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Abstract: Base45 encodes pairs of octets using 3 characters from an alphabet of 45 printable symbols.
Previous works showed the ability to hide payload data into encoded strings by exploiting the
unused configurations of the Base45 encoding. In this paper, we present Hide45, an algorithm for
hiding data into Base45 encoded strings that optimizes the embedding capacity, according to the
frequency distribution of the input data. Experimental tests show that an optimal assignment of bit
configurations to the most frequent pairs of octets allows to reach a payload capacity very close to
the theoretical capacity of the method, improving over a baseline assignment by up to 53%.

Keywords: Base45 printable encoding; data hiding; digital watermarking; optimal embedding

1. Introduction

Digital watermarking and steganography are part of the field of data hiding where
some piece of information is stored in digital objects for various purposes ranging from
simple information saving to copyright protection, from integrity protection or origin
authentication to covert communication [1]. The digital objects involved in data hiding
may be of any type, like images [2–4], audio files [5,6], movies [7–9], 3D models [10–12],
neural networks [13–16], and textual data [17–19].

In the field of data hiding in textual data, Ref. [20] proposes a method to embed
information into binary strings encoded in sequences built using a printable alphabet: there,
the authors focus on two encodings, namely Base45 [21] and Base85 [22], that have spare
configurations that can be used to save one bit of information. An improvement for the
Base45 encoding is presented in [23] where bits are reversibly embedded by exploiting the
most probable printable sequences depending on the type of binary data of the cover object.

In [24], several applications for the data hiding potentiality of those unused sequences
are suggested: for example, digital signatures, MACs, CRCs, and other security information.

In this work, the frequency distribution of the input binary sequences for a file type is
computed on a large data sample and used to optimize the number of bits embedded in
every printable sequence, thus improving the performance of the method described in [23].
Note that the proposed approach can be applied to any encoding method pertaining to
the framework defined in [20], the only limit being the size of the unused sequences as it
will be defined. In the Base45 case here studied, for example, our approach improves the
average payload obtained in [23] by up to 53%.

The remainder of the paper is organized as follows: Section 2 introduces some notation
to be used throughout the paper, whilst Section 3 recalls some works related to the presented
encoding improvement. Section 4 gives a brief description of the Base45 printable encoding
of binary data and Section 5 presents the original data embedding algorithm and the
following improvement, then proposes an optimization based on the input data frequency
distribution. The performance of the method is shown in Section 6 and conclusions are
drawn in the last Section 7. Finally, the Appendix A presents a possible compression
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method to efficiently save the table recording the optimal assignment of bit configurations
to the most frequent pairs of octets.

2. Notation

In this paper, sets are denoted with calligraphic capital letters (e.g., B), the empty set
is written with the symbol ∅, alphabets with uppercase boldface italic letters, like A, scalar
values and optimization variables with lowercase italic letters (e.g., n) and functions and
mappings between sets with Greek lowercase letters, like µ. The set of all non-negative
integer numbers is denoted with Z+.

A sequence (or configuration) of symbols, or characters, from an alphabet is repre-
sented with uppercase letters, eventually with a subscript, like S and S0. Binary string
or binary sequence denote a sequence of symbols from an alphabet of cardinality 2. The
function card(.) represents the cardinality of a set.

The name BaseYY, where YY is a number, will represent a method of encoding binary
strings using an alphabet composed of YY symbols.

3. Related Works

The use of printable encodings of binary data is required in some contexts like e-mail
transfer or QR-codes, thus many such encodings have been developed for various purposes.

One of the first implementations of an encoding method to transparently transmit
data through systems that may modify some binary sequences (i.e., are not 8-bit clean
because use some binary strings as control messages) has been the pair of programs
uuencode–uudecode for UNIX systems: essentially, this method reversibly transforms in
printable characters, which are not modified by intermediate systems, the binary data to be
transmitted using a subset of the ASCII character set.

In the present days the most widely known printable encoding is Base64 [25] that
encodes three binary octets with four printable characters. The same RFC specifies a
Base32 encoding that represents five binary octets with eight characters from the Base32
alphabet and the Base16 encoding which is the case-insensitive hexadecimal representation
of binary data.

