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Abstract

Random Forest (RF) is a Machine Learning algorithm, very popular in environmen-
tal applications thanks to its flexibility and predictive performances. Even if its working
mechanism is simple and intelligible, RF is considered a black box model since it prevents
grasping how predictors are combined to generate the response variable predictions. This
lack of interpretability represents a limitation of RF, especially when some knowledge is
required on the response-predictors relationship from the decision-making perspective. In
this work, we aim to explain RF using a Post-Hoc approach, i.e. by extracting a compact
and simple list of rules from an estimated RF focusing on a spatial regression context. By
means of a spatial dataset, we compare the final sets of rules and discuss the predictive
accuracies of the standard RF and its gold standard for the case of spatially correlated data.
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1. Introduction

The Machine Learning (ML) era has given rise to complex and powerful methods that can process
vast amounts of data and make predictions with remarkable accuracy. However, the inherent black-box
nature of some of these techniques has raised concerns about their lack of interpretability. Often the term
interpretability is used as a synonym for explainability, but actually they refer to two different concepts.
According to Rudin et al. (11), interpretability is referred to models that are built to be interpretable,
while explainability is obtained by applying further techniques to non-interpretable models in order to
extract information. On the topic of explainable ML methods, the recent paper by Wikle et al. (14) is
worth to be mentioned. In particular, the authors discuss the use of explainability techniques in spatial
ML to understand the role of specific inputs in predicting environmental variables. Even if from a
statistical point of view the gold standard would be to use interpretable ML methods, when this is not
possible it is a good practice to try to extract information from non-interpretable ML methods that have
proven good performance.

In this work, among ML techniques, we consider Random Forest which is well known for its high
prediction accuracy. It is a non-parametric supervised algorithm that, thanks to its flexibility, can model
complex non-linear relationships between the response variable (categorical or continuous) and the pre-
dictors (3). RF is defined as an ensemble model as the result of aggregating a set of decision trees. Each
tree is the result of a recursive binary splitting process obtained using re-sampled data and a random

1

mailto:me@somewhere.com
mailto:me@somewhere.com
mailto:me@somewhere.com


set of predictors evaluated at each node as splitting candidates. Given its adaptability, RF has also been
widely applied in the spatial framework with different strategies to deal with the spatial autocorrelation
of the data. Patelli et al. (10) have recently proposed a literature review and a novel taxonomy of the
existing strategies adopted to adjust RF for spatially correlated data. In particular, the authors highlight
that the most interesting strategy is the RF-GLS method proposed by Saha et al. (12), who extend the RF
by estimating trees using generalized least squares (GLS). It was proven that RF-GLS outperforms the
classical RF in the presence of spatial correlation, thus representing the gold standard to be used in the
spatial framework.

In any case, spatially aware or not, RF remains a non-interpretable algorithm. However, it is possible
to use specific methods to explain the RF resulting model, as described in the review by Haddouchi
and Berrado (7). In particular, “Internal Processing” (IP) methods try to get “insights that are inherent
to internal processing” providing a global overview of the model. “Post-Hoc” (PH) methods instead
are based on RF post-processing, such as for example the “Rule Extraction” (RE) approaches (see e.g.
inTrees (5), SIRUS (2), Node harvest (9) and RuleFit (6) among others). These methods aim to find a
limited set of rules (each defined as the combination of predictors and split values) that is common to
many trees in the RF and that allow representing the prediction mechanism of RF.

The main aim of this contribution is to verify if, for a spatial regression problem, there exist differ-
ences in the rules obtained by using - so far - the inTrees approach applied to two different cases: trees
grown by RF-GLS and by a classical RF. We expect that taking or not into account the spatial correlation
when implementing RF will have an impact also in its extracted rules. The analysis is carried out by
using a dataset regarding daily meteorological records measured by 159 monitoring stations in Croatia.
We present here preliminary results followed by a discussion on further steps.

