigated in the presence of EDTA (Figure S3). 377 

As observed, the addition of EDTA did not improve the contaminant decomposition under pH~3.5 378 

significantly. It is apparently because there are too many active Fe2+ ions in the soluble medium at pH~3.5, 379 

and it is impossible to form Fe3+ as an insoluble precipitate. Therefore, EDTA presence does not change 380 

the classical Fenton process conditions at pH~3.5. However, at pH 6.5 to 7, where sequestration of Fe3+ 381 

occurs in the form of hydroxide (Fe(OH)3), EDTA addition plays a significant role. It seems that through 382 

stable chelates formation with iron ions (adding chelating agents at pH 6.5-7), these ions react with 383 

hydrogen peroxide, preventing the sequestration of iron ions and producing hydroxyl radicals. 384 

At pH≈8 with or without EDTA, the CIP decomposition rate is lower than that at other pH values. This is 385 

mainly because in these conditions, increasing EDTA will not affect the rate of H2O2 decomposition, which 386 

means H2O2 does not enter into the Fenton reaction for producing the hydroxyl radical (Szpyrkowicz et al., 387 

2001). An increase in pH higher than the neutral values decomposes hydrogen peroxide into water and 388 

oxygen and delays the Fenton process. Such results are similar to studies by other researchers (Messele, 389 

2014). As a result, the most important problem in the classical Fenton process (sludge production and 390 

optimal performance at pH≤3) may be partially solved by increasing a certain rate of the chelating agents 391 

(Li et al., 2015). The concentration of the chelating agent used and the initial pH of the solution are two 392 

important factors in the successful execution of the process. This point reduces the major costs by 393 

eliminating the need for primary acidification. Hence, it was concluded that the main EDTA role is its Fe3+ 394 

retention in the neutral solution to stop affecting the rest of the steps. The positive effect of a Fenton reaction 395 
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in a low pH (3-4) range is, in many cases, to remove various types of contaminants. On the other hand, 396 

there are reports that complex forms of iron work to decompose hydrogen peroxide in a much wider pH 397 

range. Our findings are consistent with the related studies (Messele et al., 2019; Lee and Sedlak, 2009). 398 

3.3. Hybrid multi-objective optimization ANN-GA and ANN- NSGA-II 399 

3.3.1. Predictive modeling with ANN-MLP and ANN-RBF 400 

Input variables in the ANN modeling are initial CIP concentration (mg/L), Fe2+ concentration (mM), the 401 

molar ratio [H2O2]/[Fe2 +], and EDTA concentration (mM) over a 25-min period. To construct the 402 

perceptron neural network and determine the most suitable transmission functions in the hidden and output 403 

layers for prediction of CIP removal and SIR reduction, four feed neural network models each having three 404 

input, hidden and output layers were developed. Initially, the cross-validation method was used to obtain 405 

the best network architecture and to solve the problem of low data numbers. According to the first part of 406 

the research, after selecting the best models, multi-objective optimization of the process was performed by 407 

two methods: Simple GA and NSGA II. One of the most basic parts of a neural network design is to 408 

determine the transmission functions and number of neurons in the hidden and output layers. First, the 409 

transmission functions were determined with 10 neurons in the hidden layer, and then, the number of 410 

neurons in the hidden layer was optimized. For this purpose, four models of purelin-purelin, purelin-tansig, 411 

tansig-purellin, and tansig-tansig were used as transfer functions in the hidden layer. The appropriate 412 

criterion for determining the best transfer function was having the lowest MSE and the highest R2. MSE 413 

and R2 values developed for two purposes (CIP removal and SIR reduction) may be seen in Figure S4 for 414 

all four models. As shown, sigmoid tangent and linear transfer functions in the hidden and output layers 415 

had the lowest MSE (MSECIP = 5.1, MSESIR = 0.063) and the highest R2 (R2
CIP = 0.98, R2

SIR = 0.98), 416 

respectively.  417 

In the next step, neural networks with the mentioned architecture were created having different number of 418 

neurons (from 1 to 20) in the hidden layer, and the optimal number of neurons was determined based on 419 

the lowest MSE and the highest R2, according to Figure S5. Finally, for the designed neural network model, 420 
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the optimal number of neurons for CIP removal was obtained with 7 and SIR with 10 neurons in the hidden 421 

layer. It should be noted that increasing the number of neurons does not always improve network function, 422 

but its should be proportional to the amount of data entering the neural network. Finally, the training results 423 

for ANN-MLP and ANN-RBF models considering the minimum MSE and the highest R2 for the two 424 

objectives of CIP removal and SIR are shown in Tables S7 and S8. Using Garson's relation, the relative 425 

importance of variables in predicting each target is presented in Figure 3. 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