Nonetheless, many other encodings of bit strings into printable characters have been
developed; in the following we recall some of them and their possible applications in a list
ordered by the numerical base used to transform the binary data.

Base36 uses an alphabet of ten digits, from 0 to 9, and twenty-six letters of the English
alphabet, from A to Z: many programming languages have library functions for conversions
from and to Base36, for example, PHP [26], JavaScript [27], and Python [28].

Forty-one symbols alphabets are used in the two proposals [29,30] for using the
minimum number of characters needed to represent two octets with three symbols. The
two proposals differ for the alphabets used and for the possibility of [30] to encode bit
strings of any length.

Base45 is the foundation of the RFC 9285 [21] that defines a method for encoding
binary data with forty-five symbols, namely the twenty-six letters of the English alphabet,
the ten Arabic digits and eight special characters along with the space. More details on this
encoding are given in Section 4. In [20,23] the unused sequences of printable symbols for
the Base45 and Base85 encodings are exploited for data embedding.

A Base56 encoding has been developed in [31] where the author has written PHP
encoding/decoding functions for shortening URLs using an alphabet of fifty-six charac-
ters only.

An alphabet with fifty-eight printable characters (the ten Arabic digits and the twenty-
six uppercase and lowercase letters of the English alphabet without zero, capital O, capital
I, and lowercase L to avoid graphical misinterpretation by humans) is used in the Bitcoin
system to write addresses and keys (see [32] and the expired Internet Draft [33]).

Using an alphabet composed by the ten decimal digits and the twenty-six letters of
the English alphabet, both uppercase and lowercase, allows encoding data with sixty-two
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symbols. The paper [34] proposes a transformation format for ISO 10646 based on the ten
decimal Arabic digits and the twenty-six English letters, both uppercase and lowercase:
using sixty-two characters this format is called UTF-62. UCS-2 codes (16 bits) are encoded
with three Base62 characters and UCS-4 codes (32 bits) are transformed in six Base62
characters: UTF-62 provides for distinguishing the two cases by the different first encoded
character. The work [35] uses the same alphabet of [34] (even if the positions of the
characters are interchanged) and encodes the bit stream in chunks of six bits: the binary
configurations from 000000 to 111011 are directly mapped to one of the sixty symbols of
the alphabet, whilst if the first five bits are 11110 or 11111 then the mapping will be on the
sixty-first or the sixty-second alphabet symbol respectively, and the sixth bit will be delayed
to the next chunk to be encoded. In this way the encoding has the maximum efficiency and
no configurations are wasted.

Alphabets with eighty-five printable ASCII characters are used in [36], for the repre-
sentation of IPv6 addresses, and in Ascii85 [22], for the encoding of binary data mapping
groups of four octets in five Base85 characters improving to 5/4 the inflation rate 4/3
of Base64.

Base91 [37] presents an efficient method to encode bit strings with an alphabet of
ninety-one ASCII printable characters (ten digits, twenty-six English uppercase and lower-
case letters, and twenty-nine special characters like ampersand, parentheses, and at sign).
Thirteen bits at a time (213 possible bit strings) are encoded with two Base91 characters
(leading to 912 possible pairs) leaving eighty-nine Base91 pairs unused: thus, if the value
of the thirteen bits is less than 89 one more bit is encoded for a total of fourteen bits
transformed (note that the maximum possible encoded value is 213 + 88). Additionally,
Ref. [38] encodes data chunks of thirteen bits with pairs of ninety-one printable characters
employing twelve of the 912 − 213 = 89 unused configurations to indicate the number of
bits to ignore in the last chunk in case the original bit string has a bit length not multiple
of thirteen.

A Base122 encoding (Base-122 [39]) has been developed to reduce the inflation rate of
Base64 from 4/3 to 8/7. Base-122 encodes data using Unicode UTF-8 [40] which represents
characters with one to four octets. It saves blocks of seven bits in one UTF-8 octet and, to
deal with six characters that will not be allowed by HTML, Base-122 encodes them in two
UTF-8 octets having form 110AAA1B 10BBBBBB, where the three bits AAA define one of
the six characters to be encoded and the B bits may be used to represent other bits; care is
also taken for the termination of a bit string having length not multiple of seven.

