
ResearchOnline@JCU

This is the author-created version of the following work:

 van de Pol, Martijn, Brouwer, Lyanne, and Cockburn, Andrew 2020 R package

HIPHOP: parentage assignment using bi-allelic genetic markers.

Comprehensive R Archive Network CRAN.

Access to this file is available from:

https://researchonline.jcu.edu.au/80037/

Licensed under GNU General Public Licence, Version 2: https://cran.r-

project.org/web/licenses/GPL-2

Please refer to the original source for the final version of this work:

https://CRAN.R%2Dproject.org/package=hiphop

intro_hiphop

Authors

Martijn van de Pol, Lyanne Brouwer and Andrew Cockburn - 11 August 2020

What is R package hiphop for?

R package hiphop is a method for parentage assignment using bi-allelic genetic markers like SNPs (Single
Nucleotide Polymorphism). It has widespread application (paternity and maternity assignment in a variety of
mating systems) and outperforms conventional methods where closely related individuals occur in the pool of
possible parents. The method is based on simple exclusion logic by comparing the genotypes of offspring with
those of potentials parents using the HIPHOP and HOT test; the rationale behind this paternity assignment
method is described in detail in Cockburn et al. (for full reference use citation(“hiphop”)). Here we explain how it
can be used with worked examples based on the data set that are used in the above paper and are included in
the hiphop package.

The basic idea

The basic idea behind the HIPHOP parentage assignment is that we can compare the genotypes of any
combination of offspring with potentials dams and sires (i.e. genetic mother or fathers) by comparing the
exclusion scores of these individuals at bi-allelic markers. It elaborates on a prior exclusion method based on the
Homozygous Opposite Test (HOT; Huisman 2017; https://doi.org/10.1111/1755-0998.12665). HOT compares the
genotype of an offspring with a potential parent: a mismatch is scored when both the offspring and parent are
homozygous, but for different alleles. Cockburn et al. suggested an additional -and as we will later see more
informative- exclusion criterion called HIPHOP (Homozygous Identical Parents, Heterozygous Offspring are
Precluded). This test compares the genotype of an offspring with both potential parents: a mismatch is scored
when the offspring is heterozygous and both parents are homozygous for the same allele. Furthermore, although
the HOT test was originally designed to compare the genotypes of offspring with one parent (a dyad), it can
easily be extended to also compare offspring to both parents (a triad, similar to the HIPHOP test that also
compares triads): a mismatch is scored when the offspring is homozygous and at least one of the parents is
homozygous for the opposite allele (i.e. the HOT.parents test). The HOT and HIPHOP scores of triads can be
combined to provide information about the total of mismatches and is proposed as an improved exclusion
criterion for parentage assignment, particularly when distinguishing between closely related potential parents.

Below mismatch table shows all possible combinations of bi-allelic genotypes of offspring-dam-sire combinations
for a single locus and which combinations of genotypes are indicative of a mismatch (the R code also illustrates
the basic calculations). The total number of mismatches (also called the ‘HOTHIPHOP.parents’ mismatch score)
is the sum of the HOT scores of the offspring with the parents (HOT.parents) and the HIPHOP score with the
potential parents (offspring-dam-sire triad). Mismatches may occur because (a) the potential dam and/or sire is
not the true genetic parent, (b) genotyping errors, and (c) mutations. We are aiming to exclude potential parents
by determining if they have more mismatches than can be expected due to genotyping errors and mutation, and
thereby identify (i) the true genetic parents and (ii) detect situations where one (or both) of the true parents is not
sampled, in which case we (iii) want to identify which parent can still be correctly assigned.

genotyp<-c("AA", "Aa", "aa")
gentable.names<-c("offspring","dam","sire","hot.dam","hot.sire","hot.parents",

"hiphop","hothiphop.parents")
gentable<-as.data.frame(array(NA,dim = c(length(genotyp)^3,length(gentable.names)),

dimnames=list(NULL,gentable.names)))

gentable$offspring<-rep(genotyp, each=length(genotyp)*length(genotyp))

gentable$dam<-rep(genotyp, length(genotyp)*length(genotyp))

gentable$sire<-rep(genotyp, length(genotyp), each=length(genotyp))

the HOT test for the offspring-dam dyad
gentable$hot.dam<-ifelse((gentable$offspring=="AA" & gentable$dam=="aa") | (gentable$offspring=="aa" &

gentable$dam=="AA"), 1,0)

the HOT test for the offspring-sire dyad
gentable$hot.sire<-ifelse((gentable$offspring=="AA" & gentable$sire=="aa") | (gentable$offspring=="aa"

& gentable$sire=="AA"), 1,0)

the HOT test for the offspring-dam-sire triad
gentable$hot.parents<-ifelse(((gentable$offspring=="AA" & (gentable$sire=="aa" | gentable$dam=="aa")) |

(gentable$offspring=="aa" & (gentable$sire=="AA" | gentable$dam=="AA"))),1,0)

the hiphop for the dam-sire combination
gentable$hiphop<-ifelse((gentable$offspring=="Aa" & gentable$sire=="aa" & gentable$dam=="aa") |

(gentable$offspring=="Aa" & gentable$sire=="AA" & gentable$dam=="AA"), 1,0)

gentable$hothiphop.parents<-gentable$hot.parents+gentable$hiphop

print(gentable)

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

1 of 16 31/08/2023, 1:49 pm

Parentage analysis: single parent versus parent pair assignment.

Parentage analysis typically comes in two forms:

1. Parentage assignment when one genetic parent is known: single parent analysis

In the conventional case of parentage analysis there is usually contextual information that provides evidence
about the identity of one of the genetic parents. The most common case will be where a female has been
observed to be involved in reproductive tasks (built a nest, laid or incubated the eggs, lactated young). For the
male parent we typically cannot make this assumption, because contextual evidence for paternity is usually less
obvious and promiscuity means that paternity is often uncertain and needs to assessed (though in some species
with sex role reversal, it may be possible to condition on the social father and focus on maternity assignment).

2. Parentage assignment when no genetic parents are known: parent pair analysis

In other systems we have no or little contextual information about either of the social parents, in which case we
can make no a priori assumptions about the genetic parents. In such cases the aim is to assign both the genetic
mother (dam) and genetic father (sire) and perform a parent pair analysis. Such cases occur when: (a)
Communal spawning: some animals with external fertilisation that breed in aggregations so that it is impossible
to know which female laid eggs (e.g. frogs in leks, some fish) and which male fertilized the eggs, as there are no
permanent social groups. (b) Polygynandry: multiple females and males breed and deposit their young in a
common burrrow or nest (e.g. acorn woodpeckers, Eurasian badgers), which may be difficult to observe so
individual offspring cannot be associated with a single parent. There may also be extra-group mating (as has
been argued for chimpanzees and Australian magpies).

How does it work?

R package hiphop includes three functions and an example dataset consisting of two input dataframes based on
five cohorts (2014-2018) of superb fairy wrens living in Canberra, Australia.

We first load the library.

