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Abstract

Because of their economic and cultural impor-

tance, grapes are arguably the most studied

fruit crop and are considered a model system

for research on non-climacteric fruits. The

sequencing of the grapevine genome has led

to major discoveries that have increased our

understanding of the molecular regulation of

fruit ripening and berry metabolism, and how

the environment and viticultural practices

affect berry physiology. This chapter reviews

the most recent studies on the molecular and

metabolic pathways associated with grape

berry ripening including the pathways

involved in berry growth and softening, and

sugar, organic acid, phenolic, and aroma

accumulation. The role of hormones and

hormone crosstalk, as well as a compendium

of the most recent research on transcription

factors (TFs) and non-coding RNAs are

presented.

12.1 Introduction: General
Physiological Aspects
of Ripening

Grape berry growth follows a double-sigmoid

pattern where two rapid phases of growth are

interrupted by “lag” during which there is little or

no growth (Matthews and Shackel 2005). The

first growth stage (I) begins at flowering (i.e.,

anthesis) and continues until the lag stage (II),

while the start of the final growth stage (III) is

coincident with the onset of ripening, or veraison

(Fig. 12.1). Stage I growth results from both cell

division and cell expansion, but stage III growth

results exclusively from expansion (Coombe

1976; Ojeda et al. 1999). The transition from

stage II to stage III is abrupt (i.e., veraison) in
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individual berries. In viticulture, veraison is

regarded as a critical moment because, in addi-

tion to the resumption of growth, numerous

ripening processes begin, including softening,

rapid sugar accumulation, and most conspicu-

ously a change in color in red grape varieties.

Ripening is a critical stage for determining

grape and wine quality and has major implica-

tions for the economic value of the crop. The

grape berry is a non-climacteric fruit, which

means that ripening is not related to, or modu-

lated by, a burst of respiration and ethylene as in

climacteric fruits such as tomato or apple

(Coombe 1976; Gapper et al. 2013). In fact, the

onset of ripening was originally thought to be a

coordinated process where a multitude of physi-

ological changes (softening, sugar accumulation,

increase in ABA, and color development) were

coincident and preceded the resumption of

growth by several days (Coombe and Bishop

1980; Coombe 1992). More recently, studies

have delimited the earliest events at the onset of

ripening: softening, the associated decreases in

cell turgor, and increases in ABA concentration

(Thomas et al. 2006; Wada et al. 2009; Castel-

larin et al. 2016). Increases in sugar concentra-

tion and color development appear to occur only

later, when the firmness of the berry has already

decreased dramatically and the ABA concentra-

tion has further increased (Castellarin et al.

2016). Besides ABA, other hormones such as

brassinosteroids and ethylene are involved in the

ripening process, as well as sugars, which affect

the synthesis of anthocyanins (Symons et al.

2006; Hayes et al. 2007; Chervin et al. 2008;

Davies and Böttcher 2009; Dai et al. 2013).

Auxins—normally accumulated at early stages of

berry development—act as negative modulators

of the ripening process, and their deactivation is

necessary for ripening to begin (Böttcher et al.

2010, 2012a; Gouthu and Deluc 2015).

Sugars are one of the major metabolites that

accumulate in the grape berry during ripening.

Other compounds that accumulate during ripen-

ing are flavonols, which protect the berry from

UV light, anthocyanins which determine the

pink/red/blue coloration of red grape varieties,

and several volatile organic compounds (VOCs),

such as norisoprenoids, monoterpenes, thiols, or

their conjugated precursors (Adams 2006; Teix-

eira et al. 2013; Robinson et al. 2014a, b). These

VOCs determine the aroma of grapes, juices, and

wines, particularly when chemical changes

associated with acid and enzymatic modifications

of conjugated precursors occur during fermenta-

tion and wine aging.

Many key compounds for fruit and wine

quality are synthesized before veraison and nor-

mally decrease in concentration during the

ripening period. This is the case for organic

Fig. 12.1 Zinfandel grape (Vitis vinifera L.) clusters at

the onset of ripening (i.e., veraison). The timing of

veraison is heterogeneous among berries of the same

cluster and clusters of the same vine. In the picture, some

berries have just begun ripening (light pink), whereas

others are still green
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acids, hydroxycinnamates, tannins, and methox-

ypyrazines. The two major organic acids accu-

mulated in the grape berry, tartaric and malic

acid (Kliewer 1966; Kliewer et al. 1967; Shi-

raishi et al. 2010), strongly affect juice and wine

pH and contribute to the quality (freshness and

sourness notes) and longevity of wine. Phenolic

compounds such as hydroxycinnamates and

tannins confer bitterness and astringency to jui-

ces and wines (Teixeira et al. 2013). Finally,

methoxypyrazines impart the sensory character-

istics of bell pepper, asparagus, or pea to grapes

and wines. These aromas can be perceived as

good or bad depending on variety and wine style

(Robinson et al. 2014a, b).

12.2 Berry Growth and Softening

12.2.1 Cell Division and Expansion

Final berry size dictates in large part yield, and

thus genetic and molecular studies focused on

understanding the mechanisms controlling rates

of cell division and expansion are of agronomic

interest. Transcriptomic studies highlight the

transition from cell division driven growth, during

early stage I, to cell expansion driven growth,

later during stage I and stage III (Deluc et al.

2007). To date, very few cornerstone regulators of

grape berry size have been identified. The flesh-

less berry (flb) mutation, originally a somatic

variant and later used in crosses, exhibits pro-

found effects on fruit set and/or fruit size

depending on the meristem cell layers affected

(Fernandez et al. 2006a, b). Follow-up studies

identified that the mutation results from

mis-expression of a PISTILLATA-like MADS-

box transcription factor, VviPI (Fernandez et al.

2013). Chialva et al. (2016) identified three

potential genes involved in cell division during

stage I. Members of the grape AP2/ERF tran-

scription factor family, AINTEGUMENTA

(ANT) and AINTEGUMENTA-like (AIL), were

differentially expressed across different genotypes

that varied in ovary size and cell number. One

candidate, in particular, VviANT1, co-localizes

with previously identified QTLs for berry size in

both table and wine grapes (Doligez et al. 2002;

Cabezas et al. 2006; Chialva et al. 2016).

Later in stage I, and during stage III, berry

growth results from cell expansion. Cell expan-

sion is driven by cell turgor pressure, and the rate

of expansion is determined by cell wall extensi-

bility (i.e., the yield threshold; Cosgrove 2005).

Therefore, expansive growth will be modulated

through a combination of processes that affect

turgor, such as solute accumulation, and processes

that affect cell wall extensibility and involve cell

wall modifying enzymes (Matthews and Shackel

2005). During stage I, there is evidence that both

processes indeed contribute to growth. Water

deficits reduce berry growth, resulting largely

from decreases in berry turgor pressure (Thomas

et al. 2006). At the same time, expression analyses

during stage I across table grape genotypes with

contrasting rates of growth highlighted differences

in many genes encoding cell wall modifying

enzymes (Muñoz-Espinoza et al. 2016).

Grape berry cell turgor is high during stage I,

but decreases during stage II, and reaches very

low levels at the onset of ripening (Thomas et al.

2006; Wada et al. 2009; Castellarin et al. 2016).

This decrease in turgor prior to the onset of

ripening is thought to contribute to softening

(discussed below), but it creates a conundrum

regarding the resumption of growth that occurs at

the same time. Extremely low turgor requires a

corresponding decrease in the cell wall yield

threshold in order for rapid expansive growth to

resume. In fact, numerous studies have con-

cluded that the resumption of growth at the onset

of ripening corresponds to the upregulation of

many genes encoding cell wall modifying

enzymes (Nunan et al. 2001; Deluc et al. 2007;

Schlosser et al. 2008; Castellarin et al. 2016).

Nicolas et al. (2013) identified a basic helix–

loop–helix transcription factor, VviCEB1, that

positively regulates grape berry size through

enhanced cell expansion, and its action was

confirmed through ectopic expression in Ara-

bidopsis and tobacco (Lim et al. 2018). VviCEB1

overexpression led to the induction of numerous

genes encoding cell wall modification enzymes,
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which suggests a possible role for these enzymes

in changing the yield threshold to modulate cell

expansion (Nicolas et al. 2013). During berry

development, VviCEB1 expression increases

throughout stage I, peaks at the onset of ripening,

and remains high during stage III, consistent with

the period of expansive berry growth.