Some other references on the printable encoding topic of binary data may be found
in [41].

4. The Base45 Encoding

The Base45 encoding [21] is defined in an RFC that proposes a method for encoding
pairs of binary octets using an alphabet A of forty-five printable symbols mainly aimed at
representing binary data stored into QR-codes. The Base45 alphabet is composed of the
ten decimal digits, the twenty-six letters of the English alphabet, the space, and other eight
special characters (listed in the following double quoted string “$%*+-./:”).

Every pair of octets is considered to represent a sixteen-bit binary number which is
converted in Base45 and expressed with three symbols from the alphabet A. In case of
a binary string having length an odd number of octets the last octet is interpreted as an
eight-bit binary number, converted in Base45 and encoded using two symbols from A.

In the present context the main thing to note is that with three Base45 symbols it is
possible to represent 453 = 91,125 sequences that are much more than the 216 = 65,536
required to encode two octets. The following section will briefly present the encoding and
data embedding proposed in [20], discuss the improvement based on pairs of octets statistics
developed in [23], and introduce the novelty of the present paper with the enhancement
obtained by an optimized bit assignment.
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5. Proposed Algorithm

In [20] we proposed to consider a printable encoding method based on an alphabet
A with a characters that uses a sequence of t symbols to represent binary strings of n bits.
The total number of sequences of length t is at and there are 2n binary strings of length
n: if at > 2n, like in the case of Base45 [21] or Base85 [22], the unused (sometimes called
“illegal”) at − 2n sequences can be configured to carry extra information, possibly in a
reversible manner.

Consider an alphabet A of a symbols. Call S the set of the at possible sequences of
length t made of symbols from A. Call B the set of the 2n binary strings of length n. If
card(S) ≥ card(B) then it is possible to use the sequences in S to encode the strings in
B defining a bijective mapping µ (and µ−1) between B and a subset W ⊆ S such that
card(W) = card(B) (see Figure 1).

Figure 1. Mapping µ between binary strings of length n and sequences of t symbols from an
alphabet A.

In caseW ⊂ S let us call D = S −W 6= ∅ the set of unused sequences in S . In [20]
we proposed to build a one-to-one mapping η between D and a subset E ofW that may
be used for reversible data hiding into the sequences of S (see Figure 2). Note that [20]
assumes that card(D) ≤ card(W) but we relax this constraint in the present work.

Figure 2. Mapping η between the unused sequences of S and a subset of the sequences ofW ; note
thatW ⊂ S , E ⊆ W ,S = D ∪W ,D ∩W = ∅, card(D) = card(E).

As an example, let us consider the Base41 encoding proposal [30]: there, three sym-
bols from an alphabet of 41 characters are used to represent 65,536 two octet strings,
256 one octet strings, and 255 bit strings of length from 0 to 7 bits. We may thus see a
generalization of the concepts shown in Figure 1. In this embodiment S is composed
of the 413 = 68,921 sequences of symbols of Base41; B consists of the previously listed
65,536 + 256 + 255 = 66,047 binary strings represented by Base41. The subset W of S
is composed by 66,047 strings, each one associated to a binary string with a function µ
specified in [30]. The remaining 68,921− 66,047 = 2874 Base41 sequences constitute the set
D (Figure 2).

When a binary string in B is encoded with a sequence S in E then it is possible to
store a bit b of data by encoding the binary string with S if b = 0 or with η(S) ∈ D if
b = 1. Instead, if the binary string is encoded with a sequence belonging toW −E no bit
is embedded.
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This method is proposed in [20] where it is also shown the reversibility of the process
and the data extraction: please refer to that paper for more details.

To improve the data payload, in [23] we proposed to build E using the sequences inW
mapped through µ to the most probable binary strings in B: this depends on the statistic
distribution of the binary strings in the input data (e.g., a file) which may be built analyzing
a large set of files of the same type (for example, PDF or PNG format).

Starting from the observation that if a sequence S0 in E is associated to a sequence S1
in D it may reversibly carry one bit of extra data (during decoding S0 means a 0 valued bit
payload and restore S0, S1 means a 1 valued bit payload and restore S0), then if a sequence
S00 in E is associated to the sequences S01, S10, S11 in D then during encoding/decoding
two bits of extra data may be embedded/extracted depending on which one of the four
sequences is used and the original sequence S00 can be restored during decoding.

