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Sparse Online Learning with Kernels using Random
Features for Estimating Nonlinear Dynamic Graphs

Rohan Money, Student Member, IEEE, Joshin Krishnan, Member, IEEE,
Baltasar Beferull-Lozano, Senior Member, IEEE.

Abstract—Online topology estimation of graph-connected time
series is challenging in practice, especially because the depen-
dencies between the time series in many real-world scenarios
are nonlinear. In this paper, we propose an online kernel-based
algorithm for graph topology estimation. The algorithm also
performs a Fourier-based Random feature approximation to
tackle the curse of dimensionality associated with the kernel
representations. Exploiting the fact that real-world networks
often exhibit sparse topologies, we propose a group-Lasso based
optimization framework, which is solved using an iterative
composite objective mirror descent method, yielding an online
algorithm with fixed computational complexity per iteration. We
provide theoretical guarantees for the proposed algorithm and
prove that the algorithm can achieve sublinear dynamic regret
under certain reasonable assumptions. The experiments on real
and synthetic data show that the proposed method outperforms
its state-of-the-art competitors.

Index Terms—Online graph learning, nonlinear topology iden-
tification, regret analysis, random Fourier features

I. INTRODUCTION

Many practical networks such as large-scale cyber-physical
systems (CPS), financial networks, brain networks, etc., gen-
erate multivariate time series data. In such systems, the time
series are interdependent and it is possible to represent the
dependencies in the form of graphs, or we can say that the
multivariate time series is graph connected. Some of these
dependencies are often imperceptible by direct inspection.
Inferring and exploiting the hidden graph structure of data
can have a significant impact in many application fields. For
instance, it can contribute to developing better control actions
in CPS [1], explainable analysis in brain networks [2], and
improved forecast in financial time series [3], to name a few.

Real-world networks often exhibit time-delayed and di-
rected dependencies between their components. For instance,
consider an example of an oil and gas processing platform, as
shown in Fig. 1. The system consists of wells and separators.
The raw oil is extracted from the well and is separated as
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Figure 1: Schematic of processing stages in an oil and gas platform

oil, water, and gas in the separators. It is a highly dynamic
and complex system with hundreds of sensors and actuators.
If an event occurs in a well, its effect will be reflected in the
separators after a delay. Similarly, the oil level in separator-
2 depends on the pressure that is controlled by an actuator
in separator-3. The data acquired from such a system form a
multivariate time series, possibly having many directed time-
lagged interactions, which can be represented using a graph
structure. Any information related to these dependencies is
highly beneficial since it helps to predict the evolution of
sensor variables in the near future and the appropriate control
actions in advance. Although a scenario related to the oil and
gas platform is adopted here for illustration, such interactions
have a vital role in many important networks, such as brain
data, the stock market, and smart water networks (SWN), to
name a few. Hereafter, we use the term topology identification
to denote the estimation of such dependencies.

A significant challenge associated with the aforementioned
real-world graph-connected networks is the time-varying na-
ture of the dependencies. There is extensive research in the
field of online learning [4], [5], which outperforms classical
batch solutions in terms of both computational complexity and
ability to track changes. Such methods can be exploited and
applied to topology identification in order to mitigate the prob-
lem of time-varying dependencies. For instance, [6] proposes a
sparse online solution for topology identification using prox-
imal updates, whereas [7] introduces a prediction-correction
algorithm based on a time-varying convex optimization frame-
work that exhibits an intrinsic temporal-regularization of the
graph topology.

In addition to the dynamic nature, real-world systems such
as the one shown in Fig. 1 are further complicated due to
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the nonlinear nature of the dependencies. In CPSs such as
Oil and Gas platforms or SWNs, this nonlinearity may arise
from control mechanisms of the actuator, nonlinear liquid
flows (see, e.g., [8]), a saturation of tanks, etc. Similarly, the
interactions in stock market networks and network structured
data related to brain imaging techniques, such as electroen-
cephalography (EEG), electrocorticography (ECoG), positron
emission tomography (PET), etc., also exhibit a high level of
nonlinearities [9]. In such applications, topology estimation
based on simple linear models [6], [7] is inadequate, since
many of the inherent nonlinear interactions within the system
are discarded.

An effective way to deal with the nonlinearity is by invok-
ing kernel machines, which can approximate any nonlinear
continuous function, provided enough training samples are
available. For instance, in [10], a novel topology identifi-
cation algorithm based on the nonlinear structural vector
auto-regressive (SVAR) model using kernels is proposed. On
the other hand, deep neural networks (DNNs) are powerful
alternatives to kernels for modelling nonlinear interactions.
Nonlinear dependencies are estimated in [11] using a temporal
convolutional neural network and an attention mechanism,
while [12] uses a vector autoregressive (VAR) model with an
invertible neural network approach to capture dependencies,
and [13] applies a group-Lasso regularizer on neural weights
to obtain sparse nonlinear dependencies. Although the above-
mentioned kernel- and DNN-based methods are powerful tools
to model the nonlinear dependencies, their batch-based (of-
fline) nature makes them unsuitable for real-time applications
that require online topology estimation with every new data
sample to track changes in the system. In addition, such
batch-based approaches also suffer from a high computational
complexity since the algorithm must process the entire data
batch together.

The above discussion motivates the need for algorithms
that can learn nonlinear and dynamic topologies. Kernels are
an ideal choice in this regard due to their interpretability
and capability to learn functions online [14]–[16]. In kernel
frameworks, the data points are transformed to a function
space, where a linear relationship exists between them. How-
ever, working in a function space has some limitations in the
context of online topology identification. First, the standard
online convex optimization techniques cannot be readily used
as the dimension of optimization variables is not fixed, and
it increases with every new data sample. Second, the number
of parameters required to express the function increases with
the number of data samples, and the computational complexity
becomes prohibitive at some point, which is typically known as
the curse of dimensionality [17]. This dimensionality growth
is circumvented in [16] by discarding the past data samples
using a forgetting window. However, such an approach can
lead to suboptimal function learning because it discards data
samples without assessing their significance in representing
the functions to be learned.

Sparse kernel dictionaries and random feature (RF) approx-
imation are two popular techniques for tackling the curse
of dimensionality associated with kernels. A parsimonious
online learning algorithm for kernels has been developed in

[18] using a functional stochastic gradient descent (FSGD)
method featured by sparse function subspace projections.
This is achieved by learning sparse kernel dictionaries using
the kernel orthogonal matching pursuit (KOMP) technique.
Despite its reported benefits [18] in terms of model complexity
compared to RF-based techniques, the sparse FSGD method
in [18] has two limitations that render it an unfitting choice
for online topology identification of multivariate time series:
i) the algorithm need to include several KOMP sub-iterations
for every time series at each time instant, which results in
high computational complexity, not being suitable for online
algorithms, particularly when the number of time series ex-
ceeds a few hundred, as it is typical in real-world networks
such as the one shown in Fig. 1, and ii) in a multivariate
setting with N time series, the FSGD derivation in [18] results
in identical functional dependencies between a time series n
and all other time series n′ = 1, 2, . . . , N (as observed in
[19]), which prevents distinguishing the different functional
dependencies. In [20], an alternative approach to reduce the
dimensionality growth of the kernel method for multivariate
topology inference is presented, which involves learning a
sparse kernel dictionary based on coherence criteria. Never-
theless, this algorithm’s convergence guarantees assume that
optimal parameters (representing the topology) do not change
over time, which is impractical for time-varying systems.

On the other hand, the RF approximation approach not only
addresses the problem of kernel dimensionality growth but
also provides greater mathematical flexibility for modelling
and learning the nonlinear interaction among multivariate
time series, in addition to enabling a theoretical analysis. RF
approximation was originally proposed in [21], and the idea
has recently gained popularity in large-scale machine learning
problems [22]–[24]. In addition to providing a computational
boost in large-scale data sets, RF allows working in fixed lower
dimensional spaces, which is very convenient for many online
convex optimization routines. It has been shown that the RF
approximation in kernels can be also used to understand neural
networks [25], [26], and some researchers have shown equiva-
lence in function approximation between neural networks and
RF approximations [25]. Multiple Random Fourier features
can be also utilized to initialize the learning process, and the
best one can be kept to avoid overfitting [27], [28].