Figure 3. Relative importance of studied variables in predicting goals with Garson’s equation 434 

According to Figure 3, the most important variables for CIP removal, are initial CIP and EDTA 435 

concentrations. Such variables for sludge production are EDTA and Fe2+ concentrations, respectively.  436 

3.3.2. Comparing the performance of RSM-CCD with ANN-MLP and ANN-RBF models 437 

In the next step, a series of analysis were performed on the network's response and experimental models of 438 

the response surface. In this regard, all evaluated data were inputted to a network, and linear regression was 439 

applied to the network output and the target vector (experimental results). Summary of performance 440 

evaluation results for ANN-MLP, ANN-RBF, and RSM-CCD models based on MARE, MSE, and R2 are 441 

presented in Table 5.  442 

Table 5. Summary of performance comparison for ANN-MLP, ANN-RBF and RSM-CCD models 443 
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Responses Model MARE (%) MSE 2R Influential variables 

CIP (%) 

ANN-MLP 0.91 2.36 0.98   

Initial CIP Concentration, 

EDTA Concentration 
  

ANN-RBF 9.73 67.15 0.84 

RSM-CCD 5.59 7.10 0.92 Initial Concentration CIP, 

EDTA Concentration 

SIR 

ANN-MLP  1.07 0.01 0.97 Concentration, EDTA 
Concentration 2+Fe   ANN-RBF   13.51 3.8 0.82 

RSM-CCD  4.87 0.37 0.86 , Concentration EDTA 

Concentration2+ Fe 
 444 

As shown in Table 5,  ANN-MLP network performed better than ANN-RBF and experimental data model 445 

(RSM-CCD) for both objectives (CIP removal and SIR). This proves high ANN-MLP capability in Fenton 446 

process modeling.  447 

Effective variables for the models output are also presented in the last column of Table 5. These are 448 

identified based on Garson’s equation and analysis of variance. The table reveals that effective variables in 449 

CIP removal and SIR sludge production were similarly reported in both multilayer perceptron neural 450 

network output models and the experimental designs. Finally, the best architecture of ANN-MLP was 451 

linked with GA and NSGA-II algorithms to develop a hybrid multi-objective optimization model. 452 

Comparison between experimental values and predicted ones using the ANN-MLP method are presented 453 

in Figure S6. Similar results have been reported in the literature when comparing RSM-CCD and ANN 454 

modeling results for other contaminants (Speck et al., 2016; Vinyagam et al., 2022a; Vinayagam et al., 455 

2022b). 456 

 457 

 458 

 459 

 460 
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3.3.3. Hybrid Multi-Objective Optimization by ANN-GA and NSGA-II 461 

The purpose of using GA for optimization is to maximize CIP removal and minimize SIR. In order to 462 

optimize the multi-objective process with a single-objective genetic algorithm, a fitting function was 463 

defined for a weighted sum of the objectives, according to equations 6 to 9. Since the GA is a minimization 464 

algorithm, its target was entered into the fitting function with a negative sign to maximize the CIP removal. 465 

The weights of the two main targets, i.e., CIP removal rate and SIR were considered equal to 0.5. A 466 

maximum of 100 generations was considered as the condition for completion of the algorithm, which is 467 

shown in Figure 4.  468 

 469 

Figure 4. Convergence of a single-objective genetic algorithm to an optimal multi-objective solution 470 

 471 
In this figure, the output fitness value is a defined fitting function, and the genetic algorithm objective is to 472 

minimize this value. According to the optimum response obtained by this method, Fe2+ concentration, 473 

H2O2/Fe2+ molar ratio, and EDTA concentration were equal to 5 mM, 4, and 1 mM in 25 minutes, 474 

respectively, and the mean efficiency (on the five main surfaces of CIP initial concentration) expected for 475 