Example dataset

#> offspring dam sire hot.dam hot.sire hot.parents hiphop hothiphop.parents

#> 1 AA AA AA 0 0 0 0 0

#> 2 AA Aa AA 0 0 0 0 0

#> 3 AA aa AA 1 0 1 0 1

#> 4 AA AA Aa 0 0 0 0 0

#> 5 AA Aa Aa 0 0 0 0 0

#> 6 AA aa Aa 1 0 1 0 1

#> 7 AA AA aa 0 1 1 0 1

#> 8 AA Aa aa 0 1 1 0 1

#> 9 AA aa aa 1 1 1 0 1

#> 10 Aa AA AA 0 0 0 1 1

#> 11 Aa Aa AA 0 0 0 0 0

#> 12 Aa aa AA 0 0 0 0 0

#> 13 Aa AA Aa 0 0 0 0 0

#> 14 Aa Aa Aa 0 0 0 0 0

#> 15 Aa aa Aa 0 0 0 0 0

#> 16 Aa AA aa 0 0 0 0 0

#> 17 Aa Aa aa 0 0 0 0 0

#> 18 Aa aa aa 0 0 0 1 1

#> 19 aa AA AA 1 1 1 0 1

#> 20 aa Aa AA 0 1 1 0 1

#> 21 aa aa AA 0 1 1 0 1

#> 22 aa AA Aa 1 0 1 0 1

#> 23 aa Aa Aa 0 0 0 0 0

#> 24 aa aa Aa 0 0 0 0 0

#> 25 aa AA aa 1 0 1 0 1

#> 26 aa Aa aa 0 0 0 0 0

#> 27 aa aa aa 0 0 0 0 0

library(hiphop)

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

2 of 16 31/08/2023, 1:49 pm

The superb fairy wren case reflects the first case described above, as there is a social pair, in which previous
evidence has shown that the female that incubates the eggs (the social mother) is always the dam. However, the
social male is generally not the sire, as the rate of extra-pair paternity is among the highest recorded in bird
species. Furthermore, besides the male that is pair bonded to the social mother (the social father), each group
contains supernumerary males that sometimes also gain paternity (there is within- and extra-group paternity).
Finally, superb fairy wrens have very limited dispersal, almost all males live their entire life on their natal or a
neighouring territory, and as a consequence paternity assignment thus faces the challenge of distinguishing
between closely related potential sires (e.g. first order relatives).

In the next sections we will first use the example dataset to illustrate the workings of the functions in package
hiphop. Next we will use superb fairy wrens to illustrate how to conduct single parent assignment of the sires.
Finally, we will also use the same dataset to illustrate how to perform parent-pair analyses for the second case
(by ignoring the fact that in superb fairy wrens we know the genetic mother a priori).

individuals dataframe

The dataset consist of two dataframes/files. The first input dataframe -called ‘individuals’- consists of a list of
1153 offspring that we would like to assign parentage to and 1373 records of potential parents (252 adult males
and 145 adult females). The file has 5 variables:

The first variable denotes the brood to which the individual belongs, the second variable is the identity of the
individual, the third variable (type) denotes whether it is an offspring, adult male (i.e. a potential sire) or adult
female (potential dam). The fifth column (social.parent) describes whether the individual is a social parent at the
brood it is associated with (for females 1, if she incubated or build the nest; for males 1, if he was the dominant
male pair bonded with the social mother) or not (0; supernumerary males). The final variable (year) is to separate
cohorts to be analyzed. Note that parentage analyses is done typically done one cohort at a time, as the set of
potential dams and sires will vary across years (as some individuals were not born yet or were already dead in
some years).

Thus individuals may appear in multiple years and adults may also appear multiple times within a year if they
were involved in multiple broods. For example, the above 10 records show two broods of the same breeding pair
(982804-awRM & 899972-rnWR). Both broods produced three offspring, but the second brood had a
supernumerary male (982045-BwgW) helping the parents.

It is important to realise that there will usually be potential parents living both within and outside the study area
that will not be considered if just the adults associated with a brood are included in this file. Cockburn et
al. showed that some young are sired by males living outside the study area, and in other species floaters might
be important. A universal problem will be parents living within the study area that do not raise young to the point
where DNA can be sampled. Ensuring that such adults are considered as parents can be achieved by giving
them a dummy brood ID. As can be seen below, in our dataset we have added such males using brood values
such as other353, etc.

In some mating systems it will not be possible to separate the young into broods and there is no parental care. In
such cases all young and potential parents can be given the same brood ID (with brood potentially meaning day
of sampling, frog pond, fish tank). We note that the brood ID is not used for calculating the exclusion scores, it is
only used to qualify any potential parent as either within- or extra-group (i.e. extra-brood) parent.

individuals[23:33,]

#> brood individual type social.parent year

#> 23 awRM_6299 899972-rnWR adult male 1 2014

#> 24 awRM_6299 982804-awRM adult female 1 2014

#> 25 awRM_6299 A58115-NAgn offspring 0 2014

#> 26 awRM_6299 A58116-GMgn offspring 0 2014

#> 27 awRM_6299 A58117-OYgn offspring 0 2014

#> 28 awRM_6300 899972-rnWR adult male 1 2014

#> 29 awRM_6300 982045-BwgW adult male 0 2014

#> 30 awRM_6300 982804-awRM adult female 1 2014

#> 31 awRM_6300 A58166-MObw offspring 0 2014

#> 32 awRM_6300 A58167-YRbw offspring 0 2014

#> 33 awRM_6300 A58168-AGbw offspring 0 2014

tail(individuals)

#> brood individual type social.parent year

#> 2521 other353 899575-wbMM adult male 0 2015

#> 2522 other354 899575-wbMM adult male 0 2017

#> 2523 other355 899575-wbMM adult male 0 2018

#> 2524 other356 A58484-sOnr adult male 0 2015

#> 2525 other357 A58484-sOnr adult male 0 2017

#> 2526 other358 A58484-sOnr adult male 0 2018

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

3 of 16 31/08/2023, 1:49 pm

genotypes dataframe

The second input dataframe/file -called ‘genotypes’- consists of a list of all genotyped individuals (offspring and
potential parents) and their genotypes scored using bi-allelic markers. In the example dataset it comprises 1407
individuals scored at 1376 loci.

The column names are alphanumerics used to identify each SNP (Single Nucleotide Polymorphism) and the row
names identify each individual. Values are specified as follows:

0 - homozygous for one allele (usually the common allele, but this is not necessary)
1 - homozygous for the alternative allele
2 - heterozygous at this locus
NA - a null result, where genotyping failed.

If an individual was not sampled and/or genotyped it should not be included in the genotypes dataset.

The functions

R package hiphop only contains 3 functions: inspect, hothiphop and topmatch.

1. The inspect function is used for data inspection to detect any anomalies in genotypic data.
2. The hothiphop function calculates all the mismatch scores according to the HOT and HIPHOP test for all

possible offspring-potential dam-potential sire combinations.
3. The topmatch function summarizes the best matches for each offspring according to the output of the

hothiphop function. The default lists the top three offspring-potential dam-potential sire combinations that
have the lowest mismatch score, and if social parents are specified, provides results for the social parents
as well (if they are not ranked in the top three). Options defined below allow the sorting criterion to be
varied, the number of triads listed to be increased and decreased, and the analysis conditioned on
knowing one parent (for single parent assignment).