In the present paper, we propose to optimize the construction of the set E according to
the frequency distribution of the data and having the following characteristics:

• The mapping η may associate a sequence inW to 2k − 1, k ∈ N, sequences in D, thus,
in general, card(D) ≥ card(E) and η is not one-to-one anymore: a sequence in W
may carry k bits if it is associated to 2k − 1 sequences in D;

• Given the relative frequencies fi of the binary strings in B, the objective is to asso-
ciate ni bits of payload to the i-th sequence to maximize the average payload p per
binary sequence:

p = ∑
i∈B

ni fi. (1)

As an example, consider the encoding proposed in [20] for Base45 [21]: two octets are
mapped on three symbols from a base 45 alphabet, thus having 453 = 91,125 configurations.
Two octets result in 216 = 65,536 binary configurations each having its own relative
frequency fi.

A one-to-one mapping from binary configuration to Base45 configuration leaves
453 − 216 = 91,125− 65,536 = 25,589 Base45 configurations unused.

Assigning ni bits payload to the i-th binary configuration the average payload p45 per
binary string is:

p45 =
216−1

∑
i=0

ni fi (2)

which must be maximized.
Assigning k bits payload to a binary configuration requires to use 2k Base45 configura-

tions: one Base45 sequence is the one normally assigned whilst the 2k − 1 are taken from
the unused 25,589 Base45 sequences. This poses a constraint on the previous value (2):

216−1

∑
i=0

2ni ≤ 453 = 91,125. (3)

It is obvious that the 25,589 sequences must be assigned to the highest frequency
binary configurations maximizing (2). Another way to write constraint (3) is to look only at
the unused sequences; if any configuration i is assigned ni bits, it requires in total 2ni − 1
extra configurations excluding itself. For example, if ni = 0 we assign 20 = 1 configurations
to i (only itself), and it requires 20 − 1 = 0 extra sequences; this is correct, since no payload
will be carried by configuration i.

Knowing that the total number of extra (unused) sequences is 25,589 we can then write:

216−1

∑
i=0

(2ni − 1) ≤ 25,589 (4)
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which is equivalent to Equation (3) since:

216−1

∑
i=0

(2ni − 1) ≤ 25,589 ⇔
216−1

∑
i=0

2ni −
216−1

∑
i=0

1 ≤ 25,589

⇔
216−1

∑
i=0

2ni − 216 ≤ 25,589

⇔
216−1

∑
i=0

2ni ≤ 25,589 + 216 ⇔
216−1

∑
i=0

2ni ≤ 91,125

that is exactly the aforementioned constraint.
In the following Section 5.1 we present the optimization method used to assign unused

configurations in D and, consequently, bits to the legal Base45 sequences with the purpose
of maximizing the average payload p45 per pair of octets (2).

5.1. Optimization Method

Before delving into the optimization problem, let us introduce the rationale behind its
definition. As an example, let us consider a binary file of 25,589 unique pairs of octets, so
that 25,589− 1 appear only once and one appears 100 times. Then, by assigning one bit to
each of them, the payload obtained is exactly 100 + 25,589− 1 = 25,688.

If we decide to assign three bits to the one configuration that appears 100 times and one
bit to all others (without exceeding the number of available unused configurations), the total
payload obtained with this different approach will be 3 · 100 + 25,589− (23 − 1) = 25,884,
that is larger than the one bit case previously described.

This simple example motivates the search for the best possible assignment of bits to
configurations in order to maximize the payload.

5.1.1. Problem Description

Given a function that needs to be optimized in the presence of constraints, one might
think to solve the problem by means of combinatorial optimization [42]. In fact, there is the
need to maximize the average payload (2) by assigning a certain number of bits ni to the
i-th binary configuration without exceeding the number of available configurations (3).