In this work, we propose a kernel-based online nonlinear
topology identification algorithm using RF approximation. We
assume that the dependencies of the system can be modelled
using nonlinear additive sparse model. Notice that the sparsity
assumption is not restrictive, since the interactions in real-
world systems are often sparse due to the dominant local
interactions. In fact, this prior information helps to avoid
overfitting during learning. The proposed algorithm estimates
nonlinear topologies in an online manner by generating sparse
iterates at each time instant, using a proximal optimization
technique known as Composite objective mirror descent (CO-
MID). The algorithm features incremental updates to the
model upon the arrival of new data samples, making it suitable
for applications characterized by topology drifts [29], [30].
Through a combination of theoretical guarantees based on
dynamic regret analysis and multiple numerical evidence, we



3

show the effectiveness of our algorithm in tracking the changes
in topology.

The main contributions of this work are listed below:
(i) This paper proposes an online algorithm with fixed

computational complexity per iteration for nonlinear topology
estimation. The proposed algorithm is termed Random feature-
based nonlinear topology identification via recursive sparse
online learning (RFNL-TIRSO). This work is significantly
different from our previous work in [31], where we used an
instantaneous loss function, which is susceptible to noise and
converges slowly. RFNL-TIRSO replaces the instantaneous
loss function with an average running loss inspired by recur-
sive least square (RLS) formulation, and compared to [31],
it significantly improves convergence speed and robustness to
the input noise.

(ii) We also provide theoretical guarantees regarding the
convergence of RFNL-TIRSO, whereas no such theoretical
guarantees were provided in [31]. The paper derives an upper
bound for dynamic regret of RFNL-TIRSO based on the strong
convexity property of the RLS loss function. Dynamic regret
characterizes the tracking capability of an online algorithm
[32], and we achieve a sublinear dynamic regret under certain
assumptions that are reasonable in real-world applications. Our
dynamic regret analysis includes three key elements: an online
kernel-based nonlinear algorithm, a non-differentiable objec-
tive function, and a model with multiple decoupled functions
representing topological connections to enable interpretable
topology identification. None of the existing related analyses
[33]–[39] provides a complete coverage of all these three
elements.

(iii) The performance of the proposed algorithm is tested
with extensive experiments using both real and synthetic data.
The algorithm estimates interpretable topologies using time
series data collected from the sensors of an oil and gas plant.
In addition to the CPS applications, we also demonstrate the
capability of our algorithm in detecting epileptic seizure events
using EEG signals.

The rest of the paper is organized as follows: Section
II presents the system model, kernel formulation, and RF
approximation. In Section III, we develop the RFNL-TIRSO
algorithm. Theoretical analysis of RFNL-TIRSO is performed
in Section IV, and the numerical results are provided in
Section V. Section VI concludes the paper.

Notations: Bold lowercase and uppercase letters denote
column vectors and matrices, respectively. The operators
∇, (.)⊤, E, Λmax(.), Λmin(.), < ., . > respectively denote
gradient, transpose, expectation, maximum eigenvalue, mini-
mum eigenvalue, and inner product operators. The symbols 1N

and IN represent all-one vector of dimension N and identity
matrix of dimension N ×N , respectively.

II. NONLINEAR TOPOLOGY IDENTIFICATION

A. System Model

Consider a collection of N sensors (nodes) generating
a multi-variate time series denoted by y[t] ∈ RN , where
t = 0, 1, . . . , T − 1 denotes the time index. We assume that
the dynamics of the sensor network can be captured by a

P -th order VAR model with additive nonlinear functional
dependencies:

yn[t] =

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (1)

where yn[t] is the value of time series at time t observed at
node 1 ≤ n ≤ N , f (p)

n,n′ is a nonlinear function that captures
the influence of the p-lagged data point of node n′ on node
n, and un[t] is the process noise, which is assumed to
be zero mean i.i.d. random process. With respect to model
(1), we define topology identification as the estimation of
the functional dependencies

{
f
(p)

n,n′(.)
}P

p=1
, ∀n, n′, from the

observed time series {yn′ [t]}Nn′=1.

B. Kernel representation

Assume that the functions f
(p)
n,n′ in (1) belong to a

reproducing kernel Hilbert space (RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ | f (p)

n,n′ (y) =

∞∑
t=p

β
(p)
n,n′,(t−p) κ

(p)
n′ (y, yn′ [t− p])

}
, (2)

where κ
(p)
n′ : R× R → R is a positive definite kernel,

which characterizes the RKHS. The kernel is a function
measuring the similarity between the data points y and
yn′ [t − p]. The expression (2) follows from the fact that
any function in RKHS can be expressed as an infinite
combination of kernel evaluations [40], i.e., the function
f
(p)
n,n′(y) can be expressed as the linear combination of the

similarities between y and the data points {yn′ [t− p]}t=∞
t=p ,

with weights β
(p)
n,n′,(t−p). Here, we consider a Hilbert

space with the inner product ⟨κ(p)

n′ (y, x1), κ
(p)

n′ (y, x2)⟩ :=∑∞
t=0 κ

(p)

n′ (y[t], x1)κ
(p)

n′ (y[t], x2) using kernels with reproducible
property ⟨κ(p)

n′ (y, x1), κ
(p)

n′ (y, x2)⟩ = κ
(p)

n′ (x1, x2). Such a Hilbert
space with the reproducing kernels is termed as RKHS, and
the inner product described above induces the RKHS norm,
∥f (p)

n,n′∥2H(p)

n′
=

∑∞
t=0

∑∞
t′=0 β

(p)

n,n′,t β
(p)

n,n′,t′ κ
(p)

n′ (yn[t], yn[t
′]). We

refer to [41] for further reading on RKHS.
The required functions

{
f
(p)

n,n′ ∈ H(p)

n′

}
n′,p

at a particular
node n can be obtained by solving the following non-
parametric optimization problem in batch form, considering
all the samples at once:{

f̂
(p)

n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H(p)

n′
} 1

2

T−1∑
τ=P

[
yn[τ ]

−
N∑

n′=1

P∑
p=1

f
(p)

n,n′(yn′ [τ − p])

]2

+ λ

N∑
n′=1

P∑
p=1

Ω(||f (p)

n,n′ ||H(p)

n′
). (3)

For a non-decreasing function Ω, the solution of (3), denoted
as

{
f̂
(p)

n,n′

}
n′,p

can be obtained in terms of finite kernel
evaluation by invoking the Representer Theorem [42]:

f̂
(p)

n,n′(yn′ [τ − p])=

p+T−1∑
t=p

β̂
(p)

n,n′,(t−p) κ
(p)

n′ (yn′ [τ − p],yn′ [t− p]) . (4)

Although the solution (4) entails only a finite number (equal
to T ) of kernel evaluations, its computational complexity
becomes prohibitively high for a large value of T . This is
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a major drawback associated with the kernel formulations,
which is commonly referred to as the curse of dimensionality.
In alignment with [24], [14], we use RF approximation to
solve the curse of dimensionality.

C. RF approximation

From Section II-B, we remark that the RKHS is charac-
terized by an inner product. Resorting to the theory of RF
approximation, the inner product can be expressed in a random
Fourier space, which facilitates the approximation of an RKHS
function to a function in a fixed low dimensional space,
thereby preventing the dimensionality growth. In addition to
tackling the curse of dimensionality, working on a fixed low
dimensional space will enable us to use the standard convex
optimization tools to solve the topology identification.

