

Provas de Coerência Transacional

para Smart Contracts em Blockhains

David Alexandre Aparício Bugalho

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

(2º ciclo de estudos)

Orientador: Professor Simão Patrício Melo de Sousa

10 de Outubro, 2022

ii

Acknowledgments

The writing of this document stamps the end of the Master’s Degree in Computer Science at

Universidade da Beira Interior (UBI), academic year of 2021/2022, and the end of one’s own

academic pilgrimage. This section is intended to reflect upon the author’s academic journey

up until this point — how and why it started, its process, crossing the finish line, and plans

for the future — but also to make the readers more familiar with the author as well. Unlike

what is going to be seen throughout the document, this section will be written in first person,

and a more personal speech.

NOTE: This sectionwent on for longer than expected. Along theway, the speech

became more meaningful than for the reader’s exposition only, it also became

a freeing, raw narrative of one’s memory recounting its academic experiences

up until yet another life turning point, greatly helping in soothing themind in a

timeofneed. If the readermakes it to the end, apologies are inplace for overtak-

ing their time in something that is not entirely related to the dissertation itself,

in turn, it is alsowith sincere gratitude and appreciation that one rewards them

for reading.

Firstly, I would like to formally introduce myself. I am David Alexandre Aparício Bugalho,

birthed in 1999, being 23 years old at the time of writing. I come from a modest home in

a modest city, where I lived the most significant part of my lifespan with my parents, older

brother, and a couple of house cats. I consider myself to have had a pretty typical childhood,

despite the fair share of issues that I think any family might have had. Nonetheless, I am

eternally grateful to my parents for allowing me the chance to get where I am right now —

they are both hard workers that over commit their time and health so that I can have a shot

at succeeding more in life than they have ever had. Such a parental gesture, that sometimes

goes unnoticed and unrecognized by me, their son, is truly despicable and inconsiderable.

For this, I can only hope they forgive me, as I am confident that such gesture will only ever

be truly recognized if someday I, too, were to become one.

My parents’ household was one of the first to have a computer in the neighborhood, though, I

have no recollection of my parents ever really making use of it, maybe they had it as a gift for

my older brother. That being said, my earliest memories are from me watching my brother

on the computer, mainly playing computer games. Sitting in the side chair beside the one

occupied by my brother, my gaze was constantly attentive to the old CRT monitor, in awe,

of what my brother was doing. Naturally, as time went on, I slowly became accustomed to

being the one sitting on the chair across the computer.

I leisurely spentmy time fromgrade to high school without toomuch hassle. I was an average

student, exerting just enough effort to feel comfortable withmy grades—not being pressured

by my parents for scoring low, nor scoring so high as not to stand out and having to uphold a

higher standard. During this time, I partook in a variety of hobbies and activities, but nothing

truly stuck. Likewise, I made friends with some colleagues, to whom I can call friends to this

iii

day, however, once I got home I would always go right into my comfort in either the console

or the computer. The immersion provided by these medium were unrivaled by any other

activity, yet, looking back, there was true passion in it.

I was simply sailing through time, not challenging the current, just doing what felt natural

or acting accordingly to the feedback or lack of thereof from my elders, or whomever I had

respect for. Never truly felt passionate or had a dream, not for pursuing a career in some field

nor pouring my heart and soul into one specific hobby. I just knew sailing as I was would get

me throughmy education and activities that I had committed to, and that, at some point, the

current would cease, requiringme to decide upon a path, to hop on some other current of my

choice.

When the time came to do so, I, very expectedly, felt lost, unwilling to choose a path. These

were times of great stress, as watching my peers setting their courses made it feel like I was

being left behind. It made sense, since I was not interested in pursuing any particular career,

however, even if I were not to have a will or peculiar interest of my own, I could borrow them

from those closer to me. My older brother had at the time just graduated from the military

academy, so enlisting there felt just as natural — hadn’t needed to decide onmy own, just had

to followmy brother’s footsteps. With the help of both my father and brother, an application

for the entrance exam was sent.

I did not pass the entrance exam, returning to square one. More stressful times were ahead,

but somehow managed to be pressured into taking action. At that point, the second round

of college applications had opened, so now I sought help from my family. They were always

attentive of me spending lengthy times at the computer, so their first suggestion was ”En-

genharia Informática” (Computer Science). At first, I was very reluctant —most of my time

in the computer was dedicated to entertainment only. If this were my path, then the com-

puter would likely become a source for discontentment, possibly ruining my enjoyment of

ever being in front of it. Despite the thought, I did not exert my opinion, simply accepting

the opinion, now a duty, that my family had given me. Several applications for these courses

were sent, the very first being in the city of Covilhã.

The application got accepted. Soon after, I ventured withmymother into this unknown land,

at least to us. For the first time in my life, something bizarre was truly happening — am I

really going to leave the bird’s nest? Living on my own? — I started to become entertaining

with the thought of living alone, sort of starting life anew. For the first time in what felt like

ever, an event was truly exhilarating. I was about to start from life zero (although still have

parental financial support), an opportunity to possibly discover, rediscover, or even affirm

myself as someone else. In that same day, all the paperwork was sorted, only required to

find a suitable place to call home for the next years. After searching high and low, a great

place was found that, even 5 years later, is still considered home (but not for too long now). I

am grateful for this house’s landlord, which surprisingly provided the home with more than

the optimal living conditions, as well as the house colleagues, which made the place lively

(but not obnoxious). If the conditions/circumstances for the current place not as good, most

likely the dissertation would have not happened.

The first few weeks nervously exciting — being unrecognized by none, being welcomed by

iv

tradition, and in the process getting to know the academia community. I had the chance to

act, be, and do things that would otherwise be impossible had I not pursued this path. The

sense of freedom that was felt truly played a big part in discovering my own person. It made

sense, before coming to Covilhã, life truly felt like simply going through its motions, almost

mindlessly following the same routine, resulting in experiences from that time becoming one

big blend. That is why taking hold of my actions and decisions was so impactful — what to

do, what to eat, when to study, when to sleep, not feeling remorseful to do things out of order

— such responsibilities of life, that were once micromanaged by my parents, were now mine

to uphold, to figure out.

During the first year, I got to know several people, and got the chance to become closer friends

with some. Though I had friends during my school years, the type of camaraderie that was

obtained through college is an entire different experience. Perhaps it was the union through

shared hardship, perhaps it was the bonding experience through formermundane and trivial

activities that I hadn’t paid attention before, perhaps it was the simple fact that everyday I

wouldn’t come back to my hometown household. The more time I spent here, the more I

saw my life being given meaning. Every activity that I had thought mundane became most

joyful when with friends. For those whom I call close friends, each and every one of you has

filled me with meaning and strength to keep pursuing and finishing this academic journey.

Crossing pathswith you allmademe realize life wasmuchmore than I had previously known.

Once my academic duties are finished, I hope that, one day, we can live and remember the

moments and memories we so hold dear, toasting to our reunion.

By the start of the last undergraduate semester, the unknowingly looming threat of theCOVID-

19 pandemic started to approach. Academic life carried on for but a brief moment before the

pandemic instilled at large. I remember quoting this to a friend:

“I wish there was a way to know you’re in the good old days before you’ve actu-

ally left them.”

No one had any semblance of idea the impact the pandemic would have, and, at the same

time, class and friends were mentally preparing for the eventual parting at the end of the

semester. However, preparation time was blindly robbed. We hadn’t known that farewells

would come much sooner. Before the official lockdown, friends brushed off the occurrence

as a short-term farewell — “see you later”.

It was not short-term. As of mid-March of 2020, the life I had held so dear became but a

memory.

The lockdown prevented the camaraderie created over the years from being properly cele-

brated. The lockdown prevented students from properly saying their goodbyes before the

departure for their next step in life. Some janky laptop camera could not compare to prop-

erly conveying interpersonal emotion. For the sake of protecting those closest to us, however

tragic the situation might turn out, it left me with a gaping wound in the chest. It was too

cruel an end to the academic life I had cherished so much.

v

The most safe thing to do was going back to my hometown. Staying through more than a

weekend, I quickly remembered how mundane and lifeless of a life I had had before I came

to pursue somethingmy family had chosen inCovilhã. Online classes really demonstratedme

how important the social aspect of a learning environment is — sharing experience, knowl-

edge, worries, difficulties, reassurance — all contribute to a student’s wellbeing. Personally,

I had a hard time coping with everything, off camera, off classes, but I withstood.

I could not afford to give up, being so close to cross the finish line. Letting my peers down

would have only rubbed salt in the already open wound. Despite the cruel, unfortunate end-

ing, the academic year terminated with great success for the entire class. Strangely, a sense

of accomplishment was felt, combined with anxiety and stress — “Am I supposed to feel con-

fident about my abilities as a computer scientist?”. That was not the case, in fact, I had

convinced myself that, after the 3 years of academic preparation, I was not ready to accept a

job offering. Therefore, I did what any fresh undergraduate would do — keep progressing in

academic life — now trying to clear my uncertainties, attempting to prove myself that I am

competent by going up a notch in education. In the same year I graduated, I also applied

for the Master’s Degree in Computer Science at the city in which my life was put in motion,

Covilhã.

It is the start of the 2020/2021 academic year. As I come back and reach my home, after half

a year, profound sadness commences to well up inside me. I might have been in the same

place just 6months ago, however, it did not feel the same. The wound hadn’t fully mended,

any path that I had walked on before quickly became filled with echoes of the past. The kind

of joy and contentment felt during those first 3 years in the city are never coming back —

it finally sunk, the wound ached, those that I had formed close bonds with were no longer

present in my daily life. It was a hard reality to accept. I could in no way replicate the life I

had before, since I was in a city that I knew, not welcomed by tradition, and amidst a hybrid

regime of on-site and online classes. Academic life in Covilhã soon began to regress to a

mundane, lifeless school cycle.

However, not all was lost — even amidst what could be considered rough times, I had the

opportunity to became more acquainted and closer to other people. Though, maybe only as

an attempt to fill the gap left by the first wound. Regardless, the aforementioned year was

my most successful in terms of academic prowess. I confronted the subjects and challenges

from a different perspective and motivation, I successfully detached myself from bad habits

acquired in the past, becoming more savvy and independent, which in turn helped rebuild

newfound confidence in my own expertise, abilities, and knowledge.

Fast forwarding to the last year of the Master’s program, the year is entirely focused on pro-

ducing a dissertation. The first year went reasonably well, I felt accomplished in the grades

that I was given, self-doubt started to clear, and I became adjusted in setting good practices

when it came to the learning process, I felt ready to tackle a project to my liking. In past

semesters, one issue I had with projects was the fact that most of the time multi-juggling

projects was required. Personally, I had always preferred to laser-focus on the task I have

directly ahead, which in turn may very negatively affect things that are not of immediate im-

portance. However, with the dissertation in sight, I finally found an opportunity to pour both

vi

heart and soul into it, something I hadn’t set myself to do for any kind of prior project. Laser

focus could be exploited for an entire year to my advantage. I was excited to get started.

Professor SimãoMelo de Sousa has always been a stern, strict, but generous teacher. I failed,

however, to notice that until the later stages of my academic journey. Not taking full advan-

tage of his earliest classes will be something that I will always regret. The insight I could have

had thenwould have been pivotal in buildingmy self-confidence and overall knowledge. This

year, it was time to amend my regrets — despite not completely feeling up to the challenge, I

approached the professor that I admired, and sought out to make my dissertation under his

tutelage — not only to quell my regrets, but also because this would become my final test.

Working under the professor would require me to push myself beyond my present capabili-

ties. Even if at the start I feared not being up to the task, that sentiment would soon become

the stimuli for my growth. I want to extendmy gratitude to professor Simão for always being

so kind and understanding per my own issues and struggles. I am certain that I made the

correct choice in working under the professor, as it indeed stimulated my growth and made

me learn about myself and my habits. Not only that, but the professor has been keen and

active on introducing his students to future job opportunities, which is much appreciated by

newly graduates, including me. I will not forget the professor’s generosity, and hope one day

I can make him proud by my accomplishments in the professional world.

The topic for the dissertation was completely new to me. No class had ever introduced the

concepts of this area, so while I had my concerns, I also saw an opportunity to, once again,

start with a clean slate — devoting and testing the entire learning process that I had come

into contact within the past year — now with the confidence that this project could take my

full time budget. However, things would soon turn in an unexpected manner.

Although I could dedicate my all, to completely laser focus on my project regardless of time,

started a procrastination habit. At the beginning, I would dedicate my entire day into re-

searching this new topic. I quickly became burned out. Slowed down my pace and, at some

point, I started to take time for granted. This was one of the issues I have been tackling with,

even now, as I am writing this text. As time went on, I would go for days without ever mak-

ing any decent progress, since, after all, I could progress whenever I felt like it. There are

more variables contributing to my procrastination issue, but the main one has always been

my lack of self-discipline regarding managing time as a resource. I did not respect my time,

for the entirety of this work, progression has always been done in big spurts either focusing

for long periods of time, or wait until that time comes, or until I could not wait any longer

(precisely right now, as I still have one last section in the dissertation to complete). I thought

I could use my willpower to throttle my spurts, but all I learned is that I am weak against my

ownmental restraints, though, I also learned that when up caught between a rock and a hard

place, I am able to dedicate inhumane hours. Of course, this is unfeasible if being done for

days on end. When confronted with a real job, though, I am confident that circumstances

will be able to redirect this kind of inhumane dedication into a useful working schedule.

All in all, I plan on giving my all during the little time that I have left (compared to the time I

had over the year). I will finish this dissertation, and I will be someone that I can be proud of

for finishing despite the hardships faced. Maybe I find the act of procrastination enjoyable (I

vii

seriously wrote this section when I still have onemain section left), or I simply prefer to pour

significant work under pressure. Perhaps, pressure simply acts as a motivational catalyst

for writing. Nonetheless, I am ecstatic and looking forward to writing the last word of this

document, no matter how little time I have left.

As for plans for the future, the first thing should be to reset the strain onmymental and rest.

Mental health played a big role, in which I neglected, throughout my academic journey, be-

ing especially prevalent during this last year during the dissertation. As I am truly finishing

the document now, I feel like I successfully accomplished what I had sought out to do when

enrolling to the master’s program — cleared my own doubts, leveled up my expertise, and

acquired newfound confidence, while still being conscious of my own faculties and capabili-

ties — I feel ready and confident to provide and benefit others with my abilities, and I want

to so in the near future.

If the person reading reached this point, thank you. I pouredmy thoughts, feel-

ings, past grievances and present challenges and future thoughts directly onto

this section. It felt liberating to write this entire section without following any

sort of reference, moreover when the rest of the document has a different ap-

proach in language. That being said, I for last, extend my gratitude to the dear

reader — for taking the time to better know and understand the person behind

the paper.

viii

Abstract

Blockchain technology is an emergent topic based on decentralization and immutability, en-

abling mutually untrusting parties to fairly exchange assets without the need of a central au-

thority. Recently, the addition of blockchain programs, known as smart contracts, enabled

the technology to expandupon a variety of industry sectors, already known to traditional soft-

ware. Many organizations and corporates saw a growth opportunity, extending their busi-

nesses into this domain — now, though, with the blockchain twist. However, the inclusion

of computation exposed a weak link in the overall blockchain security, due to carrying not

only traditional software bugs, but also never before seen ones. That way, smart contracts,

especially valuable ones, became enticing for hackers to exploit, which resulted in a set of

tragedies where funds were stolen, among other consequences. Soon after, smart contract

security became a most valuable topic of research among blockchain platforms. The Tezos

blockchain is a relatively new platform whose stance values security by construct infrastruc-

ture, in consequence of the past incidents. Whilemany smart contract security solutionswere

devised over the years, these have not been properly adapted nor adopted for the average de-

veloper in the community. Due to various reasons, but for one, seamless integration with

the smart contract development processes is one of them. This dissertation approaches the

blockchain security problem through an indirect approach, providing the developer with bet-

ter accessibility and conditions for working on one of Tezos’s state-of-the-art security tools.

Although it is unorthodox, it is hoped for the solution to inspire and appeal other blockchain

communities by shedding some light in this unknown direction.

Keywords

blockchain, Tezos, smart contract, smart contract development, smart contract security, smart

contract verification, formal verification

ix

x

Resumo

A tecnologia blockchain é um tópico emergente baseado na descentralização e imutabilidade,

permitindo que entidades desconhecidas e não confiáveis consigam trocar bens e valores

digitais de forma justa sem necessitarem uma entidade central. Recentemente, a adição de

programas na blockchain, designados de smart contracts, permitiu que tal se expandisse

sobre uma variedade de sectores industriais já explorada por programas tradicionais. Con-

tudo, muitas empresas viram uma oportunidade de negócio bastante lucrativa, estendendo

o seu negócio para este ambiente, agora incutindo as regras da blockchain. Embora oportu-

nidades lucrativas tenham aparecido, problemas relativos aos programas tradicionais, bem

como outros novos ainda não descobertos, também. Os smart contracts revelaram-se como

um elo mais fraco para a segurança da blockchain e, tendo estes a capacidade de reter bas-

tante valor monetário, tornaram-se um alvo aliciante para hackers. Não muito depois, notí-

cias espalharam-se pela internet a anunciar crimes por entidades anónimas — roubo e con-

gelamento de fundos, entre outras consequências, na blockchain. Após o primeiro grande

incidente, a segurança na blockchain começou a ser um tópico bastante estudado por peri-

tos e investigadores das várias comunidades. A blockchain da Tezos é uma plataforma rel-

ativamente recente, com uma postura relativa à segurança bastante madura, resultado dos

incidentes passados. Enquanto várias soluções foram alcançadas para a segurança de smart

contracts, estas não seriam ainda bem incorporadas pela comunidade, ou pelo menos para

o engenheiro de contratos comum. Existem várias razões, porém, acessibilidade nos vários

aspetos das ferramentas de segurança é uma delas. O trabalho realizado por esta dissertação

passa por solucionar este problema, mais especificamente, solucionar o problema para uma

ferramenta de segurança de programas na blockchain da Tezos. Este tipo de solução não é

comum na literatura, contudo, espera-se que o trabalho realizado sirva de inspiração para

que as comunidades possa explorar esta vertente mais indireta de segurança na blockchain.