Stage III berry growth is peculiar because

grape berries are largely buffered hydraulically

from the parent plant (Matthews and Shackel

2005; Thomas et al. 2006). The traditional view,

that this hydraulic buffering was a result of a

physical disconnection of the xylem, has been

refuted (Keller et al. 2006), although the buffer-

ing does involve decreases in hydraulic conduc-

tivity (Choat et al. 2009; Knipfer et al. 2015).

The membrane water channel proteins, aqua-

porins, may contribute to these decreases in berry

hydraulic conductivity; however, the regulation

of this gene family during ripening is complex

(Choat et al. 2009; Wong et al. 2018). The extent

to which aquaporins mediate berry growth

remains unknown, but it is fair to speculate

that they play a role in berry growth via their

effects on berry water relations (Tyerman et al.

2012).

12.2.2 Softening: Decreases in Turgor
and Changes in Cell Wall
Composition

Berry softening occurs approximately 10 days

prior to the onset of ripening and represents one

of the earliest detectable changes in berry phys-

iology leading to veraison (Wada et al. 2008;

Matthews et al. 2009; Castellarin et al. 2016).

Softening is thought to result from the same two

compatible mechanisms as growth does decrea-

ses in cell turgor (introduced above) and changes

in the structure of cell walls (Brummell and

Harpster 2001; Gapper et al. 2013).

Interestingly, both of these mechanisms have

links with abscisic acid (ABA), one of the key

hormones regulating the onset of ripening in

grape (Gambetta et al. 2010; Castellarin et al.

2016; Pilati et al. 2017) and other fruits (Leng

et al. 2014). The decrease in turgor associated

with softening in grape corresponds to increases

in ABA, and both precede the increase in sugar

concentration at the onset of ripening (Castellarin

et al. 2016). The decrease in turgor results from

the accumulation of solutes, mostly malate and

sugars, in the apoplast of the berry (Wada et al.

2008, 2009). This accumulation of solutes in the

berry apoplast may result from apoplastic sucrose

unloading from the phloem and an upregulation

of acid invertases, which ABA stimulates (Pan

et al. 2005; Zhang et al. 2006; Koyama et al.

2010).

Many genes encoding cell wall modification

enzymes are up-regulated during softening in

grape, including many members of the expansin

and pectin methylesterase gene families, among

others (Dal Santo et al. 2013; Castellarin et al.

2016; Fasoli et al. 2016). In addition, cell wall

modification enzymes are thought to contribute

to postharvest changes in fruit texture and quality

(Brummell and Harpster 2001), and this is con-

sistent with findings in grape where many genes

encoding cell wall modification enzymes con-

tinue to be up-regulated late into ripening and

throughout the postharvest period (Castellarin

et al. 2016; Zenoni et al. 2016). The master

regulators of these increases are still unknown,

but ABA has been shown to up-regulate cell wall

modification enzymes, including expansins and

pectin methylesterases, in tomato (Sun et al.

2012). Increases in VviCEB1 expression (dis-

cussed above) correspond to softening, and along

with VviCEB1’s induction of genes encoding cell

wall modification enzymes, one can speculate a

role for VviCEB1 in softening as well (Nicolas

et al. 2013).

12.3 Berry Composition

Grape composition determines grape, juice, and

wine sensorial attributes. It changes dramatically

during fruit ripening and is strongly affected by

the genotype, the environment, and the viticul-

tural practices applied in the vineyard. The

complex regulation of the physiological and

metabolic pathways that determine grape com-

position, as well as the modulation of these
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pathways by the environment or viticultural

practices, have been intensively investigated

during recent years.

12.3.1 Sugars

Sugars play an important role in shaping berry

sensory properties, in determining alcohol con-

centration after fermentation, and as precursors

for the synthesis of organic acids, phenolics, and

aroma compounds (Dai et al. 2011). Vitis vinifera

berries accumulate large amounts of sugars,

predominantly glucose and fructose (in equal

concentrations) with only a trace amount of

sucrose (Hawker et al. 1976; Liu et al. 2006;

Shiraishi et al. 2010). Grapevine varieties exhibit

an impressively large range of sugar concentra-

tions at maturity. For example, Kliewer et al.

(1967) compared 78 table and wine grape vari-

eties and found that total soluble solids of the

berry juice—a good representation of berry sugar

concentration—varied at harvest from 18.5 to

28.2 °Brix.

In plants, sugars are synthesized in the cyto-

plasm of the leaf mesophyll cells and transported,

in the form of sucrose, via phloem into other

parts of the plant (Cheng et al. 2018). In the

grape berry, sucrose is then hydrolyzed by

invertases and stored in the vacuole in the form

of glucose and fructose. At the onset of berry

ripening or just before, sugar loading into the

berry from the phloem shifts from a symplastic to

an apoplastic pathway (Zhang et al. 2006). The

latter requires at least two transporters—one

secreting sugars from sieve elements/companion

cells, the other mediating reuptake into the

adjacent sink cells (Lalonde et al. 2004). Sugar

transport across membranes is mainly mediated

by the proton-coupled sucrose transporters

(SUTs, the disaccharide transporters) and hexose

transporters (HTs, the monosaccharide trans-

porters), together with several other subfamilies

of monosaccharide transporters. Acidic inver-

tases (AI), located in the vacuole or cell wall, and

neutral invertases (NI), located in the cytoplasm,

are the two major classes of sucrose metabolic

enzymes contributing to hexose accumulation in

grape berry. Although the vacuolar invertases are

considered important for sugar accumulation, the

expression of the genes encoding these enzymes

precedes the onset of hexose accumulation by

some weeks; therefore, the synthesis of these

enzymes cannot be considered a trigger for sugar

accumulation in grape berry (Davies and

Robinson 1996).

SUTs are essential for sucrose translocation in

plants (Lalonde et al. 2004). Four genes encoding

sucrose transporters have been identified in

grapevine, namely VviSUC11/VviSUT1, Vvi-

SUC12, VviSUC27, and VviSUT2. VviSUC11 and

VviSUC12 are high affinity sucrose transporters

(Ageorges et al. 2000; Manning et al. 2001;

Afoufa-Bastien et al. 2010), and VviSUC27 is a

low affinity sucrose transporter that has a very

similar structure to VviSUT2 (Zhang et al. 2007).

VviSUC11 and VviSUC12 expressions have been

detected in all organs. The weakest expression for

both genes was observed in berries at fruit set

(Afoufa-Bastien et al. 2010), but a significant

upregulation was observed during ripening

(Lecourieux et al. 2014). Afoufa-Bastien et al.

(2010) suggest that VviSUC12 either might be

involved in phloem unloading or in sucrose

import into the berry, and that VviSUC11 might

control sucrose uptake into berry vacuoles. In

contrast, VviSUT27 transcript amounts signifi-

cantly decrease during ripening (Davies et al.

1999), which suggests a different physiological

function for this transporter. On the other hand,

VviSUC27 transcripts have been detected at a

high level in petioles, stems, and tendrils, and less

abundantly in young leaves, mature leaves, and

roots (Afoufa-Bastien et al. 2010). The “Sugars

Will Eventually be Exported Transporter”

(SWEET) proteins are a newly identified family

of sugar efflux transporters (Chen 2014).

SWEETs are integral membrane proteins and

function as a prerequisite for SUT1-mediated

phloem loading (Chen et al. 2012). There are 17

SWEET genes, with different expression levels

among vegetative and reproductive organs,

identified in grapevine. Generally, most VviS-

WEET genes are more highly expressed in the

berry, and their expression level increases

throughout berry ripening (Chong et al. 2014).
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HTs in grapevine are encoded by a multigene

family, of which five members (VviHT1-5) are

well studied (Tanner and Caspari 1996; Zhang

et al. 2007; Agasse et al. 2009), and 17 were

identified more recently (VvHT8-24)

(Afoufa-Bastien et al. 2010). VviHT1 is expres-

sed mainly in grape berry (Fillion et al. 1999),

and its transcription greatly increases during leaf

development. VviHT3 and VviHT5 are expressed

in both mature leaves and grape berries, though

VviHT5 has a much lower expression level than

VviHT3. VviHT4, whose function is restricted to

glucose, is also expressed in grape berries (Hayes

et al. 2007). VvHT1, VvHT2, and particularly

VvHT3 are highly expressed at all stages of berry

development, with transcriptional patterns con-

sistent with the shift from a symplastic to an

apoplastic phloem unloading pathway that occurs

prior to veraison (Lecourieux et al. 2014). A gene

named VviHT8, which has a high similarity to

VviHT1, was identified as a molecular target for

the selection of grapes with improved sugar

accumulation (Xin et al. 2013).

