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ABSTRACT
Seminal gas discharge experiments of the late 19th and early 20th centuries laid the foundations of modern physics, and the influence of this
“golden era” continues to resonate well into the 21st century through modern technologies, medical applications, and fundamental scientific
investigations. Key to this continuing success story has been the kinetic equation formulated by Ludwig Boltzmann in 1872, which provides
the theoretical foundations necessary for analyzing such highly non-equilibrium situations. However, as discussed here, the full potential of
Boltzmann’s equation has been realized only in the past 50 years or so, with modern computing power and analytical techniques facilitating
accurate solutions for various types of charged particles (ions, electrons, positrons, and muons) in gases. Our example of thermalization of
electrons in xenon gas highlights the need for such accurate methods—the traditional Lorentz approximation is shown to be hopelessly inad-
equate. We then discuss the emerging role of Boltzmann’s equation in determining cross sections by inverting measured swarm experiment
transport coefficient data using machine learning with artificial neural networks.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0153973

I. INTRODUCTION
In an article entitled “Weitere Studien uber das Wärmegle-

ichgewicht unter Gasmolekülen” (“Further investigations on the
thermal equilibrium of gas molecules”) published in 1872,1 Lud-
wig Boltzmann (memorial pictured in Fig. 1) proposed a kinetic
equation describing the evolution of a non-equilibrium classical gas
through a distribution function f (r, c, t) in phase space (r, c), where
r is the position and c is the velocity, which has had a profound
influence on many branches of physics.

The centenary of Boltzmann’s seminal work was celebrated by a
comprehensive collection of articles of both scientific and biograph-
ical nature.2 The present article, which has been written to mark the
sesquicentenary of Boltzmann’s equation, focuses on developments
since then, that is, in the past 50 years or so.

Boltzmann’s kinetic equation may be written in the generic
form as

( ∂
∂t
+ c ⋅ ∇ + F

m
⋅ ∂
∂c
) f (r, c, t) = (∂ f

∂t
)

col
, (1)

where F is the external force acting on a species of mass m. The col-
lision term (∂ f

∂t )col
involves an integral operator and is generally

nonlinear in f . In its original form, it represents the rate of change
of f due to classical, binary, elastic collisions between the constituent
species. Boltzmann’s equation has been extended to include inelas-
tic collisions by Wang Chang et al.3 and has been generalized to
quantum, relativistic, and condensed matter systems (see Ref. 4 for a
review). Put simply, the task is to solve (1) and then find the quanti-
ties of physical interest, such as particle density, average energy, and
currents, by taking appropriate velocity “moments” (integrals over c)
of f (r, c, t). However, the nature of (∂ f

∂t )col
makes this a challenging

proposition.
The emergence of Boltzmann’s equation preceded a period of

intense study of electrical discharges in gases at the end of the
nineteenth and early twentieth centuries, sometimes referred to
as the “golden era” of physics. It led, for example, to the discov-
ery of the electron by J. J. Thomson and to the confirmation by
Franck and Hertz of the Bohr model of quantization of the atom.
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FIG. 1. Memorial headstone of Ludwig Boltzmann in the Vienna Cemetery (Source:
M. Hildebrandt).

However, it took some time for the potential of Boltzmann’s equa-
tion for this field to be recognized, first by Pidduck5 (1917) in the
context of light particles (electrons) and the Lorentz approxima-
tion. Since then, Boltzmann’s equation has come to be acknowl-
edged as the first choice for analyzing charged particles in gases
and condensed matter. Examples of applications range from fun-
damental studies of electron and ion swarms in gases to inves-
tigations of the plasma–surface interactions that underpin the
microelectronics industry to positron emission tomography. All
such investigations required an accurate solution of Boltzmann’s
equation, which has been made possible over the past 50 years
or so through great improvements in computing power. This
era forms the focus of the present article. The discussion is,
however, limited to the case of dilute charged particles in a
background medium at equilibrium, where the collision term is
linear in f .

This article represents the key developments that have been
made since the centenary publication2 (Sec. II) and the emerging
methods that promise to define the coming era (Sec. III). We begin
this work in Sec. II A by outlining a unified approach to the solu-
tion of linear Boltzmann’s equation, valid for charged particles of
all masses (electrons, positrons, muons, and ions), which avoids the
limitations of the traditional approach of using a two-term repre-
sentation of f . We then consider a situation where the solution
procedure is greatly simplified in Sec. II B, the thermalization of
light particles in a gas subject to an electric field. Here, the conver-
gence of the representation of f in Legendre polynomials, during
both the thermalization process and the final steady state, is com-
pared, with surprising results. The next 50 years will be marked
by new computational techniques and architectures and further
increase computing power, and in Sec. III, we outline one impor-
tant application from the emerging field of machine learning, i.e.,
the use of artificial neural networks to determine scattering cross
sections from swarm measurements. The fast and robust solution
procedures for Boltzmann’s equation described in Sec. II B are lever-
aged here for the generation of the artificial neural network training
dataset.