2. Data and methods

The explainability of RF in the spatial framework is illustrated using meteorological daily data from
the national network of 159 stations in Croatia for the year 2008, provided by the Croatian National
Meteorological Service (available at https://github.com/AleksandarSekulic/RFSI). At
this stage of the work, we have not considered the temporal dimension of the data confining the analysis
to a single day: 14th June 2008. The locations of the 151 stations working at this date are shown in
Fig. 1. In particular, dots and crosses represent training and test data considered to implement the RF-
GLS and RF algorithms. For this dataset, we randomly selected 90% of the data (i.e., 135 observations)
for training the algorithms and used the remaining 10% of the data (i.e., 16 observations) for testing
the algorithms. Croatia is a country located in southeastern Europe, bordering the Adriatic Sea. It has
a diverse topography with flat plains in the east, a hilly central region, and mountainous terrain in the
west. The response variable is the mean daily temperature1 [TEMP], measured in degrees Celsius (◦C).
The minimum and maximum observed mean daily temperature values are 1.8◦C and 21.5◦C, respec-
tively. The highest temperatures are recorded along the coast and at low altitudes. The variables used
as predictors are latitude [lat (in meters)], longitude [lon (in meters)], distance-to-coastline [HRdsea
(in km)], elevation [HRDdem (in meters)], wetness index [HRtwi], seasonal fluctuation [ctd (in days)],
insolation (total incoming solar radiation) [INSOL (in Joules)], and Moderate Resolution Imaging Spec-
troradiometer land surface temperature [MODIS.LST] images. The dataset and predictors are detailed
in (8) and references therein. In particular, this dataset was used by Sekulić et al. (13) to evaluate and
compare the performance of a spatial interpolation method they proposed, i.e. the Random Forest Spatial
Interpolation.

With the aim of obtaining simple, stable and accurate rules, we implemented the inTrees approach
proposed by Deng (5) and implemented in the homonym R package inTrees2. The set of algorithms
proposed in the work of Deng (5) can be applied to all tree ensemble methods to perform different tasks:
extract, prune, select and summarize the rules. Each step is not mandatory, and the procedure can be
tailored based on the specific explanatory necessity.

1On most meteorological stations TEMP is measured three times a day: at 7 am, 1 pm and 9 pm.
2https://cran.r-project.org/web/packages/inTrees/index.html

https://github.com/AleksandarSekulic/RFSI
https://cran.r-project.org/web/packages/inTrees/index.html
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Figure 1: Mean daily temperature recorded on 2008-06-14 in 151 Croatian meteorological
stations. Dots represent the mean daily temperature registered in the 135 training sites; crosses
represent the mean daily temperature measured in the 16 test sites.

In order to extract and analyze rules by means of inTrees, the first step consists in running the
chosen RF algorithm to have a collection of trees grown over a set of training data. Each tree results
in the combination of all its splits, i.e. the conditions that permit splitting of the predictor space and
getting predictions in the final regions. Then the obtained rules can be evaluated by using the relative
“frequency” of occurrence, the prediction “error” and their “length” representing the rule complexity.

Using these metrics and considering opportune (decay) functions, the rules can be further simplified
by pruning irrelevant predictor-split values. In order to have a compact rule set containing relevant
and non-redundant rules, a complexity-guided condition selection method can be used, e.g. guided
regularized Random Forest (GRRF) (4). In the end, the extracted rules can also be summarized by a
rule-based learner that should be comparable in terms of prediction accuracy to the standard RF but more
interpretable, named Simplified Tree Ensemble Learner (STEL). Note that in inTrees it is possible to
build a STEL only for classification problems.