The RF approximation requires that the kernel
defining the RKHS should be shift invariant, i.e.,
κ
(p)

n′ (yn′ [τ − p], yn′ [t− p]) = κ
(p)

n′ (yn′ [τ − p]− yn′ [t− p]).
There are many popular kernels that are shift-invariant, such
as the Laplacian, the Cauchy, and the Gaussian kernels. By
Bochner’s Theorem [43], every shift-invariant kernel can be
expressed as an inverse Fourier transform of a probability
density function. Following this theorem, the kernel evaluation
can be expressed as

κ
(p)
n′ (yn′ [τ − p], yn′ [t− p])

=

∫
R
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (5)

where E is the expectation operation, π
κ
(p)

n′
(v) is the prob-

ability density function corresponding to the kernel under
consideration, and v is the random variable associated with
the probability density function. Using a sufficient amount of
i.i.d. samples {vi}Di=1 from the distribution π

κ
(p)

n′
(v), we can

approximate the expectation in (5) as a sample mean (weak
law of large numbers):

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) =

1

D

D∑
i=1

ejvi(yn′ [τ−p]−yn′ [t−p]), (6)

irrespective of the distribution π
κ
(p)

n′
(v). Notice that (6) is an

unbiased estimator of the kernel evaluation in (5) [44]. Find-
ing the probability distribution, which is the inverse Fourier
transform of a kernel, is a difficult task in general. However,
for a Gaussian kernel with variance σ2, the Fourier transform
is also a Gaussian with variance σ−2. Hence, in this work, we
restrict our choice of the kernel to Gaussian kernels. Further,
the real part of (6) is also an unbiased estimator of the kernel
evaluation [22], and (5) can be expressed in vector form using
only the real components as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = z

(p)
v,n′(τ)

⊤z
(p)
v,n′(t), (7)

where

z
(p)
v,n′(τ) =

1√
D

[
sin (v1yn′ [τ − p]) , . . . , sin (vDyn′ [τ − p]) ,

cos (v1yn′ [τ − p]) , . . . , cos (vDyn′ [τ − p])

]⊤
. (8)

Substitute (7) in (4) to obtain an approximation of the function
f̂
(p)
n,n′ in a fixed dimension (2D):

ˆ̂
f
(p)
n,n′ (yn′ [τ − p])) =

p+T−1∑
t=p

β̂
(p)
n,n′,(t−p)z

(p)
v,n′(τ)

⊤z
(p)
v,n′(t)

= α
(p)
n,n′

⊤z
(p)
v,n′(τ), (9)

where α
(p)
n,n′ =

∑p+T−1
t=p β̂

(p)
n,n′,(t−p)z

(p)
v,n′(t). For the sake of

simplicity, we define the following notations:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]⊤ ∈ R2D, (10)

z
(p)
v,n′(τ) = [z

(p)
v,n′,1 (τ) , . . . z

(p)
v,n′,2D (τ)]⊤ ∈ R2D, (11)

z
(p)
v,n′,k (τ) =

{
sin(v

k
yn′ [τ − p]), if k ≤ D

cos(v
k−D

yn′ [τ − p]), otherwise.

The functional optimization (3) can be reformulated as a
parametric optimization problem using (9). First, we define
the parametric form of the loss function in (3):

Ln
(
α

(p)

n,n′

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

α
(p)

n,n′
⊤

z
(p)

v,n′ (τ)

]2

, (12)

which can be expanded in terms of RF components as

Ln
(
α
(p)

n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)

n,n′,d z
(p)

v,n′,d (τ)

]2

.

For convenience, the variables
{
α
(p)

n,n′,d

}
and

{
z
(p)

v,n′,d (τ)
}

are
stacked in the lexicographic order of the indices p, n′, and d
to obtain the vectors αn ∈ R2PND and zv(τ) ∈ R2PND,
respectively, and loss function can be compactly rewritten as:

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

n zv(τ)

]2

. (13)

Following [24], the original regularization term in (3) can be
converted to an equivalent parametric form as:

Ω(||f (p)

n,n′ ||H(p)

n,n′
)

= Ω


√√√√p+T−1∑

τ=p

p+T−1∑
t=p

β̂
(p)

n,n′,(τ−p) β̂
(p)

n,n′,(t−p) k
(p)

n′ (yn(τ), yn(t))


= Ω


√√√√p+T−1∑

τ=p

p+T−1∑
t=p

β̂
(p)

n,n′,(τ−p)β̂
(p)

n,n′,(t−p)z
(p)

v,n′(τ)
⊤z

(p)

v,n′(t)


= Ω(||α(p)

n,n′ ||2). (14)

The function Ω in (14) is chosen to be Ω(.) = |.|, where |.|
represents the absolute value function, in order to promote the
group sparsity of α

(p)
n,n′ [10]. Such regularizers are typically

known as group-Lasso regularizers (see, Fig. 2 for a visual
representation of the Lasso groups). Note that the function |.|
is non-decreasing, thereby satisying the regularization criteria
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Figure 2: RKHS parameters (left) and fixed-size RF parameters (right). The Lasso groups of RF parameters are indicated in different colours.

to apply the Representer Theorem. Using (13) and (14), a
parametric form of (3) can be constructed as follows:

{α̂n}n′ = arg min
{αn}

Ln (αn) + λ

N∑
n′=1

P∑
p=1

||α(p)

n,n′ ||2. (15)

Although the topology can be estimated by solving (15), this
approach has several drawbacks since it is a batch formulation,
meaning that (15) requires the entire batch of the time series
samples yn[t], t = 0, 1, . . . , T − 1 from all the nodes. In
addition, the batch formulation is not useful when the data is
available in a streaming manner and cannot be used to track
the instantaneous time-varying topologies. Moreover, since
the batch optimization computes the solutions using an entire
batch of data, the computational complexity can often become
prohibitively high, especially when batch size is huge. Hence,
motivated by the above factors, we propose an online topology
estimation strategy with a lower computational complexity in
the following section.

III. ONLINE LEARNING

To formulate an an online optimization framework, we re-
place the batch loss function Ln(αn) in (15) with a stochastic
(instantaneous) loss function ℓnt (αn) =

1
2 [yn[t]−α⊤

n zv(t)]
2:

α̂n = arg min
αn

ℓnt (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (16)

The loss function lnt (αn) in (16) is analogous to a Least Mean
Square (LMS) formulation. However, notice that the estimates
of LMS are prone to observation noise and can be unstable
in practice. To avoid this problem, we formulate (16) in a
recursive least square (RLS) sense, which further provides
necessary stability in addition to faster convergence:

ℓ̃nt (αn) = µ

t∑
τ=P

γt−τ ℓnτ (αn). (17)

In (17), we replace the instantaneous loss with a running
average loss using an exponential window. The parameter
γ ∈ (0, 1) is the forgetting factor of the window, and µ = 1−γ
is set to normalize the exponential weighting window. We
expand the RLS loss function as follows:

ℓ̃nt (αn) =
1

2
µ

t−1∑
τ=P

γt−τ
(
y2
n[τ ] +α⊤

n zv(τ)zv(τ)
⊤αn

−2yn[τ ]zv(τ)
⊤αn

)
(18)

=
1

2
µ

t−1∑
τ=P

γt−τy2n[τ ] +
1

2
α⊤

nΦ[t]αn − rn[t]
⊤αn, (19)

where

Φ[t] = µ

t∑
τ=P

γt−τzv(τ)zv(τ)
⊤, (20)

rn[t] = µ

t∑
τ=P

γt−τyn[τ ]zv(τ). (21)

As in a typical RLS formulation, these quantities can be
updated recursively as Φ[t] = γΦ[t− 1] + µzv(t)zv(t)

⊤ and
rn[t] = γrn[t − 1] + µyn[t]zv(t). The gradient of the loss
function can be obtained as

∇ℓ̃nt (αn) = Φ[t]αn − rn[t]. (22)

Finally, using the RLS loss function, the topology can be
estimated by solving

argmin
αn

ℓ̃nt (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (23)

The cost function in (23) consists of a differentiable loss
function and a non-differentiable group-Lasso regularizer. The
online subgradient descent (OSGD) or the mirror descent
(MD) method can be used to solve (23) online. However, these
methods work by linearizing the entire objective function in
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(23) using a subgradient of it. If the group-Lasso regularizer
is linearized, its ability to induce sparsity is compromised,
resulting in non-sparse estimates. Hence, we choose an al-
ternate optimization technique known as composite objective
mirror descent (COMID) [45], a modified version of the MD
algorithm, in which the differentiable part of the objective
function is linearized, whereas the regularizer is kept intact.