A worked example to illustrate how the functions work

The hothiphop function extracts the list of potential dams and potential sires for a specific cohort of offspring from
the individuals dataset. For that cohort it will consider all adult females listed that year as potential dams and all
adult males listed that year as potential sires. For reasons given above, we analyse one cohort/year at a time.

select a cohort

We thus first subset the individuals dataset to one cohort, here the 2018 cohort of superb fairy wrens.

inspect the data

Next we inspect the genotypes’ summaries and identify any individual that has not been genotyped:

genotypes[1:5,1:13]

#> L545 L1022 L232 L696 L829 L1218 L7 L160 L857 L1475 L27 L495 L1100

#> 898377-onWA 0 2 0 0 2 2 2 2 2 2 0 2 2

#> 898797-YweY 0 2 0 2 2 0 0 2 2 0 2 2 0

#> 899199-OgoY 0 2 0 0 0 2 2 0 2 0 0 2 0

#> 899484-NybR 0 0 0 0 0 2 0 1 0 0 0 2 0

#> 899575-wbMM 0 2 0 0 2 2 2 1 2 0 0 1 2

ind2018<-subset(individuals, individuals$year==2018)

inspection<-inspect(ind=ind2018, gen=genotypes)

head(inspection)

#> brood individual type social.parent year sampled homozygote.0

#> 1 other287 A58192-NBwr adult male 0 2018 1 0.6337209

#> 2 other288 A58331-GNgn adult male 0 2018 1 0.6446221

#> 3 other289 A58815-pOny adult male 0 2018 1 0.6148256

#> 4 other290 A58816-pWob adult male 0 2018 1 0.6133721

#> 5 other291 A58325-NNbw adult male 0 2018 1 0.6286337

#> 6 other292 A58258-RNgn adult female 1 2018 1 0.6395349

#> homozygote.1 heterozygote.2 missing number.loci

#> 1 0.1235465 0.2369186 0.005813953 1368

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

4 of 16 31/08/2023, 1:49 pm

The summary lists, in addition to some details of the individual, the proportion of loci for which the individual is
homozygous, heterozygous or has missing data. We see that most individuals have very few missing loci data
(mostly <1%), but that there is one social father (SOC018-fBab) that has not been sampled.

calculate the mismatch scores

Next we run the mismatch analysis for all offspring-potential dam-potential sire combinations for the 2018 cohort
using the hothiphop function. This function calculates the proportion of genetic mismatches according to the
HIPHOP and HOT test.

In the 2018 cohort there are 149 offspring, 42 potential dams and 73 potential sires (each superb fairy wren
brood has a social pair and 0-5 supernumerary adult males).

This means that there are about half a million possible combinations of offspring-dam-sire (149x42x73), so the
next code may take several minutes to run:

#> 2 0.1220930 0.2311047 0.002180233 1373

#> 3 0.1155523 0.2667151 0.002906977 1372

#> 4 0.1170058 0.2652616 0.004360465 1370

#> 5 0.1199128 0.2441860 0.007267442 1366

#> 6 0.1235465 0.2296512 0.007267442 1366

inspection[which(inspection$sampled==0),]

#> brood individual type social.parent year sampled homozygote.0

#> 41 fBab_7322 SOC018-fBab adult male 1 2018 0 0

#> homozygote.1 heterozygote.2 missing number.loci

#> 41 0 0 1 0

print(c(length(unique(ind2018$individual[which(ind2018$type=="offspring")])),
length(unique(ind2018$individual[which(ind2018$type=="adult female")])),
length(unique(ind2018$individual[which(ind2018$type=="adult male")]))))

#> [1] 149 42 73

combinations<-hothiphop(ind=ind2018, gen=genotypes)

head(combinations)

#> year brood offspring potential.dam potential.sire hothiphop.parents

#> 1 2018 BBW_7279 A59401-iOar A58258-RNgn A58192-NBwr 275

#> 2 2018 BBW_7279 A59401-iOar A59012-zOogo A58192-NBwr 242

#> 3 2018 BBW_7279 A59401-iOar A58110-BBW A58192-NBwr 197

#> 4 2018 BBW_7279 A59401-iOar A58954-fGny A58192-NBwr 319

#> 5 2018 BBW_7279 A59401-iOar A58908-fBab A58192-NBwr 287

#> 6 2018 BBW_7279 A59401-iOar A59232-cWar A58192-NBwr 311

#> hiphop hot.parents hot.dam hot.sire hothiphop.dam hothiphop.sire

#> 1 122 153 72 99 194 221

#> 2 109 133 53 99 162 208

#> 3 90 107 17 99 107 189

#> 4 143 176 118 99 261 242

#> 5 135 152 87 99 222 234

#> 6 143 168 96 99 239 242

#> loci.dyad.dam loci.dyad.sire loci.triad offspring.heterozygosity

#> 1 1356 1358 1349 0.2401171

#> 2 1357 1358 1349 0.2401171

#> 3 1355 1358 1347 0.2401171

#> 4 1358 1358 1350 0.2401171

#> 5 1362 1358 1354 0.2401171

#> 6 1357 1358 1349 0.2401171

#> social.mother.sampled social.father.sampled is.dam.social is.sire.social

#> 1 1 1 0 0

#> 2 1 1 0 0

#> 3 1 1 1 0

#> 4 1 1 0 0

#> 5 1 1 0 0

#> 6 1 1 0 0

#> is.dam.within.group is.sire.within.group social.mother social.father

#> 1 0 0 A58110-BBW A58794-uWny

#> 2 0 0 A58110-BBW A58794-uWny

#> 3 1 0 A58110-BBW A58794-uWny

#> 4 0 0 A58110-BBW A58794-uWny

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

5 of 16 31/08/2023, 1:49 pm

This output is large and contains all the required information to assign parentage. Basically it lists all possible
offspring-potential.dam-potential.sire combinations and their mismatch scores (unsorted), the number of loci this
was based on, and some relevant information about the social parents and potential dam and sires. For a
detailed explanation see the help file of the function (‘?hothiphop()’)

summarize the best matching parents

However, due to the large number of combinations it can be difficult to find the salient information, so the results
can be summarized into a more insightful format by extracting the top matches for each offspring using the
‘topmatch’ function. By default for each offspring the ‘topmatch’ returns the 3 top matches for male/female
combinations according to the chosen ranking criteria, and additionally if they are not yet included, the results for
the triad comprising the social parents.