As a preliminary, let us say we only consider the most frequent (for each file type)
Base45 configurations: baseline for our optimization is, in fact, the one-bit assignment
to each one of the 453 − 216 = 25,589 most frequent configurations [23]. In this setting
suppose, without loss of generality, that we sort all configurations in non-increasing order
of their frequency fi, such that fi ≥ f j when i ≤ j. Then we can define the conditional
probability to find a (frequent) configuration i as:

ei =
fi

∑25,589−1
j=0 f j

0 ≤ i < 25,589, (5)

that is, the probability to find configuration i, subject to i < 25,589, in any file of a given
type having a specific frequency distribution.

Our aim is then to maximize the expected payload, that is:

maximize
25,589−1

∑
i=0

eini; (6)

we note that maximizing (6) is equivalent to maximize (2) over the 25,589 most frequent
configurations since:
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maximize
25,589−1

∑
i=0

eini ⇔ maximize
25,589−1

∑
i=0

fi

∑25,589−1
j=0 f j

ni

⇔ 1

∑25,589−1
j=0 f j

·maximize
25,589−1

∑
i=0

fini

⇔ maximize
25,589−1

∑
i=0

fini

given that the term ∑25,589−1
j=0 f j is a constant and so we can remove it from the equation.

The only modification required on constraint (4) is the sum index that becomes
25,589− 1 from the old 216 − 1; this is the same thing we already did in (6).

It is easy to see that the objective function (6) under the one-bit assignment hypothe-
sis [23] equals to 1, since ni = 1 for all of the i most frequent configurations. Our optimiza-
tion approach, then, aims to maximize this value: if we can find an assignment with an
objective value above 1, it means that there is a possible gain w.r.t. the one-bit baseline.

5.1.2. Model Description

The previous considerations lead to the formulation (7)–(9) of a nonlinear program [43].

maximize
25,589−1

∑
i=0

eini (7)

subject to
25,589−1

∑
i=0

(2ni − 1) ≤ 25,589 (8)

where ni ∈ Z+ (9)

The amount of assigned bits ni is not known beforehand, since we need to optimize
the assignment in such a way that the objective function is maximized. These quantities are
then represented as integer variables, and while the objective function itself (7) is linear
w.r.t. the variables, constraint (8) is not.

In fact, (8) is exponential w.r.t. the variables, and having such constraints in an opti-
mization model forbids the use of well-known and effective techniques [44] applicable only
to models with linear objective functions and constraints, the so-called linear programs.

5.1.3. Constraint Linearization

Luckily, several common techniques are known (and can be easily found in any of the
already cited books) to linearize this family of exponential and binary-related constraints,
as we will see. Let us define a new binary variable xik ∈ {0, 1} that is tightly linked to the
different integer values that ni can take.

xik =

{
1 if ni = k
0 otherwise

(10)

By the definition (10) we know that xik = 1 if and only if ni = k; then, xik = 1 implies
that we assign k bits to binary configuration i.

For constraint (8) we can derive a limit on the maximum power of 2, because no
single ni can be higher than a certain amount: given that there are a maximum of 25,589
unused Base45 configurations, we have that 2ni − 1 ≤ 25,589. This power limit is, in fact,
14: since 214 − 1 = 16,383 < 25,589 < 215 − 1 = 32,767, we know that ni ≤ 14 for all i. This
information can be propagated to variables (10) by defining only such variables for values
of k ∈ N in the range 0 ≤ k ≤ 14.

These new variables allow us to rewrite constraint (8) in a linear fashion: if xik = 1
we know that ni = k, exactly k bits are assigned to the i-th binary configuration, and the
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number of Base45 configurations required is 2ni . But ni = k, and k is a known integer
(a number, not a variable), so we can evaluate it for every term.

25,589−1

∑
i=0

14

∑
k=0

(
2k − 1

)
xik ≤ 25,589 (11)

Equation (11) will be used in place of (8) in the linear model. Additionally, the objective
function needs to be changed: for the same reason, maximizing Equation (12) written with
the xik variables

25,589−1

∑
i=0

14

∑
k=0

eikxik (12)

is equivalent to maximize the objective function (7).
There is a need for an additional constraint, nevertheless. The value assumed by

ni is unique; in other words, we cannot assign both 0 bits and 3 bits to a configuration.
Hence, exactly one variable xik for every configuration i can be 1, all the others must be 0.
Constraints (13) are then required and will be added to the model.