The online COMID updates can be written as

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (24)

where J
(n)
t (αn) ≜ ∇ℓ̃nt (αn[t])

⊤ (αn −αn[t])

+
1

2at
∥αn −αn[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (25)

where αn[t] ∈ R2PND is the estimate of αn at time t. The
objective function J

(n)
t in (25) consists of 3 parts: (i) gradient

of loss function given by (22), (ii) a Bregman divergence term
with at as the step size, and (iii) a sparsity enforcing group-
Lasso regularizer. The Bregman divergence [46] improves
the stability of the online algorithms by constraining the
value of the new estimate αn[t + 1] within the proximity
of the previous estimate αn[t]. The Bregman divergence
B(αn,αn[t]) =

1
2
∥αn −αn[t]∥22 is selected in such a way that

the optimization problem (24) has a closed form solution [46].
For notational convenience, we denote the gradient in (25) as

vn[t] := ∇ℓ̃nt (αn[t]). (26)

The objective function in (25) is expanded by omitting the
constants leading to the following formulation:

J
(n)
t (αn) ∝

α⊤
nαn

2at
+α⊤

n

(
vn[t]−

1

at
αn[t]

)
+ λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2

=

N∑
n′=1

P∑
p=1

[
α

(p)
n,n′

⊤
α

(p)
n,n′

2at
+α

(p)
n,n′

⊤
(
v
(p)
n,n′ [t]−

1

at
α

(p)
n,n′ [t]

)
+ λ∥α(p)

n,n′∥2
]
. (27)

A closed form solution for (24) using (27) can be obtained via
the multidimensional shrinkage-thresholding operator [47]:

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− atv

(p)
n,n′ [t]

)
×[

1− atλ

∥α(p)
n,n′ [t]− atv

(p)
n,n′ [t]∥2

]
+

, (28)

where [v
(1)

n,n′
⊤,v

(2)

n,n′
⊤, . . . ,v

(P )

n,n′
⊤]⊤ ≜ vn,n′ for n′ = 1 . . . N ,

[v⊤
n,1,v

⊤
n,2, . . . ,v

⊤
n,N ]⊤ ≜ ∇ℓ̃nt (αn[t]), and [x]+ = max {0, x}.

The first part α(p)
n,n′ [t]−γtv

(p)
n,n′ [t] in (28) forces the stochastic

gradient update of α
(p)
n,n′ in a way to descend the recursive

loss function ℓ̃nt (αn), and the second part in (28) enforces
group sparsity of α(p)

n,n′ . This closed-form expression estimates
the required dependency between the time series yn and
the p-th time lagged value of time series yn′ at time instant
t+1, in terms of the parameter vector α(p)

n,n′ [t+1]. We name
the proposed algorithm as Random feature based nonlinear
topology identification via recursive sparse online learning
(RFNL-TIRSO), which is shown in Algorithm 1.

Algorithm 1: RFNL-TIRSO Algorithm

Result:
{
α

(p)
n,n′

}
n,n′,p

Store {yn[t]}Pt=1,
Initialize λ > 0, at > 0, θ > 0, D, σn and
Φ(P − 1) = θI2PND

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute zv(t)
Φ[t] = γΦ[t− 1] + µzv(t)zv(t)

⊤

for n = 1, . . . , N do
rn[t] = γrn[t− 1] + µyn[t]zv(t)
compute vn[t] using (22), (26)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (28)

end
end

end

IV. THEORETICAL RESULTS

The performance analysis and convergence guarantee of
RFNL-TIRSO are presented in this section using dynamic
regret analysis. Regret is a popular metric to measure the
performance of an online algorithm [48]. Despite being origi-
nally developed for static learning problems, numerous online
algorithms involving dynamic regret analysis have been devel-
oped [33]–[36] to solve problems in a dynamic environment;
however all of them belong to the class of linear algorithms.
Moreover, [33]–[35] assume differentiable objective functions,
and hence they cannot be leveraged in RFNL-TIRSO. Dy-
namic regret bounds for nonlinear algorithms are proposed in
[37]–[39]. In [37], the problem under consideration is limited
to positive functions, whereas our problem formulation does
not have such a limitation. The regret analysis presented in
[38] differs significantly from the proposed method for several
reasons. First, the objective function used in [38] must be
differentiable, while in our proposed method, the regularizer
is non-differentiable. Second, in contrast to [38], the regret
analysis in the proposed method involves multiple decoupled
functions representing interpretable topological connections.
Although [39] provides a logarithmic regret bound using
second-order information, the objective function under con-
sideration is differentiable.

Our theoretical analysis is based on the following assump-
tions:

• A1 : Bounded samples: For all the time series samples,
there exists By > 0 such that

{
|yn[t]|2

}
n,t

≤ By ≤ ∞.
• A2 : Shift-invariant kernels: kernels used are shift-

invariant, i.e., k(xi, xj) = k(xi − xj).
• A3 : Bounded minimum eigenvalue of Φ[t]: There exists

ρl > 0 such that Λmin(Φ[t]) > ρl, where Λmin(.)
denotes the minimum eigenvalue.

• A4 : Bounded maximum eigenvalue of Φ[t]: There exists
L > 0 such that Λmax(Φ[t]) < L < ∞, where Λmax(.)
denotes the maximum eigenvalue.

A1 is reasonable in practice as the signals from real-world
applications are bounded. A2 is true for typical kernels such
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as Gaussian, Laplacian, etc. Since Φ(t) is a sum of rank
one matrices formed using feature vectors, A3 will hold as
long as the feature vectors are linearly independent. This is
a reasonable assumption in practice when a sufficient amount
of data is available. Note that A3 is important for the strong
convexity assumption of the loss function, which is used in
the sequel. A4 can be obtained by combining A1 and the
fact that the sum of eigenvalues of Φ[t] is equal to its trace.

A. Dynamic Regret Analysis
As a preliminary step to the regret analysis, we define the

optimum RKHS and RF coefficients.
Optimum RKHS coefficients: Using the batch form solution
(4), obtained using the Representer Theorem, a parametric
autoregressive representation at time t can be obtained as

ŷn[t] = β̂
⊤
nκt, (29)

where β̂n ∈ RNPt and κt ∈ RNPt are respectively obtained
by stacking the variables β̂(p)

n,n′,(τ−p) and the kernel evaluations
in (4) along the lexicographic order of the indices n′,p, and
the time index up to t. The optimum RKHS coefficients β∗

n[t]
for each node n at time t can be obtained by solving

β∗
n[t] = argmin

β̂n

hn
t (β̂n), (30)

where the cost function hn
t (β̂n) in (30) is composed of

two terms: hn
t (β̂n) = ℓ̃nt (β̂n) + ωn(β̂n), where ℓ̃nt (.) is

the RLS loss function defined in (17) with instantaneous
losses computed as ℓnt (β̂n) = 1

2 [yn[t] − β̂
⊤
nκt]

2, and
ωn(.) is the group-Lasso regularizer defined as ωn(β̂n) =

λ
∑N

n′=1

∑P
p=1 ∥β̂

(p)

n,n′∥2.
Optimum RF coefficients: Following the same procedure, we
define the optimum RF coefficients α∗

n[t] at time t > P as

α∗
n[t] = argmin

αn

hn
t (αn), (31)

where hn
t (αn) = ℓ̃nt (αn) + ωn(αn), and ℓ̃nt (.) is the RLS loss

defined in (17) and ωn(αn) = λ
∑N

n′=1

∑P
p=1 ∥α

(p)
n,n′∥2. It

should be noticed that the optimum RF coefficients α∗
n[t] is

different from the RFNL-TIRSO estimate αn[t] obtained by
the computationally light COMID algorithm, as RFNL-TIRSO
only makes one COMID update per time instant.
Dynamic Regret: Dynamic Regret is defined as the cumulative
sum of the difference between the estimated cost function
and the optimal cost function over all time instants. In our
framework, it can be expressed as

Rn[T ] =

T−1∑
t=P

[
hn
t (αn[t])− hn

t (β
∗
n[t])

]
. (32)

Our aim is to find a theoretical bound for Rn[T ]. Since our
online algorithm works in the RF space, we perform the regret
analysis with reference to the optimal cost function in the
RF space, i.e., hn

t (α
∗
n[t]). Notice that this is without loss of

generality because there is a one-to-one mapping. Adding and
subtracting hn

t (α
∗
n[t]) in (32) yields

Rn[T ] = Rrf
n[T ] + ξn[T ], (33)

where Rrf
n[T ] =

∑T−1
t=P (hn

t (αn[t])− hn
t (α

∗
n[t])) is the regret

with respect to optimal cost in RF space and ξn[T ] =∑T−1
t=P (hn

t (α
∗
n[t])− hn

t (β
∗
n[t])) is the cumulative RF approx-

imation error caused by the dimensionality reduction.
1) Bounding the regret w.r.t. optimal cost function in RF

space: Theorem 1 bounds Rrf
n(T ).