II. KEY DEVELOPMENTS SINCE THE CENTENARY
In this article, we consider dilute swarms of charged parti-

cles (electrons, positrons, ions, and muons) of mass m and number
density n in a neutral gas of number density n0 in equilibrium at
temperature T0. In this case, n≪ n0, collisions between charged
particles are negligible, and the collision operator of (1) is approx-
imately linear in the charged particle velocity distribution function
f (c), i.e.,

(∂ f
∂t
)

col
≈ −J( f , f0)

= −∫ [ f (c) f0(c0) − f (c′) f0(c′0)]gσ(g, χ)dĝ ′d3c0, (2)

where Boltzmann’s original collision operator describes elastic colli-
sions between structure-less charged particles and neutrals governed
by a scattering cross section σ(g, χ). Here, g = c − c0 is the rela-
tive velocity, χ is the scattering angle in the center-of-mass frame,
primes denote post-collision quantities, and dĝ ′ is the element of
solid angle into which scattering takes place. In this description,
the neutrals have a Maxwellian distribution function f0(c0) at tem-
perature T0. The neutral number density n0 can be scaled out of
Eqs. (1) and (2) such that the solution and transport properties solely
depend on “reduced” variables, e.g., the reduced electric field E/n0 or
reduced time n0t. It is emphasized that this expression for J( f , f0)
applies to all charged particles, regardless of the magnitude of their
mass m relative to the neutral mass m0. However, for light particles,
such as electrons and positrons, where m/m0 ≪ 1, it has long been
known that J( f , f0) may be approximated in the differential form
to first order in m/m0 (see, e.g., the work of Chapman and Cowl-
ing6 for a derivation), which, along with an assumption of quasi-
isotropy in velocity space (Lorentz approximation) based on small
elastic collisional energy transfer ∼2 m/m0, greatly simplifies the
solution of (1).

Equation (2) can be readily generalized to allow for excita-
tion of neutral internal energy levels through inelastic processes
via the collision operator of Wang Chang et al.3 This too can be
approximated, if desired, for light particles, e.g., contributions from
inelastic collisions are usually approximated to zero order in m/m0
to yield the finite-difference form of Frost and Phelps.7,8 However,
since energy transfer is not necessarily small in inelastic collisions,
any assumption of quasi-isotropy in velocity space and the use of
the Lorentz approximation are subject to doubt. It is emphasized
that the collision operators of Boltzmann and Wang Chang et al.
subsume these traditional, approximate forms, and thus, a general
solution of (1), avoiding the Lorentz approximation, offers a way of
treating charged particles of all masses, avoiding the approximations
mentioned above.

The calculation of the phase-space distribution function
f (r, c, t) from (1) can be broadly separated into direct solutions,9–11

path-integral methods,12–15 and expansion methods,16–21 each with
their own advantages and disadvantages. Naturally, there also exist
many approaches that combine techniques from these general cate-
gories. An important alternate method to calculate f (r, c, t) without
solving (1) can be done with particle simulation methods (see Ref. 22
for reviews). These are outside the scope of this work, beyond noting
that the deterministic solution of Boltzmann’s equation and parti-
cle simulations are equivalent.23,24 Expansion methods encompass a
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particularly wide set of approaches, from the implicit use via orthog-
onal polynomial quadrature25–27 to using complex, physics- and
symmetry-informed functions.28–30 Many of the numerical methods
have been replicated from the field of fluid dynamics since analo-
gies with kinetic theory are clear. For example, the use of spectral
techniques in velocity space developed in fluid mechanics31 has been
applied and extended to Boltzmann’s equation.32–34

Ion kinetic theory was discussed in a seminal paper by Wan-
nier35 (1953), but the modern era might be said to have really
begun with the series of papers commencing in 1975 by Viehland,
Mason, and collaborators, who developed a solution method of
Boltzmann’s equation for dilute ions in gases in electric fields of
arbitrary strength.36–38 In 1979, Lin et al.16 developed a general, but
somewhat different solution technique, based on the tensor formal-
ism of Kumar.39–40 Although the procedure is applicable to charged
particles of any mass, initial investigations focused on the validity
of the Lorentz approximation for electrons. The resulting expan-
sion coefficients have a clear physical meaning, e.g., drift velocities
and diffusion coefficients. This theory was later generalized by Rob-
son and Ness who formally decomposed Boltzmann’s equations into
spherical harmonics.17,41 Subsequently, the method has been gen-
eralized to deal with electron, positron, muon, and ion swarms in
gases and condensed matter,17,41–49 in both electric and magnetic
fields.