14

∑
k=0

xik = 1 ∀ 0 ≤ i < 25,589 (13)

5.1.4. Linear Model

Taking into consideration the previous discussion the new variable definition and the
added constraints, we can write down the complete linear program.

maximize
25,589−1

∑
i=0

14

∑
k=0

eikxik (14)

subject to
25,589−1

∑
i=0

14

∑
k=0

(
2k − 1

)
xik ≤ 25,589 (15)

14

∑
k=0

xik = 1 ∀ 0 ≤ i < 25,589 (16)

where xik ∈ {0, 1} (17)

The model (14)–(17) can then be solved by means of standard and efficient well-known
optimization methods and approximated with good quality heuristics. In the empirical
analysis part, Section 6, we are going to obtain the optimum, hence the best possible
assignment given the frequencies, by solving this model with CPLEX commercial solver [45].
A greedy approximation algorithm that gives results indistinguishable from the real optima,
given the particular structure [46] of the model, is under development.

It is worth noting that the input dimension for the optimization model never changes:
since for Base45 we are going to have always 25,589 unused configurations and the maxi-
mum possible required power of 2 is 14, the number of variables xik is always 25,589× 14
and the number of constraints (16) is always 25,589. Given this consideration, we remark
that for these relatively small dimensions it is easy for any solver to efficiently find the real
optima in a small amount of time.

Considering also the fact that, given the configuration frequencies, the entire optimiza-
tion must be done only once for each file type to build the table that will be later used for
the embedding, the few seconds of execution time required by the solver to find the best
possible assignment has no impact over the encoding/embedding procedure.
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5.2. Encoding and Decoding Algorithms

The encoding and decoding algorithms of our proposed Hide45 method make use
of a table EncDec that implements the mappings µ and η. EncDec contains a row (i.e., a
record) for every binary string in B and its corresponding sequence inW : this realizes the
one-to-one function µ (and its inverse µ−1) in Figure 1.

Table 1 reports the two types of record needed by the table EncDec to store the infor-
mation for the encoding and the decoding: a Type 1 record is used for sequences carrying
no payload bits, that is sequences inW −E . On the other hand, a Type 2 record is used for
a binary string that is mapped by µ to a sequence S0 in E that is capable of carrying payload
bits, e.g., k bits: in this case S0 and other 2k − 1 sequences in D make up an ordered list[
S0, S1, S2, . . . , S2k−1

]
that can be indexed by the value expressed by the k bits to reversibly

encode them. Function η (Figure 2) operates in this way: if the k bits have value i then
η outputs Si in place of S0; given Si in

[
S0, S1, S2, . . . , S2k−1

]
its inverse η−1 returns k bits

valued i and the sequence S0. It is obvious that:

• EncDec is composed of 2n= 216 rows;
• The sequences in the last column of EncDec form a partition of S .

The encoding procedure has as input the stream of payload data bits to be embedded
and processes one binary string B ∈ B at a time to be converted in printable form as follows:

• If S0 = µ(B) ∈ W − E (Type 1 entry in EncDec) then no payload bits can be embedded
and S0 is output;

• Otherwise S0 = µ(B) ∈ E , thus its Type 2 entry in EncDec is used getting k, the number
of bits that can be stored with S0, and k payload bits are read from the stream whose
decimal value f is used as an index by η to select and output the sequence S f from the
list

[
S0, S1, S2, . . . , S2k−1

]
found in the corresponding entry.

The decoding procedure performs the inverse mapping and extraction working on
an input sequence S ∈ S after the other to obtain the original data in binary form and the
payload bits:

• If S is associated to a Type 1 entry in EncDec then no payload data is stored and the
binary string B = µ−1(S) is output;

• Otherwise S is searched in the last field of the Type 2 entries of EncDec: when found, its
index in the list is used to recover the k payload bits and the corresponding sequence
S0 = η−1(S) ∈ E is used to output B = µ−1(S0).

Table 1. Type of records of table EncDec for storing the functions µ, η and their inverses µ−1 and η−1.