Theorem 1. Under the assumptions of A1, A3, A4, and letting
at = 1

L , the dynamic regret of RFNL-TIRSO (Algorithm 1)
w.r.t. the optimal cost function in the RF space satisfies

Rrf
n(T ) ≤

((
1 +

L

ρl

)√
2PNDBy + λ

√
PN

)
×(

∥α∗
n[P ]∥2 +W n(T )

)
,

where W n(T ) =
∑T−1

t=P ∥α∗
n[t] − α∗

n[t − 1]∥2 is the path
length.

Proof: See Appendix A.
From Theorem 1, it can be readily seen that if W n(T ) is
sublinear, then the regret will also be sublinear.

2) Bounding the cumulative RF approximation error:
Theorem 2 provides a bound for ξn(T ).

Theorem 2. Under assumptions A1 and A2, there exists ϵ ≥ 0
such that the cumulative approximation error ξn[T ] of RFNL-
TIRSO (Algorithm 1) satisfies

ξn(T ) ≤ ϵLhTC,

where Lh > 0 is the Lipschitz continuity parameter of the cost
function.

Proof: See Appendix B.
Finally, we bound the dynamic regret Rn(T ) using Theorem 1
and Theorem 2.

Theorem 3. Under the assumptions of A1, A2, A3, and A4, the
dynamic regret Rn(T ) of RF-NLTIRSO (Algorithm 1) satisfies

Rn(T ) ≤
((

1 +
L

ρl

)√
2PNDBy + λ

√
PN

)
×(

∥α∗
n[P ]∥2 +W n(T )

)
+ϵLhTC.

Proof: Theorem 3 can be directly and readily proved by
substituting Theorem 1 and Theorem 2 in (33).

Notice that if we have setting ϵ = O( 1√
T
), this results in

a dynamic regret of O(W n(T ) +
√
T ). In such cases, the

dynamic regret is sublinear, if W n(T ) is sublinear. Ideally,
an online algorithm must obtain a sublinear dynamic regret,
which implies that Rn(T )/T → 0 as T → ∞, or in the worst
case, a linear regret which implies Rn(T )/T → constant,
where constant is known as the steady-state error. Notice that
in our case, this steady state error when W n(T ) is sublinear
is ϵLfC. If ϵ is small, the resulting study state error will also
be small. As shown in appendix B, we can make ϵ sufficiently
small by increasing the number of random features D by
trading off with complexity [21].
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Figure 3: The true and estimated edges using various algorithms for g(x) = g1(x). In each subfigure, the x-axis corresponds
to nodes n = 1, . . . , 10, and the y-axis corresponds to nodes n = 1, . . . , 10 for time lags p = 1, . . . , 4. The edge values are
indicated by the colour code.
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Figure 4: Receiver-Operating Curve for different realizations of the nonlinear function g(x).

V. EXPERIMENTAL RESULTS

In this section, we analyze the performance of RFNL-
TIRSO using extensive numerical experiments. We choose
TIRSO [6], RFNL-TISO [31], and PDIS [20], [49], as the
state-of-the-art competitors to compare the performance of
RFNL-TIRSO. It is to be remarked that TIRSO is an online
topology algorithm designed by assuming linear VAR models.
TIRSO is selected in order to show the advantages of the
proposed nonlinear algorithm RFNL-TIRSO, compared to its
linear counterpart. The second algorithm RFNL-TISO is an
online nonlinear topology estimation algorithm designed by
considering an instantaneous least mean square loss function.
Based on the discussions in Section III, RFNL-TIRSO is
expected to show better performance compared to RFNL-
TISO since it incorporates an RLS-based loss function. The
third algorithm, PDIS [20], [49], is a recent online nonlinear
topology identification algorithm using dictionaries of kernel

functions based on partial-derivative-imposed sparsity. To the
best of our knowledge, these three algorithms are the best
benchmarks to compare the performance of RFNL-TIRSO,
and although some other batch-based algorithms are available
[10], [13], [12], they are not comparable to our algorithm,
since they are offline algorithms.

The per node computational complexity of RFNL-TIRSO,
RFNL-TISO, and TIRSO, are in the order of O

(
N2P 2D2

)
,

O
(
NPD

)
, and O

(
N2P 2

)
, respectively. Although RFNL-

TIRSO is computationally heavier than the competitors, it
provides robustness, and theoretical performance guarantees,
which is not the case for the competing algorithms and which
we demonstrate through several numerical experiments in this
section.

Experiments shown in this section are conducted using both
synthetic and real data sets. The synthetic dataset includes
graph-connected time series data generated by assuming dif-
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ferent topology transition patterns to highlight the ability of the
algorithms to track time-varying topologies. The real data sets
include (i) time series data collected from Lundin’s offshore
oil and Gas platform1 and (ii) Epileptic seizure data [50].

A. Experiments using Synthetic Data Sets

1) Piecewise stationary topology: We generate a multivari-
ate time series using a nonlinear VAR model (1) with N =
10, P = 4. The nonlinear function in (1) is taken as f

(p)

n,n′(x) =

a
(p)

n,n′(x)g(x), where g(x) is a nonlinear function and a
(p)

n,n′(x) ∈
{0, 1}. The experiments are conducted with three different real-
izations of g(x): g1(x) = 0.25 sin(x2)+0.25 sin(2x)+0.5 sin(x),
g2(x) = 0.25 cos(x2) + 0.25 cos(2x) + 0.5 cos(x), and with a
Gaussian kernel, i.e., g3(x) = (1/

√
2π)exp(−x2/2). We refer

to a
(p)
n,n′ as an edge, and a

(p)

n,n′(.) = 0/1 means that the p-th
time-lagged dependency between n and n′ is disabled/enabled.
A graph-connected time series is generated by restricting the
number of active edges to be 30% of the total available edges.
Further, we introduce abrupt changes in the topology after
every 1000 time step by randomly cutting off 30% of the
available active edges. Notice that the initial P data samples
are generated randomly, and the rest of the data are generated
using model (1). The hyperparameters of all the algorithms
used in the experiments are tuned heuristically to get the
maximum area under the receiver operating curve, which
is explained below. The hyperparameter settings for RFNL-
TIRSO are (σn, λ, at) = (2.5, 0.01, 0.1/Λmax(ϕ[t])), for g1 and
g2, and (1, 0.01, 0.1/Λmax(ϕ[t])) for g3. The top row of Fig. 3
contains the true edges

{
a
(p)
n,n′

}
at different time steps, which

are arranged in matrices of size N ×N , for p = 1, 2, . . . , P ,
and stacked vertically, resulting in matrices of size NP ×N .
The estimated dependencies

{
â
(p)
n,n′

}
using different algo-

rithms are shown in the bottom rows. After computing the
normalized ℓ2 norms b

(p)

n,n′ [t] = ∥α(p)

n,n′ [t]∥2/(maxn′∥α(p)

n,n′ [t]∥2),
the presence of an edge is detected using a threshold δ as
âpn,n′ = 1{b(p)n,n′ [t] < δ}, where 1 {x} = 1/0, if x is true/false.
It is clear from Fig. 3 that the estimates of RFNL-TISO are
very close to the ground truth, and they outperform others.

A numerical comparison of the performances of the algo-
rithms is made using the probability of false alarm (PFA)
and the probability of detection (PD). The probability of
false alarm (PFA) refers to the probability that the algorithm
reports the presence of a dependency in the network that
is not actually present. On the other hand, the probability
of detection(PD), refers to the probability that the algorithm
detects a dependency that is truly present in the network. In
our experiment, we assume there is a presence of a detected
edge from the p−th time-lagged value of n′−th sensor to the
present value of the n − th sensor if the value of coefficient
b
(p)
n,n′ [t] is greater than a threshold δ ∈ [0, 1], and define PFA

and PD as

PD[t] ≜ 1−

∑
n ̸=n′

∑P
p=1 E

[
1{b(p)n,n′ [t] < δ}1{an,n′ = 1}

]
∑

n ̸=n′
∑P

p=1 E[1{an,n′ = 1}]
,

PFA[t] ≜

∑
n ̸=n′

∑P
p=1 E

[
1{b(p)n,n′ [t] > δ}1{an,n′ = 0}

]
∑

n ̸=n′
∑P

p=1 E [1{an,n′ = 0}]
, (34)

1https://www.lundin-energy.com/

where 1 {x} = 1/0, if x is true/false and δ is a threshold. From
(34), it is clear that when δ = 0, both PD and PFA become
one. With an increase in δ, both PD and PFA decrease,
eventually reaching zero when δ equals one.