Palavras-chave

blockchain, Tezos, smart contract, smart contract development, smart contract security, smart

contract verification, formal verification

xi

xii

Resumo alargado

O universo da blockchain é uma tecnologia emergente, cujos conceitos principais são a de-

scentralização e imutabilidade. Em conjunto comoutras garantias, é um ambiente onde bens

podem ser comercializados entre utilizadores pseudoanónimos, sem a necessidade de uma

entidade central intervir diretamente. Recentemente, a computação Turing-complete pas-

sou a integrar estes ambientes, habilitando certas blockchains a desempenharem funções

outrora vistas em mercados já conhecidos pela engenharia tradicional, contudo, as soluções

para estes mercados seriam agora abordadas com recurso às regalias da blockchain. Porém,

deveria ser calculado que, ambas vantagens e desvantagens seriam integradas — sim, a pro-

gramação na blockchain revelou bastantes oportunidades novas para empresas e negócios,

mas também os perigos associados a estes programas. Assim, esta integração fez com ambas

blockchain e programas herdassem propriedades uma da outra, especialmente a imutabil-

idade. Smart contracts, a como se designam estes programas, revelaram-se um dos elos

mais fracos da blockchain e, com a possível quantidade de fundos que poderiam conter,

tornaram-se um alvo aliciante para agentes maliciosos se aproveitarem — tal resultou em

várias tragédias como furtos e congelamentos de valores, entre outras consequências. Desde

o primeiro grande incidente, investigadores e especialistas em segurança das várias comu-

nidades das blockchains, começaram a apostar de forma exigente emmétodos, técnicas e fer-

ramentas para elevarem a segurança nestes ambientes, com a esperança de que tais tragédias

não se repetissem. A blockchain da Tezos é relativamente recente, contudo, a sua postura

quanto à segurança revela-se matura, sendo a sua conceção fruto dos incidentes ocorridos,

daí, ela aposta numa infraestrutura e programas que sejam mais seguros por construção.

A segurança nos smart contracts é uma área a ser bastante investigada, contudo, ainda há

pouca tração das soluções encontradas serem adotadas e integrados com o processo de de-

senvolvimento de smart contracts, pelo menos para o engenheiro de contratos comum. Isto

é, existem algumas barreiras e inconveniências que fazem das soluções existentes difíceis de

trabalhar com, como corolário, existem otimizações a serem feitas neste aspeto. Tendo em

conta os pontos anteriores, o contributo desta dissertação vem na forma de otimizar a aces-

sibilidade de uma das ferramentas de segurança para programas na blockchain da Tezos.

A solução passa pelo desenvolver de uma extensão para um ambiente de desenvolvimento

usado pelo desenvolvedor comum, contribuindo para a visibilidade, compatibilidade e out-

ros benefícios para quem usufrua deste ambiente de desenvolvimento para implementar os

seus contratos. Este tipo de abordagem não é comum na literatura, por isso espera-se que as

várias comunidades das blockchains se possam inspirar neste método atípico para combater

os problemas supracitados nas suas plataformas.

xiii

xiv

Contents

Contents xv

List of Figures xvii

List of Tables xix

Listings xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Summary . 2

1.3 Objectives . 3

1.4 Document Outline . 4

2 Technical Background 5

2.1 The Blockchain . 5

2.2 The Smart Contract . 8

2.3 Tezos . 10

2.4 Conclusion . 11

3 Literature Review 13

3.1 Smart Contract Vulnerabilities . 13

3.2 Real World Exploits . 16

3.3 State-of-the-Art Security Tools . 17

3.3.1 Smart Contract Security Mechanisms 18

3.4 Discussion . 19

3.5 Conclusion . 20

4 Problem Statement andWork Plan 23

4.1 Problem Statement . 23

4.1.1 Problem . 23

4.1.2 Solution . 25

4.2 Implementation Roadmap . 27

4.3 Conclusion . 27

5 Implementation 29

5.1 Tools & Technologies Used . 29

5.1.1 Michelson . 29

5.1.2 LIGO . 31

5.1.3 Visual Studio Code API . 33

5.1.4 WhylSon . 34

5.2 Extension . 36

xv

5.2.1 Prelude . 36

5.2.2 Design . 37

5.2.3 Development Loop . 45

5.2.4 Features & Functionality . 46

5.2.5 Issues . 48

5.3 Conclusion . 49

6 Practicality Assessment 51

6.1 Intra-Michelson Value Check . 51

6.2 Deductive Verification . 53

6.3 Conclusion . 54

7 Final Remarks 55

7.1 Summary . 55

7.1.1 Remarks . 55

7.2 Future Work . 56

Bibliography 57

xvi

List of Figures

2.1 Generic block structure. 5

2.2 Blockchain architecture for smart contract enabled blockchain. 9

4.1 Verification loop for proposed solution. 26

5.1 A generic stack structure with elements and operations. 30

5.2 Stack Overflow 2022 survey statistics for “IDE” topic. 33

5.3 WhylSon usingwhy3-ide for a verification session of aMichelson Program. . 35

5.4 Design of godbolt online compiler andMarkdown extension, respectively. . . 38

5.5 Plausible LIGO project using proposed solution. 40

5.6 Simple example of LIGO-Michelson Dual-View. 41

5.7 Dual-View showing a compilation error. 42

5.8 Snippets available with the extension. 43

5.9 Condensed extension workflow through activity diagram. 47

xvii

xviii

List of Tables

3.1 State-of-the-art verification tools found for Ethereum. 21

3.2 State-of-the-art verification tools found for Tezos. 22

4.1 Task roadmap for implementation of the solution proposed. 28

xix

xx

Listings

5.1 Example of a simpleMichelson program. 30

5.2 Example of a simple LIGO program. 33

5.3 Example of aWhylSon generatedWhyML file. 35

5.4 Structure of an entry in contracts.json file . 40

5.5 WhylSon annotation snippet example. 44

5.6 WhylSon annotations in Michelson. 44

5.7 WhylSon annotation snippet for contract with pre and post conditions. 44

5.8 WhylSon annotations in Michelson with pre and post conditions. 44

6.1 UsingWhylSon annotations for simple value checks 51

6.2 UsingWhylSon annotations for deductive verification - factorial. 53

6.3 UsingWhylSon annotations for deductive verification - sum list. 53

xxi

xxii

Acronyms

API Application Programming Interface

CFG Control Flow Graph

DPoS Delegated Proof of Stake

DSL Domain-Specific Language

EVM Ethereum Virtual Machine

FRESCO Formal Verification of Tezos Smart Contracts

FSM Finite State Machine

IDE Integrated Development Environment

IO Input & Output

IL Intermediary language

JSON JavaScript Object Notation

LPoS Liquid Proof of Stake

PoC Proof of Capacity

PoS Proof of Stake

PoW Proof of Work

RELEASE Reliable and Secure Computation Group

SHA Secure Hash Algorithm

SMT Satisfiability Modulo Theories

SWC Smart Contract Weakness Classification

UBI Universidade da Beira Interior

UI User Interface

xxiii

xxiv

Chapter 1

Introduction

1.1 Motivation

The introduction of blockchain technology has generated great interest in a variety of mar-

ket sectors, as well as keen-eyed individuals. Its sudden emergence and ever so increasingly

popularity is due to the incredible potential for netting large sums of profit. As such, nu-

merous corporations and individuals have seized this opportunity to create or expand their

businesses into this environment through the deployment of software emulating their busi-

ness into the network, denominated a smart contract. This business approach has seen an

explosive growth since the Ethereum network, the blockchain that innovated this practice,

came online in 2015.

As with any piece of software, bugs are a concern for any of the parties involved, all the more

so in a blockchain environment — with immutability being one of its key principles, the act

of deployment should not be done carelessly — for any problem that arises post-deployment

cannot be easily patched without a myriad of ramifications being associated with it, most

notably financial losses and impairment of the blockchain’s credibility.

To minimize the aforementioned result, smart contract security countermeasures have been

devised, such as code auditing, static analysis and formal verification. Despite the existence

of these safeguards, faulty smart contracts are still being detected and taken advantage of

past the act of deployment. There is a strong appeal from smart contract security experts and

the broader blockchain community to reinforce and maturely adopt these countermeasures

into the smart contract development cycle. Alas, to do so is not a trivial matter, as these

measures must weave naturally and with great effectiveness as to maximize adherence from

the community.

TheEthereumplatform is, by far, themost popular and top grossing blockchain that supports

smart contracts. Its record numbers are both its greatest strength and weakness — market-

places thriving in activity and wealth, as well as the harmful actor looking to financially bank

on an appetizing exploit — it has become a den for these actors whose ill reasoning has tunnel

visioned into the platform given its prestige.

However, there are numerous other blockchains that now enable Ethereum’s innovation,

such as Tezos, which is particularly interesting given its stance on security — for one, its

smart contract language was designed specifically with security in mind, purposefully easing

formal verification processes on its code. Second, a mechanism of self-amendment that en-

ables reasonably regular updates to the network protocol itself. The latter is a feature unique

in the blockchain realm, providing the platform with exceptional adaptability when it comes

to impending vulnerabilities that have been on the loose for too long, as an example.

1

Tezos’ steady growth progression cannot be yet compared to Ethereum’s staggering success

but, given its adaptability, updates are improving the platform cycle by cycle. It is reasonable

to anticipate that this platform will receive a large influx of users down the line, whether

honest or malicious. As a result, it is prudent to plan for such a phenomenon beforehand,

learning from previous incidents.

Advisor and Professor Simão Melo de Sousa is a senior and lead researcher on the Reliable

and Secure Computation Group (RELEASE) laboratory, within the computer science faculty

in UBI. This environment is centered around research topics such as software reliability,

security and formal verification. Within RELEASE, there is an ongoing project, Formal Ver-

ification of Tezos Smart Contracts (FRESCO), focusing on the research and development of

security analysis tools for Tezos’ smart contract language, Michelson. RELEASE presents a

strong collaboration between its members and, considering that the current proposal faith-

fully aligns with Tezos’ security stances, it is only natural to choose Tezos as the targeted

platform for this dissertation’s efforts.

To that end, this work culminates in providing the Tezos community, specifically smart con-

tract developers, with a tool for their workbench, capable of verifying properties for their

smart contracts. It is designed to satisfy simple user-defined properties, dispatching verifi-

cation tasks toWhylSon, a deductive program verification tool. Amidst development, user-

defined properties not only help the smart contract developer better comprehend design

specifications, but also contribute to lowering the entry barrier for business corporates to

collaborate with and aid developers in their task.

In short, the solution presented in this document will strive to aid developers and busi-

ness corporates alike to collaborate on the task of establishing contract specifi-

cations for their software in the Tezos platform by setting a performant, reliable and

effective security standard, seamlessly woven into the smart contract development cycle.

1.2 Problem Summary

This section precedes and acts as an introduction for the upcoming discussion in section 4.1.1.

The content is organized in bullet points for better clarity.

• With the introduction of Turing-complete computation in blockchain platforms, both

possibilities and problems of traditional software are now present in these environ-

ments, one common, but severe problem, the inability for contract maintenance, or

simply pulling the contract out of the network. Additionally, if developers do not ac-

count for emergency scenarios, tragedies might ensue where developers effectively can

do nothing other than watch as their contracts are being exploited, which is the case

for one of the most well known incidents in the Ethereum blockchain;

• Ethereum, being the current leader in smart contract applications, is an enticing target

for hackers to explore exploitable contracts. However, exploitable contracts exist be-

cause security measures were not taken seriously, or factored into its development at

2

all. Being the development of smart contracts a recent practice, there has to be acces-

sible guidance material for developers to access, in additional to security tools that are

effective and intuitive to use;

• Blockchain platforms are rapidly evolving. It is very likely that other platforms become

targeted as their value increases. As of right now, there has been a misguided overin-

vestment in research and efforts into security for the smart contract leader, where other

platforms are severely lackluster in comparison. Other platforms must learn from past

incidents by acting accordingly in the present, through investing in better security tools,

designing safe languages, among other measures;

• The Tezos blockchain is firmly staking on security by construct infrastructure, in both

its network protocol and its native language. It has the potential to become one of the

leader smart contract platforms in the future, though it has not seen many develop-

ments in smart contract security tools. Furthermore, the existing tools are not seeing

wide adoption from its smart contract development community;

• The efforts of this dissertation are paving the way for an indirect security approach,

in which the common developer is encouraged to take the initiative in incorporating

a valuable security tool into their workflow. The fruits of this labor, the dissertation’s

contributions, are presented in section 5.2.4;

1.3 Objectives

Throughout the development of this dissertation, one may assume two types of objectives —

personal objectives as well as the project’s objectives — Firstly, it has to be properly stated

that the current work is the culmination of five academic years in UBI, enclosing themaster’s

degree. Unsurprisingly, this is yet the student’s greatest academic challenge to overcome

and conversely its biggest learning opportunity, with a chance to differentiate oneself and

succeed in the areas explored in this dissertation. That said, the following can be considered

personal objectives:

• Develop amasters’ worth of knowledge on smart contract development and its security

topics;

• Learn more in-depth about other blockchain related topics, such as its economical as-

pects;

• Become well versed and practiced in written English investigative nomenclature;

• Incorporate proper organization and investigative standards for the rest of its profes-

sional career.

Secondly, this dissertation’s objectives refer to its contribution prospects after its com-

pletion. This dissertation document aims to:

3

• Briefly introduce the reader to general blockchain knowledge and terminology;

• Alert the reader of past and present incidents that befell on blockchain platforms;

• Raise awareness on the dangers associated with smart contract development;

• Expose the reader to current state-of-the-art smart contract security approaches and

tools;

• Propose a solution capable of minimizing aforementioned dangers;

• Present and devise a realistic plan for the development of the solution;

• Detail the process leading up to the solution’s conception;

• Demonstrate the solution’s capabilities with practical examples.

1.4 Document Outline

• The first chapter — Introduction— briefly contextualizes how this dissertation topic

came to be, presents this dissertation’s main objectives as well as this document’s out-

line;

• The second chapter — Technical Background—a complementary chapter that pro-

vides more detailed information regarding the building blocks of concepts associated

with the dissertation;

• The third chapter — Literature Review — discusses state-of-the-art papers in the

dissertation’s research scope, gauging this area’s research status, findings, problems,

and directions;

• The fourth chapter — Problem Statement and Work Plan — addresses the main

problem theme this dissertation aims to solve, in addition to presenting steps that con-

fer it a plausible solution;

• The fifth chapter— Implementation—details the tools and technologies used through-

out the entirety of the implementation phase as well as implementation details of the

final product;

• The sixth chapter — Practicality Assessment — assesses the solution practicality

with relevant applications;

• The seventh chapter—Final Remarks— the epilogue for this dissertation document,

summarizing its contents as well as the author’s final remarks on it. Additionally, it

proposes future work and avenues for further improving the document and proposed

solution.

4

Chapter 2

Technical Background

This chapter will introduce the preliminary concepts in which this dissertation theme is built

upon. The introduced concepts are written concisely in a beginner-friendlymanner for those

who are unfamiliar with blockchain related topics. The relayed concepts do not encompass

the entirety of the blockchain knowledge breadth nor its depth. For readers who seek more

than what is presented in this chapter, consult the cited literature [1–4] for a comprehensive

understanding of the topics. Section 2.1 will introduce the blockchain itself as a topic, section

2.2 will focus on smart contracts and lastly section 2.3 will present more details regarding

the Tezos blockchain, the blockchain of focus for this dissertation.

2.1 The Blockchain

The blockchain is commonly known as a decentralized distributed ledger inlaid with

cryptographic security over apeer to peernetwork, implementing a consensuspro-

tocol for synchronization over its peers. The concept of blockchain has becomedeeply linked

with the network protocol it implements but, at its core, a blockchain is a data structuremost

similarly to anappend-only, back-linked linked list, with a finite amount of nodes called

blocks.

Figure 2.1 illustrates the contents of generic block.

Figure 2.1: Generic block structure.

Each new block is linked through a cryptographic hash function, normally Secure Hash Al-

gorithm (SHA)256, to the previous one, just like a chain. Additionally, the more blocks there

are, the more difficult it is to modify any data in the chain. This means that if a harmful actor

5

wants to cheat the system, they would have to modify everything from the first block ever

created — called the “genesis block”. However, a cheat is able to be done if the harmful actor

holds the majority of the network’s combined computational power (51%). This property is

called as the blockchain being “Byzantine fault-tolerant”.