Other monosaccharide transporters present

in the grapevine genome include tonoplast

monosaccharide transporters (VviTMTs), polyol/

monosaccharide transporters (VviPMTs), glucose

transporters (VviGlcTs), and ERD6-like trans-

porters (Afoufa-Bastien et al. 2010).

12.3.2 Organic Acids

Tartaric acid and malic acid are the major organic

acids in grapevine. Most of the tartrate and malate

in immature berries originate from glucose and

fructose (Hardy 1968). Tartaric and malic acid

accumulate in berry cell vacuoles before veraison.

Unlike many other fruits, grape berries do not

contain large amounts of citrate. During ripening,

the concentration of tartaric acid remains stable,

but the concentration decreases through a dilution

effect determined by cell expansion (Dai et al.

2011; Regalado et al. 2013). Malic acid also

decreases in concentration during ripening, but in

contrast to tartrate, most of this decrease is due to

degradation, use in respiration, and conversion

into sugars (Sweetman et al. 2009).

Tartaric acid is synthesized from L-ascorbic

acid (vitamin C). L-idonate dehydrogenase (L-

IdnDH) is responsible for catalyzing the proposed

rate-limiting step, the oxidization of L-idonic acid

to 5-keto-gluconic acid (DeBolt et al. 2006;

Cholet et al. 2016), and is the only known enzyme

to be involved in tartaric acid accumulation

(DeBolt et al. 2006). The sudden increase of tar-

taric acid during stage I is paralleled by VviL-

IdnDH gene expression and translation (Grimplet

et al. 2007; Wen et al. 2010; Cholet et al. 2016).

There are three different isoforms of VviL-IdnDH

genes: two of them are specifically expressed in

young berries, and the third increases during

berry ripening (Sweetman et al. 2012).

The accumulation of malate before the onset

of ripening is thought to be mainly due to its de

novo synthesis in berries (Sweetman et al. 2009).

Malic acid is produced from phosphoenolpyru-

vate (PEP) through the activity of different

enzymes: phosphoenolpyruvate carboxylase

(PEPC), malate dehydrogenase (MDH) (Givan

1999; Sweetman et al. 2012), malic enzyme

(ME) (Sweetman et al. 2012), and fumarase

(FUM) (Shangguan et al. 2015). There are two

VviPEPCs, one VviMDHs, and two VviFUMs

identified in grapevine (Shangguan et al. 2015).

The cytoplasmic MDH and the mitochondrial

ME appear to be key enzymes for malic acid

synthesis, since the decrease in expression of

their codifying genes correlates to decreases in

malate concentration during ripening (Sweetman

et al. 2012).

MDH enzymes catalyze the reversible con-

version of oxaloacetate into malate; therefore, the

possible decrease of oxaloacetate in mature ber-

ries caused by altered expression of VviPEPC

and VviPEPCK could influence malate degrada-

tion by shifting the function of MDH enzymes

towards malate catabolism (Sweetman et al.

2012). Since the catabolism of malate can only

occur when the acid is accessible to metabolic

enzymes outside the vacuole, the compartmen-

tation of malate may also influence the rates of its

degradation during berry development. For this

reason, the decrease of malate could also be

attributed partly to the down-regulation of the

genes encoding the tonoplast dicarboxylate
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transporters (VviTDTs) (Sweetman et al. 2009,

2012), which are responsible for the transport of

malate into vacuoles. Moreover, the decrease in

acid content during grape ripening has been

mainly associated with mitochondrial malate

oxidation (Regalado et al. 2013). Three mito-

chondrial dicarboxylate/tricarboxylate carriers

(VviDTC1–VviDTC3) have been characterized in

Vitis vinifera. VviDTC1 is able to transport all the

dicarboxylates/tricarboxylates of the TCA cycle,

with the exception of fumarate, and exhibits high

specificity for malate. The expression of

VviDTC2 and VviDTC3 transcripts is strongly

enhanced in the mesocarp at the onset of ripen-

ing, which suggests that their role in the transport

of malate into mitochondria might be critical

(Regalado et al. 2013).

12.3.3 Phenolics

Phenolics are synthesized from phenylalanine via

the phenylpropanoid, flavonoid, and stilbenoid

pathways. The phenylpropanoid pathway leads to

the production of p-coumaryl-CoA from pheny-

lalanine, which involves enzymes such as pheny-

lalanine ammonia lyase (PAL), cinnamate-

4-hydroxylase (C4H), and 4-coumarate-CoA

ligase (4CL). p-Coumaryl-CoA and malonyl-CoA

are the substrates of both chalcone synthase

(CHS) and stilbene synthase (STS), which catalyze

the first steps of the flavonoid and stilbenoid path-

way, respectively.

Hydroxycinnamic acids, such as p-coumaric,

caffeic, and ferulic acid and their esterified

forms coutaric, caftaric, and fertaric acid are the

major phenolic acids in the berry. Their synthesis

occurs before veraison via modifications of

the intermediates of the phenylpropanoid path-

way catalyzed by caffeic acid 3-O-metyl-

transferase (COMT) and caffeoyl-CoA 3-O-

methyltransferase (CCoAOMT). Recently, two

TFs, VviMYB4a and VviMYB4b, have been

characterized as negative regulators of phenyl-

propanoid genes and hydrocinnamic acid syn-

thesis (Cavallini et al. 2015).

Stilbenoids (e.g., cis- and trans-resveratrol,

piceatannol, cis- and trans-piceid, astringin,

pallidol, and a-, b-, c-, d-, e-viniferin) are mostly

accumulated from veraison onward (Gatto et al.

2008) and are strongly modulated by both biotic

and abiotic factors (Vannozzi et al. 2012; Savoi

et al. 2017). Forty-five stilbene synthases are

found in the grapevine genome, with at least 33

encoding full-length proteins. This gene family

arose from multiple events of tandem and seg-

mental duplications (Vannozzi et al. 2012).

Recent large-scale transcriptomic analysis has

shown that the expression of many VviSTSs

changes during fruit development and ripening

(Massonnet et al. 2017). In red berry varieties,

induction of VviSTSs is particularly pronounced

during the late stages of ripening. The two

R2R3 MYB transcription factors, VviMYB14

and VviMYB15 (Höll et al. 2013), which are

known to regulate stilbene biosynthesis, also

share similar expression profiles. Nonetheless,

among the many TFs proposed to regulate this

pathway (Wong et al. 2016b; Vannozzi et al.

2018), two WRKY TFs, VviWRKY24 and

VviWRKY03, participate at different levels of

VviSTS regulation—via direct activation of

VviSTSs or synergistic action with MYB TFs to

regulate VviSTSs.

The flavonoid pathway leads to the production

of flavonols, flavan-3-ols, and anthocyanins. The

modulation of the pathway during berry devel-

opment and under environmental stresses has

been largely investigated in grapevine (Teixeira

et al. 2013; Kuhn et al. 2013). Most of the genes

of the flavonoid pathway are present in low copy

numbers except for those encoding the flavonoid-

3′,5′-hydroxylases (F3′5′H s). Flavonoid-3′-

hydroxylases (F3′Hs) and F3′5′Hs divide the

pathway into two major branches, whose

compounds are either di-hydroxylated or tri-

hydroxylated. In most plants, F3′5′H genes are

present in low copy numbers, but a proliferation

of the F3′5′Hs has occurred in the grapevine

genome and given rise to 15 paralogs within

650 kb (Falginella et al. 2010). Most VviF3′5′Hs

are predominantly expressed in berries, and dif-

ferences in cis-regulatory sequences of promoter

regions are paralleled by temporal specialization

of gene transcription during fruit ripening and in

berry tissues (Falginella et al. 2010, 2012).
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Flavonol synthases (FLSs) are key enzymes

for the synthesis of berry flavonols such as

kaempferol, quercetin, myricetin, isorhamnetin,

laricitrin, and syringetin (Downey et al. 2004).