The Receiver-Operating curve (ROC) of the different algo-
rithms at time t = 990 is plotted in Fig. 4 by varying δ from
0 to 1, with PFA in the x-axis and PD in the y-axis. The
area under the ROC curve (AUC) is computed to evaluate
the performance of the algorithm. A topology identification
algorithm with a high AUC value is characterized by by
a high PD and low PFA, indicating that it can accurately
identify network topologies while minimizing the occurrence
of false positives. From Fig. 4, it can be observed that the area
under ROC (AUC) of the RFNL-TIRSO is substantially better
than TIRSO and slightly better than RFNL-TISO for all three
nonlinearity functions. These observations are more evident
from Table I, where the computed AUC values are tabulated.
We further analyze the AUC of RFNL-TIRSO for different
RF space dimensions, i.e., D ∈ {20, 30, 50}, at different time
instants in Table II, for the nonlinear function g(x) = g1(x).
As expected, the AUC increases with D and the number of
data samples. A similar AUC trend as in Table II was obtained
for the other two nonlinear functions g1 and g2.

Table I: AUC for different algorithms.
AUC g1 g2 g3

RFNL− TIRSO 0.9914 0.9949 0.9543
RFNL− TISO 0.9741 0.9817 0.9317

TIRSO 0..4967 0.5 .5123

Table II: AUC curve for different values of D.
AUC t = 990 t = 1990 t = 2990

D = 20 0.9500 0.9762 0.9732
D = 30 0.9568 0.9827 0.9835
D = 50 0.9721 0.9887 0.9901

2) Lorenz graph: We also present experiments with syn-
thetic data sets generated using the Lorenz graph [51]. We
consider a discretized version of the Lorenz graph involving 3
time series exhibiting the following nonlinear dependencies:y1[t+ 1]

y2[t+ 1]
y3[t+ 1]

 = 0.01

 10(y2[t]− y1[t])
y1[t](28− y3[t])− y2[t]

y1[t]y2[t]− 8
3
y3[t]

+
y1[t]
y2[t]
y3[t]

 (35)

Compared to the model used in Section V-A1, the Lorenz
graph model (35) involves only order one (P = 1) time
lag dependencies among the nodes. Moreover, note that (35)
involves nonadditive nonlinear interactions among the nodes,
which is different from the VAR assumption in (1). The per-
formance of the RFNL-TIRSO and the PDIS [49] algorithms
are compared in this section, whereas TIRSO is omitted since
the algorithm implementation assumes P > 1. To ensure
a fair comparison, we follow exactly the same experiment
set up as in [49], in which, the performance is measured
using the edge identification error rate (EIER), defined as
EIER = ∥A−Â∥0

N(N−1) × 100, where A is the true dependency
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matrix and Â is the estimated dependency matrix. For RFNL-
TIRSO, Â is computed using b̂

(1)
n,n′ . The hyperparameters are

tuned heuristically to obtain minimum EEIR resulting in a
setting (σn, λ, at) = (1, .3, 1/(tΛmax(ϕ[t]))). The estimated and
true binary adjacency matrix (excluding self-dependencies) are
shown in Fig. 5, and the EIER till t = 1750 is plotted in Fig. 6.
We remark that although the PDIS algorithm is designed by
assuming non-additive nonlinear interactions, its performance
lags behind the proposed RFNL-TIRSO algorithm, which
assumes additive nonlinearities. This is because the RFNL-
TIRSO algorithm employs an RLS loss function, which results
in an improved convergence speed compared to the LMS loss
used in PDIS.
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Figure 5: Lorenz graph detection using RFNL-TIRSO: (a) True
Binary dependency, (b) Estimated dependency, (c) Binary estimated
dependency by stetting threshold as 0.5.
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Figure 6: EIER performance for the Lorenz graph experiment.

3) Numerical Evaluation of Dynamic Regret: A theoretical
bound of the dynamic regret Rn[T ]=Rrf

n[T ]+ξn[T ] has been
derived in Section IV-A. In this section, using experiments
conducted on synthetic data, we numerically compute the
dynamic regret of RFNL-TIRSO w.r.t. the optimal cost in
the RF space, defined as Rrf

n[t]=
∑t−1

τ=P (hn
τ (αn[τ ])−hn

τ (α
∗
n[τ ])),

for t = 1, . . . , 1000. This allows validating experimentally our
theoretical results. Here, αn[τ ] is the RF coefficient estimated
using RFNL-TIRSO at time τ , and α∗

n[τ ] is the optimum
RF coefficient, computed using a standard gradient descent
algorithm until convergence. We remark that the estimation of
α∗

n[τ ] involves very high computational complexity compared
to that of αn[τ ]. In Fig. 7, we plot Rrf

n[t] and its rate of change
w.r.t. time Rrf

n[t]/t. In this experiment, we used the same data
generation mechanism involving the nonlinear dependencies
g1 and g2, as explained in Section V-A1, having topology
change points at t = 250 and t = 500. Figure 7 shows
that Rrf[t] is sublinear w.r.t. t and Rrf[t]/t is negligibly small,
which is in agreement with the theoretical results stated in
Theorem 1. We note that a numerical evaluation of the second
component of the dynamic regret ξn[t] is a daunting, complex
process since it involves finding the optimal parameters in

a high dimensional RKHS. However, as shown in (67) we
remark that ξn[t]/t is theoretically bounded by the value ϵLfC,
where ϵ is a user-controlled parameter. The value of ξn[t]/t

can be made small to obtain a dynamic regret Rn[t]/t upper
bounded by a small constant for t → ∞.
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Figure 7: Regret w.r.t. optimal cost function in RF space. Vertical
lines indicate the topology change points.

B. Experiments using Real Data Sets

1) Oil and Gas Platform Data: This section is dedicated to
experiments using real data collected from Lundin’s Offshore
Oil and Gas (O and G) platform Edvard-Grieg2. We collected
multivariate time series data from 24 nodes (numbered as
n = 1, 2, . . . , 24.) of the plant corresponding to various
temperature (T), pressure (P), and oil-level (L) sensors. The
sensors are placed in the separators of decantation tanks
separating oil, gas and water. The time series are obtained by
uniformly sampling the sensor readings with a sampling rate
of 5 seconds. We assume that the hidden logic dependencies
are present in the network due to the various existing physical
connections and control actuators. The data obtained from the
sensors are preprocessed by normalizing them to zero mean
unit variance signals.

The dependencies are learned using RFNL-TIRSO (D =
10), RFNL-TISO, and TIRSO by assuming a VAR model of
order P=12. A Gaussian kernel having a variance of 1 is used
in all the experiments with hyperparameter setting λ = 0.1 and
step size at=1/Λmax(ϕ[t]) (tuned to obtain minimum NMSE).
The estimated dependencies are visualized in Fig. 8 using the
ℓ2 norms ∥αn,n′ [t]∥2. RFNL-TIRSO identifies interpretable
connections; for instance, two pressure sensors in the same
separator are connected, and the oil level in separator-1 is
connected to the pressure variation in separator-2. Further, as
expected, most of the identified interactions are local (e.g.,
interactions inside a separator), with very few long-distance
interactions (e.g., interactions between two separators). The
strong local interactions among variables such as temperature,
pressure, and oil level inside a container are directly linked
to fluid dynamics of the oil and gas in the closed chamber as
dictated by the differential equations governing these variables
[52]. However, various control mechanisms governing the
whole oil and gas platform and the physical connections

2https://www.lundin-energy.com/
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Figure 8: Topology estimated using RFNL-TIRSO for Oil and Gas platform. Temperature, pressure, and level sensors are denoted by the
labels ‘T’,‘P’, and ‘L’ in the node index, respectively.
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Figure 9: NMSE comparison: data from the Oil and Gas platform.

across different chambers can also cause some longer-distance
non-trivial interactions, although they will not typically be
as predominant as the local interactions. For instance, the
primary inlet separator and the electrostatic coalescer can
interact despite not being physically connected. When there
are changes in the oil level within the coalescer, it can affect
the head of the system, leading to changes in the pressure and
oil level within the primary inlet separator that operates based
on gravity.