#> 5 0 0 A58110-BBW A58794-uWny

#> 6 0 0 A58110-BBW A58794-uWny

best.hothiphop<-topmatch(x=combinations, ranking="hothiphop.parents")

best.hothiphop[1:8,]

#> year brood offspring rank dam sire dam.type

#> 1 2018 BBW_7279 A59401-iOar 1 A58110-BBW A59058-zMyr social parent

#> 2 2018 BBW_7279 A59401-iOar 2 A58110-BBW A59372-sOb social parent

#> 3 2018 BBW_7279 A59401-iOar 3 A59012-zOogo A59058-zMyr extra-group parent

#> 4 2018 BBW_7279 A59401-iOar 55 A58110-BBW A58794-uWny social parent

#> 5 2018 BBW_7279 A59402-iMow 1 A58110-BBW A59058-zMyr social parent

#> 6 2018 BBW_7279 A59402-iMow 2 A58110-BBW A59201-cNbwb social parent

#> 7 2018 BBW_7279 A59402-iMow 3 A58110-BBW A59372-sOb social parent

#> 8 2018 BBW_7279 A59402-iMow 120 A58110-BBW A58794-uWny social parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam

#> 1 extra-group parent 37 0 37 17

#> 2 extra-group parent 109 43 66 17

#> 3 extra-group parent 117 47 70 53

#> 4 social parent 191 116 75 17

#> 5 extra-group parent 33 1 32 18

#> 6 within-group subordinate 104 62 42 18

#> 7 extra-group parent 112 58 54 18

#> 8 social parent 201 133 68 18

#> hot.sire hothiphop.dam hothiphop.sire below.threshold threshold loci.dyad.dam

#> 1 20 17 20 1 99999 1355

#> 2 53 60 96 1 99999 1355

#> 3 20 100 67 1 99999 1357

#> 4 70 133 186 1 99999 1355

#> 5 14 19 15 1 99999 1356

#> 6 28 80 90 1 99999 1356

#> 7 42 76 100 1 99999 1356

#> 8 63 151 196 1 99999 1356

#> loci.dyad.sire loci.triad offspring.heterozygosity social.mother.sampled

#> 1 1355 1344 0.2401171 1

#> 2 1358 1347 0.2401171 1

#> 3 1355 1346 0.2401171 1

#> 4 1360 1349 0.2401171 1

#> 5 1356 1344 0.2660819 1

#> 6 1368 1356 0.2660819 1

#> 7 1361 1349 0.2660819 1

#> 8 1362 1350 0.2660819 1

#> social.father.sampled social.mother social.father condition ranking

#> 1 1 A58110-BBW A58794-uWny none hothiphop.parents

#> 2 1 A58110-BBW A58794-uWny none hothiphop.parents

#> 3 1 A58110-BBW A58794-uWny none hothiphop.parents

#> 4 1 A58110-BBW A58794-uWny none hothiphop.parents

#> 5 1 A58110-BBW A58794-uWny none hothiphop.parents

#> 6 1 A58110-BBW A58794-uWny none hothiphop.parents

#> 7 1 A58110-BBW A58794-uWny none hothiphop.parents

#> 8 1 A58110-BBW A58794-uWny none hothiphop.parents

#> ranking2

#> 1 none

#> 2 none

#> 3 none

#> 4 none

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

6 of 16 31/08/2023, 1:49 pm

For offspring A59401-iOar (the first four lines of output) we can see that the triad A58110-BBW (dam) & A59058-
zMyr (sire) has by far the fewest HOTHIPHOP.parents mismatches (37; HOTHIPHOP.parents = HOT score of the
parents/triad + HIPHOP score of triad), much less than the second ranked dyad (109 mismatches; the same dam
with another sire). The best ranked dam A58110-BBW is the social mother, while the best ranked sire A59058-
zMyr is an extra-group parent (as it is not associated with the same brood as the offspring in the individuals
dataset). In line 4 we can see that the social father also has many more mismatches (191), and is unlikely to be
the sire. In rows 4-8 we see another offspring from the same brood, which in this case is sired by the same extra-
group male A59058-zMyr (33 mismatches).

options to summarize the best matches in different ways

It is possible to set a threshold value that determines whether the dam, sire or triad should be accepted as
parents (see later for determining a threshold).

In our dataset, we found empirically that for this species and dataset (level of genotyping error) the true parents
never had more than 62 HOTHIPHOP.parents mismatches (Cockburn et al.), and by setting the threshold to this
value we can see that in the column ‘below.threshold’ all triads above (below) this value are labelled as 0 (1). If
not specified, the default threshold value is a large value (99999) meaning that all triads are below the threshold.

If the threshold value is set to a value between 0 and 1 then the number of mismatches are recalculated to the
proportion of mismatches (number of mismatches / number of loci that are not NA), which is a more accurate
score if individuals differ strongly in the number of loci with missing data.

Finally, if the threshold value is set to a value between 0 and -1 then the number of mismatches are recalculated
to the proportion of mismatches, but in contrast to above example the mismatch scores are expressed as the
number of mismatched divided by the number of loci at which the offspring is heterozygote (for the HIPHOP test)
or divided by number of loci at which the offspring is homozygote (for the HOT test). Thus, by setting
‘thres=-0.99’ we aim to correct for the fact that heterozygous offspring will accumulate more HIPHOP and less
HOT mismatches, all else being equal. For calculating whether triads are below.threshold, they will be compared
to abs(thres).

#> 5 none

#> 6 none

#> 7 none

#> 8 none

best<-topmatch(x=combinations, ranking="hothiphop.parents", thres=62)

best[9:12,c(1:9, 16,17)]

#> year brood offspring rank dam sire dam.type

#> 9 2018 fBab_7322 A59439-iMwr 1 A58908-fBab A58909-fMrn social parent

#> 10 2018 fBab_7322 A59439-iMwr 2 A58908-fBab A59065-zOyb social parent

#> 11 2018 fBab_7322 A59439-iMwr 3 A58908-fBab A58815-pOny social parent

#> 12 2018 fBab_7322 A59439-iMwr NA A58908-fBab <NA> social parent

#> sire.type hothiphop.parents below.threshold threshold

#> 9 extra-group parent 163 0 62

#> 10 extra-group parent 164 0 62

#> 11 extra-group parent 165 0 62

#> 12 social parent NA 0 62

best<-topmatch(x=combinations, ranking="hothiphop.parents", thres=0.045)

best[9:12,c(1:9, 16,17)]

#> year brood offspring rank dam sire dam.type

#> 9 2018 fBab_7322 A59439-iMwr 1 A58908-fBab A58909-fMrn social parent

#> 10 2018 fBab_7322 A59439-iMwr 2 A58908-fBab A59065-zOyb social parent

#> 11 2018 fBab_7322 A59439-iMwr 3 A58908-fBab A58815-pOny social parent

#> 12 2018 fBab_7322 A59439-iMwr NA A58908-fBab <NA> social parent

#> sire.type hothiphop.parents below.threshold threshold

#> 9 extra-group parent 0.1202065 0 0.045

#> 10 extra-group parent 0.1212121 0 0.045

#> 11 extra-group parent 0.1216814 0 0.045

#> 12 social parent NA 0 0.045

best<-topmatch(x=combinations, ranking="hothiphop.parents", thres=-0.99)

best[9:12,c(1:9, 16,17)]