The expression of the FLSs is well known to be

under the control of a light-induced transcription

factor (VviMYBF1/VviMYB12) (Czemmel et al.

2009). Two recent studies now show that three

additional bZIP TFs, VviHY5, VviHYH, and

VvibZIPC22 (Malacarne et al. 2015; Loyola

et al. 2016), are involved in the regulation of

flavonol synthases and flavonol accumulation in

the berry. VviMYBF1 was shown to be part of a

regulatory cascade of VviHY5/HYH that poten-

tially involves positive feedback regulation

(Loyola et al. 2016; Czemmel et al. 2017). Fla-

vonols are normally glycosylated (as glucosides,

galactosides, rhamnosides, rutinosides, and glu-

curonides) and the flavonol-3-O-glycosyl-

transferases (VviGT3-5-6) and flavonol-3-O-

rhamnosyltransferase (VviRhaT1) responsible

for this glycosylation have been recently char-

acterized in grapevine (Ono et al. 2010; Czem-

mel et al. 2017).

Flavan-3-ols are produced via the activity of

leucoanthocyanidin reductases (LAR1-2) or an

anthocyanidin reductase (ANR) (Bogs et al.

2005). Their synthesis is promoted from anthesis

to veraison and is regulated by transcription

factors of the MYB family. In particular, Vvi-

LAR1 and VviANR are under the control of

VviMYBPA1 and VviMYBPA2 (Bogs et al.

2007; Terrier et al. 2009), whereas VviLAR2 is

under the control of VviMYBPAR (Koyama

et al. 2014). The monomeric flavan-3-ols accu-

mulated in grape, (+)-catechin, (−)-epicatechin,

(−)-epicatechin-3-O-gallate, (+)-gallocatechin

and (−)-epigallocatechin, differ according to

stereochemistry, level of hydroxylation, and

acylation by gallic acid (Mattivi et al. 2009).

Until now, the mechanisms involved in either

polymerization into tannins, galloylation, and

transport into the vacuoles have not yet been well

understood (Zhao et al. 2010). However, a QTL

study revealed different genetic determinisms for

PA composition in seeds and skin, including PA

total content, PA building blocks, degree of

polymerization, and ratio between building

blocks (Huang et al. 2012). Three annotated

glycosyltransferases (VviGT1-3) were described

to be putatively involved in the galloylation of

proanthocyanidins and the production of

hydroxycinnamic esters (Khater et al. 2012), and

two specific transporters of proanthocyanidin

were identified (VviPAMATE1-2) (Pérez-Díaz

et al. 2014).

Anthocyanins are responsible for the pigmen-

tation of the grape berries. They are synthetized in

the epidermis and hypodermis cells from veraison

onward and then stored in the vacuole. Teinturier

varieties, such as Alicante Bouschet, also accumu-

late anthocyanin in theflesh (Castellarin et al. 2011;

Falginella et al. 2012). In Vitis vinifera, antho-

cyanins are glycosylated at the 3′ position by the

addition of a glucose moiety through the activity of

the enzyme UDP-glucose, flavonoid-3-O-gluco-

syltransferase (UFGT). Both di-hydroxylated

and tri-hydroxylated anthocyanins are syn-

thetized by VviUFGT. The O-methyltransferases

(VviAOMT1-3)methylate cyanidin-3-O-glucoside

and delphinidin-3-O-glucoside into peonidin-3-O-

glucoside, petunidin-3-O-glucoside, and malvidin-

3-O-glucoside (Fournier-Level et al. 2011). More-

over, anthocyanins can also be acylated at the 6″

position of the glucose, which produces 3-O-6″-

acetyl-, 3-O-6″-coumaroyl- and 3-O-6″-caffeoyl-

monoglucosides and, recently, an anthocyanin-3-

O-glucoside-6″-O-acyltransferase was character-

ized (Vvi3AT) (Rinaldo et al. 2015).

The MYBA1-A2 TFs are crucial genetic

determinants of berry color (Walker et al. 2007).

Recent studies show that additional members of

theMYBA cluster, VviMYBA6 andVviMYBA7,

have the capacity to influence fruit anthocyanin

pigmentation and composition under severe

environmental conditions (i.e., UV-B) during

veraison (Czemmel et al. 2017).

Anthocyanin-acylglucosides are translocated into

the vacuole by MATE-type transporters localized

in the tonoplast (VviAnthoMATE1-3) (Gomez

et al. 2009), whereas the glycosylated antho-

cyanins are translocated via a glutathione-

dependent, ATP-binding cassette (ABC) protein

(VviABCC1) (Francisco et al. 2013).
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Furthermore, a recent QTL study identified a set of

new candidate genes for the regulation of antho-

cyanin variation among cultivars (Costantini et al.

2015).

Overall, the synthesis of hydroxycinnamic

acids, stilbenes, flavonols, flavan-3-ols, and

anthocyanins is spatiotemporally separated dur-

ing grape berry development and ripening and

tightly regulated by positive and/or negative

regulators. Besides the TFs described above, two

(VviMYB5a-b) are general regulators of the fla-

vonoid pathway and, in particular, modulate the

expression profile of several flavonoid genes

(VviCHI, VviF3′5′H, VviLDOX, VviLAR, and

VviANR) during berry development and ripening

(Lauvergeat et al. 2006; Cavallini et al. 2015).

Recently, two TFs (VviMYBC2-L1 and L3)

were characterized as repressors of both proan-

thocyanidin and anthocyanin biosynthesis

(Huang et al. 2014; Cavallini et al. 2015).

Moreover, a bHLH (VviMYC1) interacts with

VviMYB5a-b, VviMYBPA1, and VviMYBA1-

A2 in the transcriptional control of proantho-

cyanidin and anthocyanins biosynthesis in

grapevine (Hichri et al. 2010).

12.3.4 Volatile Organic Compounds

Terpenes are a major class of volatiles in grapes

and strongly affect the aroma of grapes and wines

of several varieties. The sesquiterpenes and

monoterpenes accumulate in the berry before and

after veraison, respectively. Two independent

pathways produce terpenes in plants: (1) the

plastidial 2C-methyl-erythritol-4-phosphate

(MEP) pathway, which is the predominant path-

way for monoterpenes (C10) and diterpenes (C20),

and (2) the cytosolic mevalonate (MVA) pathway,

which is the primary pathway for sesquiterpenes

(C15) (Bohlmann and Keeling 2008).

The major monoterpenes produced in grapes

are linalool, geraniol, nerol, citronellol, hotrienol,

a-terpineol, and rose oxides (Matarese et al. 2014);

these compounds conferflowery and fruity notes to

wines (Robinson et al. 2014a; Siebert et al. 2018).

Sesquiterpenes have a minor impact on grape and

wine aroma because usually their concentrations

are below the olfactory threshold. Themost studied

sesquiterpene is rotundone, which gives peppery

character in some red and white varieties (Siebert

et al. 2008; Wood et al. 2008; Mattivi et al. 2011;

Caputi et al. 2011). Recently, key genes (VviGuaS,

VviTPS24, VviSTO2) involved in rotundone

biosynthesis were identified (Drew et al. 2015;

Takase et al. 2015).

Among the several structural genes of the

MEP pathway, 1-deoxy-xylulose 5-phosphate

synthase (VviDXS) was identified as a key

modulator of total monoterpene content in

grapevine (Battilana et al. 2009, 2011). Terpene

synthases (TPSs) control monoterpene or

sesquiterpene production (Martin et al. 2010;

Matarese et al. 2013, 2014). Interestingly, in the

genome of Vitis vinifera there are 69 putative

terpene synthases, 39 of them functionally char-

acterized (Martin et al. 2010). Generally, TPSs

are divided into seven clades: TPS-a, TPS-b,

TPS-c, TPS-d, TPS-e/f, TPS-g, and TPS-h (Chen

et al. 2011). The TPS-a clade (30 genes) contains

mostly sesquiterpene and possibly diterpene

synthases, whereas the TPS-b clade (19 genes)

and TPS-g clade (17 genes) consist mostly of

monoterpene synthases. TPS-c (2 genes) and

TPS-e/f (1 gene) clades contain plant hormone

metabolism genes that are typically represented

with a single gene copy in plant genomes. No

full-length TPS-d and TPS-h were found in

grapevine (Martin et al. 2010). Recently, several

genes, such as nudix hydroxylase, vesicle-

associated proteins, ABCG transporters, glu-

tathione S-transferases, and amino acid perme-

ases have been proposed as candidate genes for

regulating the monoterpene biosynthesis and

accumulation in the berry (Costantini et al.