Much of the foundational multi-term studies focused on elec-
tron transport. Key multi-term theories for charged particle swarms
under the action of an electric field were developed by Pitchford
and Phelps,50,51 McMahon,52 Segur et al.,53,54 and Yachi et al.,55

only the last two of which are valid for non-conservative collisions.
Ness42,56 proposed a general formalism for solving Boltzmann’s
equation for charged particles in electric and magnetic fields, which
was further developed by White et al.45,57 Multi-term solutions of
the Boltzmann equation for the temporal relaxation of electrons
in the presence of both electric and magnetic fields, for a range of
experimental configurations, were subsequently developed indepen-
dently at Greifswald58–61 and at JCU.44,45,49,62 Despite the existence
of these rigorous multi-term methods, the use of the traditional
two-term expansion method in swarm and plasma models is still
prevalent.63

A. Toward a unified approach to solving Boltzmann’s
equation for charged particles of arbitrary mass

Expansion methods for the solution of Boltzmann’s equation
are well-established in the literature not only for charged particles in
gases but also for neutron transport (see, e.g., the work of Williams,64

particularly Chap. 11). We start from the decomposition

f (r, c, t) =
lmax

∑
l=0

l

∑
m=−l

f (l)m (r, c, t)Y[l]m (ĉ), (3)

where Y[l]m are spherical harmonics, combined with a speed-space
decomposition,

f (l)m (r, c, t) =
νmax

∑
ν=0

F(νl)
m (r, t)Φνl(c), (4)

where Φνl(c) are speed-space basis functions, e.g., products of a
Maxwellian weighting function and Sonine polynomials of degree

ν, but this is by no means the only possibility. Alternatively, the
coefficients f (l)m (r, c, t) can be represented at a discrete number
of points in speed space, though this can be argued to be closely
related27,64 to the decomposition (4). The coefficients F(νl)

m (r, t) can
be related to physically measurable quantities, such as density and
mean energy.16 The parameters νmax and lmax are integer parameters,
which are progressively increased until some convergence criterion
is met. The choice of the basis function is particularly important
for achieving convergence of (4). For certain potentials, conver-
gence issues are well known.15 Finally, the space-time dependence
of the coefficients F(νl)

m (r, t) can be further represented in terms of
a density gradient expansion to make contact with the traditional
hydrodynamic transport coefficients (see, e.g., Refs. 4, 17, and 41 for
details).

By choosing the well-known Burnett functions28–30 for the basis
functions in (3) and (4), substitution into (1) leads to the following
infinite set of partial differential equations for F(νl)

m (r, t):4

∑
ν′=ν,ν±1

∑
l′=l,l±1

l′

∑
m′=l′
{δν′ l′m′ ;νlm

∂

∂t
+ 1

α
(νlm∣D1)∣ν′l′m′) ⋅ ∇

− α (νlm∣D2)∣ν′l′m′) ⋅
F
m
+ (νlm∣J∣ν′l′m′)}nF(ν

′ l′)
m′ (r, t) = 0,

(5)

where the parameter α is related to a Maxwellian weight function
and n is the number density. The quantities (νlm∣Di)∣ν′l′m′) (i
= 1, 2) are “matrix elements” of the operators c and ∂

∂c , respec-
tively, in the Burnett function basis, and similarly, (νlm∣J∣ν′l′m′)
= J l

νν′δmm′ represents the matrix elements of the collision operator.
These matrix elements are then calculated using the Talmi transfor-
mation,39 and full details can be found in the work of Lin et al.16 One
important alternative that deserves mention is the work of Kono-
valov et al.,21 which avoided the mass-ratio expansion all-together by
directly employing Lebedev quadratures over velocity and scattering
angles.

Regardless of the choice of basis functions or the solution
method for decompositions (3) and (4), the collision operator can be
represented by an expansion in terms of m/(m +m0).40 For present
purposes, it suffices to know that

J l
νν′ =

pmax

∑
p=0
( m

m +m0
)

p
J l

νν′(p), (6)

where pmax is an integer parameter, which can be increased until
some desired accuracy criterion is met. The number of terms
required in (6) increases with the mass ratio, as illustrated below.

We summarize the solution procedure for (3)–(6):

1. Choose a basis function set Φνl(c) and truncation limits, i.e.,
(lmax, νmax, and pmax) for the summations involving l, ν, and p,
respectively.

2. Calculate the set of matrix elements for the collision operator,
e.g., J l

νν′(p).
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3. Substitution of Eqs. (3) and (4) into (1) converts Boltzmann’s
equation into a set of coupled equations for expansion coeffi-
cients F(νl)

m (r, t). When using the Burnett function represen-
tation, the set of coupled equations is given by (5). These are
then solved for F(νl)

m (r, t).
4. Increase the truncation limits, either sequentially or collec-

tively, and re-solve for F(νl)
m (r, t).

5. Calculate the change in the desired transport properties, e.g.,
the drift velocity (ν = 0, l = 1), due to the increase in truncation
limits.

6. Increment the truncation limits until some desired accuracy
criterion is satisfied, typically 0.1%–1% to be consistent with
experimental errors.

The values for the truncation limits are not known a priori. The
required value of lmax indicates the deviation of the velocity distri-
bution from isotropy, while the required value of νmax indicates the
deviation of the speed distribution from the weighting function.

To demonstrate the influence of the mass ratio on trans-
port properties and calculation convergence, we consider a simple
hard-sphere elastic scattering model,

σm = 6 Å2, m0 = 4 amu,
T0 = 293 K, E/n0 = 1 Td, (7)

for ions of different masses. For an electric field only, the veloc-
ity distribution function has rotational symmetry about the field
direction. In Fig. 2, the velocity distribution function, in the plane
containing the electric field, is presented for a selection of mass
ratios m/m0, from 10−4 to 10. For m/m0 = 10, the convergence
is extremely slow and the contours shown in Fig. 2(f), although
qualitatively correct and sufficient for illustrative purposes, are not
accurate.43 As the mass ratio increases, it is clear that the contour
dimensions decrease, while also being shifted and elongated in the
direction of the field. This is because, as the mass ratio increases,
the fractional energy transfer per collision also increases, and thus,
the energy available in the preferential forward scattering direction
is enhanced, while the energy available in the transverse direction is
decreased.