Entry
Type

Symbol
∈ B

Sequence
∈ S

Payload
Bits

Sequences for
Embedding

Type 1 B S ∈ W − E 0 ∅

Type 2 B S0 ∈ E k
[
S0, S1, S2, . . . , S2k−1

]
,

S1, S2, . . . , S2k−1 ∈ D

6. Empirical Analysis

The set of experiments we set up was aimed at verifying the improvement over the
one-bit per (most frequent) symbol encoding presented in [23]: thus we considered the
same file formats and incidentally used the same files, but other files of the same format
should present the same results due to the large number of files we employed.

The files and formats we used were:

• JPEG: 500 images 768× 576 pixels 24 bpp, quality 80, 2× 2 subsampling;
• TIFF: 500 images 768× 576 pixels 24 bpp, uncompressed;
• PNG: 500 images 768× 576 pixels 24 bpp, compressed;
• ZIP: 7000 files of 500,000 octets;
• BZ2: 1100 files of 100,000 octets;
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• GZ: 7000 files of 500,000 octets;
• PDF: 2000 files of 500,000 octets;
• MP3: 3000 audio files having size 500,000 octets.

For every file format we performed a 5-fold cross validation with a proportion of 4:1
using the first set to compute the statistic distribution of the 216 = 65,536 symbols and the
second set to test the payload capability of the optimized bit assignment. Experiments were
run on laptop with CPU Intel® CoreTM i7-1165G7 2.80 GHz with 16 GB RAM.

Comparisons between the method [23] and the improvement described in this paper
are reported in Table 2. The first column of these tables reports the file format, and
the second and the third report the average payloads (and standard deviation) for the
5-fold cross validation obtained by method developed in [23] and by the proposed Hide45
algorithm, respectively. The payload is expressed in bit per output symbol (bps), that is
average number of bits carried by a Base45 character of the embedded output file. The
“Th. Gain” (theoretical gain) column refers to the expected payload gain computed by the
optimization function (6). The “Emp. Gain” (empirical gain) column reports the percentage
advantage of the proposed method over the one-bit baseline payload, that is used in [23].

Table 2. Set of files in JPEG, TIFF, and PNG; ZIP, BZ2, and GZ; PDF and MP3 formats: average
payloads per output symbol and gains computed for [23] and the proposed method Hide45.

File
Format

Avg Payload
[23] [bps]

Avg Payload
Hide45 [bps]

Th. Gain
[%]

Emp. Gain
[%]

JPEG 0.17025± 0.01270 0.17807± 0.00494 4.6 4.6

TIFF 0.26252± 0.04132 0.31376± 0.01758 22.0 19.5

PNG 0.17091± 0.01251 0.17235± 0.00503 1.4 0.8

ZIP 0.14177± 0.01708 0.14251± 0.00325 2.5 0.5

BZ2 0.13959± 0.01207 0.14140± 0.00895 3.4 1.3

GZ 0.13404± 0.00540 0.13410± 0.00203 0.07 0.04

PDF 0.16998± 0.02877 0.26002± 0.04044 57.4 53.0

MP3 0.16989± 0.01656 0.24231± 0.03960 45.2 42.6

To account for the different improvements in payload gain depending on the file
format we analyzed, for each format, the relative frequency distributions of the symbols
sorting them in decreasing order. The plots are reported in Figures 3 and 4: the first one
shows the cumulative distribution of the relative frequencies for all the 65,536 symbols
while the second magnifies on the first 128 most frequent symbols of each file format (note
that the symbols are not the same being the use of the various symbols a peculiarity of
each format).

From these figures it may be observed that for the distributions having a steepest start
(for example, the MP3 file type distribution) there is a bigger gain in assigning a variable
number of bits to every symbol: this is due to the fact that when there are symbols more
frequent than others then allocating more bits to them increases the average payload (2).

We remark that the execution times for the encoding/embedding procedures do not
depend upon the given map, therefore there is no difference between [23] and the proposed
method Hide45 with regard to the required time. As already stated in Section 5.1, the
optimization procedure that gives the best possible assignment table given the configuration
frequencies is computed only once for every file type. Considering the fact that this
optimization, in our testing environment, requires in all cases between 4 s and 8 s with a
median of 5 s, it has no effective impact over the whole procedure.
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Figure 3. Cumulative distributions of all octet pairs sorted in decreasing order of frequency.