We wish to note that the estimated dependencies can be
interpreted as an abstract graph representation of various
physics-based equations describing the space-temporal varia-
tion of the signals. Ground truth dependencies are not available
in this experiment, and evaluating the estimated graph using
the underlying differential physics-based equations governing
the space-time system is a tedious procedure that is beyond the
scope of this study. However, we demonstrate the ability of the
algorithms to learn the dependencies based on the accuracy of
time series forecasting using the learned VAR model. A good

prediction accuracy implies that the estimated dependencies
are close to the underlying unknown real dependencies. As
a side note, we highlight that time series forecasting is a
challenging problem having enormous applications in various
fields such as financial engineering, traffic forecast, sensor
networks, among others. The prediction accuracy is computed
using normalized mean squared error (NMSE):

NMSE (T) =
∑T

t=1(yn[t+ tstep]− ŷn[t+ tstep])
2∑T

t=1(yn[t+ tstep])2
, (36)

where ŷn[t+ tstep] is the estimate of the time series generated
by the nth node at time instant t + tstep based on the VAR
model learned at time t. Figure 9 shows the NMSE of the
estimated signals corresponding to a particular sensor n = 8
using various algorithms. We discard the PDIS algorithm in
this experiment since it is not designed for signal prediction.
NMSE is calculated according to (36) with tstep = 12, which
refers to one minute ahead prediction. For RFNL-TIRSO and
TIRSO, we conduct the experiments by varying the forgetting
factor γ ∈ {0.1, 0.5, 0.7, 0.98}. We note that the best NMSE
of the RFNL-TIRSO algorithm is obtained at γ = .98, and
it outperforms all the competitors. It is interesting to observe
that as γ reduces, the performance of RFNL-TIRSO becomes
close to RFNL-TISO, as expected from (17). Additionally, we
plot the dynamic regret and cumulative variation of the optimal
parameter estimates in Fig. 10, which shows that our algorithm
is able to track the topology even if the optimal topology is
changing.

In section Section IV, we show that the RFNL-TIRSO
converges if the learning rate is less than 1/L, where L is
the upper bound of Λmax(ϕ[T ]). The performance of RFNL-
TIRSO under various learning rates is shown in Fig. 11. Intu-
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itively as the learning rate increases, RFNL-TIRSO converges
faster; and when the learning rate is increased beyond 1/L,
convergence is not guaranteed, as evidenced in Fig. 11. Note
that if the data has high variance, the value of Λmax(ϕ[T ]) will
be obviously high, necessitating the use of a lower learning
rate to ensure the algorithm convergence.

2) Epileptic data set: The dataset used for this experiment
[50] is collected from the Children’s Hospital Boston, and it
consists of EEG recordings from two pediatric subjects with
intractable seizures, labelled as P1 (age-11, gender-female)
and P2 (age-10, gender-female). Subjects were monitored for
several days following the withdrawal of anti-seizure medica-
tion to characterize their seizures and assess their candidacy
for surgical intervention. The electrode positions and the
nomenclature used during the EEG recordings were based
on the well-known International 10-20 system standard. All
signals were sampled at 64 samples per second, and there
is a total of 23 Channels: FP1:F7, F7:T7, T7:P7, P7:O1, FP1:F3,
F3:C3, C3:P3, P3:O1, FP2:F4, F4:C4, C4:P4, P4:O2, FP2:F8, F8:T8,
T8:P8, P8:O2, FZ:CZ, CZ:PZ, P7:T7, T7:FT9, FT9:FT10, FT10:T8,
and 2T8:P8, which measures the potential difference between
the corresponding electrodes.

The estimated brain topology using RFNL-TIRSO (P =
2, D = 20) at various time instants (before seizure, dur-
ing seizure, after seizure), visualized using the ℓ2 norms
∥αn,n′ [t]∥2, are shown in Fig. 12. It is observed that the
estimated topologies before and after the seizure are very
similar, with connections concentrated across certain brain
regions. However, during the seizure, the topologies get more
disrupted, which agrees with the observations in [53]. This

disruption can be attributed to an increase in pathogenic neural
discharge during the seizure [54].

The brain can be divided into several regions, namely,
temporal, frontal, occipital, parietal and central. Epilepsies are
generally classified according to the region of the brain where
they originate, with common classifications including temporal
lobe (TL) epilepsy and frontal lobe (FL) epilepsy [55]. In TL
epilepsy, more inter-region connections will originate from the
temporal region, whereas in FL epilepsy, such connections
are originated from the frontal region. To showcase this,
we next present an experiment with the brain data of P1
and P2, respectively belonging to the TL and FL epilepsy
categories [56]. To measure the activity level of different brain
regions, we group all the channels connected to the ‘temporal’
region into one group (group-T) and the ‘frontal’ region into
another group (group-F). Note that all the connections between
the ‘frontal’ and the ‘temporal’ regions are excluded in this
experiment. We define the activation level of a group as the
sum of the degrees of all the nodes belonging to the group
divided by the total number of nodes present in the group,
where the degree of a node refers to the total number of
edges connected to the node. The activation level of each
group for P1 and P2 are shown in Fig. 13a and Fig. 13b,
respectively. From the figures, it is observed that for P1 and
P2, the activation levels of group-T and group-F, respectively,
spike first, and then the activation spreads across the other
brain region. These observations align with the characteristics
of TL and FL epilepsies.

VI. CONCLUSION

An online nonlinear topology identification algorithm
termed RFNL-TIRSO is proposed in this paper. The multi-
variate time series data received in the sequential form are
processed online to estimate time-varying nonlinear dependen-
cies. It has been proven that RFNL-TIRSO follows a sublinear
dynamic regret, which guarantees the tracking capability of
the algorithm in dynamic environments. The performance
of RFNL-TIRSO is evaluated using real and synthetic data
sets, and the algorithm outperforms the state-of-the-art online
topology estimation methods.
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APPENDIX A
PROOF OF THEOREM 1

In this section, we derive a theoretical upper bound for
Rrf

n(T ). Since the function hn
t is convex

Rrf
n(T ) =

T−1∑
t=P

[
hn
t (αn[t])− hn

t (α
∗
n[t])

]
(37)

≤
T−1∑
t=P

∇hn
t (αn[t])

⊤(αn[t]−α∗
n[t]).
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Figure 12: Estimated brain topology for the subjects P1 and P2 during various stages of seizure
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Figure 13: Activation levels in ‘T’ and ‘F’ regions of the brain.

Apply Cauchy-Schwarz inequality on right hand side to get

Rrf
n(T ) =

T−1∑
t=P

[
hn
t (αn[t])− hn

t (α
∗
n[t])

]

≤
T−1∑
t=P

∥∇hn
t (αn[t])∥2 ∥αn[t]−α∗

n[t]∥2. (38)

The optimality gap of any proximal gradient descent algorithm
with an objective function having 1) a strongly convex and
Lipschitz smooth loss function and 2) a Lipschitz continuous
regularizer is derived in [36]. We can show that RFNL-TIRSO
is a proximal gradient descent algorithm by following the
proofs provided in [6]. Hence, the cumulative optimality gap
is bounded as

T−1∑
t=P

∥αn[t]−α∗
n[t]∥2 = ∥α∗

n[P ]∥2+W n(T ), (39)

where W n(T ) =
∑T−1

t=P ∥α∗
n[t] − α∗

n[t − 1]∥2 is the path
length, which is a measure of the cumulative variation of the
optimality gap. Next, we bound for the term ∥∇hn

t (αn[t])∥2 in
(38).

Lemma 1. Under the assumptions A1, A3 and A4,

∥∇hn
t (αn[t])∥2 ≤

((
1 +

L

ρl

)√
2PNDBy + λ

√
PN

)
.