As demonstrated in Fig. 2, increasing the mass ratio leads to
increased anisotropy in the velocity distribution, with a shift and
elongation of the velocity contours in the direction of the field, and
it is to be expected that a greater number of terms in the l- and
p-summations are required for convergence. Table I shows the con-
vergence of the mean energy, ϵ, drift velocity, W, and transverse and
longitudinal diffusion coefficients, n0DT and n0DL, respectively, with
lmax and pmax, for two significantly different mass ratios.

For very light particles (e.g., m/m0 = 10−4, in Table I), it is clear
that the two-term approximation lmax = 1 is sufficient to obtain accu-
rate transport coefficients within 0.1%, for the simple hard-sphere
model. Note that it is well known that the inclusion of inelas-
tic processes can lead to a failure of the two-term approximation,
requiring larger lmax,41,63,65 and in Sec. II B, we demonstrate that
remarkably large lmax are required during electron thermalization.
Truncation at pmax = 1 is sufficient to obtain accuracy within 0.1%, as
expected, which permits a class of fast Boltzmann’s equation solvers
for electrons in gases (see Sec. II B).

FIG. 2. Contour plots of the velocity distribution functions for various mass ratios
for ions in a hard-sphere model gas (7). Contour heights are in units of eV−3/2.
The energy scale is indicated by the dashed concentric circular plots of increasing
radii referring, respectively, to 0.01, 0.05, and 0.1 eV. (a) m/m0 = 10−4; (b) m/m0
= 10−3; (c) m/m0 = 10−2; (d) m/m0 = 10−1; (e) m/m0 = 100; and (f) m/m0
= 101 (source: Adapted from White et al., Comput. Phys. Commun. 142, 349
(2001). Copyright 2001 Elsevier.

For heavy particles of the same mass as the background parti-
cles (m/m0 = 1), the two-term approximation is not sufficient, and
lmax = 3 is required to achieve the same accuracy. This is due to the
increased anisotropy in the velocity distribution function, as shown
in Fig. 2. Note that, even when the velocity distribution itself has
slow convergence in lmax, the transport coefficients corresponding
to low-order moments of the velocity distribution (e.g., ϵ and W)
can still be well represented. Higher-order moments can be much
more sensitive to inaccuracies in the velocity distribution function.
For m/m0 = 1, additional terms are also necessary in the collision
operator summation, and a pmax = 4 truncation is required, along
with sufficiently high lmax (lmax = 5 is employed in Table I for the
pmax convergence), to achieve the 0.1% accuracy. Note that, while a
large pmax implies a large lmax for convergence, the converse is, in
general, not true.

The situation for muons, whose mass is some 200+ times
greater than an electron, is predictably intermediate between elec-
trons and ions. For muons in deuterium gas, it was found that it
is necessary to take pmax = 2 and lmax = 3 or 4 in order to calculate
transport properties within an accuracy of 0.1%.66,67
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TABLE I. Influence of the mass ratio (m/m0) on convergence in the spherical harmonic expansion (lmax) and in the collision
matrix expansion (pmax) and on selected transport properties for ions in a hard-sphere model gas (7). The results of Monte
Carlo (MC) simulationa are also given.

m/m0 lmax ϵ (eV) W 102 m s−1 n0DT 1022 m−1 s−1 n0DL 1022 m−1 s−1

10–4

1 0.733 26 56.189 313.31 158.22
2 0.733 24 56.187 313.20 158.27
3 0.733 24 56.187 313.20 158.27

MC 0.733 56.2 313 158

100

1 0.042 84 3.403 9.77 7.74
2 0.042 71 3.366 8.92 8.86
3 0.042 71 3.368 8.94 8.84
4 0.042 71 3.368 8.94 8.84

MC 0.042 7 3.37 8.94 8.84

pmax

10–4

1 0.733 18 56.188 313.20 158.25
2 0.733 24 56.187 313.20 158.27
3 0.733 24 56.187 313.20 158.27

MC 0.733 56.2 313 158

100

2 0.042 84 3.382 8.98 8.84
3 0.042 70 3.366 8.93 8.87
4 0.042 71 3.368 8.94 8.83
5 0.042 70 3.365 8.95 8.83
6 0.042 71 3.368 8.94 8.84
7 0.042 71 3.368 8.94 8.84

MC 0.042 7 3.37 8.94 8.84
aReference 139.