The history and principles of blockchain are deeply rooted with the emergence of Bitcoin [5]

— an electronic cash system — looking to compete alongside fiat currencies 1, functioning

free of control or manipulation from a centralized entity, that is, without the need of a medi-

ating trusted third party. Bitcoin was the first protocol to ever develop a practical, working

solution against the double spending problem 2, being able to become the first ever success-

fully implemented decentralized network protocol, whereas already having other protocols

failed in the past 3.

The sense of community when participating in a blockchain can be a very inclusive experi-

ence, and as a community, problems are prone to happen. Being the blockchain immutable, if

there ever is one small problem, it cannot be patchedwithout doingwhat is called a blockchain

fork 4. These phenomenons can either be constructive, or destructive to the community.

Forks happen when a radical change to a network’s protocol is done, negating a part of the

blockchain that is set in stone. Forks require users to manually upgrade to the latest version

of the protocol software. Bitcoin has had a history of forks, some resulting in bitcoin derived

coins such as Bitcoin Gold and Bitcoin Cash 5.

The concept of transaction is also redefined for a blockchain environment — users are able

to change the state of the blockchain by sending transactions to each other’s addresses — in

this protocol’s case, transactions comprised of sending a positive arbitrary number of coins

to another address.

But transactions would not be processed immediately, in fact, they could be reverted. So, a

new concept was introduced to refer to the act of processing/validating transactions in the

blockchain — mining — for the user to mine a block they are required to solve a puzzle, in

this case, it is called the zero prefix hash puzzle. Solving this puzzle is done by matching the

output of computing the one way cryptographic hash function of the block theminer is trying

to append to the blockchain, transactions included, with at least the number of zeros stated

in the prefix. The catch here is, incrementally adding a zero to the target prefix exponentiates

the odds of a miner ever solving the puzzle for that length. However, the odds are designed

to be low, so that blocks are mined in a relatively constant rate. The adjustment of the puzzle

difficulty is kept relative to the overall computational power of the entire network combined,

and plays a crucial role for when hardware is updated.

By successfully mining a block, a user is rewarded with currency and the “change” of the

transactions included in the block. There is a limit of issued currency for the blockchain,

and in every mined block the rewards are following the downwards slope of an inverse func-

tion. However, even if the reward lessens overtime, the incentive is still supported by the

1https://www.ig.com/en/glossary-trading-terms/fiat-currency-definition
2https://www.investopedia.com/terms/d/doublespending.asp
3https://www.investopedia.com/tech/were-there-cryptocurrencies-bitcoin/
4https://www.investopedia.com/terms/h/hard-fork.asp
5https://www.investopedia.com/tech/history-bitcoin-hard-forks/

6

https://www.ig.com/en/glossary-trading-terms/fiat-currency-definition
https://www.investopedia.com/terms/d/doublespending.asp
https://www.investopedia.com/tech/were-there-cryptocurrencies-bitcoin/
https://www.investopedia.com/terms/h/hard-fork.asp
https://www.investopedia.com/tech/history-bitcoin-hard-forks/

transactional fees.

However, mining is not always the best for every user. Solving the puzzle taxes the hard-

ware in the form of electricity, while some hardware are also more efficient than others in

this job. As connoisseurs of the network kept trying to upgrade their computational power,

heightening their chances of being the miner, so did the network’s average computational

power. Mining profitability becomes nil when the rewards associated with mining become

lower than the cost spent to mine the block, on average.

Following the success of Bitcoin, many aspired developers started innovating with this highly

grossing technology. Seeing the interest in this topic, new blockchains with differentiating

features and capabilities have also emerged. One aspect that has also evolved with this tech-

nology is the user access. As such, these may have evolved respecting one of the following

ideologies. From this point on, the focus is directed at public blockchains, since the others

are of no relevance to this dissertation’s objectives.

• Private – A blockchain that allows only selected entry of verified participants. These

can join this type of network only through an authentic and verified invitation;

• Public – The most well known type, the one followed by bitcoin and many other top

grossing blockchain platforms. Every user is free to join and participate in the core

activities of the blockchain network;

• Permissioned – Permissioned blockchains allow for a mixed public and private user

experience, these types support a customizable view options for its users, enabling

users to be granted more or less restrictions.

Just like in ideologies, some have innovated in their consensus protocol. Some of the most

common mechanisms are listed below.

• Proof ofWork (PoW)—This protocol can be understood as a race condition to solve

the puzzle of the zero prefix hash. It has shown to be very inefficient and damaging to

the environment 6. Despite the two biggest blockchains still adopting this method, new

technologies are starting to reject it;

• Proof of Capacity (PoC) — This consensus first generates large data sets called

“Plots”. The more plots a miner records, the more lottery tickets he owns. Hence,

the more hard-drive space (capacity) he has, the more chances of winning the rewards.

This also mimics PoW mining: instead of accumulating hash power, you accumulate

hard-drive capacity;

• Proofof Stake (PoS)—This protocol is amechanism that rolls the dice for validators.

The higher the amount of coins the validator has invested in the chain, the higher is its

chance to be chosen as validator, appending the new block to the blockchain. However,

the reward for this protocol only consists of revenue from transaction fees;

6https://medium.com/logos-network/why-proof-of-work-is-not-viable-in-the-long-term-dd96d2775e99

7

https://medium.com/logos-network/why-proof-of-work-is-not-viable-in-the-long-term-dd96d2775e99

• Delegated Proof of Stake (DPoS)— Is an extension of PoS, with an added Delega-

tion phase. During this phase, decentralized votes are made by the witnesses, electing

a validator of choice. The witness group has the same function as the parliament in a

parliamentary democracy;

• Liquid Proof of Stake (LPoS) — Is now an upgrade of DPoS, diluting the pool of

bakers (validators) while increasing benefits for delegating coins to major bakers. Del-

egating coins is seen as a liquid investment, enabling the baker to revoke the delegation

at any time. Delegators in the pool of the validator that won the dice roll are now re-

warded according to a share proportional to the delegated value.

Following the explosive growth of blockchain topics, there was one platform that especially

took over theBitcoin spotlightwith a oneparticularwell-thought-out innovation—Ethereum[6].

This platform revealed horizons never thought to be seen in the world of blockchains. The

introduced Ethereum Virtual Machine (EVM) is a Turing-complete system able to solve any

computation problem using its low-level scripting language designated EVM bytecode, in

short, a stack-based machine. Accompanying the bytecode, was a higher abstraction lan-

guage called Solidity 7.

This opened endless possibilities for the applications of a blockchain. Having software be-

ing able to be executed on top of it meant automation of services was at hand through this

network.

The impact was so large, that there is a terminology separating blockchains that enable the

execution of code of those that cannot — first generational and second generational, respec-

tively.

2.2 The Smart Contract

The software that is deployable to the blockchain is called a smart contract. This concept was,

however, not outcast — in 1996, Nick Szabo [7] proposed the definition of a smart contract,

even before Bitcoin’s emergence. Its definition is quoted as such,

“A smart contract is a set of promises, specified in digital form, including proto-

cols within which the parties perform on these promises.”

A good analogy present in this Szabo’s approach is the similarities between a smart contract

and a common vending machine.

• A reactive entity;

• Transparency in its process;

• Only reacts if its pre-conditions are triggered;

• Once it triggered, it agrees on what it was specified.

7https://docs.soliditylang.org/en/v0.8.12/

8

https://docs.soliditylang.org/en/v0.8.12/

A person that buys something from a vending machine has to introduce money to start in-

teracting with it. Then it has to choose which item to buy. If the item is available, then it can

be bought. If there is just enoughmoney, the vending machine only outputs the agreed upon

item, else it also comes with change.

Smart contracts are called by users by referring transactions to the contract’s address. If the

transaction is agreed across the network, all the existing peers have to execute the contract

code with the current state of the blockchain with the relevant input parameters. Figure 2.2

illustrates the blockchain architecture prepared with smart contracts, extracted from [8].

Figure 2.2: Blockchain architecture for smart contract enabled blockchain.

In other words, a smart contract executes a set of pre-defined instructions. Once deployed

into the blockchain, it becomes immutable. Using transactions, a user is able to advance

the blockchain state. To deploy a smart contract, one must also make a transaction for it to

become permanent. Smart contracts are a highly specified bank account, which can hold a

balance and also communicate with other smart contracts or users. So, in Ethereum, every

address can be called a stateful account.

While having a turing complete language enables endless possibilities, it also opens many

recipes for disaster, such as the halting problem. One measure to limit such dangerous sit-

uations, was the implementation of limiting factor when executing smart contracts, gas —

gas is assigned a price in wei to every opcode in the EVM bytecode. For this end, running

smart contracts costs money, but there is also an upper limit of how much a transaction can

consume gas.

The development of smart contract gave rise to many organizations to become settled in

the blockchain market but, as the scene had just started, the dangers of it were completely

unknown. Solidity, when launched, was especially not the most mature language. It was

presented as being very similar to Javascript and Python, which led to users creating unre-

alistic expectations and misunderstandings for this newly created language. The severity of

this issue, among other reasons, lead to tantamount incidents, explored in section 3.2.

9

2.3 Tezos

The blockchain of focus for this dissertation is Tezos 8 platform. This section will proceed on

introducing the Tezos ecosystem.

Tezos [9] is a public, smart contract-based, modular, open-source blockchain protocol re-

lying on a low power consumption and energy-efficient consensus protocol. The protocol

itself has never before seen mechanism— the self-amendment process, allowing continuous

improvement and rapid innovation through community collaboration — preserving the in-

tegrity of its consensus for years to come, while also eliminating any uses for a fork. Tezos is

also fundamentally designed to provide code safety and reliability through formal verifica-

tion in its specification language,Michelson 9.

Through self-amendment, the protocol has undergone updates formore than 10 times, all im-

proving on new features, quality of life changes, the self-amendment process itself, changes

to its smart contract language, reduced gas costs, shorter validating time, etc. Each up-

date has been largely successful, and with it, generating interest from the overall blockchain

sphere and organizations from around the globe. An example portraying the full potential of

this feature, was of a research paper having discovered a possible vulnerability in the consen-

sus protocol [10], specifically during baking procedures. Once the community was alerted by

it, it was quickly addressed and, the following patch, the vulnerability was no more.

The ease of formal verification for this platform ismade possible by respecting the norms and

philosophy of the functional language paradigm, in which all of Tezos’ environment was built

upon. It is a style of building and structuring the elements of computer programs, treating

computation as an evaluation of mathematical functions, avoiding changing-state and mu-

table data. This defensive style of programming is an attitude towards the minimization of

runtime errors while also ensuring the correctness of implementation.

Given its ability to assure soundness and reliability of programs, formal languages are strongly

encouraged for financial and business use in software. Mathematical proofs, verification of

predicates, are one of these languages’ strong suit — avoiding monetary losses in any un-

predictable program state, specifically making sure that business flows just as expected by

design. The same is applied toMichelson. As of right now, the leading and most expanding

sector in this platform are financial applications.

AlongsideMichelson, the community has developed competitive higher level languages, ab-

stracting the low-level stack-based into the common register one, for ease of development

processes. Tezos officially recognizes Archetype 10, LIGO 11, and SmartPy 12 as the main

higher-level languages for writing smart contracts in this blockchain. There aremore choices

available, such as SCaml 13 and Fi 14, however, these have yet to gain the traction and matu-

rity to compete with the aforementioned choices.

8https://tezos.com
9https://tezos.gitlab.io/michelson-reference/
10https://archetype-lang.org
11https://ligolang.org
12https://smartpy.io
13https://www.scamlang.dev
14https://learn.fi-code.com

10

https://tezos.com
https://tezos.gitlab.io/michelson-reference/
https://archetype-lang.org
https://ligolang.org
https://smartpy.io
https://www.scamlang.dev
https://learn.fi-code.com

In short, the following properties can be considered Tezos’ highlights, as a platform, which

are a byproduct of the two blockchains that have shaped the blockchain universe, and ex-

panding in relation to security, reliability and being energy-friendly.

• Self-amendment nullifies the need for forks, contrasting with Bitcoin, later from

Ethereum, that have suffered numerous forks and community partition;

• LPoS is a mechanism that is resource friendly, contrasting with Bitcoin and

Ethereum’s resource intensive PoW;

• Michelsonwas a language especially designedwith easing processes of for-

mal verification, contrasting with the incidents coming for earliest stages of Solidity,

by having an already mature and secure first stance since the beginning.

During investigative time, the student was able to discern that this platform is very inclusive

of its newcomers, having a wide variety of sources available where one may learn everything

about this platform 15.

2.4 Conclusion

This section introduced the required concepts in order for the reader to better grasp the

branching topics ahead. From general blockchain topics, to smart contract, to the Tezos

platform.

15https://www.opentezos.com

11

https://www.opentezos.com

12

Chapter 3

Literature Review

This chapter will present the current research status of smart contract security topics. Sec-

tions 3.1, 3.2 and 3.3 will respectively focus on smart contract vulnerabilities, exploits and

security tools, first by listing its contents followed by a small description. Section 3.4 will dis-

cuss how the preceding issues relate with the dissertation’s objectives, as well as highlighting

other pertinent papers that do not fall directly under any of the previous sections.

Literature for the aforementioned specified topics places much greater emphasis, and are

also much more likely to be found, within the realm of Ethereum — the platform is the cur-

rent leader in smart contract related topics, having been the first to introduce and put into

practice the concept of smart contract, requiring greater efforts from the community to solve

the problems as they arose. As a result, the security aspect of this platform’s community was

and continues to be quite active, resulting in numerous publications focusing on Ethereum.

Unless explicit, the concepts in the following sectionswill all implicitly allude to theEthereum

platform, including Solidity and EVM bytecode.

3.1 Smart Contract Vulnerabilities

Literature is very rich when it comes to documenting vulnerabilities for smart contracts.

From research papers [11–17] to community driven websites 1, a joint effort from the com-

munity is made to spread awareness on these problems. The website for Smart Contract

Weakness Classification (SWC) Registry is a trusted source for documenting vulnerabilities

for Ethereum smart contracts, consisting of 36 known vulnerabilities. The next itemization

includes those vulnerabilities cross-checked with those that are relevant for the reviewed

surveys.

• Reentrancy — This phenomenon occurs when external contract calls are allowed to

make new calls to the calling contract before the initial execution is complete, that is,

before the initial contract logic attains closure. Such problem may lead to unexpected

and unthinkable contract state changes in the middle of its execution, as a result of a

call to an untrusted/harmful contract.

To avoid this vulnerability, any smart contract execution must attain closure for its

internal logic before making any external calls. Also, some smart contract verification

tools were designed to specifically identify reentrancy pattern and accuse them, such

as ReGuard by Liu et al. [18] and Rodler et al. [19].

1http://swcregistry.io/, https://dasp.co/index.html

13

http://swcregistry.io/
https://dasp.co/index.html

The Michelson language is, by design, much safer from reentrancy attacks due to its

semantics. External calls are unable to be made until full closure is obtained for the

first contract execution;

• Transaction order dependence – This vulnerability stems from the blockchain’s

own properties. Having any user be able to check the transaction pool at any given

time, enables harmful users to take advantage of this knowledge to act accordingly to

their ends, against other known users. It is especially prominent for situations in a race

condition, where transactions with higher fees are generally executed first.

One way to avoid this problem is to mask the identity of the user, through a process

called commit reveal hash scheme 2;

• Call to the unknown— Solidity contains a set of primitive call functions, those being

call, send and deletacall. These functions can execute and trigger specified func-

tions in external smart contracts or their fallback function. For a malicious user, the

fallback function can be implemented in such a way to create a loophole in the caller

contract. From those primitives, delegate call can be especially dangerous since the
original contract context is used by external contracts, enabling such to maliciously

alter the context.

This issue can be absolved by ensuring that such primitives are only called for trusted

external contracts and functions;

• Mishandled exceptions — Solidity does not have a uniform way to handle excep-

tions, be it manually thrown via throw keyword or from unexpected runtime errors,

such as the smart contract running out of gas or reaching it call stack limit. These situ-

ations become even trickier when the exception is triggered in an external call, having

the language sometimes trouble when propagating the exception towards its original

execution.

These issues can be prevented by taking preventive actions against unexpected out-

comes from critical operations within the smart contract.

• Timestamp dependence — Smart contracts often use a block timestamp to trigger

conditions to execute any sort of critical operations. Should be noted that timestamp

values are given through the miner of the transaction. In this light, harmful actors

can adjust the timestamp to a specific value that influences the timestamp-dependent

condition, favoring them.

Developers should write smart contracts with the notion that block values are not pre-

cise, and the use of them can lead to unexpected effects. An alternative is to use a

trusted Oracle for timestamp operations, since they are unbiased towards the miners;

• Integer overflow/underflow — An overflow/underflow happens, akin to classic

software, is when an arithmetic operation reaches the maximum or minimum size of a

2https://swcregistry.io/docs/SWC-114

14

https://swcregistry.io/docs/SWC-114

given type. A paper by Torres et al. [20] introduces a tool that was tailored to identify

integer bugs.

These situations can be avoided by using SafeMath library in Solidity, or the use of ar-

bitrary precision types. Since version 0.8.0, these scenarios aremuch less likely to have

any consequences— if arithmetic operations reach their type threshold, the transaction

is, by default, reverted. Old behavior can still be obtaining through the use of a special

keyword.