3. Preliminary empirical results

This section shows our preliminary results by applying the inTrees approach to extract insights from
the RF-GLS and RF algorithms applied to the temperature spatial dataset.
We started by training the regression RF-GLS and RF on the same training set, by means of the R
packages randomForestGLS3 and randomForest4, respectively. We used the same setting for the
hyperparameters. In particular, we have set to 1000 the number of trees (ntree in R) and to 3 (one-
third of the total number of predictors) the number of the variables randomly sampled as candidates at
each split (mtry in R). For the RF-GLS, the covariance function used in modelling the spatial depen-
dence structure among the observations was the default value, i.e. the exponential covariance function
(cov.mat in R). Note that the coordinates [lat, long], measured in meters, have also been considered
as predictors in both algorithms. In order to stabilize the forest structure, we followed the strategy pro-

3https://cran.r-project.org/web/packages/RandomForestsGLS/index.html
4https://cran.r-project.org/web/packages/randomForest/index.html

https://cran.r-project.org/web/packages/RandomForestsGLS/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
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Figure 2: Variable importance plot for RF. The importance index is scaled to a maximum of 1.

posed in Bénard et al. (2) for rule generation consisting in restricting the node splits to the q-empirical
quantiles of the predictors. This modification to Breiman’s original regression tree algorithm is expected
to have a small impact on predictive accuracy but is essential for stability.

Table 1 shows the test accuracy in terms of root mean square error and percentage of explained
variance of the two algorithms when the node splits are restricted to the 10-empirical quantiles of the
predictors. Different values of q will be considered in the next steps of the work. As expected, RF-GLS
shows a better predictive performance than RF because it is able to capture the spatial autocorrelation of
the response variable.

Table 1: Root Mean Square Error (RMSE) and percentage of explained variance (Var
explained) values evaluated for the test dataset.

Algorithm RMSE [◦C] Var explained [%]
RF-GLS 1.057 93.52
RF 1.357 89.32

Latitude, distance-to-coastline and DEM are the most important predictors for RF (see Fig. 2). This
information is not reported for RF-GLS since the R package randomForestGLS does not provide the
variable importance as output yet.

Given the two forests, we applied the inTrees approach described in Section 2.. For both algorithms,
RF-GLS and RF, we used the same setting for the tuning parameters of the inTrees functions. We
extracted the rule conditions from the set of trees with a maximum length of 3 (maxdepth in R) from
each tree. The distinct rule conditions extracted from the 1000 trees of RF-GLS and RF were 2,836 and
3,007, respectively. Then, we assigned the outcome values (mean of the response variable values of the
training observations that satisfy the condition) [pred] to the conditions and measured the quality of the
rules by “frequency” [freq], “error” [err], and “length” [len]. We pruned the extracted rules’ irrelevant or
redundant variable-value pairs considering the metric “error” and the “relative” decay function. With the
irrelevant variable-value pairs being removed, the pruned rules have shorter conditions and a frequency
that increases without an increase in error. Finally, we applied the complexity-guided regularized random
forest (GRRF) to the set of distinct pruned rules in order to have two compact lists of stable rules (≤ 30)



able to explain the results of both algorithms. We grew 1000 trees, setting the importance threshold
to 0.1 and using the default values for the other tuning parameters of the function selectRuleRFF
in R. From a run of this function we obtained a list of 19 and 25 rules starting from the forests grown
by the RF-GLS and RF algorithms, respectively. By applying both these lists of rules to test data we
obtained a very good predictive performance: the percentage of variance explained was 92.01 and 90.17,
respectively.

Table 2 and Table 3 show the two lists of the first ten rules output for the meteorological dataset.
The scores [impRF] of the selected conditions are calculated by building an RF on the selected rules.
In general, the two lists of selected rules have 17 rules in common. An example is represented by the
first rule in Table 2 and Table 3. More specifically, the first rule in both lists shows that the interaction
of a low latitude with a low elevation and a low distance to the coastline induces a higher mean daily
temperature. The third rule in Table 2 (and then the fifth rule in Table 3) displays that the interaction of
low longitude and a high elevation induces a mean daily temperature of about 9◦C. This is composed of
two conditions (lon<= 589199.5 & HRdem>317.40), and satisfied by the 14.8% of the observations in
the training dataset and has an RMSE (the square root of “err”) of about 2.2◦C. One can notice that rule
scores (importance values) and the rules metrics are not related. For instance, the fourth rule in Table 2
(and then the second rule in Table 3) has a larger frequency than the three most important ones.