B. Electron thermalization in uniform electric
fields: The necessity of multi-term solutions

When considering light particles, such as electrons or
positrons, in a neutral background gas, only the first-order mass-
ratio contribution to expansion (6) is required, and thus, the colli-
sion operators greatly simplify.6–8 Furthermore, under certain sym-
metry conditions, such as the plane-parallel geometry considered
in this section, the spherical harmonics in (3) reduce to Legendre
polynomials such that

f (c) =
lmax

∑
l=0

fl(c)Pl(μ), (8)

where μ = F̂ ⋅ ĉ and Pl is the lth Legendre polynomial.
A class of fast and robust Boltzmann’s equation solvers have

been developed that represent the speed-space (or equivalently,
the energy-space) using a finite-difference discretization58,61,68–72

instead of as an expansion in orthogonal bases functions, thereby
avoiding the sensitivity of weight function parameter choices
and convergence issues for non-Maxwellian distributions. These
Boltzmann’s equation solvers have been utilized for a wide range of
applications involving electrons59,60,72–76 and positrons77–79 and are
also leveraged in Sec. III. The two-term code BOLSIG+69 deserves
special mention, as it is widely used by the plasma community
for calculating rate coefficients, etc., often in connection with the
extensive cross-sectional database LXCat,80,81 in situations where a
two-term approximation is assumed to be suitable.

A striking breakdown of the two-term approximation can be
seen during the thermalization of electrons subject to uniform elec-
tric fields. Typically, the time taken for an electron swarm in a
weakly ionized medium to high-pressure plasma (0.01–5 bars) to
reach a state of equilibrium with an applied electric field is very short
(<10−9 s). However, the development of extremely fast pulsed
nanosecond discharge plasmas82 has called into question the validity
of using steady-state Boltzmann’s equation solver for deducing the
velocity distribution function and transport properties. In the work
of Boyle et al.,74 time-dependent Boltzmann’s equation was numer-
ically solved for electrons in xenon gas subject to an instantaneously
applied electric field to follow the energy distribution function
(and associated transport coefficients) as it evolves from an initial
room-temperature Maxwellian distribution toward the steady-state.
Although the focus was to calculate thermalization times, one of the
key findings was that a surprisingly large number of Legendre poly-
nomial terms (lmax) was required for the transport coefficients to
converge during the thermalization, in contrast to the low number
required in the steady-state. The evolution of the energy distribu-
tion function and transport coefficients for electrons in xenon with
an initial thermal Maxwellian distribution (T0 = 293 K) subject to
an E = 1000 Td electric field is explored in Figs. 3 and 4 for various
choices of lmax.

In Fig. 3, the (normalized) f0 distribution is shown for a selec-
tion of times for lmax = 1, 15, and 31, respectively. The reduced
times are given in units of ps amagat, where 1 amagat ≈ 44.615
mol m−3. The 2-term (lmax = 1) f0 distribution displays extreme
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FIG. 3. Energy distribution function component, ϵ1/2 f0(ϵ), for electrons in xenon
gas subject to a reduced electric field E/n0 = 1000 Td at select reduced times
n0t = 0.05, 0.1, 0.2, and 0.3 ps amagat. The initial distribution is a thermal
Maxwellian at T0 = 293 K. Simulations have been performed using (a) 2-term
(lmax = 1), (b) 16-term (lmax = 15), and (c) 32-term (lmax = 31) approximations.

oscillations and non-physical behavior for all of these times. As
discussed in Sec. II A, the failure of the 2-term approximation
indicates a significantly anisotropic velocity distribution. The 16-
term (lmax = 15) f0 distribution behaves more reasonably; however,
oscillations and non-physical behavior are still exhibited for low
energies at times above n0t = 0.2 ps amagats. Including 32-terms
(lmax = 31) in the Legendre expansion is sufficient to suppress the
oscillatory behavior and to clearly demonstrate the expected increase
in mean energy and energy-spread of the electron swarm with
time.

In Fig. 4(a), the drift velocity (W) and reduced ionization rate
(αion/n0) are shown for lmax = 1, 3, 7, and 15. The wild oscilla-
tions observed in the f0 distributions at low lmax are reflected in
swarm transport coefficients. However, only eight terms (lmax = 7)
are required to obtain converged values within ≈1% for both the drift
velocity and the reduced ionization rate, further demonstrating that
some non-converged behavior in velocity distributions is not neces-
sarily reflected by low-order transport coefficients. Using 16 terms
gives results <0.1% of the converged values. It is clear in Fig. 4(a)
that each of the profiles converges to the same values at large times,
indicating that a two-term approximation is sufficient to represent
the steady-state.

FIG. 4. Temporal evolution of (a) the drift velocity W (left) and reduced ionization
rate Rion/n0 (right) for 2-, 4-, 8-, and 16-term approximations and (b) the relative
weighting βl , given in (9), of the Legendre components in the 64-term approxima-
tion. The conditions are the same as those in Fig. 3, with the (color-coded) vertical
lines indicating the same reduced times as the energy distribution function profiles.