CIP removal and SIR were 81.83% and 1.39 (gr/M), respectively. 476 

The conflicting objectives problem was modeled by an NSGA-II algorithm to obtain the objectives 477 

interaction curve. Figure 5 shows the convergence of the response. As can be seen in the graphs, the 478 

response points have a good convergence.  479 
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 480 

Figure 5. Two-dimensional objectives Pareto front from NSGA-II algorithm 481 

Once the optimal solutions are determined by the NSGA-II algorithm, the final step is to select the best 482 

alternative according to the importance of the criteria (CIP removal and SIR). The best points are those 483 

with maximized CIP removal and minimized SIR functions. For this purpose, a multi-criteria decision-484 

making method (TOPSIS) was used to select the optimal solution, with weights equal to 0.5 for all criteria. 485 

Table 6 shows results at the optimal solution, selected by GA and NSGA-II.  486 

Table 6. Optimal results of the algorithm GA and NSGA-II 487 

Parameters GA NSGA-II    

(mM)Concentration 2+ Fe  5 5.94 

  ] mole ratio2+]/[ Fe2O2[H 4 3.74 

(mM) EDTA Concentration  1 0.95 

  )%(CIP  81.83 83.76 

  (gr/M) SIR  1.39 1.36    

 488 

As shown in Table 6, NSGA-II and GA algorithms have almost similar results and both consider the 489 

interaction between conflicting objectives. However, NSGA-II algorithm apparently performed better in 490 

the CIP removal model. Therefore, it was concluded that the NSGA-II method might be selected to solve 491 

executable problems with higher accuracy and fewer and faster calculations than other multi-objective 492 

optimization methods. Also, by comparing RSM-CCD and NSGA-II optimization models, it was concluded 493 

that both might predict similar optimal values for variables. 494 
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4. Conclusions 495 

Determining the operating conditions to optimize the response process is an essential issue in industrial 496 

applications. In this study, optimization, modeling, and analysis of the effects of environmental components 497 

such as CIP concentration (mg/L), [Fe2+] concentration (mM), [H2O2]/[Fe2+] mole ratio, and EDTA 498 

concentration (mM) on two main goals, namely, maximizing CIP removal and minimizing SIR, were 499 

investigated. The analysis of variance (ANOVA) in a Fenton-like homogeneous process with an EDTA 500 

chelating agent showed that all independent variables are effective in CIP removal response, with the initial 501 

CIP concentration and EDTA being the most important ones. Also, EDTA and Fe2+ concentrations were 502 

the most important independent variables on SIR. Accordingly, models with detection coefficients of 0.91% 503 

and 0.86 mM were obtained for the rate of CIP removal and the amount of produced SIR sludge, 504 

respectively.  505 

Simultaneous optimization results of CIP removal and the amount of produced sludge reduction using RSM 506 

showed that under optimal conditions, the values of initial CIP concentration, Fe2+ concentration, molar 507 

ratio [H2O2]/[Fe2+], initial EDTA and reaction time were 14.97 mg/L, 9.18 mM, 3.25, 0.62 mM and 25 min, 508 

respectively. Under the optimal conditions, CIP removal rate and the amount of SIR were predicted as 509 

85.18% and 2.24 gr/M, respectively. Also, two validation experiments were performed under these 510 

conditions and a close correlation between observed and predicted values was obtained, confirming the 511 

models' validity. 512 

 Among the two investigated artificial neural networks (RBF and MLP), MLP-ANN could predict the 513 

process performance with reliable accuracy (MARE less than 8%). The neural network model had less error 514 

compared to RSM model and the overall performance of these models was considered very good. 515 

Multi-objective optimization of the process was performed with two algorithms (GA and NSGA-II). It was 516 

concluded that the NSGA-II algorithm performed much better than the GA optimization algorithm 517 

according to the weighted sum of normalized targets and the importance of conflicting targets was more 518 

https://www.researchgate.net/figure/Simultaneous-optimization-results_tbl1_335665400
https://www.researchgate.net/figure/Simultaneous-optimization-results_tbl1_335665400
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visible in the NSGA-II algorithm. It is attributed to the NSGA-II algorithm searching the entire decision 519 

space as opposed to GA local search for the optimum solution. Comparison of results obtained by multi-520 

objective RSM (RSM-CCD) and NSGA-II optimization models showed that predicted optimal variable 521 

values are close in both models and both yield reliable predictions according to ARE criterion. 522 
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