#> year brood offspring rank dam sire dam.type

#> 9 2018 fBab_7322 A59439-iMwr 1 A58908-fBab A59065-zOyb social parent

#> 10 2018 fBab_7322 A59439-iMwr 2 A58908-fBab A58816-pWob social parent

#> 11 2018 fBab_7322 A59439-iMwr 3 A58908-fBab A58815-pOny social parent

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

7 of 16 31/08/2023, 1:49 pm

The ‘topmatch’ function can rank matches via several criteria specified by the parameter ‘ranking’. Options are:
“hothiphop.parents” , “hiphop” ‘hot.dam’, ‘hot.sire’ as well as ‘hothiphop.dam’ and ‘hothiphop.sire’ (see
?topmatch() for explanation of how these criteria differ). For example:

At first glance, the HOTHIPHOP.parents scores may appear most informative as it sums all possible HIPHOP
and HOT mismatches of the triad. However, the HOT test is disproportionately affected by genotyping error, and
thus potentially HIPHOP can give cleaner comparisons in some cases than HOTHIPHOP.parents. As a result of
above complexity (as well as other dependencies of HOT and HIPHOP scores on the rate of hetero- and homo-
zygosity of the offspring and parents), the choice and best definition of exclusion criterion is not a trivial matter.
Therefore, we refer to Cockburn et al. for a more in depth discussion of the pros and cons of different scoring
criteria and how they can differ in their conclusions in parentage assignment.

We note that when ranking on the HOT test scores of dyads (e.g. on HOT.dam as shown below), that the top
ranked triads will always contain the same dams (but with different sires), as the HOT.dam score -in contrast to
the HIPHOP and HOT.parents score- is not calculated on a triad, but on an offspring-parent dyad and thus does
not depend on the genotype of the other parent.

To compare the HOT scores of dams it is necessary to specify that you are only interested in one record per
dam, which can be achieved by setting the unique argument:

Now we get the top 3 unique dams ranked according to hot.dam score (as well as the social mother, if not in the
top 3), and because we have also included a second ranking argument “hiphop” the dams are shown with the
sires with whom they have the lowest hiphop score.

Furthermore, we can use the ‘condition’ parameter to also condition the parentage analysis on prior contextual

#> 12 2018 fBab_7322 A59439-iMwr NA A58908-fBab <NA> social parent

#> sire.type hothiphop.parents below.threshold threshold

#> 9 extra-group parent 0.2987475 1 (-)0.99

#> 10 extra-group parent 0.3118211 1 (-)0.99

#> 11 extra-group parent 0.3159056 1 (-)0.99

#> 12 social parent NA 1 (-)0.99

best.hiphop<-topmatch(x=combinations, ranking="hiphop")

best.hiphop[1:4,1:13]

#> year brood offspring rank dam sire dam.type

#> 1 2018 BBW_7279 A59401-iOar 1 A58110-BBW A59058-zMyr social parent

#> 2 2018 BBW_7279 A59401-iOar 2 A58110-BBW A59372-sOb social parent

#> 3 2018 BBW_7279 A59401-iOar 3 A59012-zOogo A59058-zMyr extra-group parent

#> 4 2018 BBW_7279 A59401-iOar 449 A58110-BBW A58794-uWny social parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam hot.sire

#> 1 extra-group parent 37 0 37 17 20

#> 2 extra-group parent 109 43 66 17 53

#> 3 extra-group parent 117 47 70 53 20

#> 4 social parent 191 116 75 17 70

best.hot.dam<-topmatch(x=combinations, ranking="hot.dam")

best.hot.dam[1:3,1:13]

#> year brood offspring rank dam sire dam.type

#> 1 2018 BBW_7279 A59401-iOar 1 A58110-BBW A58794-uWny social parent

#> 2 2018 BBW_7279 A59401-iOar 2 A58110-BBW A58192-NBwr social parent

#> 3 2018 BBW_7279 A59401-iOar 3 A58110-BBW A58331-GNgn social parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam hot.sire

#> 1 social parent 191 116 75 17 70

#> 2 extra-group parent 197 90 107 17 99

#> 3 extra-group parent 212 89 123 17 115

best.hot.dam<-topmatch(x=combinations, ranking=c("hot.dam","hiphop"), unique="dam")

best.hot.dam[1:4,1:13]

#> year brood offspring rank dam sire dam.type

#> 1 2018 BBW_7279 A59401-iOar 1 A58110-BBW A59058-zMyr social parent

#> 2 2018 BBW_7279 A59401-iOar 1 A58110-BBW A58794-uWny social parent

#> 3 2018 BBW_7279 A59401-iOar 2 A59012-zOogo A59058-zMyr extra-group parent

#> 4 2018 BBW_7279 A59401-iOar 3 A58258-RNgn A59058-zMyr extra-group parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam hot.sire

#> 1 extra-group parent 37 0 37 17 20

#> 2 social parent 191 116 75 17 70

#> 3 extra-group parent 117 47 70 53 20

#> 4 extra-group parent 144 59 85 72 20

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

8 of 16 31/08/2023, 1:49 pm

knowledge of the parentage of one parent. In most species prior knowledge will relate to the social mother, as
the fact that she is lactating, laid or incubated the eggs may provide such information (assuming e.g. egg
dumping does not occur).

Now we can see that only the female that was classified as social parent is considered as dam, while all males
are considered as potential sire. The conditioning on one parent will facilitate the assignment of the parentage of
the other parent, unless the unconditioned parent is incorrect (see later on how to verify this assumption). For
some specific species (e.g. with sex role reversal) one may instead want to condition on the social father instead.

Finally, it is possible to increase the number of combinations being ranked, by changing the value of the top
parameter (the default is top=3, which shows the top 3 combinations plus the social parents). For example:

Recommendations for the two different type of parentage analysis
cases

Previously we identified two types of cases in which paternity analysis can be conducted. Next we provide
recommendations on how to proceed in such cases:

1. Parentage assignment when one genetic parent is known: single parent analysis

The classical procedure is to first verify the assumption that the mother is known (using the HOT.dam criteria),
and then condition on the social mother to determine the most plausible sire, which we can do with either the
HOTHIPHOP.parents or HIPHOP criteria. Which of these two ranking score is most useful may depend on the
amount of genotyping error and rates of hetero- and homo-zygosity in the population. The choice is thus largely
an empirical question and it is useful to consider both scores (for more discussion see Cockburn et al.).

