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Abstract
High dimensional data, large-scale data, imaging and manifold data are all fostering new frontiers of statistics. These type
of data are commonly considered in Functional Data Analysis where they are viewed as infinite-dimensional random vectors
in a functional space. The rapid development of new technologies has generated a flow of complex data that have led to the
development of new modeling strategies by scientists. In this paper, we basically deal with the problem of clustering a set
of complex functional data into homogeneous groups. Working in a mixture model-based framework, we develop a flexible
clustering technique achieving dimensionality reduction schemes through an L1 penalization. The proposed procedure results
in an integrated modelling approach where shrinkage techniques are applied to enable sparse solutions in both the means
and the covariance matrices of the mixture components, while preserving the underlying clustering structure. This leads
to an entirely data-driven methodology suitable for simultaneous dimensionality reduction and clustering. The proposed
methodology is evaluated through a Monte Carlo simulation study and an empirical analysis of real-world datasets showing
different degrees of complexity.

Keywords Functional zoning · Manifold data · Mixture models · Shape analysis · Spatial clustering · Surface data

1 Introduction

With the rapid growth of modern technology, many stud-
ies have been conducted to analyse increasingly complex
and high dimensional data such as 3D images generated by
medical scanners, satellite remote sensing and many oth-
ers from digital sensors. The analysis of these data poses
new challenging problems and requires the development of
novel statistical models which can be framed within the new
research areas of next-generation functional data analysis
(Müller 2016) and object oriented data analysis (Marron and
Dryden 2022).

A large amount of complex and high dimensional data
are represented by functions or higher dimensional surfaces
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defined on a compact domain, or by 3D images of anatomical
objectswith complex shapes. Because of the high dimension-
ality and the lack of vector space properties, the statistical
modelling of these data objects is highly challenging and
requires delicate extensions of standard statistical tools.

A challenging data analysis task that motivates our
research originates from the problem of clustering a set of
complex functional data into homogeneous groups. Over the
past decade, there have been rapid advances and substan-
tial developments in this research field for one-dimensional
functional data. Compared with traditional multivariate data
analysis, the difficulties of clustering such data mainly arise
from the infinite dimensionality of the input space, the lack
of a definition for the probability density of a functional
randomvariable, the choice of a suitablemetric and the possi-
ble dependence existing among the functions. An up-to-date
review and a comprehensive taxonomy of clusteringmethods
of functional data is provided by Zhang and Parnell (2023).
For one-dimensional functions, further surveys on functional
clustering can also be found in Jacques and Preda (2014a)
and Chamroukhi and Nguyen (2019).

Popular approaches have successfully extended classi-
cal clustering concepts by first approximating functional
data in a finite dimensional space, and then applying tradi-
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tional clustering tools on the basis expansion coefficients,
thus performing a two-steps approach. By extending the
notion of asymptotically perfect classification (Delaigle and
Hall 2012) in a functional data clustering problem, Delaigle
et al. (2019) have proved theoretically that, appropriately
projecting the data on a carefully reduced space, it is pos-
sible to cluster the observations asymptotically perfectly
in a two-population example. In more general examples,
B-splines coefficients have been used as features to feed k-
means, partition around medoids or self-organizing maps
algorithms—see, Abraham et al. (2003), Ignaccolo et al.
(2008) and Rossi et al. (2004). Similar methods, based on
wavelet and Fourier coefficients, were also considered by
Antoniadis et al. (2013), Mets et al. (2016) and Serban and
Wasserman (2005). To avoid relying on a pre-specified set
of basis functions, one could also employ data adaptive basis
functions, as those obtained from the covariance function of
the functional data. In this case, functional principal compo-
nent (FPC) scores (Ramsay and Silverman 2005), could be
used as feature vectors for k-means or other algorithms—
see e.g. Peng and Müller (2008). In Pulido et al. (2023)
dimensionality reduction is achieved by applying epigraph
and hypograph indexes to the original curves and to their
first and/or second derivatives.

While reducing the dimensionality of data and cluster-
ing functions based on expansion coefficients resulting from
PCA or similar techniques is a common approach, it has sev-
eral drawbacks. For instance, the resulting clustering is not
sparse in features because the expansion coefficients depend
on the full set of information in the data. Additionally, there
is no guarantee that the expansion coefficients capture the
signal one aims to detect via clustering. For example, in the
case of functional principal component analysis (FPCA), the
FPC scores with the largest eigenvalues do not necessarily
provide the best separation between subgroups.

The model-based clustering (Bouveyron et al. 2019),
where finite mixture of Gaussian distributions have been
largely employed, has been studied extensively in recent
years. In an infinite, or high-dimensional setting, however,
problems arise because the covariance matrices, �k , of the
involved Gaussian distributions cannot be estimated directly
from the available data. To address this issue, proposals still
rely on dimensionality reduction approaches, which assume
that observations lie in a low-dimensional latent factor space
and that the covariance matrices,�k , now are of low rank. In
the pioneering work by James and Sugar (2003) clustering
models based on Gaussian mixture distributions are applied
to the natural cubic spline basis coefficients. Similarly, other
authors have applied the idea of Gaussian mixture modelling
(GMM) to group-specific functional expansion coefficients
as in Bouveyron and Jacques (2011), or FPCs as Jacques and
Preda (2013, 2014b), or wavelets coefficients as Giacofci
et al. (2013), or linear discriminant scores as Bouveyron

et al. (2015). Another effective way to improve clustering
is by inducing sparsity in the expansion coefficients, which
can be particularly useful in addressing high-dimensional
problems that may persist even after applying dimension-
ality reduction techniques. The idea of sparse clustering
for functional data was first proposed in a non-model-based
approach by Floriello and Vitelli (2017), using penalized
weights of a weighted L2 distance in k-means. Later, this
idea was extended by Cremona and Chiaromonte (2023) to
locally cluster curves and identify shared portions of curves,
known as functional motifs.