Table 2: First ten rules extracted, measured, pruned and selected via GRRF, generated by RF-
GLS. The rules are ordered by scores (importance value - ImpRF)

rule len freq err condition pred impRF
1 3 0.252 3.082 lat <= 4931735.37 & HRdem <= 609.20 & HRdsea <= 26.14 18.534 1
2 3 0.289 3.998 lon > 457787.2 & HRdem<=609.20 & HRdsea <= 26.14 18.160 0.893
3 2 0.148 4.882 lon<= 589199.5 & HRdem>317.40 9.325 0.673
4 2 0.681 5.564 lat>4780743.3 & HRdsea>1.34 12.885 0.602
5 2 0.230 2.472 lon>457787.2 & HRdsea<=1.34 18.714 0.586
6 3 0.148 4.882 lon<=620344.9 & lat>4873835.0 & HRdem>317.40 9.325 0.577
7 3 0.230 2.690 lat<=4931735.37 & HRdem<=317.40 & HRdsea<=26.14 18.743 0.505
8 3 0.148 4.882 lat>4873835.0 & HRdem>317.40 & HRdsea<=195.44 9.325 0.489
9 2 0.259 5.886 lat<=4931735.37 & HRdsea<=26.14 18.242 0.365
10 2 0.237 2.905 lat<=4931735.37 & HRdem<=317.40 18.645 0.347

Table 3: First ten rules extracted, measured, pruned and selected via GRRF, generated by RF.
The rules are ordered by scores (importance value - ImpRF)

n len freq err condition pred impRF
1 3 0.252 3.082 lat<=4931735.37 & HRdem<=609.20 & HRdsea<=26.14 18.534 1
2 2 0.681 5.564 lat>4780743 & HRdsea>1.34 12.885 0.560
3 3 0.148 4.882 lon<=620344.9 & lat>4873835 & HRdem>317.40 9.325 0.487
4 3 0.148 4.882 lat>4873835 & HRdem>317.4 & HRdsea<=195.44 9.325 0.486
5 2 0.148 4.882 lon<=589199.5 & HRdem>317.40 9.325 0.475
6 3 0.267 5.879 lon>457787.2 & lat<=4982676 & HRdsea<=26.14 18.212 0.439
7 2 0.230 2.472 lon>457787.2 & HRdsea<=1.34 18.714 0.433
8 3 0.230 2.690 lat<=4931735 & HRdem<=317.4 & HRdsea<=26.14 18.743 0.366
9 3 0.207 1.914 lon>457787.2 & HRdsea<=1.34 & INSOL>8.082524 18.994 0.359
10 3 0.23 2.963 lon>503554.1 & HRdem<=609.2 & HRdsea<=26.14 18.723 0.294

4. Discussion and next steps

This work represents a first attempt to “open” an RF that is specifically designed for spatially depen-
dent data, i.e. RF-GLS. This algorithm should be the gold standard in a spatial framework. We compared



the predictive performance and explainability of RF-GLS and RF applied to a Croatian meteorological
dataset. Both algorithms have shown high and similar predictive performance in our application. A
cross-validation procedure will be implemented to confirm this result. Among the different approaches
existing in the literature to obtain explainability from RF, we focused on the rule extraction methods.
In particular, we considered the approach proposed by Deng (5) applying the same constraints to the
node splits proposed in Bénard et al. (2). We found two compact lists of rules with high predictive per-
formance sharing a large number of rules in common. However, the shared rules have different scores
(importance values) within their respective membership lists. As next step, we aim to tune the GRRF
hyperparameters to reduce the number of rules in the two lists while maintaining their predictive perfor-
mance. Moreover, we aim to set up a comparison study considering the main competitors of inTrees,
i.e. SIRUS (2), Node harvest (9) and RuleFit (6). Unfortunately, the R functions implementing RF-GLS
(RFGLS estimate spatial and RFGLS predict spatial) return objects that are not valid in-
puts for the R functions implementing the competitor rule extraction methods. This will require further
investigation.
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