2017). Moreover, positive correlation between

aroma production and ERF TFs indicates that

ethylene signaling could be a factor in affecting

the final terpene content (Cramer et al. 2014). In

addition, a major role of jasmonic acid and

methyljasmonate has been hypothesized for the

regulation of terpene biosynthesis in grapes

(Savoi et al. 2016; D’Onofrio et al. 2018).

Most monoterpenes and sesquiterpenes are

present in grapevine as non-volatile terpene

glycosides. In grapevine, only three
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monoterpenol glycosyltransferases have been

characterized, VviGT7-14-15 (Bönisch et al.

2014a, b; Li et al. 2017) and the cytochrome

P450 CYP76F14, which catalyzes the conversion

of linalool to (E)-8-carboxylinalool, which, dur-

ing wine fermentation, generates a wine lactone,

a key odorant of Gewurztraminer wines (Ilc et al.

2017).

Other terpenoids synthesized in the berry

before ripening are the carotenoids, which are

pigments contributing to light harvesting and to

protecting the photosynthetic apparatus from

photooxidation (Rodrı́guez-Concepción and

Boronat 2002). The genes involved in their

biosynthetic pathway were recently identified in

grapevine (Young et al. 2012). Carotenoids can

be cleaved via other carotenoid cleavage dioxy-

genases (VviCCD1a/b, VvCCD4a/b/c) (Lash-

brooke et al. 2013) to form volatile flavor and

aroma-related compounds, such as the C13-nor-

isoprenoids b-ionone and b-damascenone, which

contribute to floral and fruity aromas. The

majority of them are glycosylated in grape

(Robinson et al. 2014a).

The unsaturated C18 fatty acids linoleic acid

and linolenic acid are the precursors of other

volatile organic compounds such as C6-alde-

hydes and alcohols like hexanal and hexanol

(Kalua and Boss 2009). They are formed by the

activity of lipoxygenases (VviLOX) (Podolyan

et al. 2010), hydroperoxide lyase

(VviHPL1-2) (Zhu et al. 2012), and (3Z)-(2E)

enal isomerase and alcohol dehydrogenase

(VviADH) (Kalua and Boss 2009). Their syn-

thesis occurs mainly pre-veraison (Kalua and

Boss 2009), and they are responsible of

green-grassy aromas even though, considering

their detection threshold, they rarely contribute to

the herbaceous character of juices and wines

(Robinson et al. 2014a).

Methoxypyrazines like 3-isobutyl-2-

methoxypyrazineare (IBMP), 3-isopropyl-2-

methoxypyrazine (IPMP) are extremely volatile

compounds accumulated before veraison. They

contribute to the specific green-herbaceous aroma

of some wines such as Sauvignon blanc, Cabernet

Sauvignon, Cabernet Franc, and Merlot. Their

biosynthesis starts with an adicarbonyl addition to

the amino acid leucine or valine for IBMP and

IPMP, respectively, followed by methoxylation

reactions to form the final methoxypyrazines.

Four O-methyltransferases (VviOMT1-4) have

been identified in grape, with VviOMT3 having a

major role in IBMP production (Dunlevy et al.

2010; Guillaumie et al. 2013).

Finally, thiols confer typical aromatic features

to some varieties such as Sauvignon blanc.

The thiols in grape are normally accumulated

during ripening in a non-volatile form, bounded

to S-cysteine or S-glutathione via the VviGST3

and VviGST4 activity (Kobayashi et al. 2011).

These compounds are released during and after

fermentation, conferring to wines many desired

properties and sometimes off-flavors, depending

on the concentration (Peña-Gallego et al. 2012).

12.4 Hormonal Regulation of Berry
Ripening

Several hormones participate in the control of

grape ripening. Genomic and high throughput

technologies have been essential in characteriz-

ing the crosstalk between hormones and the

expression of associated downstream genes

(McAtee et al. 2013; Fortes et al. 2015)

(Fig. 12.2).

12.4.1 Auxins

Several studies have established that IAA decline

is associated with the initiation of ripening, both

in climacteric fruit and in non-climacteric fruit

such as grapes (Böttcher et al. 2011; Fortes et al.

2015). Auxin treatments retard sugar and antho-

cyanin accumulation and prevent the decrease in

acidity and chlorophyll concentration, but also

cause a delay in the usual ripening-associated

increase in the levels of abscisic acid (ABA), by

altering gene expression in grape berry (Davies

et al. 1997; Ziliotto et al. 2012).

Gouthu and Deluc (2015) showed that the

timing of ripening initiation is related to an auxin
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signal and is linked to the relative seed content in

berries. In a recent study that compared the berry

physiology and composition to the whole gen-

ome gene expression analyzed by RNA-seq, a

potential role of auxin and its conjugates in

determining asynchrony between berries of dif-

ferent sizes was suggested (Wong et al. 2016a).

Moreover, it was shown that the tight control of

Fig. 12.2 Hormone dynamics during berry development

and ripening. Several studies have shown that increases in

auxin, cytokinin, gibberellin, and jasmonic acid occur

during the first phases of fruit growth (Stage I); brassi-

nosteroids, ethylene, and ABA are mainly involved in

physiological changes related to berry ripening (Stage

III). The up- and down-regulation of the main

biosynthetic/catabolic and associated downstream signal-

ing genes are reported for each different hormone. In

detail, gene names are abbreviated as follows:

TRYPTOPHAN AMINOTRANSFERASE OF ARABID

OPSIS1/TRYPTOPHAN AMINOTRANSFERASE

RELATED (TAA/TAR); YUCCA (YUC); auxin response

factors (ARF); IAA-amido synthetase (GH3-1);

9-cis-epoxy-carotenoid dioxygenase (NCED); zeaxanthin

epoxidase (ZEP); b-glucosidases (BG); transcription

factors ABA insensitive (ABI3); ABRE-binding factors

(ABF); UDP-glucosyltransferases (UGT); ABA 8’-hydro-

xylase (ABA-8’H); ACC oxidase (ACO); ethylene recep-

tors (ETR2, EIN4, ERS); Adenosine phosphate-

isopentenyltransferase (IPT); phosphoribohydrolase

“Lonely guy” (LOG); cytokinin histidine kinase (CHK)

receptors; response regulators (RR); cytokinin oxidase/

dehydrogenase (CKX); brassinosteroid 6-oxidase gene

(BR6OX); BR receptors (BRI1); GA-oxidases; S-adeno-

syl-L-methionine:jasmonic acid carboxyl methyltrans-

ferase (JMT); JA-amido synthetases (GH3-7 and GH3-

9); lipoxygenase (LOX); allene oxide synthase (AOS);

12-oxophytodienoate reductase (OPR), CORONATINE

INSENSITIVE 1 (COI1) jasmonate receptor; jasmonate

ZIM domain (JAZ)
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the hormone concentration derives from the

coordinated interplay of biosynthesis, transport,

degradation, and conversion pathways (Nor-

manly et al. 2010; Zhao 2010), in association

with the fine regulation of the pool of IAA

conjugates during grape ripening (Fortes et al.

2015).

The conjugation of IAA to amino acids is

catalyzed by auxin-inducible GH3 proteins and

provides a negative feedback loop to control

auxin homoeostasis (Böttcher et al. 2010). A pu-

tative IAA-amido synthetase gene, VviGH3-1,

was identified in grape berries. This gene

displays a developmental expression pattern

consistent with the increase of IAA-conjugates,

which in turn is coupled to several ripening-

associated processes in the berry. Indeed, the

increasing levels of IAA-aspartate in grapes

might be linked to the low levels of active IAA

that were observed during ripening, and provide

evidence for a possible mechanism for the

maintenance of low auxin levels during ripening

(Böttcher et al. 2012b). Members of both

the TRYPTOPHAN AMINOTRANSFERASE

OF ARABIDOPSIS1/TRYPTOPHAN

AMINOTRANSFERASE RELATED (TAA1/

TAR) and YUCCA (YUC) gene families (Won

et al. 2011), involved in the two-step pathway of

auxin biosynthesis, are also expressed in devel-

oping berries. Recent transcriptomic analyses

revealed a consistency between TAA/TAR and

YUC transcripts’ evolution and auxin accumu-

lation during berry development and ripening

(Wong et al. 2016a).