TheMichelson language was implemented with integers of arbitrary precision, render-

ing nil any situation of overflow/underflow;

• Greedy/Prodigal contract—Smart contracts are called greedy or prodigal depend-

ing on how the contract’s balanced can be manipulated by unwanted interactions —

the first for when the contract’s balance cannot be manipulated by anyone, not even

authorized actors, while the second for when the balance can be manipulated by unau-

thorized users at will.

An article by Nikolic et al. [21] does a mass scouting of deployed smart contracts in the

Ethereum blockchain, submitting them for verification in the MAIAN [22] tool, also

one of Nikolic’s works.

• Weak field modifiers— In Solidity, both functions and variables have public scope

if not specified. If, during implementation, developers forget one of these’s visibility,

it can cause the smart contract to inadvertently be accessed by unwanted users in un-

documented critical entry points.

This vulnerability is simply mended by the developer’s conscious decision of modifiers

— external, public, internal, or private;

• Unprotected self-destruct—Unwanted actors having the ability to self-destruct the

contract due to weak access control modifiers.

To avoid these problems, removing the self-destruct functionality should bemandatory

unless absolutely required. If there is a justifiable use-case, implement the self-destruct

action of the smart contract through the approval of more than one user.

• Predictable randomness — The blockchain has no source of reliable randomness.

More often than not, the operation solely relies on blockchain context attributes such as

timestamp, current difficulty and block hash, which are values available to every user.

This vulnerability can be mitigated if the use of randomness is applied with the RAN-

DAO 3 commitment scheme. Alternatively, the use of a trusted Oracle as a source of

randomness can be used.

These are the vulnerabilities exposed by the literature. However, there is still one type of

vulnerabilities that permeate all kinds of software and, arguably, can be seen as the root of

3https://github.com/randao/randao

15

https://github.com/randao/randao

these problems — logical flaws — these flaws can further be specified into the vulnerabil-

ities reference by literature however, at their core, they exist because code practices are not

consistently being practiced.

For example, the reentrancy vulnerability can mostly be solved if the external call is made

as the last statement after reaching appropriate closure of the smart contract’s internal logic

for a function. Another example, such as weak field modifiers, is due to the developer not

paying close attention to access control modifiers.

Logical flaws, without association to any specific vulnerability, can also have a tremendous

impact on the smart contract. For example, implementing a condition that does not go ac-

cording to specifications can go silent without any developers realizing.

These and many more vulnerabilities can be avoided by developers by following code prac-

tices and making conscious code decisions during development processes, as well always

paying close attention to the specifications of the implementation. However, some vulnera-

bilities are still very difficult to notice, hence the need of security verification tools.

3.2 Real World Exploits

Hand in hand with the vulnerabilities listed, real world exploits were also properly docu-

mented, both in articles [11–15,23–25] and across websites. An attack is only made possible

if any vulnerabilities present are targeted and exploited. Most attacks are a combination of

exploiting more than one vulnerability, having one leading to others.

• TheDAO (2016)—Being referenced by every reviewed survey, it became and beacon

that has shaped the current scenario of smart contract security and Ethereum itself.

It also was a triggering factor for a hard fork in the chain, an incident marked in the

history of blockchain technology for when security is taken as an afterthought. This

smart contract served as an autonomous crowdfunding campaign seeking to help newly

started organizations in the Ethereum platform. The implementation for this smart

contract was detected with having a loophole in one of its functions, enabling a harmful

actor to steal about $50Mdollars. A very in-depth explanation of the attack can be seen

in this website 4;

• Parity Multisig Wallet (2017)— This incident was also often paired with the DAO

attack for every survey document. The Parity Multisig Wallet was a wallet application,

the contract that was exploited not only once, but twice, in the span of 4 months. The

first attack resulted in the theft of $30M dollars due to weak access modifiers for one

of its functions, enabling any user to call a critical and supposedly restrictive function.

The second attack resulted in the locking of $150M dollars in some of its user’s wallets

due to non-authorized user being able to destroy the contract… by accident! The official

smart contract developers acknowledged both attacks (first 5, second 6);

4https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
5https://www.parity.io/blog/the-multi-sig-hack-a-postmortem
6https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

16

https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://www.parity.io/blog/the-multi-sig-hack-a-postmortem
https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

• King of the Ether Throne (2016)— This smart contract was a simple game which

consisted on the players accumulating points by being the king. Remaining king the

longest would net more profit to the dethroned user, while the aspiring king would

have to incrementally pay more to become the king. This smart contract contained a

mishandled out of gas exception, reverting the payment to the current king, while it

being dethroned all the same. This website 7 refers to the postmortem page of this

smart contract;

• BeautyChain Token (2018)—The BeautyChain Token is an asset inherent to a sub-

chain of Ethereum. The code of that sub-chainwas detectedwith a vulnerability of inte-

ger overflow, in which a harmful user took advantage of to steal 1058 tokens or $900M

dollars worth [25]. This website 8 details more about this specific integer overflow at-

tack;

• GovernMental (2016)— This smart contract played a Ponzi scheme for its players.

Players join by sending Ether to the contract, if the clock goes 12 hours without adding a

new player, the last player claims the jackpot. Each participant is appended to an array

in the smart contract, claiming the jackpot clears the array, requiring its traversal until

the end. At some point, the array became big enough as to the array not being able

to clear itself in a single transaction, due to limited gas costs at the time. In short,

this smart contract suffered vulnerability of mishandled out of gas exception, while

simultaneously locking the smart contract. This forumpublication 9 shows a discussion

between the owner of the contract and the community;

• SmartBillions (2017)—This smart contract enabled players to gamble and play lot-

tery. However, this lottery had a predictable source of randomness, in which a gambler

took advantage of to win 400 Ether prize as a trial run, before the player could hit the

jackpot on its next attempt. Before that happened, its developers rug-pulled the en-

tire prize pool, walking away with 1100 Ether of the 1500 ETH jackpot. This forum

publication 10 presents a discussion for this incident.

3.3 State-of-the-Art Security Tools

This section will list smart contract security tools that were found when reviewing literature,

briefly introducing them. For better clarity and visibility, table 3.1 presents information re-

garding verification tools designed for Ethereum, while table 3.2 for Tezos.

7https://www.kingoftheether.com/postmortem.html
8https://nvd.nist.gov/vuln/detail/cve-2018-10299
9https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_

is_stuck/
10https://www.reddit.com/r/ethereum/comments/74d3dc/smartbillions_lottery_contract_just_

got_hacked/

17

https://www.kingoftheether.com/postmortem.html
https://nvd.nist.gov/vuln/detail/cve-2018-10299
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://www.reddit.com/r/ethereum/comments/74d3dc/smartbillions_lottery_contract_just_got_hacked/
https://www.reddit.com/r/ethereum/comments/74d3dc/smartbillions_lottery_contract_just_got_hacked/

3.3.1 Smart Contract Security Mechanisms

The tools introduced all had different backgrounds and mechanisms used in order to verify

or grant some way of security to smart contracts. In that regard, it is wise to also understand

their security mechanisms.

• Symbolic Execution — An analysis technique that replaces the values of program

variables as symbolic expressions to uncover execution paths present in a CFG built

from program code. The CFG is then studied by SMTs to pinpoint vulnerable paths;

• Abstract Interpretation — This method formalizes the idea of abstracting math-

ematical structures in order to achieve soundness in program analysis through over-

approximating semantics of a program. For smart contracts, this technique ignores

certain trivial operations while focusing more on order of operations and correct se-

mantics;

• Fuzzing—A testing technique that provides randomdata into a program’s entrypoint.

This sort of testing enables smart contracts tools to simulate executions through possi-

bly unexpected input values into smart contract entrypoints, testing their boundaries.

Through it, certain vulnerabilities aremore susceptible to be caught, but are not always

guaranteed;

• Runtime/DynamicVerification—Contrary tomostmethods, runtime verification

is used for running programs, in this case, deployed smart contracts, preferably on test

networks. It allows for analysis of program executions, while also closely monitoring

any variables or values of interest. While this method does not require a precise mod-

eling of the blockchain environment it is still not commonly used, for deploying into a

test network still has resource limitations. This method has been commended by re-

searchers since it has the potential to explore program states that may bemore difficult

to reach otherwise;

• Model Checking—Adopts the usage of FSMs to confront a given set of formal prop-

erties against the mathematical model of a program. Once the inputs are given, this

approach automatically verifies a model through confronting it against the provided

formal properties. If a property holds for all states, the program is considered to be

formally verified for that property, otherwise, it is given counterexamples. This tech-

nique allows users to define their own properties instead of simply verifying common

patterns;

• Theorem Proving — A method that performs program verification through trans-

forming the programs and its requirements into a particular mathematical logic, de-

riving a formal proof of satisfaction of these requirements. This particular method is

incredibly flexible and oscillating in terms of effectiveness, as it is as effective as the

understanding and creativity of the user guiding the proof, being that the most skilled

user should be able to arrive to some conclusion for any program. Aforementioned rea-

18

son is both the reason for this technique’s highly effectiveness and issue for not being

commonly used;

• Program Verification — This semi-automatic verification method translates pro-

gram source code into the specification language of a framework. The new program is

then subjected through SMTs to check against program and semantic correctness or

other known vulnerability patterns, whose specifications need to be formally stated.

This approach is very similar to model checking, though there is proof that it performs

better in a more realistic setting;

• Machine Learning—An unorthodox approach for detecting vulnerabilities in smart

contracts is the usage of machine/deep learning. Models such as convolutional neural

networks are fed with a wide variety of contracts labelled by vulnerability, however,

this only allows such tools to detect known vulnerabilities.

The reviewed literature states that static analysis (static in a broad sense, in which it does not

require a contract to be deployed in a network to be verified)methods are themost employed

among smart contract verification tools, especially symbolic execution. This is the expected

outcome due to the nature of the blockchain environment itself — programs should be as

statically safe as possible before ever being deployed to the main network — and also the

fact that the usage of CFG for the exploration of critical paths and possible bugs is a popular

practice in traditional software. However, it is also stated that formal verification methods

should become a more common practice.

One great distinction between static analysis and dynamic analysis is that the first detect

vulnerable contracts, while the second detects ones that are exploitable. Perez et. al [57]

conducted a massive research on deployed smart contracts on the Ethereum platform, find-

ing that most contracts truly have some sort of vulnerability detected by verification tools,

though, an interesting finding was that only a small portion was truly exploitable. Nonethe-

less, the results shown should not in any way alleviate pressure from developers for their

contracts.

Most tools listed are freely available and open source, while some are not. Limiting security

behind a paywall is one of the reasons such tools are not massively used by the smart con-

tract development community. Additionally, auditing 11 is one existing method for granting

smart contracts the required reliability. Though, such auditing firms charge a lengthy fee for

their services, when their process normally subjects the smart contracts in question through

the already explored tools. As of right now, clearing the audit might be the highest seal of

certification for a smart contract, depending on the firm, but it is also the least accessible to

the general community.

3.4 Discussion

One glaring fact that is instantly recognized is the sheer amount of existing verification tools

for the Ethereum blockchain, moreover, the tools presented are only a small sample of the
11https://www.immunebytes.com/tezos-smart-contract-audit/

19

https://www.immunebytes.com/tezos-smart-contract-audit/

ones explored. The referenced sources explored more than a combined of 100+ tools for this

platform, while all Tezos verification tools/methods are all presented. Such proportions can

also be estimated for other blockchains. This presents a problem in itself due to blockchain

platforms rapidly evolving, since the majority of research resources and efforts are being

poured into one single platform.

According to the referenced literature [16, 17, 24, 58, 59], directions point towards more to

than mindlessly developing smart contract verification tools — with the current over satu-

ration of tools, specially in Ethereum, it is confusing and a time-consuming task to figure

out which tools work best. Since different tools target different security risks, heterogeneity

becomes a problem since the developermight require various tools for the contract to be con-

sidered safe, which is not an ideal scenario. Additionally, it is greatly recommended for tools

to employ both static and dynamic analysis, known as hybrid analysis, since coupling these

two approaches tackles the security concerns from two different angles, generally resulting

in better efficiency.

Ideally, community effort should be guided into developing one single framework, or an en-

semble tool, capable of verifying if possible all known vulnerabilities and the liberty to also

specify other user-defined properties. For other platforms, there is indeed scarcity of tools.

Learning once again from Ethereum, investigative resources and efforts should be poured

into other platforms, now in a smarter manner.

Another topic is striking the security problem very early in development, that is, there should

be standards and practices for smart contract development, and stricter, type-safe program-

ming languages for this cause. The blockchain environment has glaring and serious differ-

ences compared to traditional software development, with developers crossing over fields,

it is likely that misunderstandings might occur. Blockchain platforms must better promote

guides, documentation and best practices for developers to be guidedwith. Another possibil-

ity for this would to be reducing the manual input of developers by providing smart contract

templates.

As a final note, a point that is not discussed within the literature is the implementation of

supportive tools to connect the already known solutions to development environments. It is

felt that solutions existing is simply not enough — smart contract security techniques must

become an integral and infallible part of development. If security is ever implemented right,

it must be free, accessible, effective, performant, and easy to use. Only then, will security

truly be adopted by the masses.

3.5 Conclusion

This chapter presented the findings of the literature review done by the student. The most

common vulnerabilities, known exploited attacks and listing security tools and how they

work, all present concrete evidence for the problem to be described in chapter 4. The discus-

sion here is still relatively tame, having the sections discussed the most important or com-

mon found points. For a complete in-depth explanation of every section, it is recommended

to read on the referenced literature.

20

Designation Author Small Description

ESBMC-Solidity Song et al. [26] Formal analysis of vulnerabilities through translation of So-
lidity code to an Intermediary language (IL) and consequent
Satisfiability Modulo Theories (SMT) solvers.

EtherProv Torres et al. [27] Instrumentation of EVMbytecode through static and dynamic
analysis of Solidity

EtherTrust Grishchenko et al. [28] Static analysis of EVM bytecode.
F* Swamy et al. [29] Equivalency analysis between Solidity and EVM bytecode.
FEther Yang et al. [30] Formal modeling of Solidity in Coq [31] framework, enabling

Coq proof assisted verification.
FSolidM Mavridou et al. [32,33] Use of Finite State Machine (FSM) to model smart contract,

with consequent generation of Solidity code.
Isabelle/HOL Amani et al. [34] Formalization of EVM bytecode in the Isabelle/HOL frame-

work.
KEVM Hildenbrandt et al. [35] Formalization of EVM bytecode through the K Framework.
Manticore Mossberg et al. [36] A framework capable of dynamic analysis and symbolic exe-

cution of EVM bytecode.
Mythx/Mythril ConsenSys [37,38] Automatic vulnerability scanning of EVM bytecode as a ser-

vice, through the use of symbolic execution, SMT solvers, and
taint analysis.

Octopus Ventuzelo [39] Security analysis framework for various platforms, including
Ethereum, verification through Control Flow Graph (CFG)
analysis.

Oyente Luu et al. [40] Symbolic execution tool capable of flagging EVM bytecode of
common vulnerabilities.

Securify Tsankov et al. [41] Automatic security analyzer, supporting user-defined proper-
ties, for EVM bytecode.

Slither Feist et al. [42] Automated static analysis framework through dataflow and
taint tracking processes in an IL converted from Solidity.

SmartCheck Tikhomirov et al. [43] Static analysis tool for common vulnerabilities in Solidity
code.

SODA Chen et al. [44] Online detection framework by instrumentation of EVM byte-
code.

Solidifier Antonino et al. [45] Boundedmodel checker forSolidity language, through the for-
malization of a subset of the language itself.

Vandal Brent et al. [46] Security analysis framework supporting verification of EVM
bytecode by converting it into semantic logic relations.

VeriSolid Mavridou et al. [47] Amodel-based approach for generating correct by design, for-
mally verified Solidity code.

VerX Permenev et al. [48] Verification of functional properties in an IL, similar to So-
lidity, through symbolic execution and delayed predicate ab-
straction, with consequent compilation to EVM bytecode.

Zeus Kalra et al. [49] Perform formal verification for an IL translated from Solidity,
through abstract interpretation, symbolic model checking and
constrained horn clauses’ verification checking.

Table 3.1: State-of-the-art verification tools found for Ethereum.

21

Designation Author Small Description

Albert Bernardo et al. [50] An IL forMichelson, uses Mi-Cho-Coq’s compiler to obtain formally
verified Michelson code.

Helmholtz Nishida et al. [51] Automated verification tool ofMichelson code through SMT.
Mi-Cho-Coq Bernardo et al. [52] Formal specification ofMichelon in the Coq [31] framework.

Tezla Reis et al. [53] Static analysis framework forMichelson.
WhylSon Horta et al. [54,55] Automated formal verification ofMichelson through the Why3 [56]

framework.

Table 3.2: State-of-the-art verification tools found for Tezos.

22

Chapter 4

Problem Statement andWork Plan

The fourth chapter of this document entails on a segment for a more comprehensive break-

down of the problem statement surrounding the entirety of this project. The other segment is

an educated estimate of the procedural steps for obtaining aworking solution for the problem

described.

4.1 Problem Statement

4.1.1 Problem

Throughout the entirety of this document, the problem statement has constantly been un-

derlined and not directly addressed with proper reasoning. Reflecting on chapters’ 2 and

3 topics, it is now possible to coherently reason behind the problem statement of “proving

transactional coherence for smart contracts in blockchains”. It can be seen as a two-part

question:

1. What is the current problem with smart contract development?

2. Why should the problem be solved in the Tezos platform?

To answer the first question, one should highlight how smart contracts should behave

within the blockchain environment.