Thus we first compare the dams with the lowest HOT.dam scores to verify whether there were any cases in
which the social mother has more mismatches than expected due to genotyping error.

best<-topmatch(x=combinations, ranking="hothiphop.parents", condition="mother")

best[1:4,1:13]

#> year brood offspring rank dam sire dam.type

#> 1 2018 BBW_7279 A59401-iOar 1 A58110-BBW A59058-zMyr social parent

#> 2 2018 BBW_7279 A59401-iOar 2 A58110-BBW A59372-sOb social parent

#> 3 2018 BBW_7279 A59401-iOar 3 A58110-BBW A59201-cNbwb social parent

#> 4 2018 BBW_7279 A59401-iOar 38 A58110-BBW A58794-uWny social parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam

#> 1 extra-group parent 37 0 37 17

#> 2 extra-group parent 109 43 66 17

#> 3 within-group subordinate 122 70 52 17

#> 4 social parent 191 116 75 17

#> hot.sire

#> 1 20

#> 2 53

#> 3 41

#> 4 70

best<-topmatch(x=combinations, ranking="hothiphop.parents", top=5)

best[1:6,1:7]

#> year brood offspring rank dam sire dam.type

#> 1 2018 BBW_7279 A59401-iOar 1 A58110-BBW A59058-zMyr social parent

#> 2 2018 BBW_7279 A59401-iOar 2 A58110-BBW A59372-sOb social parent

#> 3 2018 BBW_7279 A59401-iOar 3 A59012-zOogo A59058-zMyr extra-group parent

#> 4 2018 BBW_7279 A59401-iOar 4 A58110-BBW A59201-cNbwb social parent

#> 5 2018 BBW_7279 A59401-iOar 5 A58258-RNgn A59058-zMyr extra-group parent

#> 6 2018 BBW_7279 A59401-iOar 55 A58110-BBW A58794-uWny social parent

best.dams<-topmatch(x=combinations, ranking=c("hot.dam","hiphop"), unique="dam")

best.dams[1:8,1:13]

#> year brood offspring rank dam sire dam.type

#> 1 2018 BBW_7279 A59401-iOar 1 A58110-BBW A59058-zMyr social parent

#> 2 2018 BBW_7279 A59401-iOar 1 A58110-BBW A58794-uWny social parent

#> 3 2018 BBW_7279 A59401-iOar 2 A59012-zOogo A59058-zMyr extra-group parent

#> 4 2018 BBW_7279 A59401-iOar 3 A58258-RNgn A59058-zMyr extra-group parent

#> 5 2018 BBW_7279 A59402-iMow 1 A58110-BBW A59058-zMyr social parent

#> 6 2018 BBW_7279 A59402-iMow 1 A58110-BBW A58794-uWny social parent

#> 7 2018 BBW_7279 A59402-iMow 2 A59012-zOogo A59058-zMyr extra-group parent

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

9 of 16 31/08/2023, 1:49 pm

We see that in this cohort there were no cases where the social mother was not the first ranked dam (i.e. with
lowest hot.dam score).

We can also see that these first ranked dams, which we already confirmed were the social mothers, had lower
HOT.dam scores than the second ranked dams, but we note that there is one case in which the 2nd ranked dam
has a HOT.dam score of 29 mismatches, which is within the range of HOT.dam scores of social mothers. In such
situations, which typically involves close relatives of the social mother, the HOTHIPHOP.parents or HIPHOP
score provides additional information to distinguish the true dam, but only if the true sire is sampled.

#> 8 2018 BBW_7279 A59402-iMow 3 A58258-RNgn A59058-zMyr extra-group parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam hot.sire

#> 1 extra-group parent 37 0 37 17 20

#> 2 social parent 191 116 75 17 70

#> 3 extra-group parent 117 47 70 53 20

#> 4 extra-group parent 144 59 85 72 20

#> 5 extra-group parent 33 1 32 18 14

#> 6 social parent 201 133 68 18 63

#> 7 extra-group parent 122 53 69 61 14

#> 8 extra-group parent 124 52 72 65 14

which(best.dams$rank==1 & best.dams$dam.type!="social parent")

#> integer(0)

best.triad<-best.dams[which(best.dams$rank==1),]
best.triad<-best.triad[!duplicated(best.triad[c("offspring","dam")]),] #we remove the duplicates,

because if the dam with the lowest hot.dam score is the social mother she can be listed twice:
once with the social father and one with the sire that gives the lowest HIPHOP score

plot(best.triad$hot.dam,best.dams$hot.dam[which(best.dams$rank==2)], xlim=c(0,100), ylim=c(0,100),
xlab="Hot.dam score 1st ranked dams (here the social mothers)", ylab="Hot.dam score 2nd ranked
dams", main="149 offspring of 2018 cohort")

abline(0,1)

best.dams[which(best.dams$offspring=="A59419-iNgn"),1:13]

#> year brood offspring rank dam sire dam.type

#> 17 2018 rgMM_7278 A59419-iNgn 1 982682-rgMM A59187-lNyn social parent

#> 18 2018 rgMM_7278 A59419-iNgn 1 982682-rgMM A59204-cGyn social parent

#> 19 2018 rgMM_7278 A59419-iNgn 2 A30173-ngNA A59187-lNyn extra-group parent

#> 20 2018 rgMM_7278 A59419-iNgn 3 A30171-ynWA A59204-cGyn extra-group parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam hot.sire

#> 17 extra-group parent 42 0 42 20 22

#> 18 social parent 177 96 81 20 71

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

10 of 16 31/08/2023, 1:49 pm

This output shows that although the 2nd ranked dam A30173-ngNA had a HOT.dam score close to that from the
social mother 982682-rgMM (29 vs. 20), from the high HIPHOP score (20) it is clear she was not the genetic
mother, but that the social mother was indeed the genetic mother (as she had 0 HIPHOP mismatches, which
also indicates the true sire was sampled, as the HIPHOP score is calculated on a triad). Please note that first line
of above ouput shows the social mother with the sire with whom she has the lowest HIPHOP score (in this case
an extra-group sire), while the second line shows the social mother with the social father, which resulted in a
many HIPHOP mismatches (96)

A more visual way of determining whether the social mother is also the genetic mother can be done by
combining the above two steps in one plot. This approach is best illustrated on all cohorts. Below we provide the
code to do this on all cohorts, but users can only run the 2018 cohort if this takes too long (if so, start at line with
plot-function).

#> 19 extra-group parent 68 20 48 29 22

#> 20 social parent 205 85 120 67 71

first run the hothiphop on all cohorts

comb.18<-hothiphop(ind=subset(individuals,individuals$year==2018), gen=genotypes)

comb.17<-hothiphop(ind=subset(individuals,individuals$year==2017), gen=genotypes)

comb.16<-hothiphop(ind=subset(individuals,individuals$year==2016), gen=genotypes)

comb.15<-hothiphop(ind=subset(individuals,individuals$year==2015), gen=genotypes)

comb.14<-hothiphop(ind=subset(individuals,individuals$year==2014), gen=genotypes)

then run topmatch function on all cohorts

best.18<-topmatch(x=comb.18, ranking=c("hot.dam","hiphop"), unique="dam")

best.17<-topmatch(x=comb.17, ranking=c("hot.dam","hiphop"), unique="dam")

best.16<-topmatch(x=comb.16, ranking=c("hot.dam","hiphop"), unique="dam")

best.15<-topmatch(x=comb.15, ranking=c("hot.dam","hiphop"), unique="dam")

best.14<-topmatch(x=comb.14, ranking=c("hot.dam","hiphop"), unique="dam")