Auxins’ effects are mediated by early

response genes, such as Aux/IAA, GH3, and

SAUR family members. Several putative auxin

response elements (AuxREs) have been identi-

fied, and it has been demonstrated that the con-

served motif TGTCTG is responsible for the

binding of the auxin response factors (ARFs) that

confer specificity to auxin response through the

selection of target genes, i.e., transcription fac-

tors (Hayashi 2012; Li et al. 2016). Nineteen

VviARF genes, categorized into four groups

(Classes 1, 2, 3 and 4) have been identified. Most

VviARFs display the highest transcript levels in

the berry, suggesting that they may play

important roles in the regulation of grape berry

maturation processes (Wan et al. 2014).

12.4.2 ABA

An increase in free ABA levels around veraison

accompanies sugar accumulation, pigmentation,

and softening (Deluc et al. 2007; Wheeler et al.

2009; Sun et al. 2010; Gambetta et al. 2010;

Pilati et al. 2017), which suggests a major role

for the hormone in controlling several ripening-

associated processes in grape berry (Kuhn et al.

2013; Fortes et al. 2015). A decrease in fruit

firmness was observed by transforming tomato

with the Vitis transcription factor VvABF2,

involved in ABA and abiotic stress signaling and

expressed in the berry at the onset of ripening

(Nicolas et al. 2014). Moreover, the upregulation

of a gene encoding a glycine-rich protein, pos-

sibly involved in cell wall biogenesis and

degradation, confirms a role for the hormone in

fruit softening (Rattanakon et al. 2016).

The effect of ABA on the transcription of

genes involved in its own biosynthesis, degra-

dation, conjugation, transport, and signaling

pathways has been extensively studied in differ-

ent organs of grapevine (Rattanakon et al. 2016;

Pilati et al. 2017). These studies highlighted

that a small amount of ABA can trigger a

positive feedback regulation of genes involved in

ABA biosynthesis, including a significant up-

regulation of VviABI3 (transcription factor

involved in ABA responsiveness) during the lag

phase, which further supports the regulatory role

of ABA in grape ripening (Rattanakon et al.

2016).

ABA biosynthesis comprises crucial steps

catalyzed by 9-cis-epoxy-carotenoid dioxygenase

(VviNCED) and zeaxanthin epoxidase (Vvi-

ZEP). The genes codifying for those proteins are

up-regulated around veraison. Conversely, ABA

8′-hydroxylase (VviABA-8′H), which regulates

ABA catabolism, is down-regulated at the same

stage (Deluc et al. 2007; Fortes et al. 2015).

Moreover, the activity of cytosolic UDP-

glucosyltransferases (VviUGTs), which conju-

gate ABA to form the ABA-glucose ester, and
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the activity of b-glucosidases (VviBGs), which

release ABA from the above conjugated form,

further control ABA levels in the berry tissues

(Owen et al. 2009).

Higher accumulation of anthocyanins has

been observed in the skin of berries treated with

ABA (Wheeler et al. 2009; Gambetta et al.

2010). This is consistent with the increased

expression of anthocyanins’ biosynthetic genes

VviCHI, VviF3H, VviDFR, and VviUFGT, and of

the related transcription factors VviMYBA1 and

VviMYBA2 (Koyama et al. 2010). ABA is also a

key modulator of water stress responses, and

water deficit promotes ripening and color accu-

mulation in grape berries (Castellarin and Di

Gaspero 2007; Herrera and Castellarin 2016;

Savoi et al. 2017); however, several studies have

shown that under water deficit, ABA is not the

only signal for color development, and sugars

and other stimuli may co-regulate the metabolic

response of the berry (Gambetta et al. 2010;

Ferrandino and Lovisolo 2014; Pilati et al. 2017).

Supporting this hypothesis, Pilati et al. (2017)

analyzed berry skin transcriptional modulation

by RNA-seq, and observed that ABA treatment

by itself did not induce anthocyanins’ biosyn-

thetic genes.

In addition to the regulation of secondary

metabolism, ABA may be able to hasten the

initiation of sugar accumulation when applied

before veraison by stimulating the uptake and

storage of sugars in berries (Davies and Böttcher

2009; Fortes et al. 2015). The link between ABA

and sugar metabolism is also supported by a

study demonstrating that ABA increased the

activity of both soluble and cell wall acid

invertases in berry discs (Pan et al. 2005).

12.4.3 Other Hormones

12.4.3.1 Ethylene

The role of ethylene in regulating berry ripening

was usually considered negligible (Sun et al.

2010; Muñoz-Robredo et al. 2013). However,

ethylene can alter the progression of ripening. For

example, the application of an ethylene-releasing

compound (2-chloroethylphosphonic acid,

2-CEPA) delayed ripening when applied early in

berry development, and treatments with an

inhibitor of ethylene biosynthesis, aminoeth-

oxyvinylglycine (AVG), advanced ripening

(Böttcher et al. 2013). However, the response to

CEPA and AVG clearly changed during berry

development, and this was speculated to be due to

the different sensitivity of the ethylene biosyn-

thesis and perception pathways to exogenous

ethylene at different times (Böttcher et al. 2013).

Interestingly, CEPA application at veraison

generated an increase in the concentration of

anthocyanin in Cabernet Sauvignon berries, with

a concomitant increase in expression of genes

such as VviCHS, VviF3H, and VviUFGT

(El-Kereamy et al. 2003).

Ethylene also promotes berry size, stimulating

the expression of several genes encoding aqua-

porins, polygalacturonases, xyloglucan endo-

transglycosylase, cellulose synthases, and

expansins (Chervin et al. 2008). Ethylene is

perceived by transmembrane-receptor proteins,

belonging to the EThylene Receptor (ETR) fam-

ily, localized in the endoplasmic reticulum.

Chervin and Deluc (2010) analyzed the transcript

abundance of several ethylene receptors

(VviETR2, VviEIN4, VviERS) and transcription

factors (VviEIN3 and VviMADS4) across berry

development and the impact of the ethylene

inhibitor 1-MCP on their expression. Recently, a

phylogenetic analysis performed on ETRs and

related proteins, in both climacteric and

non-climacteric fruits, pointed out that both

classes share many aspects of ethylene percep-

tion and signaling during fruit ripening. More-

over, grape, as non-climacteric fruit, exhibits an

earlier expression peak of four ETRs, concomi-

tant with the onset of sugar accumulation (Chen

et al. 2018). One gene coding for ACC oxidase

(VviACO) was found to increase its expression at

the early stages of berry development (Deluc

et al. 2007), with a peak around veraison; a

similar observation, together with the increase of

ethylene levels, was related to the beginning of

fruitlet abscission in Chardonnay berries (Hilt

and Bessis 2003). Recently, the expression of

genes involved in the ethylene signaling path-

way, as well as ethylene transcription factors
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with recognized roles in leaf senescence, were

found to increase during the late stages of

ripening of Cabernet Sauvignon, which suggests

that ethylene may play a bigger role than

expected in regulating grape berry ripening

(Cramer et al. 2014).

12.4.3.2 Cytokinins

Although previous studies reported that cytoki-

nins do not participate in ripening in grapevine

(Inaba et al. 1976), more recently some studies

have highlighted the importance of this hormone

both at the pre- and post-veraison stages

(Böttcher et al. 2015; Pilati et al. 2017). Grape-

vine orthologues of five Arabidopsis gene fami-

lies involved in cytokinin metabolism and

signaling were identified, and their expression

patterns were analyzed in developing berries.

Genes regulating cytokinin biosynthesis

(VviIPTs), activation (VviLOGs), perception

(VviCHKs), and signaling (VviRRs) were found

to be expressed in all stages of berry develop-

ment and most significantly just before and after

veraison, and during this time the expression of

genes involved in cytokinin degradation

(VviCKXs) progressively decrease (Böttcher et al.

2015).