Smart contracts should only and only be able to fulfill its specifications, expecting

no unknown behaviors.

If all software were to conform to what is specified in its code, no software would need to

be submitted to any sort of security mechanism. Assuming no external factors can influence

a piece of software, and that every specification is correctly implemented but also confers

to what the developer envisions, then every piece of software developed is secure. In this

argument, three distinct problems run at large that contribute to faulty software:

• Manual input of code is often riddled with bugs and logical errors due to possible mis-

conceptions by developers;

• External factors do influence software, mainly from unexpected inputs from an ill in-

tentioned actor (one may also argue that this problem is covered by the first one);

• The specification itself can be incorrect.

23

From these, the first is one of utmost relevance for the present work — the area of smart

contract development is fairly recent, with it accompanying often a lack of knowledge that

leads to doubts and misconceptions — not being experienced or knowledgeable enough in a

language/environment may amplify the chances of a smart contract being identified with a

vulnerability by an ill actor, and later exploited, evidenced by the incidents presented in sec-

tion 3.2. The second problemmay be considered related to the first one, since the developer

is also tasked with specifying their software’s entry points and consequent restrictions, p.e.

access modifiers, type, range of values, etc. The third is a considerable problem during re-

quirements gathering stages, that is, a problem that comes from flawed business logic. In this

case, if these flaws take too long to be detected, the software may have serious implications

in the long run, since it is most unnoticeable if not detected prematurely.

Aforementioned problems are further amplified if the software resides in the context of a

blockchain. In off-chain software, flaws detected post-shipping have a chance for the prob-

lem to be repaired with, however, having its associated loss in bothmoney and product cred-

ibility. On the other hand, smart contracts, due to blockchain immutability, cannot simply

follow the stages of immediate retraction, patching and re-deployment. Just as in classic

software, any vulnerabilities detected post-deployment lead to an exponential rise of patch-

ing costs, more so on smart contracts, where there is a risk of the contract already being

taken advantage of before vulnerability detection. This is a seriously impactful problem,

consequences for this problem are, for instance, the already recorded incidents of asset theft,

locking of funds, sudden destruction of the contract, etc.

The recorded events also contribute to questioning the credibility and viability of the mar-

kets settled in the blockchain. Actors may question themselves if theirs and/or their organi-

zation’s funds are truly safe.

In short, smart contracts executewhat is written in them, notwhat is expected by

its developers. It is the developer’s responsibility for these expectations to perfectly match

the smart contract’s behavior under any circumstance. To minimize any future tragedies

regarding one’s smart contract, the existence of verification tools greatly aid developers in

this task, certifying their software of correctness and soundness properties, as well as the

alignment of specifications with expected behavior.

Thesecondquestion, is onemost pertinent. Appeals fromresearchers state that Ethereum

is the one platform that requires utmost attention to security norms — there are an exorbi-

tant amount of organizations whose software is already deployed on the platform, as well as

a constant flux of new users that are driven by the appetizing numbers and successful stories.

In spite of such, why develop for Tezos? Should not the priority be to focus on minimizing

the problem in the Ethereum platform?

A very fair argument, but the contextual reasons stated in section 1.1 are also taken into ac-

count for in this decision— the efforts for this dissertation are best directed towards the Tezos

platform. It attempts to contribute beyond the current trend, especially when the state-of-

the-art surveys on smart contract verification reveal not only the vast amount of already ex-

isting tools, but also heterogeneity regarding the security practices of said tools in Ethereum.

Learning from past incidents and the present state of both security topics in Ethereum and

24

Tezos were vital to understand the best directions in which to devote current efforts.

Foreseeing the upwards trend on the Tezos platform, given its security stances, constant

updates with new features and quality of life changes, the time is ticking for enforcing better

security measures in this blockchain. Current efforts focus on delivering and contributing to

the platform in order to minimize the chances of a blockchain hazard to occur again.

4.1.2 Solution

Having explored the problem at hand, it is now the appropriate time to explain the solution

proposed. First, special emphasis should be given to the solution’s purpose.

A plug-in capable of formally verifying user-defined properties for theirMichel-

son smart contracts.

From the above statement, some specifications can be directly outlined, while some become

mandatory for assuring the tool’s quality and relevance:

1. The tool should understandMichelson’s context;

2. The tool should enable the developer to formally specify properties withinMichelson’s

context, without being intrusive;

3. The tool should be able to verify the specified user-defined properties;

4. The tool should be able to validate or refute the given user-defined properties — the

former validating the smart contract code of the specified properties, the latter present

feedback with a counterexample;

5. The tool itself should be flexible, performant, reliable and effective.

For the first point, Visual Studio Code should be the code editor of choice — the tool is one

of the most well known amongst younger developers — with a variety of features that make

it rise above its competition, such as, performance, User Interface (UI) visibility and clarity,

and customizability. The last one is, by far, its most important trait, and the reason for en-

abling the development of the proposed solution in this environment in the first place. Not

only doesMicrosoft add extensions themselves, but also enables and encourages the commu-

nity to do so. The company is very supportive of this feature, creating and sharing a variety of

resources of its Extension Application Programming Interface (API). The community is very

welcoming of this feature, making this code editor the ideal environment for the proposed

plug-in.

Items second to fifth present the solution itself. Up until this section, not much has been

disclosed on as per how the operationswithin the tool will act. Reason being, the solutionwill

require the help of an already existing and established tool –WhylSon— already mentioned

in section 3.3. Reiterating on what was disclosed in said section,WhylSon is a state-of-the-

art deductive verifier forMichelson programs, developed byHorta et al. – a PhD student and

25

veteran member of the RELEASE lab — whose thesis is being developed under the FRESCO

project. More about this tool will be detailed in 5.1.

WhylSon is a tool powered, in itself, byWhy3, a well known framework for automatic deduc-

tive verification. In turn, Why3 dispatches its verification processes into external provers,

known as SMT solvers. Solvers are at the end of the chain, where, for the devised solution’s

case, user-defined properties will be verified for their satisfiability or not. Feedback is then

retroactively sent back towards the start, where the proposed solutionwill present if the spec-

ified properties could be verified or not.

One doubt still remains, which is how to represent the specified user-defined properties.

Recently, WhylSon has made advancements in developing its own specification language,

which is an augmentedMichelson syntax with annotations. This question is yet to be cleared,

but a solution shall definitely be reached at the time of the solution’s design.

Figure 4.1 illustrates a very plausible architecture for the verification loop of the proposed

solution.

Figure 4.1: Verification loop for proposed solution.

Having presented the solution, one may ask two questions.

1. Why not simply useWhylSon for meeting the problem statement’s ends?

2. What are the benefits of using the proposed solution?

26

For starters, it should be clarified the roles of both the proposed solution andWhylSon. The

latter can distinguish itself for being a state-of-the-artMichelson formalization tool, designed

with its main purpose of being able to perform verification on formal specifications. The

former is designed as a supportive tool for the latter, granting greater accessibility and ease

of use by sliding a layer of abstraction between the act of smart contract development in

Michelson and verification of specified properties of code on-the-fly.

The solution also seeks topromote abetter involvement of business entitieswith es-

tablishing business rules in contracts through the specifications during development cycles,

thatway, both specialized developers and corporates can actively contribute to the smart con-

tract code. Conversely, without the solution, business entities could be overwhelmedwith the

highly specialized tools, holding a higher entry level for development cycle contribution.

Of course, using the solution does not in any way obscure the usage of WhylSon — the tool

should be required to be installed in the developer’s machines for the plug-in to be fully func-

tional. If developers feel comfortable enough to be using this tool without the abstraction

layer granted by the solution, then they have the chance to do so, after all, one of the solu-

tion’s main purpose is to promote collaboration between the entities responsible in defining

contract rules and its implementation.

That being said, the second question pretty much reiterates on what was addressed for the

first question, however, for visibility, the next items answer the second question.

• Greater tool accessibility with plug-in architecture;

• No real learning curve, but still requires knowing the correct representation for the

user-defined properties;

• Ability to remain focused on smart contract development, while always having the op-

tion to verify the defined properties;

• Assurance of safety for used-defined properties in case of positive feedback, and having

clear counterexamples for when feedback is negative.

4.2 Implementation Roadmap

Having the end goal set, a plausible estimation of the development process of the solution can

bemade. May the table 4.1 become a general guide for the tasks ahead for the implementation

phase of the dissertation.

4.3 Conclusion

This section engaged in specifying the underlying problem statement that this work pro-

poses to address, as well as a realistically plausible solution for addressing it. At the end of

this chapter, an estimation of the roadmap is made, comprising the tasks ahead, in order to

completely fulfill the implementation of the proposed solution.

27

Task Description
T0 Stay alert on any relevant articles on Tezos and smart contract security research scene.
T1 Acquire a practical understanding of implementing formal verification processes.
T2 Acquire a practical understanding ofWhylSon, mainly batch mode usage.
T3 Learn how to develop a generic extension for Visual Studio Code.
T4 Specification and design of the tool proposed.
T5 Implement the proposed solution (now with due preparations).
T6 Use formal verification methods and testing to grant reliability, performance, and effectiveness of

the implemented solution.
T7 Write the dissertation paper, upgrading the current one with the chapters for the tasks above (if

relevant enough).

Table 4.1: Task roadmap for implementation of the solution proposed.

28

Chapter 5

Implementation

The fifth chapter in this document will expand upon the implementation process of the so-

lution teased throughout the entirety of the document, which was refined in section 4.1.2.

Section 5.1 presents the tools and technology used, while section 5.2 describes the solution’s

development process.

5.1 Tools & Technologies Used

Before diving into the implementation process, it is necessary to understand the foundation

upon which the extension is built. The solution is a Visual Studio Code extension written in

the Typescript language, making extensive use of the vscode API. The extension interacts

with Tezos’ smart contract language, Michelson, and LIGO, a higher abstraction program-

ming language that compiles to the first. An external call to the WhylSon tool is made via

the extension, allowing the formally specified Michelson contracts to be verified against au-

tomatic provers inWhy3.

5.1.1 Michelson

Michelson is aTuring-completeDomain-Specific Language (DSL) inspired by classic func-

tional programming languages such as Forth,ML and Scheme, and designed specifically for

and with the Tezos blockchain, the means by which this network performs on-chain compu-

tation. Just as the platform itself, the language was built from the ground-up with security

by construct ideologies in mind — operating under a stack-based approach (last-in-first-

out fashion), value immutability, and also having particularly strict static type checking.

Along with garbage collection, these key features confer an incredible amount of robustness

to this language’s programs, minimizing the chances of Michelson ever suffering a runtime

error due to internal execution. Figure 5.1 illustrates the basic structure and operations of a

stack 1.

A stack is a linear collection of data whose basic instructions consist of push and pop—push-

ing allows elements to be added on top of the stack, while popping removes elements from

the top as well. Most of the instruction catalog inMichelson employ these two constructs to

form more complex ones, commonly popping elements before pushing. A simple example

would be arithmetic instructions, which consume the two topmost elements and insert the

instruction result at the top. Other than push and pop, more constructs exist to facilitate

processing and manipulation of data 2, for instance swapping element positions, locking the

topmost elements, or even function declaration/application.
1https://www.opentezos.com/michelson/smart-contracts
2https://tezos.gitlab.io/michelson-reference/

29

https://www.opentezos.com/michelson/smart-contracts
https://tezos.gitlab.io/michelson-reference/

Figure 5.1: A generic stack structure with elements and operations.

However,Michelson’s stack is incomplete without types. Instructions require not only their

inputs to match certain types, but these must also respect precise ordering, much like com-

pleting a puzzle. If these conditions are not met, the type checking of the program fails and

the execution of the smart contract stops. Nonetheless, the blockchain only accepts contracts

that have successfully passed the type check, meaning developers will always have to work

towards a working contract — it completely negates the possibility of an on-chain runtime

error due to an instruction being greeted by a stack of unexpected length, contents, or ele-

ment types. In other words, program states are fixed and monomorphic in respect to their

types, making internal execution deterministic.

Despite this, there are some cases in which the execution of a contract may result in failure.

External transactions have greater margin of error, for these have no way to be verified by

the type check. For instance, a transaction that incorrectly specifies a contract’s address

and/or contract type, and an incorrect entrypoint and/or argument for a contract. Yet, there

are also failures that occur during a contract’s own execution, such as it running out of gas,

having insufficient amount of tokens for an operation, and the program programmatically

fail through a FAILWITH instruction. Regardless of the failure that occurs, when it happens,

none of the contracts involved end up in an inconsistent state— internal and external failures

both result in execution and effects being reverted to the contract’s last consistent state.

On one hand, developers might find the act of programming in Michelson to be somewhat

restrictive, unlike the commonly used store-based languages. On the other hand, this re-

striction, along with value immutability, greatly contributes to simpler and clearer language

semantics, making the language easier to reason with.

A Michelson program is composed by three distinct sections. Code fragment 5.1 illustrates

the basic structure of aMichelson program.

30

1 parameter nat ;
2 storage nat ;
3 code { UNPAIR ;
4 ADD ;
5 NIL operation ;
6 PAIR ; }

Listing 5.1: Example of a simpleMichelson program.

The three sections play a vital role in understanding how smart contracts work in the Tezos

blockchain.

• Parameter — Describes all the contract’s possible entrypoints, and respective argu-

ments. It can range from singular, simple values, to multiple, complex values. The or
type is made of ample use in this section due to it behaving exactly like a Variant type;

• Storage — Describes the contract’s persistent memory space associated with it when

deployed. It can range from simple to complex structures of data. The pair type is

made of wide use in this section due to the ability to nest fields within it, similar to a

record type;

• Code—Constitutes the actual code of the smart contract. It is a finite series of instruc-

tions that are run in sequence, with each instruction receiving as input the previous

stack state, resulting in a new one.

A contract’s initial storage value is specified during origination, while parameter values are

specified in each entrypoint call to a contract. The persistent storage will only be updated af-

ter a successful execution, whether the value before the current transaction is different or not.

Other than having their storage updated, contract’s also have built-in information regarding

other variables of interest that might be updated on transactions, such as its balance.

A well-typed Michelson program implements a function which transforms a pair of values

representing the transaction parameter and the contract storage, and returns a pair contain-

ing a list of operations and the new storage. Upon terminating execution, the operations

stored in the list are initiated via transactions to other accounts or contracts. Furthermore,

just like in Ethereum,Michelson is restricted by gas usage — every instruction has a gas cost

associated with it, with the amount spent somewhat relative to the complexity of the instruc-

tion.

5.1.2 LIGO

TheLIGO language is one of the three high-level languages officially recognized byTezos. De-

velopers implement their contracts in LIGO and compile them down toMichelson, a typical

developer workflow. It was designed to fulfill the security promises of Michelson by soft-

ening some of its constraints while also adding features that are seen in more conventional

languages. One of this language’s trademarks is the option to use different syntaxes — Pas-

caLIGO, CameLIGO, ReasonLIGO, JsLIGO— in an attempt to make the development more

familiar for developers already used to a certain dialect.

31

Though this flexibility is a great feature for attracting developers from varying backgrounds,

it may conversely become a pitfall, since developers are highly susceptible to misleading and

misunderstanding concepts that may be deemed as present since, after all, the language is

“similar” to a language onemay be familiar with. Moreover, while LIGO is considered a func-

tional language, some syntaxes allow the use of imperative style approach for programming,

negating the immutability feature, at least in the front-end of the compiler.

Nevertheless, the LIGO compiler is strict, meaning any erroneously preconceived notions

givenby the familiar syntaxwill be forcefully deconstructed at contract compilation time. The

language is made in such a way that a contract that is correctly implemented in the various

dialects will always generate the sameMichelson contents. Ultimately, developers have the

freedom to pick the syntax they prefer to work with, since there are no drawbacks in choosing

one over the other.

LIGO satisfies a good middle ground of code simplicity and clarity without compromising

security, which are not satisfied byMichelson’s stack-based approach— the latter’s programs

became more difficult to interpret, both read and write, as contract complexity increases —

garbage collection is one common feature, but the former has presented solutions to various

of the latter’s drawbacks while also adding some utilities:

• Store-based language—Allowsbinding expressions to identifiers, contrary toMichel-

son that requires the developer to always keep track of the stack’s state.

• Type inference — The language is statically typed with a degree of type inference.

When the compiler does cannot infer type during compilation, it has to be specifically

annotated;

• Segregation of code— Implementation can be separated into various files. Compi-

lation still results in a singleMichelson file;

• Utility API — The language has an extensive API that provides functionality to ma-

nipulate and process simple data and data structures, and also invoke relevant envi-

ronment variables;

• Test environment—Provides a built-in unit testing framework, simulating the Tezos

on-chain environment, to test functionality in contracts;

• Modules—Functionality and logic can be encapsulated throughmodules, and conse-

quently used in other scopes, or even files through a typical include (à lá C);

• Package management & versioning — Recently added, package management al-

lowing for LIGO code to be easily shared and maintained with the community.

Code fragment 5.2 presents the same program as presented in 5.1, demonstrating a basic

LIGO file.

32

1 type parameter = nat
2 type storage = nat
3 type _return = (operation list) * storage
4

5 let main (p,s : parameter*storage) : _return =
6 let ns : int = p + s in
7 ([] : operation list), ns

Listing 5.2: Example of a simple LIGO program.