Figure 4. Cumulative distributions of the most frequent 128 octet pairs (zoom on the leftmost area of
graph in Figure 3) sorted in decreasing order of frequency.

7. Conclusions

This work has presented Hide45, an improvement over a previously published method
for embedding data into printable encoded strings using a Base45 alphabet. The proposed
solution optimizes the bit assignments for the sequences normally used for the encoding
exploiting the unused sequences to give more bits to the highest frequency sequences.

Modeling and solving the problem as an integer linear program leads to significant
improvement upon previously published methods. Experimental results showed a mean-
ingful improvement (up to 53%) for those data types having skewed distributions of
their double octets binary data. Moreover, it may be shown (see Appendix A) that the
encoding/decoding table can be compressed in less than 11 Ko.

Since Hide45 is able to store a higher amount of information by an optimal assignment
of unused sequences, it can be useful to embed into files longer and safer security finger-
prints and digital signatures, among more general data. Furthermore, part of the embedded
information can be employed to check whether the transmitted file has undergone to an
attack aiming at its modification.

A limitation of this method is related to the fact that the optimization is done using
a statistic of sequence frequencies over several files. Even though the average payloads
exhibit a very low standard deviation among file types over the tested files (see Table 2), in
the case where a file exhibits a frequency distribution different from the one considered by
the statistic, it will result in a reduced payload. A possible development of this technique
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can be the building of a encoding/decoding table EncDec specific for every file, by opti-
mizing over its own frequency distribution; this has a disadvantage nevertheless, since the
table must be transmitted with the file. This can lead to advantages only for bigger files,
since the encoding/decoding table will occupy some of the embedding capacity of the file
itself; the objective for future research will be to analyze how to embed this table, compute
the required space, and check whether this approach will be more convenient than using a
precomputed table.

Further developments of the method will be also towards the analysis of different
optimizations methods.
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Appendix A

In this appendix a possible compression method for the coding table EncDec is pre-
sented.

The 453 Base45 configurations and the 216 binary strings of 16 bits are sorted in
ascending order. After that, the first 216 of the 453 Base45 configurations are one-to-one
mapped to the 216 binary strings of 16 bits according to the ascending order.

The remaining 453 − 216 Base45 configurations will be assigned, from first to last, to
the binary strings carrying payload bits.

From these considerations it is obvious that to save the EncDec table it is sufficient to
specify the number of payload bits 0 ≤ k ≤ 14 that are encoded by every binary string,
from the first to the last in the ordered list.

A shrunk version of the EncDec table is thus a sequence of values 0 ≤ k ≤ 14 each one
saved with 4 bits: the resulting compressed table will be 216/2 = 32 Ko in size. A more
wise encoding will perform a Huffman compression because the smaller values of k will
be more frequent than the larger ones (e.g., it is obvious that a value of k = 14, if present,
will occur only once): simple tests showed that a typical distribution Huffman encoded
requires less than 11 Ko (see Algorithm A1).

Algorithm A2 presents the pseudo-code to recover the EncDec table (refer to Table 1)
from the shrunk version.

Algorithm A1 Pseudo-code of the algorithm for saving a compressed version of the EncDec
table
Require: 0 ≤ n ≤ 14

n = number of payload bits associated to B
Encode n represented with 4 bits or using a pre-computed Huffman code
Write n on file
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Algorithm A2 Pseudo-code of the algorithm for building the EncDec table

UnusedPointer = 65,536
for B = 0 to 216 − 1 do

Read n (number of payload bits associated to B) from file
EncDec[B].Symbol = BinaryRepresentationOn16Bits(B)
EncDec[B].Sequence = Base45Encoding(B)
EncDec[B].PayloadBits = n
if n == 0 then

EncDec[B].EntryType = Type 1
EncDec[B].SeqForEmbed = ∅

else if n ≤ 14 then
EncDec[B].EntryType = Type 2
if UnusedPointer +2n − 1 ≥ 91,125 then

error(“Number of Base45 configurations exceeded”)
else

for c = 1 to 2n − 1 do
EncDec[B].SeqForEmbed ∪ = Base45Encoding(UnusedPointer)
UnusedPointer ++

end for
end if

else
/* n > 14 */
error(“Wrong number of bits associated to a configuration”)

end if
end for
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