12.4.3.3 Brassinosteroids

Expression analysis of genes encoding brassi-

nosteroid (BR) biosynthetic enzymes or BR

receptors (i.e., VviBRI1) during berry develop-

ment revealed transcript accumulation patterns

consistent with the dramatic increase in endoge-

nous BR levels observed at the onset of fruit

ripening (Symons et al. 2006). It has been shown

that levels of castasterone, the bioactive BR, and

its precursor 6-deoxo-castasterone increase at

veraison and remain high during ripening in

Cabernet Sauvignon berries due to the upregu-

lation of a brassinosteroid 6-oxidase gene (Vvi-

BR6OX) (Symons et al. 2006). The application of

exogenous brassinosteroid increases the total

anthocyanin content in berries, and the full col-

oration of grapes occurred earlier in BR-treated

samples, with increased expression of antho-

cyanin biosynthetic genes (i.e., VviF3H, VviF3′5′

H, VviDFR, VviANS, VviUFGT) (Luan et al.

2013; Serrano et al. 2017). In addition, the

involvement of BR in sugar unloading into the

berry has been recently demonstrated. Exoge-

nous treatment of Cabernet Sauvignon berries

with BR (24-epibrassinolide) increases the sol-

uble sugar content by enhancing the activities of

enzymes related to sugar unloading, including

neutral and acidic invertases and sucrose syn-

thase, and up-regulating the expression of

sucrose transporter genes (Xu et al. 2015).

12.4.3.4 Gibberellins

The involvement of gibberellins (GAs), produced

in the seeds, in grape berry development and size

determination is well known (Coombe 1960).

GAs peak early during stage I (Davies and

Böttcher 2009), and increase again at the initia-

tion of stage III (Pérez et al. 2000).

A comprehensive annotation and characteri-

zation of GA-oxidases (GAox)—involved in

GAs biosynthesis and deactivation—has been

performed in grapevine (Giacomelli et al. 2013).

The authors propose that the pool of bioactive

GAs is controlled by the stage- and tissue-

specific regulation of GA oxidase, and Vvi-

GA3ox1 and VviGA2ox4 transcripts are signifi-

cantly up-regulated at fruit set.

RNA-seq analysis of “Centennial Seedless”

berries treated with GAs after flowering showed

an increased expression of xyloglucan endo-

transglycosylase (VviXET) genes, which partici-

pate in cell wall expansion. A crosstalk between

GAs, ABA, and ethylene during berry enlarge-

ment period has also been reported, and

GA3-application induces gene expression chan-

ges in plant hormone metabolism and signaling

pathways (Chai et al. 2014). Moreover, GAs’

soaking of cv. Kyoho clusters strongly hastens

berry coloration, which allows the hypothesis of

a role for the hormone in regulating anthocyanin

biosynthesis (Cheng et al. 2015). In the same

study, a large number of the identified differen-

tially expressed genes were involved in GA

biosynthetic and signaling pathways. Zhang et al.

(2014) provided new insights into the crosstalk

mechanism of GAs and glucose hexokinase-

dependent signaling during grape berry sugar

accumulation, and hypothesized that GAs might
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regulate the expression of invertase and sucrose

synthase genes in order to maintain intracellular

sugar levels and normal cell metabolism.

12.4.3.5 Sugars

Notably, besides their role as a metabolic sub-

strate, sugars directly or indirectly control a wide

range of processes, including photosynthesis,

sugar transport itself, phenylpropanoid metabo-

lism, cell wall metabolism, auxin homeostasis,

and ultimately berry growth and ripening

(Smeekens et al. 2010). The sugar-dependent

regulation of anthocyanin pathway and of

biotic/abiotic stress responses has been exten-

sively reviewed by Lecourieux et al. (2014).

Interaction between sugar and ABA signaling

pathways likely plays a pivotal role in ripening,

which is suggested by the parallel increase of

sugars and ABA in the berries at veraison

(Gambetta et al. 2010; Lecourieux et al. 2014).

Interestingly, both sucrose and ABA were able to

increase VviSK1—a gene encoding a protein

kinase with sugar signaling function—expression

in grape cell suspensions, which underlines the

tight interaction between sugars and hormone

signaling pathways (Smeekens 2000; Finkelstein

and Gibson 2002; León and Sheen 2003).

12.4.3.6 Jasmonic Acid

The plant hormone jasmonic acid (JA) is crucial

for stress responses in plants, but its role in fruit

development and ripening is becoming increas-

ingly clear. In non-climacteric fruits such as

grape, the jasmonate levels are high at early

developmental stages, decreasing to lower values

at the onset of ripening (Kondo and Fukuda

2001; Fortes et al. 2011, 2015). Conjugation of

JA to isoleucine (JA-Ile) is a critical step in the

JA signaling pathway since only JA-Ile is rec-

ognized by the jasmonate receptor. The conju-

gation reaction is catalyzed by JA-amido

synthetases, belonging to the family of GH3

proteins. Böttcher et al. (2015) report that the

transcriptional profiles of two grapevine GH3

genes, VviGH3-7 and VviGH3-9, support a pri-

mary role for JA signaling in fruit set and cell

division, but do not justify JA’s involvement in

the ripening process.

Methyl jasmonate (MeJA) also plays an

important role in signal transduction processes

that regulate the synthesis of secondary metabo-

lites (Pauwels et al. 2009); grapevine plants and

cell cultures respond to MeJA with an increase in

aroma compounds or stilbene levels (D’Onofrio

et al. 2009; Almagro et al. 2014; D’Onofrio et al.

2018; Portu et al. 2018). The gene coding for

S-adenosyl-L-methionine:jasmonic acid carboxyl

methyltransferase (JMT), putatively involved in

volatile methyl jasmonate synthesis, was

down-regulated in ripe fruits of three grape

varieties. On the other hand, the gene coding for

the jasmonate ZIM domain (JAZ) containing

protein 8, a repressor of jasmonic acid signaling,

has been identified as a putative positive marker

of ripening (Agudelo-Romero et al. 2013).

Treatments with MeJA increase the transcription

levels of several ripening-related genes, such as

color-related genes (i.e., VviPAL1, VviDFR,

VviCHI, VviF3H, VviGST, VviCHS, and

VviUFGT), softening-related genes (i.e., VviPG,

VviPL, VviPE, VviCell, VviEG1, and VviXTH1),

and aroma-related genes (i.e.,VviEcar, VviQR,

and VviEGS). Moreover, jasmonic acid positively

regulated its biosynthesis pathway genes such as

lipoxygenase (LOX), allene oxide synthase

(AOS), 12-oxophytodienoate reductase (OPR),

and signal pathway genes such as VviCOI1 and

VviJMT. In addition, the overexpression of grape

jasmonic acid receptor VviCOI1 in strawberry

fruit accelerated the fruit ripening process (Jia

et al. 2016).

12.5 Molecular Regulators of Fruit
Ripening

Transcription factors (TFs) regulate the spatial

and temporal expression of genes by specific

binding to cis-regulatory elements (CREs or

“motifs”) present in the promoter region of

genes. In plants, as many as 58 TF families have

been described (Jin et al. 2016), of which many

play essential roles in biological processes,

including fleshy fruit development, ripening, and

regulation of fruit quality/composition (Karlova

et al. 2014). A plethora of TFs involved in
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ripening have been discovered using tomato, a

climacteric fruit species, as the model species for

understanding fruit ripening. For example, the

MADS-box (e.g., RIPENING-INHIBITOR,

RIN; FRUITFULL, FUL1 and FUL2), SBP

(e.g., COLORLESS NON-RIPENING, CNR;

TOMATO AGAMOUS-LIKE1, TAGL1), NAC

(e.g., NON-RIPENING, NOR; NAC4), HD-Zip

homeobox (HB1), and AP2/ERF (e.g., APETA-

LA2a) TFs are among the many widely known

regulators of ripening. Moreover, TFs involved

in hormone response and signaling such as

AP2/ERFs (e.g., ERF1, ERF6) and ARF (e.g.,

ARF2) are also implicated in fruit ripening and

participate in the regulation of ripening-

associated phenotypic traits such as flavonoid/

anthocyanin biosynthesis, sugar accumulation,

and softening.

While much is known about the regulation of

climacteric fruit ripening, our understanding of

the TFs involved in ripening remains limited for

non-climacteric fruit. The roles of some TFs

involved in tomato development and ripening

have been elucidated also in grapevine. For

example, the MADS-box TF SEPALLATA

(VviSEP4) may fulfil similar functions to RIN in

grapes, as revealed by its ability to partially

complement the non-ripening phenotype of RIN

mutants (Mellway and Lund 2013).