#combine results

combinations.all<-do.call("rbind", list(comb.18, comb.17, comb.16,comb.15, comb.14))

best.dams<-do.call("rbind", list(best.18, best.17, best.16,best.15, best.14))
#remove the cases where the social mother was the first ranked dam, as then she is listed twice with

rank 1

best.triad<-best.dams[which(best.dams$rank==1),]

best.triad<-best.triad[!duplicated(best.triad[c("offspring","dam")]),]

plot the data
plot(best.triad$hot.dam ,best.triad$hiphop, col = "red", xlab="HOT.dam", ylab="HIPHOP", xlim=c(0,100),

ylim=c(0,120))
points(best.dams$hot.dam[which(best.dams$rank==2 & best.dams$dam.type!="social

parent")],best.dams$hiphop[which(best.dams$rank==2 & best.dams$dam.type!="social parent")],
col = "blue")

points(best.dams$hot.dam[which(best.dams$rank==1 & best.dams$dam.type!="social
parent")],best.dams$hiphop[which(best.dams$rank==1 & best.dams$dam.type!="social parent")],
col = "orange", pch = 19)

points(best.dams$hot.dam[which(best.dams$rank==2 & best.dams$dam.type=="social
parent")],best.dams$hiphop[which(best.dams$rank==2 & best.dams$dam.type=="social parent")],
col = "green", pch = 19)

legend("bottomright",c("1st ranked social mother", "1st ranked not social mother", "2nd ranked social
mother", "2nd ranked not social mother"), fill = c("red", "orange", "green", "blue"))

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

11 of 16 31/08/2023, 1:49 pm

Here we plotted the HOT.dam and HIPHOP score of the first and second ranked dam (ranked according to
HOT.dam score, with the best matching sire according to the HIPHOP score) against their HIPHOP score. We
also use different colors depending on whether they are the social mother or not. We see that that first ranked
social mothers typically have both low HOT.dam and HIPHOP scores, while the occasional second ranked
female with low HOT.dam scores (<38 mismatches, within the range of social mothers) always had >16 HIPHOP
mismatches. Furthermore, we can also see that there are ~25 1st ranked social mothers with low HOT.dam
scores but high HIPHOP scores, which we will discuss in the next section are situations where the sire was not
sampled. Finally, even in the rare case when the social mother is not the first ranked dam on the HOT score
(green dots; 5 out of 1153 offspring), she is still clearly identifiable as the genetic mother due to the low HIPHOP
score (and non-social mothers that are ranked 1st on HOT.dam score always have high HIPHOP scores).

Above figure emphasizes that the HOT test in itself is thus insufficient to distinguish parentage among closely
related individuals (as there were ~55 blue 2nd ranked triads of non-social mothers with HOT.dam scores similar
to social mothers), but the HIPHOP (and HOTHIPHOP.parents) score is capable of doing so.

Once it is confirmed that the assumption that the social mother is always the dam is highly plausible, then we can
condition on the mother and rank the sires, using either HIPHOP or HOTHIPHOP.parents scores.

best.parents.hiphop<-topmatch(x=combinations, condition="mother", ranking="hothiphop.parents")

plot(best.parents.hiphop$hiphop[which(best.parents.hiphop$rank==1)],best.parents.hiphop$hothiphop.parents[which(best.parents.hiphop
col = "red", xlab="HIPHOP", ylab="HOTHIPHOP.parents", main="149 offspring of 2018 cohort")

points(best.parents.hiphop$hiphop[which(best.parents.hiphop$rank==2)],best.parents.hiphop$hothiphop.parents[which(best.parents.hiphop
col = "blue")

legend("topleft",c("1st ranked", "2nd ranked"), fill = c("red", "blue"))

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

12 of 16 31/08/2023, 1:49 pm

We can see that in many cases the best ranked triad has 0 or 1 mismatches for the HIPHOP test score,
suggesting that the true sire is identified in this triad. In this case both the HIPHOP and HOTHIPHOP.parents
score distinguish well between the true sires (1st ranked sires) and others (2nd ranked sires). We note that in the
2018 data under consideration, there were five outliers with high mismatch rates (the five red dots in the blue
cloud).

These five cases are from two broods. Three chicks from sNab_7237 had HIPHOP mismatches ranging from 66
to 85. The nest was close to the edge of the study area, and we believe it was sired by a foreign (unsampled)
male. The second brood (fBab_7322) of two chicks also had high mismatches (97 & 119); Cockburn et
al. discuss this case in detail. The nest was close to the edge of the study area but the social father was
unsampled (see 0 in column social.father.sampled), so in this case we cannot ascribe paternity, and also cannot
say whether the chicks were within-pair or not.

2. Parentage assignment when no genetic parents are known: parent pair analysis

To illustrate the procedure for parent pair assignment (i.e. none of the genetic parents are known from contextual
information), we again use the superb fairy wren dataset, but will now assume that we have no a priori
information about the genetic mother and will focus on both maternity and paternity assignment. The superb fairy
wren dataset only consist of offspring for which the true dam was sampled, which is unrealistic for many other
study systems. To illustrate how to deal with situations of less complete sampling (also for the males), we
removed 20% of the social mothers and 20% of the males from the individuals dataset.

best.parents.hiphop[which(best.parents.hiphop$rank==1 & best.parents.hiphop$hiphop>20),c(1:13,22,23)]

#> year brood offspring rank dam sire dam.type

#> 9 2018 fBab_7322 A59439-iMwr 1 A58908-fBab A58909-fMrn social parent

#> 13 2018 fBab_7322 A59440-iOar 1 A58908-fBab A58484-sOnr social parent

#> 21 2018 sNab_7237 A59620-hGwn 1 A59357-sNab A59045-zGab social parent

#> 25 2018 sNab_7237 A59621-hYy 1 A59357-sNab A59362-sBy social parent

#> 29 2018 sNab_7237 A59622-hBgr 1 A59357-sNab A59041-zGgw social parent

#> sire.type hothiphop.parents hiphop hot.parents hot.dam hot.sire

#> 9 extra-group parent 163 97 66 16 59

#> 13 extra-group parent 170 119 51 14 48

#> 21 extra-group parent 181 85 96 27 82

#> 25 extra-group parent 157 71 86 29 69

#> 29 extra-group parent 176 66 110 35 93

#> social.mother.sampled social.father.sampled

#> 9 1 0

#> 13 1 0

#> 21 1 1

#> 25 1 1

#> 29 1 1

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

13 of 16 31/08/2023, 1:49 pm

When both social parents are unknown, the aims is to assign both maternity and paternity. The first step is to
determine whether we get a clearly separated bi-modal distribution of HOTHIPHOP.parents or HIPHOP scores
between the first ranked and higher ranked parents. Ideally this is done on a large dataset, so on all cohorts
available (to skip the long run time, one could instead subset the individuals.rem dataframe below to the year
2018).

As case 2 concerns situations where the social parents are unknown, we have no information a priori whether
the 1st ranked individuals are indeed the true dam-sire combinations, or whether due to genotyping error some
of the true combinations ended up as 2nd or higher ranked. However from both histograms it is clear there is a
bi-modal distribution, and in such situations we can make plausible assumptions that if only first ranked
individuals are in the left peak that these are likely only true parents. Specifically, we see that there is a red peak
at the left with low <12 HIPHOP (or <64 HOTHIPHOP.parents in left histogram) mismatch scores, which likely
reflect the true dam-sire triads with mismatches due to genotyping error and mutations. In addition we have a
blue peak with higher scores that are likely to reflect incorrect combinations, as these combinations have (much)
higher mismatch scores (due to incompatible genotypes as well as genotyping error and mutations).