It has become best practices in LIGO to declare the contract’s parameter, storage, and return

types, much likeMichelson itself.

5.1.3 Visual Studio Code API

Visual Studio Code is one of the most renowned tools of the text editor scene. It is a free,

multi-platform, open-source, lightweight yet powerful text editor created by Microsoft de-

velopers for developers. These traits contributed to the tool remaining competitivewith other

text editors, however, it was given the edge by its critically acclaimed community driven as-

pect, the community that has given it much care through the development of everyday-use

extensions — the customizability provided by extensions allows developers to envision and

develop their own tools for the job, sharing themwith the entire world in the process through

publishing.

According to Stack Overflow’s 2022 survey statistics 3, Visual Studio Code is the leading code

editor for developers, as illustrated in figure 5.2.

Figure 5.2: Stack Overflow 2022 survey statistics for “IDE” topic.

3https://survey.stackoverflow.co/2022/

33

https://survey.stackoverflow.co/2022/

Most Integrated Development Environment (IDE)s are confined to a field, a specific work-

flow with a specific language. Customizability through extensions and user experience dis-

tinguishes this tool apart from its competitors, since it has evolved into a hub for various

distinct workflows, fields, and language supports to intersect.

Visual Studio Code’s extension API is what allows developers to thoroughly tap the tool’s

capabilities. For starters, the documentation reference is clean, accessible, and detailed 4,

moreover, it features a GitHub repository holding numerous extensions samples 5, allowing

anyone to simply have a hands-on experience without fully committing to starting an exten-

sion from scratch.

The editor was designed with extensibility in mind, with many of the tool’s components cus-

tomizable and augmented through the extension API. As a matter of fact, the team inte-

grated the tool’s core features through extensions by using the extension API itself. One of

its built-in features is the support for the JavaScript language, as well as its reliable super-

set TypeScript (also developed by Microsoft), which are the languages through which one

can access the extension API. The language support provides developers many features that

make developing in the supported language substantially more efficient, causing extension

development particularly more accessible and easier to reason with.

The following can be accomplished via the extension API:

• Add user-defined commands;

• Customize and add functionality to new UI elements;

• Launch external processes;

• Automate tasks, such as building projects;

• Create a custom editor/window or even integrate an HTML page through webview;

• Upload new themes/icons for the editor;

• ...

• And much more, which can be seen in the extension API documentation.

5.1.4 WhylSon

This sectionwill introduceWhylSon, a deductive verification tool for Tezos smart contracts [55],

which has been teased across parts of this document’s chapters. It is a tool that provides auto-

matic formal verification onMichelson smart contracts through the means of its underlying

framework,Why3. That is,WhylSon is built on top ofWhy3’s foundation, making use of its

powerful verification functionalities that would otherwise be inaccessible for theMichelson

language. In figure 5.3, it is seen Why3 graphical user interface opened with a Michelson

program. The left side of the interface is dedicated to the program’s verification conditions

generation.

4https://code.visualstudio.com/api
5https://github.com/microsoft/vscode-extension-samples

34

https://code.visualstudio.com/api
https://github.com/microsoft/vscode-extension-samples

Figure 5.3: WhylSon usingwhy3-ide for a verification session of aMichelson Program.

Why3 uses its own programming language, WhyML, which is highly specified and geared

towards deductive verification. In that regard, WhylSon’s sole objective is to successfully

generate aWhyML file that is equivalent to the desiredMichelson input program. The pro-

cess in question is not so linear, as there is a considerable amount of effort made by the tool

so that program equivalency can, in fact, be achieved:

1. Parse deductive verification specific artifacts, in the form of pre/post conditions and

variant/invariant fromMichelson;

2. TranslateMichelsonprogram, plus artifacts, into aWhyMLprogram through theWhy3

API;

3. EmulateMichelson’s types and semantics inWhy3;

4. Apply provers in the newly equivalentWhyML program.

For more detailed description of each of these steps, refer to the literature. Basically,Whyl-

Sonworks as a plug-in to theWhy3 framework that allowsMichelsonprograms to be formally

verified through equivalency. Code fragment 5.3 presents the results ofWhylSon’s transla-

tion process from the code fragments shown in 5.1 and 5.2.

1 use axiomatic.AxiomaticSem
2 use dataTypes.DataTypes
3 use seq.Seq
4 use int.Int
5 let contract (__stack__: stack_t) (__fuel__: int) : stack_t
6 requires { (length __stack__) = 1 }
7 requires { __fuel__ > 0 }
8 requires { (typ_infer (d (__stack__[0])))
9 = (Pair_t (Comparable_t Nat_t) (Comparable_t Nat_t)) }
10 ensures { (length result) = 1 }
11 ensures { (typ_infer (d (result[0])))
12 = (Pair_t (List_t Operation_t) (Comparable_t Nat_t)) } =
13 let __stack__ =
14 let __stack__ = unpair __stack__ __fuel__ in

35

15 (let __stack__ = add __stack__ __fuel__ in
16 (let __stack__ = nil_op __stack__ __fuel__ Operation_t in
17 (pair __stack__ __fuel__))) in
18 __stack__

Listing 5.3: Example of aWhylSon generatedWhyML file.

Although the tool’s functionality is promising, there are some lackluster aspects that are hin-

dering its use. Conclusive remarks on the tool’s paper points to the existence of performance

issues for more complex contracts, as well as the fact that developers would still require to

manually write the verifications artifacts themselves, which may not be as intuitive as ex-

pected unpracticed deductive verification users.

Aside from functionality difficulties, its accessibility is slightly hampered — directly using

Michelson as its input program makes it fairly awkward for the common developer to use,

especially as Tezos’s smart contract developers have better options to implement their smart

contracts on, such as LIGO. Though, the fact that this tool employs Michelson, any higher-

level language can utilizeWhylSon as an intermediary step for verification, which is precisely

the approach this dissertation is walking towards. In that regard, it would be interesting to

see any of the available language platform incorporating WhylSon into their testing infras-

tructure.

One other glaring issue thatWhylSon suffers from is its installation process. The tool is dis-

tributed through opam, OCaml’s package manager, which is not the issue in of itself — the

codebase demands a considerable amount of dependencies that are very sensitive to con-

flicting with version mismatching, whether from other co-existing packages, the manager’s

version, or evenOCaml’s version. This is a technical aspect thatmust be streamlined and au-

tomated, since this type of issue can be very off-putting to developers, decreasing adherence

before ever attempting the tool’s features.

Additionally, it is fair to say that the latest paper on WhylSon does not cover its latest de-

velopments. Without relaunching a paper that is up toWhylSon’s current status, it becomes

difficult for it to become visible and feasible to the community. Overall, the tool shows great

promise, but still requires polish on for it to become a standard on itself.

5.2 Extension

This section will describe the efforts and technical process leading up to the solution’s con-

ception, introduced in section 4.1.2. Reiterating on the core thematic of this dissertation,

discussed throughout the document, what this dissertation seeks to provide is not a verifi-

cation tool in itself, but in fulfilling to achieve a method in which smart contract verification

becomes more approachable to the common developer.

5.2.1 Prelude

Before getting more in-depth on the solution’s design, the author dedicated some time on

studying on Tezos’ smart contract languages. Due toMichelson’s nature, it is best if the solu-

36

tion were to work directly with one of it’s higher-level equivalent. At some point, an opportu-

nity to do practical smart contract development arose, by the form of a workshop, arranged

by nomadic labs 6. After acquiring hands-on experience with smart contract development in

Tezos, it was concluded that LIGOwould become the targeted language for working with the

solution, due to the author’s personal preference in its simplistic nature and shared similar-

ities/inspiration in OCaml, one’s language of mild comfort.

Though a wide variety of smart contract verification tools exist, as seen in section 3.3, the

fact remains that security/verification is not properly coupled into the smart contract de-

velopment workflow, else the blockchain exploits would have not been present. Most of the

literature’s future directions, discussed in section 3.4, point towards developing better tools

and their integration in the development cycle — the former is being worked on, with the

literature expanding every year with a repertoire of new tools, while the latter seems to be

neglected — answers to the smart contract security problem exist, but the delivery is not be-

ing properly done to the smart contract development community.

Therefore, solution’s approach sprouted from the thought of:

How do I make existing verification tools more accessible to developers? Addi-

tionally, why is adoption of these tools difficult?

Upon reflecting on the matter, the pieces started to fit naturally. The question is not simply

directed at them, developers, but also at oneself. For some time, answers were sought out

on the outside, when all it required was to look inwards — the problem had to be faced from

the common developer’s perspective, that is, the author himself — the design of the solution

were to become something that the author would find truly useful and something he would

use in the future, were he to work in smart contract development area.

From personal experience, Visual Studio Code editor has been a reliable workbench for sev-

eral years, akin to a table large enough to fit all the tools one requires and many more. The

aforementioned workshop participation incited a search for Tezos extensions in the tool’s

marketplace, which revealed positive — LIGO has its own extension that greatly improves

developers’ experience in this platform — however, there were no existing security or verifi-

cation related tools. That is to say, a Tezos smart contract security related extension has yet

to released on Visual Studio Code, which means this dissertation presents a novel feature for

Tezos smart contract developers that use this platform.

5.2.2 Design

The foundation for this extension lies in the interactions between a LIGO source file

and itsMichelson counterpart. A large section of the code is present in order tomaintain

a unidirectional cohesion from the source to the compilation, but also for this to remain an

entirely optional feature.

The inspiration for this relationship lies in the critically acclaimed godbolt 7 online compiler

and Markdown extension in Visual Studio Code. These tools take advantage of the user hav-
6https://research-development.nomadic-labs.com/training.html
7https://godbolt.org

37

https://research-development.nomadic-labs.com/training.html
https://godbolt.org

ing visibility of both a source file and a compiled file, where changes done in the source are

reflected on the compiled counterpart. Though, this change is not always immediate — the

online compiler triggers compilation after no changes are detected on the source file within a

specified amount of time, normally between 0.5s, while in Markdown’s case, its engine pro-

cesses the raw content immediately.

This feature allows users to have a glass window over the compiler’s work, making it an in-

teresting feature for those who are seeking to improve their program’s efficiency, for the

former, or to see formattedMarkdown, for the latter. Figure 5.4 presents the appearance of

both aforementioned tools.

Figure 5.4: Design of godbolt online compiler andMarkdown extension, respectively.

The extension’s appearance has now reliable references, but there is still more substance

under the hood of these tools that needs to be adapted to this dissertation’s solution. Doubts

and issues will start to appear as implementation advances, however, for this document, not

every implementation detail will be documented. For the entirety of the implementation, it

is used the Visual Studio Code API using TypeScript as its language. The following points

are the relevant implementation details.

1. Automated Compilation— Automation of LIGO source file compilation;

2. WorkspaceSpecificExtensionFolder—Implement data persistency across project

workspaces;

38

3. Michelson View — Show the compiledMichelson of the focused LIGO file, changes

in second are reflected in the first;

4. WhylSon Annotation Snippets – Small code templates for potentially reusable

code, these snippets will semi-automate the input of verification conditions, though

the user will require to specify values and/or formulas;

5. LaunchingWhylSon—Launch a detachedWhylSon process in which contracts can

be submitted to formal verification using why3-ide.

5.2.2.1 Automated Compilation

The first highlighted feature is automated compilation. It is a feature of extreme importance

due to the fact that the compilation of LIGO source files would always require the input of

more than the file — the file itself, and an entrypoint — specifying the latter every time one

were to compile the source would severely deteriorate the experience of the developer, mean-

ing, there is most definitely an optimization to be made along this path.

Referencing the documentation from the LIGO compiler:

ligo compile contract SOURCE_FILE

Compiles a contract to Michelson code. It expects a source file and an entrypoint

function that has the type of a contract:

parameter ∗ storage → operationslist ∗ storage.

Although not shown, this command can also accept numerous other compilation flags, also,

the entrypoint argument is not present in the command. It is implied that, when not speci-

fied, the entrypoint will be “main”, which has become the standard for the language. How-

ever, anyone can still change their entrypoint name, as long as it conforms to the contract

type.

Such task can be automated with relative ease, however, developers might feel a need to

change their entrypoint name and modify other additional flags. This becomes an issue, for

with this command alone there is no flexibility. This was one of the motivations for adding

some data persistency to the extension’s context.

5.2.2.2 Workspace Specific Extension Folder

The workspace specific folder is the manner in which the extension acquires persistency on

contract metadata and theMichelson contracts themselves, after they are successfully com-

piled. A plausible file structure for a LIGO project using this extension could be as shown in

figure 5.5.

To better understand the workspace specific folder, it is best to dissect the example.

• .whylson — This is the folder that is specific to the extension, automatically gener-

ated in the workspace root of the project once the extension is activated. There are

two entities present, a directory for hosting the compiled contracts and a file. The

39

Figure 5.5: Plausible LIGO project using proposed solution.

contracts.json file is a JavaScript Object Notation (JSON) format file that con-

tains metadata on every unique contract that has been at least successfully compiled

once through the extension. Code fragment 5.4 presents the type of objects that are

within the file (in TypeScript notation). The file is considered as a list of objects of this

type.

type ContractEntry = {
title: string, // Short, identifiable title for smart contract
source: string, // Absolute path for LIGO source file
onPath: string, // Absolute path for compiled Michelson file
entrypoint: string // Specified entrypoint for contract compilation
flags: string[] // Additional flags array

}

Listing 5.4: Structure of an entry in contracts.json file

Through this entry, all the information is needed to compile a LIGO source file, while

at the same time granting persistency and flexibility to the compilation, since its read-

ability allows the user to modify any entry as they see fit. However, such is not wholly

recommended, as there are flags that might not work as intended with the extension,

such as the output flag.

The subfolder bin-contracts is simply where the compiled contracts are being held.

Through this folder, they are programmatically fetched for either presentation as a

read-only document, or for launching a WhylSon session with.

• src — This folder is dedicated to hosting LIGO source files. Project dependent, file

hierarchy within should not influence extension;

• whylson — A local installation of the WhylSon tool. Although the tool uses the opam

package manager, it is yet to be added as one. It provides some of the contents that are

40

required to launch the tool. Folder should not be manually modified.

The extension specific folder is crucial for the extension to maintain cohesion, meaning if it

is ever manually removed, some problems might ensue. In case of remaking or just deleting

specific sections of the folder, the extension provides commands either to remake the entire

folder, resetting all contents, or even remove specific contracts from the contract entry file.

5.2.2.3 Michelson View

This feature is a centerpiece for the extension, it is what allows it to resemble the tools of

reference. Tezos smart contracts require every optimization possible for a production envi-

ronment, since it not being optimized may very easily sway the economic aspect of an entire

organization or entity. Thus, the LIGO-Michelson Dual-View becomes specially impor-

tant for developers who are interested in keeping their smart contracts optimized by always

having theirMichelson contract visible, updating in real time to the response of changes in

the respective LIGO source file they are developing on. Figure 5.6 illustrates the design for

the Dual-View (due to the nature of the expositionmedium, it becomes impossible to feature

the dynamism of real-time file updates).

Figure 5.6: Simple example of LIGO-Michelson Dual-View.

However, before this viewmakes its entrance, theMichelson counterpart of the focusedLIGO

file must exist in the bin-contracts folder, otherwise, a first compilation process is initiated

that must be result in a successful compilation. Only then, will the Dual-View become avail-

able to the LIGO source file in question.

This aspect of the extension is possible due to the virtual document API — the Michelson

file located on the right tab in figure 5.6, is not exactly a file located in a physical medium,

but an entity in memory. A feature for these entities is that their content cannot be manu-

ally changed by the user, making it a read-only document. Content can only be changed

through the usage of the API, exactly what was required in order to maintain the one-way

relationship from LIGO toMichelson. After all, if changes were to be made in the latter, they

41

would either be rather difficult to edit on the LIGO source, or the modified content would

simply be overwritten by the next compilation of the former.

Early prototyping for this feature used the conventional file through the file system API,

which caused optimization concerns due to an overhead of Input & Output (IO) operations

on disk. In other words, every LIGO compilation resulted in the creation of a new file in the

bin-contracts folder, overwriting existing ones, and consequently read and displayed on

screen. The virtual document API optimized this process by allowing content to be directly

loaded into memory — when the output location is not specified in the compilation com-

mand, the result is found within the stdout channel, which can be read as a string — this

way, compilation does not result in writing a file on disk, but to simply result in a string
which can be directly loaded onto the virtual document. This adjustment resulted in very

minimal usage of IO operations for the Dual-View feature.

The rate at which the Michelson material is displayed on screen is another element at this

stage of development. Through trial and error, the godbolt’s approach worked better, as

compilation and consequent display could not keep up with the normal rate of document

change (keystrokes). In that regard, a compilation throttling mechanic was implemented,

in which the compile & display process is only triggered after the extension does not detect

changes within the LIGO source after a specified time interval has elapsed. The threshold

value can be changed in through the extension’s configuration settings, but its base value is

set to 0.75 seconds.

Another neat detail that the Dual-View provides is showing compilation errors. Normally,

errors are shown in others UI elements within the code editor, but this dynamism allows to

users to always be on the lookout for their code. An example is shown on figure 5.7.

Figure 5.7: Dual-View showing a compilation error.