A grapevine bZIP TF, namely,

ABSCISIC ACID RESPONSE ELEMENT-

BINDING FACTOR2 (VviABF2), was shown

to play a direct role in the ABA-dependent berry

ripening processes (Nicolas et al. 2014). Regu-

latory networks encompassing ABA responses

were either enhanced and/or altered by

VviABF2, which led to enhanced sensitivity to

ABA. In addition, the role of VviABF2 in the

regulation of ripening-associated processes such

as the biosynthesis of phenolic metabolites was

also demonstrated in tomato and grapevine. The

lack of MADS-box TF participation together

with the enrichment of TFs (i.e., bZIP, AP2/ERF,

R2R3-MYB, and NAC) in the ABA signaling

network during berry ripening (Pilati et al. 2017)

suggest that grapevine MADS-box TFs do not

play a key role in overall ripening regulation in

grapevine. This is also supported by a strong

enrichment of cis-regulatory motifs bound by

bZIP and NAC TFs and the lack of MADS-box

TF motifs in the promoters of ABA-modulated

genes in the berry (Pilati et al. 2017). Nonethe-

less, other TFs such as VviERF045 (AP2/ERF)

(Leida et al. 2016) and VviCEB1 (bHLH)

(Nicolas et al. 2013) have been implicated in the

control of ripening. For example, genes involved

in wax metabolism, cell expansion, defense, and

phenylpropanoid/flavonoid metabolism are

potential targets of VviERF045, while VviCEB1

may stimulate cell expansion through the acti-

vation of auxin metabolism, auxin signaling, and

multiple cell expansion related genes.

Beyond these few cases, the function of the

vast majority of TFs remains to be elucidated. To

facilitate the discovery of fruit-associated TF

functions, adoption of multi-omics approaches

(i.e., transcriptome, metabolome), the application

of network-based approaches to analyze the

omics data, and subsequent network integration

across different domains could be particularly

useful (reviewed in Wong and Matus 2017). For

example, gene co-expression network analysis of

a large accession of berry cultivars during fruit

development and ripening has been performed to

identify putative regulators of berry develop-

mental and ripening (Palumbo et al. 2014; Mas-

sonnet et al. 2017). Not surprisingly, many of

these putative genes encode TFs that belong to

AP2/ERF, MYB, NAC, and WRKY families.

Independent studies were also able to link several

of these ripening-related TFs to their potential

roles during berry ripening using gene-metabolite

co-response networks (Savoi et al. 2017). For

example, VviERF1 and VviNAC33, two com-

mon berry TFs (Massonnet et al. 2017), are

potentially related to the regulation of proline

biosynthesis in the berry, given their strong

coordinated regulation with pyrroline-5-

carboxylate synthase (P5CS), the gene encoding

enzyme involved in proline biosynthesis, and

with proline content in the berry. Similarly,

NACs such as VviNAC13 and VviNAC33 are

potentially new candidate regulators for antho-

cyanin compounds that exhibit tight association

with several anthocyanin biosynthetic gene and

metabolite profiles (Savoi et al. 2017).
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Such approaches can also be used to infer the

regulatory candidates involved in the regulation

of fruit-associated volatiles (e.g., terpenes), one

of the least understood components of berry

ripening. For example, Savoi et al. (2016) high-

lighted one promising regulatory candidate

(VviMYB24) for monoterpene biosynthesis,

given its strong gene-metabolite co-response

profile with several TPS and monoterpene (e.g.,

linalool, nerol, a-terpineol) abundance in the fruit

during ripening and under an abiotic stress such

as drought (Fig. 12.3).

Notwithstanding the crucial roles fulfilled by

various TFs during ripening, new evidence sup-

porting the involvement of regulatory

non-coding RNA classes, especially micro RNA

(miRNA) and long non-coding RNA (lncRNA),

in the regulation of fruit ripening and composi-

tion have been described. Although it is possible

to infer the function of miRNAs in fruits through

comprehensive miRNA expression profiling

during development and ripening and performing

in silico target prediction analysis (Gao et al.

2015; Xin et al. 2015; Zeng et al. 2015; Belli

Kullan et al. 2015), the first and only study to

date demonstrating a direct role for miRNAs in

overall ripening regulation and fruit softening

investigated the tomato miR157 and miRNA156

(Chen et al. 2015). Tomato miR156 impacts fruit

softening especially at the late stages of ripening

but contributes little to overall ripening regula-

tion (Chen et al. 2015). Interestingly, miR156

sequences are highly conserved in plants,

including grapevine (Belli Kullan et al. 2015).

Like its tomato counterpart, grapevine miR156

also exhibits ripening-associated expression, and

it has been postulated to induce ripening via the

regulation of multiple SPL (Squamosa Promoter

binding Like protein) and anthocyanin pathway

genes (Belli Kullan et al. 2015).

Compared to miRNAs, lncRNAs are an

emerging class of RNA species that are opera-

tionally defined as non-coding transcripts, greater

than 200nt in length. The advent of sequencing

technologies has led to the discovery of thou-

sands of lncRNAs in both model (Liu et al. 2015)

and non-model fruit crops such as tomato (Wang

et al. 2018), grapevine (Vitulo et al. 2014; Harris

et al. 2017), kiwi (Tang et al. 2016), and sea

buckthorn (Zhang et al. 2018); however, for the

vast majority of these crops, the functions of

lncRNAs remain unknown. Only a small fraction

of these have been validated experimentally (Liu

et al. 2015). lncRNAs are known to possess tis-

sue- and developmental stage-specific expression

in plants and these properties also manifests in

the fruit (Tang et al. 2016; Zhang et al. 2018;

Wang et al. 2018). Only recently their role in the

regulation of fruit ripening and composition was

confirmed. For example, using a combination of

lncRNA-miRNA-mRNA network and functional

analysis, LNC1 and LNC2 were shown to be

negative and positive regulators, respectively, of

anthocyanin in sea buckhorn fruits.

While novel lncRNAs continue to be discov-

ered in grapevines (Vitulo et al. 2014; Harris

et al. 2017), very little work has been done to

profile their expression during ripening and/or to

infer their potential regulatory role in the fruit. To

date, this was done only to understand the

Fig. 12.3 Predicted gene-metabolite networks related to

nerol (A), a-terpineol (B), and linalool (C) accumulation in

grape berries during development. Genes and metabolites

are represented by circle and square nodes, respectively.

Edges represent associations (P < 0.001) between tran-

scripts andmetabolites. Node borders in red represent genes

that are modulated (differentially expressed, DE) under

drought. Purple and green nodes identify terpene synthase

genes and transcription factors, respectively. The network

was re-designed from Savoi et al. (2016)
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complex regulation of phenylpropanoid and

flavonoid biosynthesis in the grape berry

(Wong and Matus 2017). Using integrated

lncRNA-miRNA-mRNA network analysis (as in

Zhang et al. 2018), several lncRNAs identified

showed strong co-regulated expression and

co-location with key structural pathway genes.

Notable examples include one lncRNA

(VIT_210s0042n00100) that is situated within

close proximity of nine VviSTSs. The expression

pattern of the lncRNA closely mirrored the

ripening-associated expression of the nine

VviSTSs. Similarly, one predicted lncRNA

(VIT_203s0180n00020) was co-located and

closely mirrored the expression of VviGT2, a

gene potentially involved in the production of

hydroxycinnamic esters and proanthocyanidins

galloylation (Khater et al. 2012). Such initiatives

have provided a glimpse into the potential

large-scale regulatory function of lncRNAs on

the regulation of fruit composition during

development and ripening.

12.6 Conclusion

Taken together, all these studies and information

indicate the complex feedback and multifaceted

regulation of grape berry ripening. The long-

standing interest in grapevine production has led to

a good knowledge in this field, but a large number

of research questions, many of which have crucial

practical implications, still need to be answered.

New insights about the control of berry metabo-

lism and ripening will be gained by clearly

assigning functions to key regulators of these

processes. This is challenging and will require

innovative functional genomic approaches; in this

regard, new-generation sequencing and emerging

genome editing technologies, currently being

developed for grapevine, could provide important

contributions to our understanding.
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