Finally, the contour plot in Fig. 4(b) illustrates the importance
of each Legendre component in lmax = 63 term simulation, where

βl = ∫
∞

0 dϵ ϵ1/2 fl(ϵ)
∫ ∞0 dϵ ϵ1/2 f0(ϵ)

(9)

represents the relative weight of each Legendre term fl with respect
to f0. Between n0t ≈ 0.05 − 0.5 ps amagat, 10–30 terms are very
important, and even fl values as high as l = 63 have similar weight
to f0. This indicates that the velocity distribution is extremely
anisotropic at these times, demonstrating “beam-like” behavior, i.e.,
a velocity distribution in which all of the particles are essentially
traveling in the forward direction. At large times, the energy distri-
bution once again becomes mostly isotropic, i.e., where only a few
low-order l terms are important, justifying a low-term expansion
when investigating steady-state conditions. The times correspond-
ing to the f0 distributions in Fig. 3 are indicated by the color-coded
vertical lines. At n0t = 0.05 and 0.1 ps amagat, ∼10–20 Legendre
terms are important, which is consistent with the problematic behav-
ior demonstrated by the f0 profiles for lmax = 1 and well-behaved
profiles for lmax = 15 and 31. At n0t = 0.2 and 0.3 ps amagat, the
βl parameter peaks at a one-index of ∼15–20, which is reflected in
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the breakdown of the corresponding f0 profiles for lmax = 15. The
peak in the βl parameter also approximately coincides with the initial
departure of low-lmax drift velocity calculations away from the con-
verged values, exemplified by the lmax = 1 case, as shown in Fig. 4(a).
Note that the errors induced in the transport coefficients propa-
gate in time significantly beyond the time at which the (converged)
energy distribution is once again quasi-isotropic.

We have also performed a similar investigation for helium
and observed more extreme behavior with even higher lmax (>128)
required for convergence throughout the thermalization.83 At some
point, it may be more practical to discretize the velocity space
directly, rather than use the Legendre polynomial expansion repre-
sentation. Given the widespread use of the two-term approximation
in plasma modeling, it is important to take note of these situations
where higher lmax are critical.63,65,84

III. THE INVERSE SWARM PROBLEM: OBTAINING
CROSS SECTIONS USING ARTIFICIAL NEURAL
NETWORKS

Fundamental to plasma physics applications is the availabil-
ity of accurate and complete cross-sectional information.85 Direct
information about individual scattering processes on the micro-
scopic level can be provided by the experiment (e.g., crossed beam86)
and theory (e.g., convergent close-coupling87–90). Conversely, swarm
experiments65,91–93 provide macroscopic information about ensem-
ble behavior and thereby provide an indirect assessment of the
accuracy and self-consistency of the full cross-sectional set.85 When
the knowledge about the individual scattering cross sections is lack-
ing, one may attempt to “unfold” swarm measurement data to assess
the cross section. Indeed, the pioneering attempts at deriving elec-
tron scattering cross sections from swarm transport coefficients were
made in the 1920s,94–96 decades prior to the development of modern-
day beam-scattering experiments. By either assuming a simplified
form of the velocity distribution or numerically solving Boltzmann’s
equation,7,97–100 the transport coefficients can be calculated, com-
pared to swarm measurements, and then iteratively adjusted. Due
to the degeneracy often inherent in the inverse swarm problem, this
process inevitably requires some amount of intuition, particularly
when available data are limited.

On account of the tedious nature of this trial and error
approach to swarm analysis, a number of automated methods have
been proposed.101–107 In 1991, Morgan105 successfully used an artifi-
cial neural network to determine low-energy, electron-xenon scat-
tering cross sections from drift velocity and characteristic energy
measurements. Since Morgan’s pioneering investigation, the field of
machine learning has exploded in popularity, and combined with
increasing computing capabilities, much larger and more powerful
models have been developed.108–113

Pulsed-Townsend experiments are one of the most impor-
tant modern techniques for extracting drift, diffusion, and ioniza-
tion rate information from electron swarms.91,114–117 In a pulsed-
Townsend experiment, a sharp pulse of electrons are subject to
a uniform electric field directed between two plane-parallel elec-
trodes. If the experimental setup is such that any spatial gra-
dients are weak (the hydrodynamic regime), then the solutions
described in Sec. II B based on Legendre polynomials are appli-
cable, allowing for the use of fast Boltzmann’s equation solvers.

The development of fast Boltzmann’s equation solvers for elec-
trons, coupled with the continual increase in computing power over
time, has allowed an entire class of problems involving repeated
solutions or iterations to be feasible, e.g., using artificial neural
networks.118–120

In this section, we consider the application of artificial neural
networks to determining scattering cross sections from pulsed-
Townsend-derived transport coefficients, leveraging fast Boltzmann
equation solvers in the generation of the necessary training data.

A. Artificial neural network architecture
Artificial neural networks are highly parameterized mathemat-

ical functions capable of universal function approximation.121,122 By
carefully adjusting the parameters (i.e., training), an artificial neural
network is capable of nonlinearly mapping between arbitrary input
and output vector spaces. In the work of Stokes et al.,76 an artificial
neural network for the solution of the inverse swarm problem that
learns from the mapping of transport coefficients to cross sections
was proposed using a similar architecture to that employed by Mor-
gan.105 The process is schematically depicted in Fig. 5. The input is a
vector of swarm measurements, e.g., bulk drift velocities W and first
Townsend ionization coefficients αT/n0, along with an energy ϵ, and
the output is a vector representing each of the desired cross sections
evaluated at the input energy, i.e., σ(ϵ). This architecture allows the
neural network to learn a suitable cross-sectional discretization spe-
cific to the training data, rather than one that is imposed. Outputting
the cross sections at only a single specified energy means that there is
only one output neuron per cross section, resulting in a network that
is simpler to train, faster to evaluate, and less likely to overspecialize
to the training data.