Lastly, the Dual-View feature is entirely optional. For example, if the LIGO source file is not

supposed to have an entrypoint, that is, the file is not supposed to behave as a stand-alone

contract, but as amodule that will is included in other LIGO files instead, then all it takes is to

ignore the activation process of the Dual-View. Additionally, even if the LIGO source file is a

contract that has already been compiled through the extension’s functionalities, developers

can also ignore the automatic compilation feature through the extension’s settings.

42

5.2.2.4 WhylSon Annotation Snippets

Snippets are a form of semi-automatic insertion of code fragments, often used when the

structure of the fragment in question is routinely made use of. A good example, for most

conventional languages, are snippets for control statements and function definitions — in-

stead of manually typing the entire sequence, snippets generate the structure, leaving a cur-

sor placeholder with tab-cycling for the sections in the fragment that require the user’s input.

In order to facilitate the user’s experience with inserting WhylSon artifacts in their con-

tracts, snippets were implemented. For the remaining of this solution, the values that are to

be worked with on snippets are the numerical (int, nat, tez) and string-based (string,
address) values. Figure 5.8 presents all the available snippets. In Visual Studio Code, to in-

voke the snippet context, it is normally typed Ctrl + Space (in Windows/Linux), followed

by typing a character that matches the snippet prefix.

Figure 5.8: Snippets available with the extension.

However, one important issue is brought up with this feature — how do these verification ar-

tifacts carry over toMichelson? — suffice to say, this matter should be tended to by the LIGO

compiler. The manner in which these snippets function is through LIGO’s attributes, in this

case specifically, comment attributes. These constructs signal the compiler that whatever is

within the delimited quotationmarks are to be inserted verbatim in the generatedMichelson.

Every WhylSon annotation snippet comes confined within the LIGO comment attribute.

Though, these comments have to follow a specific pattern according to the next or previ-

ous let expression. Code fragments 5.5 and 5.6 are the same contract, the first is the LIGO

implementation, the second its compiled output. Both exemplify the usage of these snippets

and WhylSon annotations, and how these are inserted in contract code.

43

// Compute a * (2b + 3a)
type parameter = int * int
type storage = int
type _return = (operation list) * storage
let main (p,s : paramter * storage) : _return =

let (a, b) = p in
[@comment:"@ 0 <= int <= 100"]
let ns = a * (2*b + 3*a) in
([] : operation list), s+ns

Listing 5.5: WhylSon annotation snippet example.

{ parameter (pair int int) ;
storage int ;
code { UNPAIR ;

UNPAIR ;
DUP ;
PUSH int 3 ;
MUL ;
DIG 2 ;
PUSH int 2 ;
MUL ;
ADD ;
SWAP ;
MUL ;
@ 0 <= int < 100
ADD ;
NIL operation ;
PAIR } }

Listing 5.6: WhylSon annotations in

Michelson.

The detail here lies in that the LIGO comment attribute is being placed above the

“let ns = ..." expression, while on the right, theWhylSonannotation is inserted right

after the bound expression to the identifier ns is computed inMichelson. Having the an-

notation inserted right after the expression is formalizedmakes it so that, during analysis, the

top of the stack contains the value bound to the ns expression, grantingWhylSon a context

advantage when it comes to verifying the specified property.

Although this is the case for these annotations, there are two special cases in which they are

supposed to be inserted before the expression, rather, the entrypoint function. In LIGO, the

requires{} and ensures{} artifacts are inserted above the entrypoint function, in Michel-

son, the these should be outside the contract code section. An example of these artifacts’

usage can be seen in code fragments 5.7 and5.8, for LIGO andMichelson, respectively.

// Compute a * (2b + 3a)
type parameter = int * int
type storage = int
type _return = (operation list) * storage
[@comment:"@ requires{a > 0 /\ b > 0}"]
[@comment:"@ ensures{result >= 0}"]
let main (p,s : paramter * storage) : _return =

let (a, b) = p in
[@comment:"@ 0 <= int <= 100"]
let ns = a * (2*b + 3*a) in
([] : operation list), s+ns

Listing 5.7: WhylSon annotation snippet for contract with pre

and post conditions.

@ requires{a > 0 /\ b > 0}
@ ensures{result >= 0}
{ parameter (pair int int) ;

storage int ;
code { UNPAIR ;

...
MUL ;
@ 0 <= int < 100
ADD ;
NIL operation ;
PAIR } }

Listing 5.8: WhylSon annotations in

Michelson with pre and post conditions.

This structure shares similarities with the Why3 tool, where pre- and post-conditions are

44

also specified outside the code itself.

The entire set of snippets provided by the extension can be seen on figure 5.8, but the next

points summarize their usage.

• Comparative binary operators — ”(In)Equals”, ”greater/lesser (equals) than”, and a

range operator that enclaves a numeric value between a specified lower and higher

bounds;

• Pre- / Post-conditions — requires{} and ensures{};

• Variant/Invariant specification — variant and invariant.

5.2.2.5 LaunchingWhylSon

Having a formally specified contract,WhylSon now requires delivering upon its functionality

— having a specifiedMichelson contract, it can formally verify its properties by confronting

the specifications with automatic provers. Unfortunately, the entire extension experience

cannot be present solely within the Visual Studio Code editor, sinceWhylSon does not work

without the graphical interface.

With an installation of WhylSon in the root of the LIGO project, a WhylSon proof session

can be started with the following command:

why3 ide -L ./whylson/lib [path_to_michelson]

Where path_to_michelson is automatically filled with the absolute path to one of the files

contained within the bin-contracts folder. The extension provides an existing command in

the instance context, requiring only for a LIGO source file to be focused. Once the command

is executed, the extension compiles the source, creating a new file in the bin-contracts, and
launchingWhylSon with said contract.

5.2.3 Development Loop

Now that the entire extension has been detailed, this section will propose how the develop-

ment loop with this extension installed can be approached. Assuming Visual Studio Code,

WhylSon, and LIGO have a working installation on themachine... additionally, theWhylSon

installation must remain located on the project’s root.

1. Install the extension through the marketplace;

2. Open or create a LIGO development workspace;

3. Open a LIGO source file. The extension begins its activation routine once it detects that

a LIGO source file has been opened, generating a .whylson folder with its respective

contents if not already created at the project’s root;

45

4. Implementation loop — Program in LIGO to the heart’s content by either or not using

the features provided by the extension — open Dual-View through an icon on the UI or

by the command in the context and use snippets to help insertWhylSon specification

artifacts;

5. Verification loop — Once comfortable enough with the specifications, start verifying

withWhylSon— a graphical interface will be presented, with theMichelson program.

To verify a program, an automatic prover must first be selected, normally one of Alt-

Ergo, CVC4, and Z3. The prover will then confront the specifications that were inserted

in LIGO through the snippets or not, which were translated into the Michelson com-

ments, and are now readable by the tool afterWhylSon converted the contract into an

equivalentWhyML program.

After some time, the results of the verification will be presented in the why3 ide inter-

face, showing which specifications every of the specification’s status — passed or failed

— the latter being provided with counter-examples. Once the session is over, the im-

plementation loop may resume, where one would start adapting the LIGO source file

according to the feedback provided by the verification tool.

Figure 5.9 condenses the workflow into an upgraded version of what is seen in figure 4.1, that

is supposed to describe the architecture and their relationships.

5.2.4 Features & Functionality

Theprevious section provided anarrative approach in extension’s innerworkings anddesign.

This section will describe what is provided by the extension in bullet point fashion.

The extension’s main features are:

• On-the-fly compilation of LIGO files through customizable settings in contracts.json;

• Dual-View of LIGO andMichelson files, changes to LIGO files can be reflected in this

panel, as well as LIGO compiler errors when compilation is not successful;

• Snippets forWhylSon specifications in LIGO files;

• Formal verification ofMichelson smart contracts throughWhylSon.

For the user to experience the full functionality of this extension, the following is required:

• Visual Studio Code instance of version 1.67.0 and above, opened in a workspace envi-

ronment;

• LIGO compiler present in the system’s PATH;

• An installation ofWhylSon at the root of the LIGO project;

• ligo-vscode extension installed between versions 0.4.16-0.4.18.

46

Figure 5.9: Condensed extension workflow through activity diagram.

The extension adds the following commands to the Visual Studio Code instance context:

• Save Contract — Attempts to make an entry for the current LIGO contract in

.whylson/contracts.json. Making an entry requires a successful compilation of the

LIGO document;

• StartWhylson Session—Starts a new process in whichWhylson runs a sessionwith the

Michelson file, found within .whylson/contracts/, of the active LIGO file on screen;

• Open Michelson View — Opens Michelson file of respective LIGO document. If the

contract is not found within .whylson/contracts/, attempts to create a new entry for

it, opening the view if successful. This command is also available through an icon on

the editor title UI;

• Erase Contract Data — Erases the contract data for the active LIGO document in

.whylson/contracts/ and .whylson/contracts.json;

47

• Remake .whylson Folder — Erases all contents of .whylson/ folder.

The next points are relative to the possible configurations the user canmake in the extension

customization section in their Visual Studio Code instance.

• autoSave — Toggle autosave feature. If on, and Michelson view of respective

LIGO file is visible, the latter is automatically saved after the specified time interval

in autoSaveThreshold, triggering compilation;

• autoSaveThreshold — Throttled time interval for auto saving;

• onSaveBackgroundCompilation — Attempts to compile LIGO document even if view

is not visible;

• highlightAnnotations —Highlight whylson annotated lines in LIGO documents;

• showOutputMessages—Have extension occasionally sendmessages on “Whylson-Connector”

output channel.

5.2.5 Issues

The prior sections described and exhibited the potential of the extension, however, just like

with any piece of software, there are some issues that refrain the proposed solution to per-

form as expected. The next items include main issues that are present, until the time of

writing, in the proposed solution:

• Comment attribute is still undergoing development with the LIGO team, though the

concept and mechanic has already been arranged and set in stone through an open

issue in LIGO’s gitlab repository 8;

• Though the verification features inWhylSon seem promising, it cannot be understated

that the tool’s lack of redistribution is holding back its usability by Tezos’ smart contract

development community.

For once, the installation process is not linear, requiring a multitude of dependencies

and workaround fixes to get the tool working. It is extremely unlikely that a developer

sticks and pours time into learning this tool when the first hurdle it is its installation

process.

Secondly, the tool not being able to run in batch mode, unlikeWhy3. A graphical win-

dow retracts from the extension’s experience, specially when there is no feasible way

for communication between both why3 ide and the Visual Studio Code instance. Be-

ing able to run in batch mode, or through API calls to Why3, would allow the entire

verification loop and other process to be confined within the Visual Studio Code, not

detracting from the development space and workflow.

8https://gitlab.com/ligolang/ligo/-/issues/1447

48

https://gitlab.com/ligolang/ligo/-/issues/1447

• Some of the extension’s configuration that have been thought of are still yet to be prop-

erly implementation, namely highlighting and quick jump betweenWhylSon annota-

tions, personally modifying the elapsed threshold for compilation to be triggered, and

enabling/disabling logging (though the logging console is not intrusive).

5.3 Conclusion

This chapter was focused on dissecting the entire process that led to the proposed solution’s

final implementation. There was a thorough discussion of the motives, inspirations, details,

features, and issues. Not every implementation detail was mentioned, since the code in itself

is of little relevance for the exploration.

49

50

Chapter 6

Practicality Assessment

This section is dedicated to analysing the practicality of the proposed solution, discussed

in the previous chapter. Several made up examples will hopefully shed some light on the

usage, benefits, and downsides of using the extension when developing in LIGO. Unfortu-

nately, for the examples shown, none can be reproduced through extension usage — it would

a difference in the hypothesis and thoughts shown if theLIGO annotations could carry over to

compiledMichelson, and also ifWhylSon could parse newly introduced verification artifacts,

consequently verifying them.

It should be noted that the values chosen for the snippets are the simplest in both targeted

languages — int, nat, tez, string, address — numerical values especially, are by far

the most used for simple applications, while also being the basis for financial applications.

Composite and other complex types, such as pair, list etc., do not make an appearance

for this iteration of the extension, but they can still theoretically be used by WhylSon tool

standalone.

6.1 Intra-Michelson Value Check

In the context of this work, an intra-michelson value check is the functionality of WhylSon

asserting that the value in question is the one specified for the specificMichelson stack state.

The provided snippets, combined with the LIGO comment attribute, are able to insert such

annotations at the precise stack location where that value is required to be checked. Code

fragment 6.1 shows the complete code of a contract that at the end of execution sends balance

in its storage. Through this example, there is some room forWhylSon assertions to grant the

program some reliability.

If this were in Visual Studio Code, the highlight feature on theWhylSon annotations would

be extremely useful in order to spot them quickly amidst code.

1 type parameter = tez
2 type storage = unit
3 type _return = (operation list) * storage
4

5 let div_tez_decimal (a,b : tez * tez) =
6 let (q,r) = Option.unopt (ediv a b) in
7 1tez*q + r
8

9 (* Obtain p% of b in tez *)
10 let percentage_of_balance (b,p : tez * tez) : tez =
11 [@comment: "@ 0.01 <= tez <= 1"]
12 let p : tez = p in

51

13 (* balance * 0.01 -> balance / (1/[0.01~1]) *)
14 if p > 1tez || p < 0.01tez then
15 (failwith "Invalid percentage" : tez)
16 else
17 let inversed_p : tez = div_tez_decimal (1tez, p) in
18 div_tez_decimal (b, inversed_p)
19

20 [@comment: "@ requires{balance >= 0 /\ balance <= 10000} "]
21 let main (p,_ : parameter * storage) : _return =
22

23 (* Extract p% of current contract *)
24 [@comment: "@ 0 <= tez <= 10000"]
25 let value : tez = percentage_of_balance (Tezos.get_balance (), p) in
26

27 [@comment: "@ tez >= 0"]
28 let bal : tez = (Tezos.get_balance ()) - value in
29

30 (* Send the p% from this contract to the current transaction initiator *)
31 let op : operation = Tezos.transaction () value (Tezos.get_sender ()) in
32 ([op], ())

Listing 6.1: UsingWhylSon annotations for simple value checks

The program is quite lengthy, but it wants to portray some cases in which the annotations

might prove useful or hard throughWhylSon alone. The next items describe the usage and

possible thought behind the annotations.

• Line 11 — One issue that hasn’t been addressed, is having access to a function’s argu-

ments in verification context. The fact that the intra-michelson annotations attach to

the next let binding, makes it impossible to assert function argument values directly.

However, one thing that may be done is rebinding (might require paying attention to

variable shadowing) the argument immediately after the function declaration in a let
binding. As a workaround it might work, but it is not experimented with. This anno-

tation will attempt to check if the input value for the function is between the specified

boundaries;

• Line 20—This pre-condition is aWhylSon artifact to guarantee that whatever things it

is trying to verify will be under the assumption that the contract’s balance can only be

between 0 and 10000. This kind of pre-conditionmight further help the intra-michelson

annotations;

• Line 24— The percentage_of_balance function fetches the tez corresponding to the

percentage encoded for what is seemingly a decimal number — such type is not native

in Tezos, but they can be emulated through the tez type. Through the pre-condition it

assumes the input will stay within the specified range, meaning, given a percentage of

the balance, should return also a value from within the pre-conditioned range;

• Line 27 — A simple check if the tez that going to be extracted through the operation,

formalized in line 31, is non-negative. Since line 28 attempts to subtract an amount of

52

tez from the contract’s balance, it would be wise to prevent the contract from failing

its execution. Most of the time, making a stand-alone check like this might not prove

sufficient for WhylSon, hence it might be required a set of good pre- /post- conditions

artifacts to help such situations.

6.2 Deductive Verification

This next example is a classic for formal verification. We attempt to addWhylSon pre- /post-

conditions in order forWhylSon to fully verify the program. First off, these annotations are

generally harder to use than intra-michelson annotations, since it requires for the user to

have some knowledge in deductive verification, which is a barrier in itself, but not too diffi-

cult for simple formulas. Code fragment 6.2 presents a LIGO implementation for a factorial

program.

1 type parameter = nat
2 type storage = nat
3 type _return = (operation list) * storage
4

5 [@comment: "@ requires {p >= 0n}"]
6 [@comment: "@ ensures {result = p!}"]
7 let main (p, _ : parameter * storage) : _return =
8 let rec fact (n, acc : nat * nat) : nat =
9 if n <= 1n then acc else fact (abs (n-1), n*acc)
10 in
11 [@comment: "@ nat >= 1]
12 let r : nat = fact (p, 1n) in
13 ([], r)

Listing 6.2: UsingWhylSon annotations for deductive verification - factorial.

Lines 5 and 6 show a correct usage ofWhylSon pre- /post- condition artifacts — this program

functions should function for every natural input, and given one, will always output a natu-

ral above 1 — after all, the lowest possible input would result in 1, with higher inputs being

consecutively higher. While line 11 shows a possibly useless usage of an intra-michelson ver-

ification check, since the initial assertionsmight be enough to completely verify the program.

Figure 5.3 shows a factorial implementation inMichelson, however, it was manually imple-

mented on a not recent version of Michelson, not affected by the compiler’s optimizations

compared to when obtaining through LIGO compilation. It would be interesting comparing

both performance and verification assessment in why3-ide, since both programs represent

the same computation, but with different implementation steps associated with it.

Similarly, code fragment 6.3 shows the implementation of a program that sums the elements

of a list of natural numbers, storing it after execution, which now seems to be leaning towards

abusing the current capabilities of the verification tool, however, ideally, this kind of imple-

mentation and specifications should work.