There are quite some red bars (1st ranked triads) within the peak of blue bars (2nd ranked triads). Based on
above rationale it follows that these are incorrect 1st ranked combinations that may reflect cases where the true
sire (and/or dam) was not sampled (in fact most of these are the offspring for which we removed the social
mothers and sires at the start of this section). For these combinations we could look at the HOT.dam and
HOT.sire scores to determine whether the sire or dam was likely to be unsampled (or both).

ff<-which(individuals$type=="adult female")
individuals.rem<-individuals[-ff[seq(5,length(ff),5)],] #this removes every fifth female in the

individuals dataframe

mm<-which(individuals.rem$type=="adult male")
individuals.rem<-individuals.rem[-mm[seq(5,length(mm),5)],] #this removes every fifth male in the

individuals dataframe

combinations.rem<-hothiphop(ind=individuals.rem, gen=genotypes)

best.hhhh<-topmatch(x=combinations.rem, ranking="hothiphop.parents")

h1 <- hist(best.hhhh[which(best.hhhh$rank==1), "hothiphop.parents"], breaks = 100)

h2 <- hist(best.hhhh[which(best.hhhh$rank==2), "hothiphop.parents"], breaks = 50)

plot(h2, col = "blue", xlim = c(0, 200), xlab="HOTHIPHOP.parents", main=NULL)

plot(h1, col = "red", xlim = c(0, 200), add = T)

legend("topright",c("1st ranked", "2nd ranked"), fill = c("red", "blue"))

plot(best.hhhh[which(best.hhhh$rank==1 & best.hhhh$hiphop<12),"hot.dam"]
,best.hhhh[which(best.hhhh$rank==1 & best.hhhh$hiphop<12),"hot.sire"], col ="orange" ,
xlab="HOT.dam", ylab="HOT.sire", xlim=c(0,100), ylim=c(0,100), pch = 19, main="1st ranked
triads (on HIPHOP) 2018 cohort")

points(best.hhhh[which(best.hhhh$rank==1 & best.hhhh$hiphop>=12),"hot.dam"]
,best.hhhh[which(best.hhhh$rank==1 & best.hhhh$hiphop>=12),"hot.sire"], col ="purple", pch =
19)

abline(v=37, h=35, col="green")

legend("topright",c("HIPHOP < 12", "HIPHOP >= 12"), fill = c("orange", "purple"))

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

14 of 16 31/08/2023, 1:49 pm

We have plotted the first ranked triads (according to HIPHOP score) for all 1153 offspring 2014-2018 cohorts.
Based on above histograms, triads with HIPHOP scores lower than 12 (orange) are presumed to be the true
parents, while triads with higher HIPHOP scores are assumed to be cases where at least one of the true parents
was not sampled. From this figure we can see that true triads never have HOT.dam and HOT.sire scores higher
than 37 and 35 respectively (see green lines in figure above), and we can use this information to identify which
parent was unsampled.

1. The purple triads in the top left quadrant represents cases where the sire was unsampled.
2. The purple triads in the bottom right quadrant represents cases where the dam was unsampled.
3. The purple triads in the top right quadrant represents cases where we both the dam and sire were

unsampled.
4. We can also see that there are four purple triads in the bottom left quadrant that have HOT.dam and

HOT.sire scores that are similar to true dams and sires. This highlights again that HOT.dam and HOT.sire
scores by themselves are not conclusive for assigning parentage in this dataset, because their HIPHOP
scores were too high for them to be the true parents. These triads likely represent cases where either the
true sire and/or true dam was unsampled, but instead a close relative was ranked first. Thus a high
HOT.dam above the green threshold is evidence that the dam was unsampled, but a HOT.dam value
below the threshold is not conclusive evidence that the true dam was sampled (same rationale holds for
using HOT.sire to assign sires). This implies that for purple triads in the right two quadrants we can be
certain the true dam was not sampled, but we cannot be certain that the sire in that triad was the true sire,
as there is a small chance a closely related unsampled male was the true sire instead. Similarly, for purple
triads in the top two quadrants we can be certain the true sire was not sampled, but we cannot be certain
that the dam in that triad was the true sire, as there is a small chance a closely related unsampled female
was the true dam. In situations where there would be no purple triads in the bottom left quadrant, we
would be able to assign the parent even if one of the parents was unsampled.

We end by noting that the parent-pair method we described above could also be used for the single parent
assignment case for this dataset, but that in contrast to the single parent assignment approach described earlier
it does not require one to look at HOT.dam scores:

1. We look at the histogram of HIPHOP (or HOTHIPHOP.parents) scores of 1st and 2nd ranked triads and
determine if there are two peaks separated by a gap, which can be used to identify a threshold.

2. We identify all triads which have HIPHOP scores less than this threshold, for these triads we have
identified the true sires and dams.

3. We check whether all dams in these triads identified in step 2 are social mothers.
4. If so, this means that all triads above the HIPHOP threshold in which the social mother was sampled must

be cases where the sire was unsampled, while if the social mother was unsampled, we can not assign the
sire with complete certainty in this dataset.

In conclusion

The aim of the HIPHOP package/ approach is to exclude potential parents by determining if they have more
mismatches than can be expected due to genotyping errors and mutation, and thereby identify (i) the true genetic
parents and (ii) detect situations where one (or both) of the true parents is not sampled, in which case we (iii)
want to identify which parent can still be correctly assigned. In this vignette we showed that both single parent
and parent pair assignment based on HIPHOP or HOTHIPHOP.parents can assign genetic parents correctly,

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

15 of 16 31/08/2023, 1:49 pm

while this is not possible using only the HOT test. We can also identify offspring for which parent(s) were
unsampled, but in this dataset we cannot with complete certainty identify a parent correctly if the other parent
was not sampled (though if the sire (or dam) has a HOT.sire (HOT.dam) score in the range of what is typical for
true sires (dams), we still have high certainty, but we just cannot exclude that a closely related unsampled parent
may exist that was the true sire (or dam)). Assigning parents if one of the parents is not sampled, may be easier
to do (i) in species that do not live among close relatives (superb fairy wrens have strong spatial genetic
clustering due to their extreme male philopatry), (ii) if more loci are available for scoring, or (iii) if genotyping error
is reduced, as the latter two may separate the HOT scores of true sires (or dams) from closely related sires (or
dams) more clearly.

Troubleshooting

Asking questions, suggesting improvements and reporting bugs

Please post all queries to the R-hiphop google group at https://groups.google.com/d/forum/r-hiphop

Dealing with very large datasets

The hothiphop function checks all possible offspring-potential.dam-potential.sire combinations. If the number of
possible dams, sires and/or offspring is very large the number of combinations will become very high, which may
lead to memory problems in R. In such cases a workaround is to limit the number of offspring in the individuals
dataset to a smaller number (but still include all potential dams and sires). For example, one could include the
first 10 offspring in the individuals file, run the hothiphop function, next run the hothiphop function for the next 10
offspring, and append the results to the results from the previous set (parallelization is another option).

intro_hiphop https://cran.r-project.org/web/packages/hiphop/vignettes/intro_hiphop.html

16 of 16 31/08/2023, 1:49 pm