Optimization of the neural network parameters requires exten-
sive training data and a cost function that evaluates the performance
of the neural network on the training data. To address the former,
a new data augmentation procedure was developed76 to generate
new cross sections by combining the existing cross sections available
from the LXCat project.80,81 Given a pair of LXCat cross sections,
σ1(ϵ) and σ2(ϵ), of a given type (e.g., electron attachment and

FIG. 5. Symbolic representation of the fully connected artificial neural network used
for the regression of selected cross sections, e.g., σ1 and σ2 (yellow) as a function
of energy ϵ (red), given relevant electron swarm data, e.g., drift velocity W and
reduced effective first Townsend ionization coefficient αT/n0, measured for a range
of reduced electric fields E/n0 (blue). The network layers (gray) are trained using
cross-sectional data chosen carefully, as described in Sec. III A, so as to constrain
the derived cross sections to be within the vicinity of their known uncertainties.
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ionization), a new physically plausible cross section of the same type
is generated via

σ(ϵ) = σ1−r
1 (ϵ + ϵ1 − ϵ1−r

1 ϵr
2)σr

2(ϵ + ϵ2 − ϵ1−r
1 ϵr

2), (10)

where ϵ1 and ϵ2 are the threshold energies for σ1(ϵ) and σ2(ϵ),
respectively, and r ∈ [0, 1] is the mixing ratio. This process can also
be performed when σ1(ϵ) is a specific cross section of interest, e.g., a
measured neutral dissociation cross section, to generate variations
within its experimental uncertainty. It is here that having a fast
Boltzmann equation solver is particularly important, i.e., to calcu-
late the transport coefficients corresponding to each cross section
set over a range of reduced electric field strengths. By restricting
the range of the training data, the neural network outputs can be
implicitly constrained. Finally, to train the artificial neural network,
we minimize the mean absolute error,

1
N

N

∑
i=1
∥yi − σ(xi)∥1, (11)

where the index i ranges over the entire set of N training examples
(xi, yi) and σ(xi) is the associated network cross-sectional pre-
diction. The mean absolute error metric has been chosen for its
robustness to outliers in the training data.

B. Inverse swarm problem for electrons in THF
Considerable global effort has gone into determining complete

cross-sectional sets for electron transport in biologically important
molecules, including water123 and simple analogs for sugars and
DNA bases.124–127 Tetrahydrofuran (THF)124,128 is one such ana-
log, a sugar linking phosphate groups in the backbone of DNA.
Repeated refinements to the THF cross-sectional set have been made
in recent years, both with traditional methods based on expert
intuition75,129,130 and automatically using an artificial neural net-
work.131 The sparsity of experimental and theoretical data for the
neutral dissociation process results in a high degree of degener-
acy in the inverse swarm problem. We highlight the suggestion of
Casey et al.130 to include two neutral dissociation cross sections,
rather than just one as had been done previously. The lower-energy
dissociation facilitates agreement with drift velocity measurements,
while the higher-energy dissociation is necessary for agreement with
Townsend coefficient measurements.75,130

To demonstrate the ability of the neural network
procedure76,131 to automatically predict cross sections from
swarm data, as well as the importance of the dissociation process
to modeling electrons in THF, we have used an artificial neural
network under the assumption of (i) a single neutral dissocia-
tion process and (ii) two separate neutral dissociation processes.
Specifically, the set of cross sections to be determined include
the quasielastic (elastic + rotational) momentum-transfer cross
section, σm, the electron attachment cross section, σatt, the low-
threshold neutral dissociation cross section, σnd1, the high-threshold
neutral dissociation cross section, σnd2, and the ionization cross
section, σion. The remaining excitation cross sections (e.g., for
vibrational excitation and discrete electronic-state excitation) are
not included here, as they are considered to be better known, and

are instead sourced from the cross-sectional set constructed by
de Urquijo et al.75

For σnd1 and σatt, where guidelines from experiment or theory
are absent, the procedure given in (10) is applied directly without
explicit constraint, resulting in very large confidence bands. The
wide confidence interval band for σnd1 is shown in Fig. 6(a). For
the remaining cross sections to be predicted, the training data are
explicitly constrained to lie within the vicinity of the known exper-
imental error bars so as to encourage the neural network to also
restrict its output in the same way (see the work of Stokes et al.76

for details). The confidence interval band for the σnd2 training data
is also shown in Fig. 6(a) and is a much tighter interval than that for
σnd1 due to the existence of data from the work of Fuss et al.,126,132

which was determined by subtracting all the known integral cross
sections for all open channels from the measured grand total cross
section.