1 type parameter = nat list

53

2 type storage = nat
3 type _return = (operation list) * storage
4

5 [@comment: "@ requires {p.length >= 0}"]
6 [@comment: "@ ensures {result = List.sum p}"]
7 let main (p,s : parameter * storage) : _return =
8 let sum (acc, i : nat * nat) : nat = acc + i in
9 [@comment: "res >= 0"]
10 let res = List.fold_left sum 0 p in
11 ([], s+res)

Listing 6.3: UsingWhylSon annotations for deductive verification - sum list.

Since the program deals exclusively with type nat, it should be easy enough for the tool to

verify that any sum of the list result in an always non-negative number, that is, another nat-

ural.

6.3 Conclusion

Due to the issues presented in section 5.2.5, it was not possible to completely show the full

potential of the extension. It is incredibly defeating to have an “incomplete puzzle” at the

time of writing. Naught can be done other than imagining the remaining piece’s effects and

behaviors, without fully tangible results. The entire workflow is laid out with the assumption

of these features, yet, what is shown in this section are partial hypothesis on how the men-

tioned features may fit together into the final, “finished puzzle”. Nonetheless, the results

shown are encouraging — revisiting the extension with all pieces, as future work, would be

interesting to prove the hypothesis made in this section.

54

Chapter 7

Final Remarks

7.1 Summary

This dissertation proposal inlays the foundation of this soon to be graduation dissertation.

Chapter 1 relays how this problem came to be, its severity, and general guidelines for min-

imizing it. Chapter 2 introduces the general knowledge on blockchain, smart contract and

the Tezos platform. Chapter 3 presents an analysis of current state-of-the-art research lit-

erature on this dissertation’s area. Chapter 4 develops on the problem statement, solution,

and the working plan for the solution proposed. Chapter 5 details the entirety of the im-

plementation process, starting by introducing the tools and technologies used, followed by

the implementation process of the solution as well its pertinent points and issues. Chapter

6 presents practical approaches in which the proposed solution can be of help in smart con-

tract development on Tezos. Lastly, chapter 7 presents conclusive remarks and future work

for this dissertation.

7.1.1 Remarks

Blockchain technology is a phenomenon that has attracted many actors into a scene with

incredible opportunity as well as steep landslides. Although it has passed its infancy, it is

still a relatively new area that requires avid shaping in the security department. Such is a

phenomenon still present in traditional software, where security is often an afterthought, not

being taken into consideration in its earliest stages of development, however, circumstances

in blockchain platforms revealed the severity of incidents when lackluster security measures

are evident.

On one side it has been shown the very compelling, appetizing aspects of participating in

the blockchain market, however, on the other, a small misstep is enough to jeopardize all

of what has been taken for granted — smart contracts should only and only be able to fulfill

its specifications, expecting no unknown behaviors — such should be the philosophy when

approaching the act of smart contract development and consequent deployment, especially

in financial sectors where losses are potentially more severe.

To that end, smart contract security countermeasures were devised, andmany tools based on

such approaches were purposely developed. Though, what was found within the literature

was an over commitment and unorganized effort in solving the problem —many are the se-

curity tools developed, and while most are effective, the heterogeneity of solutions made the

overall scene convoluted and confusing not only for newcomers to smart contract develop-

ment but also the average non-expert in security developer. Not only that, but there has been

little to no attention to the development of tools that bridge these security tools themselves

55

with the actual development workspaces and pipelines, making the integration of security

tedious and unfeasible.

Thus, an opportunity was seen in attempting to pave a new way of confronting security inte-

gration with development, which is the main theme of this dissertation.

The proposed solution provides what seems to be a novel way to working with a smart con-

tract verification tool — the development of a plug-in tool in one of the most used devel-

opment workspaces worldwide. Through this solution, the verification tool itself will gain

visibility, while also granting various benefits for smart contract developers who decide to

integrate the extension into their workflow. One of such benefits is the ability to work di-

rectly with a high-level language for Tezos smart contracts that was otherwise impossible for

the security tool in question. This change may also increase adoption by developers, while

also boosting possible inclusion of businessman and stakeholder in directly participating in

the establishing business properties in their smart contracts due to increased readability.

Hopefully, this unorthodox method inspires blockchain communities to also approach secu-

rity in this manner, since it is a small yet significant security optimization through the simple

fact of tools having better integration, visibility, and accessibility.

7.2 FutureWork

The implemented solution contributes with something unique among the Tezos smart con-

tract development community, though, like all software, underlying issues are deducting

from the expected outcome.

• The extension is merely an extension. That is, it has limited functionality by itself. It is

supposed to interact flawlessly with concerned tools. For that, the suggested is for the

dependencies to be streamlined and properly worked on with the parties involved;

• It relies on a feature for the development language that is still under development as

of time of writing. This imposed a great obstacle in properly testing one of its main

functionalities;

• The verification tool is also undergoing internal restructuring, making it additionally

troublesome to add a completely new mechanics to it. One being the ability to read

intra-code verification artifacts, and the other being the only option to use the verifica-

tion tool through an external window. For the first mechanic, users still require some

knowledge on deductive program verification, imposing an entry barrier that was not

expected at first. Secondly, the entire verification experience should have been con-

fined within the development workspace in order to not deter from the experience;

• There are some features in the extension that were thought of, but not implemented.

Though they are not fundamental, some are still a quality of life improvement that

would positively affect the extension’s experience.

In that regard, as future work, this dissertation should be revisited at a time when the issues

stated can be properly confronted by all parties involved.

56

Bibliography

[1] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain Tech-

nology: Architecture, Consensus, and Future Trends,” in 2017 IEEE International

Congress on Big Data (BigData Congress), Jun. 2017, pp. 557–564. 5

[2] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain Technology Overview,” Tech.

Rep., Oct. 2018, arXiv:1906.11078 [cs]. [Online]. Available: http://arxiv.org/abs/

1906.11078 5

[3] V. Allombert, M. Bourgoin, and J. Tesson, “Introduction to the Tezos Blockchain,” in

2019 International Conference on High Performance Computing Simulation (HPCS),

Jul. 2019, pp. 1–10. 5

[4] X. Yi, D. Wu, L. Jiang, K. Zhang, andW. Zhang, “Diving Into Blockchain’s Weaknesses:

An Empirical Study of Blockchain System Vulnerabilities,” p. 23, 2021. 5

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptography Mailing

list at https://metzdowd.com, 03 2009. 6

[6] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger.” 8

[7] N. Szabo, “Smart contracts : Building blocks for digital markets,” 2018. 8

[8] B. Baby, A. Sunil, and N. Thomas, “A review analysis on smart contract vulnera-

bilities using blockchain.” [Online]. Available: https://www.ijsr.net/conf/ICIPR2021/

ICIPR2021_12.pdf 9

[9] L. M. Goodman, “Tezos : A self-amending crypto-ledger position paper,” 2014. 10

[10] M. Neuder, D. Moroz, R. Rao, and D. Parkes, Selfish Behavior in the Tezos Proof-of-

Stake Protocol. 10

[11] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts

(SoK),” in POST. 13

[12] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract security: A software

lifecycle perspective,” vol. 7, pp. 150 184–150202, conference Name: IEEE Access. 13,

16

[13] P. Praitheeshan, L. Pan, J. Yu, J. K. Liu, and R. Doss, “Security analysis methods on

ethereum smart contract vulnerabilities: A survey.” 13, 16

[14] N. F. Samreen and M. H. Alalfi, “A survey of security vulnerabilities in ethereum smart

contracts,” p. 10. 13, 16

[15] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks and protections,”

vol. 8, pp. 24 416–24427, conference Name: IEEE Access. 13, 16

57

http://arxiv.org/abs/1906.11078
http://arxiv.org/abs/1906.11078
https://www.ijsr.net/conf/ICIPR2021/ICIPR2021_12.pdf
https://www.ijsr.net/conf/ICIPR2021/ICIPR2021_12.pdf

[16] S. Kim and S. Ryu, “Analysis of blockchain smart contracts: Techniques and insights,”

pp. 65–73. 13, 20

[17] C. Benabbou and �. Gürcan, A Survey of Verification, Validation and Testing Solu-

tions for Smart Contracts. 13, 20

[18] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “ReGuard: Finding reentrancy

bugs in smart contracts,” in 2018 IEEE/ACM 40th International Conference on Soft-

ware Engineering: Companion (ICSE-Companion), pp. 65–68, ISSN: 2574-1934. 13

[19] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting existing smart

contracts against re-entrancy attacks.” [Online]. Available: http://arxiv.org/abs/1812.

05934 13

[20] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum

smart contracts,” in Proceedings of the 34th Annual Computer Security Applications

Conference, ser. ACSAC ’18. Association for Computing Machinery, pp. 664–676.

[Online]. Available: https://doi.org/10.1145/3274694.3274737 15

[21] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy, prodigal,

and suicidal contracts at scale.” 15

[22] I. Nikolic. Maian. Original-date: 2018-03-12T07:58:25Z. [Online]. Available: https:

//github.com/ivicanikolicsg/MAIAN 15

[23] A. Miller, Z. Cai, and S. Jha, “Smart contracts and opportunities for formal methods,”

in Leveraging Applications of Formal Methods, Verification and Validation. Indus-

trial Practice, ser. Lecture Notes in Computer Science, T. Margaria and B. Steffen, Eds.

Springer International Publishing, pp. 280–299. 16

[24] J. Liu and Z. Liu, “A survey on security verification of blockchain smart contracts,”

vol. 7, pp. 77 894–77 904. 16, 20

[25] M. Almakhour, L. Sliman, A. E. Samhat, and A. Mellouk, “Verification of smart

contracts: A survey,” vol. 67, p. 101227. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S1574119220300821 16, 17

[26] K. Song, N. Matulevicius, E. B. d. L. Filho, and L. C. Cordeiro, “ESBMC-solidity:

An SMT-based model checker for solidity smart contracts.” [Online]. Available:

http://arxiv.org/abs/2111.13117 21

[27] S. Linoy, S. Ray, andN. Stakhanova, “EtherProv: Provenance-aware detection, analysis,

andmitigation of ethereum smart contract security issues,” in 2021 IEEE International

Conference on Blockchain (Blockchain), pp. 1–10. 21

[28] I. Grishchenko, M. Maffei, and C. Schneidewind, “EtherTrust: Sound static analysis of

ethereum bytecode.” 21

58

http://arxiv.org/abs/1812.05934
http://arxiv.org/abs/1812.05934
https://doi.org/10.1145/3274694.3274737
https://github.com/ivicanikolicsg/MAIAN
https://github.com/ivicanikolicsg/MAIAN
https://www.sciencedirect.com/science/article/pii/S1574119220300821
https://www.sciencedirect.com/science/article/pii/S1574119220300821
http://arxiv.org/abs/2111.13117

[29] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan,

C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin,

“Dependent types and multi-monadic effects in f*,” in Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser.

POPL ’16. Association for Computing Machinery, pp. 256–270. [Online]. Available:

https://doi.org/10.1145/2837614.2837655 21

[30] Z. Yang and H. Lei, “FEther: An extensible definitional interpreter for smart-contract

verifications in coq,” vol. 7, pp. 37 770–37 791, conference Name: IEEE Access. 21

[31] The coq proof assistant. [Online]. Available: https://coq.inria.fr 21, 22

[32] A. Mavridou and A. Laszka, “Designing secure ethereum smart contracts: A finite state

machine based approach.” [Online]. Available: http://arxiv.org/abs/1711.09327 21

[33] ——, “Tool demonstration: FSolidM for designing secure ethereum smart contracts,” in

Principles of Security and Trust, ser. Lecture Notes in Computer Science, L. Bauer and

R. Küsters, Eds. Springer International Publishing, pp. 270–277. 21

[34] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying ethereum smart

contract bytecode in isabelle/HOL,” pp. 66–77. 21

[35] E.Hildenbrandt,M. Saxena, N.Rodrigues, X. Zhu, P.Daian, D.Guth, B.Moore, D. Park,

Y. Zhang, A. Stefanescu, and G. Rosu, “KEVM: A complete formal semantics of the

ethereum virtual machine,” in 2018 IEEE 31st Computer Security Foundations Sym-

posium (CSF), pp. 204–217, ISSN: 2374-8303. 21

[36] M.Mossberg, F.Manzano, E.Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and

A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for binaries

and smart contracts,” in2019 34th IEEE/ACMInternational Conference onAutomated

Software Engineering (ASE), pp. 1186–1189, ISSN: 2643-1572. 21

[37] MythX: Smart contract security service for ethereum. [Online]. Available: https:

//mythx.io/about/,lastaccess26/05/2021 21

[38] Mythril. Original-date: 2017-09-18T04:14:20Z. [Online]. Available: https://github.

com/ConsenSys/mythril 21

[39] P. Ventuzelo. Octopus. Original-date: 2018-06-13T15:06:12Z. [Online]. Available:

https://github.com/pventuzelo/octopus 21

[40] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts

smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’16. Association for Computing Machinery, pp.

254–269. [Online]. Available: https://doi.org/10.1145/2976749.2978309 21

[41] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,

“Securify: Practical security analysis of smart contracts.” [Online]. Available:

http://arxiv.org/abs/1806.01143 21

59

https://doi.org/10.1145/2837614.2837655
https://coq.inria.fr
http://arxiv.org/abs/1711.09327
https://mythx.io/about/,lastaccess26/05/2021
https://mythx.io/about/,lastaccess26/05/2021
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/pventuzelo/octopus
https://doi.org/10.1145/2976749.2978309
http://arxiv.org/abs/1806.01143

[42] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for smart con-

tracts,” in 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Soft-

ware Engineering for Blockchain (WETSEB), pp. 8–15. 21

[43] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,

and Y. Alexandrov, “SmartCheck: static analysis of ethereum smart contracts,” in

Proceedings of the 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain, ser.WETSEB ’18. Association for ComputingMachinery,

pp. 9–16. [Online]. Available: https://doi.org/10.1145/3194113.3194115 21

[44] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu, G. Chen, Z. He, Y. Tang,

X. Lin, and X. Zhang, “SODA: A generic online detection framework for smart con-

tracts.” 21

[45] P. Antonino and A. W. Roscoe, “Formalising and verifying smart contracts with solidi-

fier: a bounded model checker for solidity.” 21

[46] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, and

B. Scholz, “Vandal: A scalable security analysis framework for smart contracts.”

[Online]. Available: http://arxiv.org/abs/1809.03981 21

[47] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “VeriSolid: Correct-by-design

smart contracts for ethereum.” [Online]. Available: http://arxiv.org/abs/1901.01292

21

[48] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev,

“VerX: Safety verification of smart contracts,” in 2020 IEEE Symposium on

Security and Privacy (SP). IEEE, pp. 1661–1677. [Online]. Available: https:

//ieeexplore.ieee.org/document/9152791/ 21

[49] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing safety of smart con-

tracts,” in NDSS. 21

[50] B. Bernardo, R. Cauderlier, B. Pesin, and J. Tesson, “Albert, an intermediate smart-

contract language for the tezos blockchain,” in Financial Cryptography Workshops.

22

[51] Y. Nishida, H. Saito, R. Chen, A. Kawata, J. Furuse, K. Suenaga, and A. Igarashi,

“Helmholtz: A verifier for tezos smart contracts based on refinement types,” pp. 262–

280. 22

[52] B. Bernardo, R. Cauderlier, Z. Hu, B. Pesin, and J. Tesson, “Mi-cho-coq, a framework

for certifying tezos smart contracts.” [Online]. Available: http://arxiv.org/abs/1909.

08671 22

[53] J. S. Reis, P. Crocker, and S. M. de Sousa, “Tezla, an intermediate representation for

static analysis of michelson smart contracts.” [Online]. Available: http://arxiv.org/

abs/2005.11839 22

60

https://doi.org/10.1145/3194113.3194115
http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1901.01292
https://ieeexplore.ieee.org/document/9152791/
https://ieeexplore.ieee.org/document/9152791/
http://arxiv.org/abs/1909.08671
http://arxiv.org/abs/1909.08671
http://arxiv.org/abs/2005.11839
http://arxiv.org/abs/2005.11839

[54] L.Horta, J. Reis, S. Sousa, andM.Pereira, “A tool for provingmichelson smart contracts

in WHY3 *,” pp. 409–414. 22

[55] L. Horta, J. Reis, M. Pereira, and S. Sousa,WhylSon: Proving your Michelson Smart

Contracts in Why3. 22, 34

[56] Why3 - where programs meet provers. [Online]. Available: http://why3.lri.fr 22

[57] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable does not imply

exploited,” pp. 1325–1341. [Online]. Available: https://www.usenix.org/conference/

usenixsecurity21/presentation/perez 19

[58] X. Cao, J. Zhang, X. Wu, and B. Liu, “A survey on security in consensus

and smart contracts,” vol. 15, no. 2, pp. 1008–1028. [Online]. Available: https:

//doi.org/10.1007/s12083-021-01268-2 20

[59] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart contract formal

specification and verification,” vol. 54, no. 7, pp. 148:1–148:38. [Online]. Available:

https://doi.org/10.1145/3464421 20

61

http://why3.lri.fr
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://doi.org/10.1007/s12083-021-01268-2
https://doi.org/10.1007/s12083-021-01268-2
https://doi.org/10.1145/3464421