Proof : The cost function consists of a differentiable loss
function ℓ̃nt and a non-differentiable regularizer ωn. We intro-
duce the notation un to denote a subgradient of the regularizer
ωn(αn[t]). The gradient of the entire cost function can be
bounded by bounding the gradient of these two terms:

∥∇hn
t (αn[t])∥2 ≤ ∥∇ℓ̃nt (αn[t])∥2 + ∥un∥2. (40)

The term ∥∇ℓ̃nt (αn[t])∥2 is bounded in Lemma 1.2 using
Lemma 1.1, and the term ∥un∥2 is bounded in Lemma 1.3.

Lemma 1.1. Under assumptions A1 and A3

∥αn[t+ 1]∥2 ≤ (1− atρl)∥αn[t]∥2 + at
√

2PNDBy.

Proof: From Lemma 7 in [6] we have,

∥αn[t+ 1]∥2 ≤ (1− atρl)∥αn[t]∥2 + at∥rn[t]∥2. (41)
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Using (21), we can bound ∥rn[t]∥2 as

∥rn[t]∥2 = ∥µ
t∑

τ=P

γt−τyn[τ ]zv(τ)∥2

≤ µ∥
t∑

τ=P

γt−τyn[τ ]12PND∥2 (42)

≤ µ
√
2PNDByγ

t
t∑

τ=P

(
1

γ
)τ (43)

=
√
2PNDBy(1− γt−P+1) (44)

≤
√
2PNDBy. (45)

Inequality (42) is obtained by replacing the RF vector (si-
nusoidal components) with an all-one vector having a higher
norm, (43) is obtained using the assumption A1, (44) follows
from u = 1− γ, and (45) follows from γ ≤ 1. Lemma 1.1 is
proved by substituting (45) in (41).

Lemma 1.2. Under assumptions A1, A3, and A4, the RFNL-
TIRSO algorithm with step size parameter at =

1
L satisfies

∥∇ℓ̃nt (αn[t])∥2 ≤
(
1 +

L

ρl

)√
2PNDBy.

Proof: Invoke Lemma 1.1, set at = a, and let δ = (1−aρl)
and 0 ≤ δ ≤ 1, to get

∥αn[t+ 1]∥2 ≤ δ∥αn[t]∥2 + at
√
2PNDBy (46)

The bound of ∥αn[t+1]∥2 in terms of the norm of the initial
estimate ∥αn[P ]∥2 is obtained by t−P +1 recursion of (46):

∥αn[t+ 1]∥2 ≤ δt−P+1∥αn[P ]∥2 + a
√
2PNDBy

t−P∑
i=0

δi

=
a
√
2PNDBy(1− δt−P+1)

1− δ
(47)

≤
a
√

2PNDBy

1− (1− aρl)
) =

1

ρl

√
2PNDBy (48)

In (47), we assumed that the RF coefficients are initialized
with zeros, i.e., αn[P ] = 02PND.

Using (48) and (45), we can bound gradient:

∥∇ℓ̃nt (αn[t])∥2 = ∥ϕ[t]αn[t]− rn[t]∥2 (from (22))
≤ ∥ϕ[t]αn[t]∥2 + ∥rn[t]∥2
≤ Λmax(ϕ[t])∥αn[t]∥2 + ∥rn[t]∥2 (49)

= L

√
2PNDBy

ρl
+
√
2PNDBy (50)

≤
(
1 +

L

ρl

)√
2PNDBy (51)

Inequality (49) holds since spectral norm of ϕ[t] =
Λmax(ϕ[t]), whereas (50) is obtained by combining the As-
sumption A4, (48), and (45). Next, we bound ∥un∥2.

Lemma 1.3. The norm of a subgradient of the regularizer can
be bounded as

∥un∥2 ≤ λ
√
PN.

Proof: To prove Lemma 1.3, we apply Lemma 2.6 from
[4] which states that every subgradient of ωn(.) is bounded
by its Lipschitz continuity parameter Lωn . In the following,
we show that Lωn = λ

√
PN .

Lipschitz continuity of ωn means there exists Lωn > 0 such
that

|ωn(a)− ωn(b)| ≤ Lωn∥a− b∥2 (52)

for all real a and b. From the group-Lasso regularizer, we
have

ωn(xn) = λ

N∑
n′=1

P∑
p=1

∥x(p)
n,n′∥2. (53)

Expanding the left-hand side of (52) using (53) yields

|ωn(an)− ωn(bn)| (54)

= λ
∣∣∣ N∑
n′=1

P∑
p=1

∥a(p)
n,n′∥2 −

N∑
n′=1

P∑
p=1

∥b(p)n,n′∥2
∣∣∣ (55)

= λ
∣∣∣ N∑
n′=1

P∑
p=1

∥a(p)
n,n′∥2 − ∥b(p)n,n′∥2

∣∣∣ (56)

≤ λ

N∑
n′=1

P∑
p=1

∣∣∣∥a(p)
n,n′∥2 − ∥b(p)n,n′∥2

∣∣∣ (57)

≤ λ

N∑
n′=1

P∑
p=1

∥a(p)
n,n′ − b

(p)
n,n′∥2 (58)

≤ λ
√
PN∥an − bn∥2. (59)

In the above derivation, inequality (57) follows from the
triangle inequality, inequality (58) from the reverse trian-
gle inequality and (59) from the basic inequality ∥q∥1 ≤√
M∥q∥2, q ∈ RM . From (59), we obtain the required

Lipschitz parameter to be λ
√
PN .

Substitute the bounds of ∥∇lnt (αn[t])∥2 given by
Lemma 1.2 and ∥un∥2 given by Lemma 1.3 in (40) to com-
plete the proof of Lemma 1. Finally, the proof of Theorem 1
can be completed by substituting Lemma 1 and (39) in (38).

APPENDIX B
PROOF OF THEOREM 2

The cumulative approximation error due to the RF approx-
imation is

ξn[T ] ≤
∣∣∣∣T−1∑
t=P

[
hn
t (α

∗
n[t])− hn

t (β
∗
n[t])

]∣∣∣∣. (60)

Using the triangle inequality,

ξn[T ] ≤
T−1∑
t=P

∣∣∣hn
t (α

∗
n[t])− hn

t (β
∗
n[t])

∣∣∣
≤

T−1∑
t=P

Lh

∣∣∣∣∣
N∑

n′=1

P∑
p=1

t+p−1∑
t′=P

β
(p)∗
n,n′,(t′−p)z

(p)
v,n′(t)

⊤
z
(p)
v,n′(t

′)

− β
(p)∗
n,n′,(t′−p)k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣
(61)
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≤
T−1∑
t=P

Lh

N∑
n′=1

P∑
p=1

t+p−1∑
t′=p

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣×∣∣∣∣z(p)
v,n′(t)

⊤
z
(p)
v,n′(t)− k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣. (62)

Inequality (61) is obtained from the Lipschitz continuity of the
cost function (Lh > 0 is the Lipschitz continuity parameter)
and (62) follows from Cauchy-Schwarz inequality. As shown
in [21], it can be proved that for a given shift-invariant kernel
k
(p)
n′ (assumption A2), the approximation error due to the

random Fourier approximation is bounded by

sup
yn(t)

∣∣∣∣z(p)
v,n′(t)

⊤
z
(p)
v,n′(t)− k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣ ≤ ϵpn′

(63)

with a probability given by 1−28(σp
n′/ϵ

p
n′)2 exp(−Dϵpn′/12).

Here, ϵpn′ ≥ 0 is a constant and σp
n′ is the variance of the

random feature vector norm. Using (63),

ξn[T ] ≤
T−1∑
t=P

Lh

N∑
n′=1

P∑
p=1

t+p−1∑
t′=P

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣ϵpn′ . (64)

Let ϵ = max ϵpn′ , which leads to

ξ(T ) ≤
T−1∑
t=P

Lhϵ

N∑
n′=1

P∑
p=1

t+p−1∑
t′=P

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣ (65)

≤
T−1∑
t=P

ϵLhC (66)

≤ ϵLhTC, (67)

where C is a constant and (66) follows from the assumption
A1: since yn(t) is bounded, the optimal parameters should
also be bounded.
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