Once the separate training cross sections are generated as
described above, each is used to replace their counterpart in the orig-
inal set of de Urquijo et al.75 in order to obtain a proposed full dataset
of cross sections for training. The set of predicted THF cross section,
including one and two neutral dissociation processes, respectively, is
shown in Fig. 6(b). The inclusion of σnd1 shifts σnd2 to higher ener-
gies (the threshold energy increases from 5.7 to 7.4 eV) and also
increases the peak cross-sectional value by ∼20%. σatt is also sig-
nificantly enhanced in the 1–10 eV range, which agrees better with
the literature.133,134 The profiles for σm and σion do not differ sig-
nificantly between including 1 or 2 neutral dissociation processes.
The predicted cross sections when assuming two neutral dissocia-
tions are necessarily very similar to those in Ref. 131. The minor
differences are due to the use of a four-term (rather than two-term)
solution of Boltzmann’s equation, as well as the inherently random
nature of minimizing the cost function (11) via stochastic gradient
descent.

The drift velocity W and reduced effective Townsend coeffi-
cients αT/n0 calculated with these cross-sectional sets are shown in
Figs. 7(a) and 7(b), respectively, along with pulsed-Townsend exper-
imental measurements,75 for electron transport in both pure THF
and admixtures of THF in argon. The admixtures of THF range from
1% to 50%, and the argon cross-sectional set from the Biagi v7.1
database135 has been used for argon calculations. Using admixtures
with a well-characterized gas, such as argon, allows us to reduce the
potential non-uniqueness in the derived cross sections.

Generally, the inclusion of two neutral dissociation processes
improves the agreement of the calculated transport coefficient with
measurements, doing so most substantially for the drift veloc-
ity, while only slightly improving the agreement for the reduced
Townsend coefficient, which appears to be less sensitive to the
presence of a low-threshold dissociation process. These results
are consistent with previous findings.130,131 The discrepancies that
remain between calculation and measurement suggest that there
is room for further improvements to the accuracy and com-
pleteness of the electron-THF cross-sectional set. Indeed, Fig. 6
shows a “bump” in σnd1 in the range of 2–20 eV that may
be indicative of an intermediate-threshold process that is cur-
rently absent from the set, manifesting here only implicitly as
a feature in the low-threshold neutral dissociation cross section.
Future data-driven investigations could shed further light on this
possibility.
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FIG. 6. Cross sections for electron-THF scattering predicted by the artificial neu-
ral network from swarm data, assuming two neutral dissociation processes (solid
curves) or one neutral dissociation process (dashed curves). (a) Neutral dissoci-
ation processes. The shaded intervals indicate the 99% confidence intervals of
the training data. (b) The full set of predicted cross sections. The remaining cross
sections are considered known and are taken from the work of de Urquijo et al.75

IV. SUMMARY
Boltzmann’s kinetic equation has proved indispensable in

describing a wide range of non-equilibrium phenomena during its
150 years of existence, none more important than in the gas dis-
charge experiments of the type, which characterized the “golden
era” of physics, around the late nineteenth and early twentieth cen-
turies, which ushered in the modern era of physics, and whose
applications to fundamental science, medicine, and technology con-
tinue to resonate well into the twenty-first century. This article
focuses on developments over the past 50 years or so in the solu-
tion of Boltzmann’s equation for dilute charged particles (electrons,
positrons, muons, and ions) in a gas in equilibrium, where the
advent of modern computing power has obviated the need and,
indeed, the desirability for making traditional approximations and

FIG. 7. Simulated transport coefficients for THF-Ar mixtures assuming two neutral
dissociation processes (solid curves) or one neutral dissociation process (dashed
curves) of (a) flux drift velocity W and (b) reduced effective first Townsend ioniza-
tion coefficient αT/n0 for the neural network refined cross-sectional sets shown in
Fig. 6.

assumptions based on particle mass. We give examples to illus-
trate this point, using a unified technique for solving Boltzmann’s
equation, valid for electrons, muons, and ions. The limitations of
the traditional “two-term” spherical harmonic approximation of the
velocity distribution function have long been well-documented for
electrons making inelastic collisions with the neutral gas, but in the
example presented here, where electrons thermalize in a neutral gas
by means of elastic collisions only, it is shown that a very high-order
multi-term expansion, up to order 30 or more, is required to attain
the desired accuracy. We then turn our attention to a state-of-the-
art application of artificial neural networks, i.e., the determination
of electron-neutral scattering cross sections by unfolding swarm
experiments. These universal function approximators offer an alter-
native to the tedious trial-and-error approach and can leverage the
wealth of existing experimental and theoretical data for training.
For the specific case of electrons interacting with tetrahydrofuran,
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we have demonstrated how assumptions about the low-energy neu-
tral dissociation cross sections, which lack experimental data, affect
the outputs predicted by the artificial neural network. Furthermore,
noting the development of physics-informed neural networks,136,137

the field of machine learning promises a new era of Boltzmann’s
equation analyses.

Finally, while we naturally wish to highlight the successes of
Boltzmann’s equation on the occasion of its 150th anniversary,
this is not done without some reservation. For example, there is a
long-standing controversy surrounding the (e, H2) system: swarm
experimental data cannot be fitted with Boltzmann’s equation using
the vibrational cross section determined from beam experiments. As
explained by Robson et al.,138 one possibility is that a new kinetic
equation may be necessary to describe molecular systems, possibly
one that avoids key assumptions inherent in Boltzmann’s equation,
such as instantaneous, local collisions. At the time of writing, this
remains an open question.
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