Model-based clustering also offers a method to intro-
duce sparsity by maximizing the log likelihood subject to a
penalty that allows for the selection of the most relevant fea-
tures, which can improve the interpretability of the clustering
results. In our study, we also use a GMM approach to cluster
objects of interest, and reduce the dimensionality of the data
prior to clustering. Then, to perform feature selection with
the expansion coefficients, we follow the approach presented
in Zhou et al. (2009) and maximize the log likelihood subject
to an L1-penalty function that promotes sparsity in both the
means,μk , and covariance matrices,�k , of the Gaussian dis-
tributions. The procedure, implemented within the classical
Expectation Maximization (EM) algorithm (Dempster et al.
1977), favours an adaptive regularization that preserves the
dominant local features of the objects and, at the same time,
allows to look for directions in the space of projection coef-
ficients that are the most useful in separating the underlying
groups.

This approach may offer several advantages. First, by
using expansion coefficients, we obtain an intuitive repre-
sentation of the data in different domains, depending on the
dimensionality reduction technique employed. This facili-
tates subsequent analyses, such as filtering, smoothing, and
pattern detection. Second, by favouring sparse structures,
we can retain only the most important local features of the
objects, allowing for effective comparison and summariza-
tion of complex functional data across different groups or
regions of the domain. Third, working with expansion coeffi-
cients can make the analyses more computationally efficient,
allowing us to leverage existing tools and methodologies
frommultivariate analysis and the analysis of stochastic pro-
cesses.

Another recent approach in the framework of Gaussian
mixture model (GMM), which differs from the references
cited above, is proposed by Centofanti et al. (2023). Their
aim is to classify a sample of curves into homogeneous
groups while jointly detecting the most informative portions
of the domain in which the functions are observed. Extend-
ing the approach introduced by James and Sugar (2003),
the log-likelihood is penalized using both a functional adap-
tive pairwise fusion penalty and a roughness penalty. The
adaptive pairwise fusion penalty aids in identifying the non-
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informative portion of the domain by shrinking the means of
separated clusters toward common values, while the rough-
ness penalty enhances interpretability by imposing some
degree of smoothing to the estimated cluster means. To pre-
vent overparametrization, the authors assume that the cluster
covariances are equal across all clusters, thereby implicitly
assuming that the clusters are differentiated only by their
mean functions. Since this approach differs substantially
from our proposal, in the remainder of the paper we pro-
vide comparisons for both simulated and benchmark datasets
by considering also other model-based state-of-art clustering
methods.

To provide evidence of the flexibility of our proposal, we
also introduce the following two diverse applications.

Functional zoning for air quality monitoring European
and Italian directives (Dir. 96/62/EC and D. Lgs. 351/99 art.
6) require Italian regions to classify land zones in connection
to air quality status. In fact, in order to improve or preserve
air quality conditions, policy makers define recovery, action
or maintenance plans for the different areas. By using PM10

time series obtained by integrating data observed at monitor-
ing stations and data provided by a deterministic air quality
model on a regular grid (1763 points) defined over Piemonte
region (Italy), we seek to classify the Piemonte region in
zones featured by different levels of atmospheric pollution.
The problem was previously considered in Ignaccolo et al.
(2013) where clustering was performed by using at the sec-
ond step the PAM algorithm over the projection coefficients
recovered at the first step. Because the PAM algorithm was
inadequate to model the spatial dependence existing among
the functions, we show how the combination of functional
data analysis (FDA) and spatial statistics can resolve this
inadequacy within the framework of our regularized GMM.

Mandibular shape changes Functional data can also have
a more complex domain and here we consider the case in
which continuous data observed over amanifold inR3 can be
approximated by using finite elements analysis. In particular,
we consider a dataset which consists of Computed Tomogra-
phy (CT) images processed to obtain 3D surface meshes of
the human mandible. For the statistical analysis, we consider
the displacement length as a functional variable. Understand-
ing the morphological changes of the mandible is important
for orthodontic treatment planning. To decide on a proper
treatment plan, the events of growth and development must
be correlated with the maturational level of individuals. In
particular, the biological question of interest is to understand
when andwhere there exist localized differences between the
maturational levels. In practice, it is common to define these
maturational stages by binning the subjects into age cate-
gories defined a priori (see, for example, Chung et al. 2015;
Fontanella et al. 2019b and references therein). A limitation
of this approach is that, since there is considerable variation

in the age, grouping the subjects by chronological age may
not reflect developmental stage sufficiently and accurately.
To this purpose, we propose here to define the maturational
levels by clustering the individuals by local shape similarity.
In the following we thus show how our approach can be used
also for clustering surface data.

To summarize, our papermakes contributionswith respect
to the following points:

• Weevaluate the performance of our L1-penalty approach,
here referred to as PFC-L1, in a functional data setting.
For PFC-L1, we suggest an entirely data-driven strat-
egy for model specification, estimation and selection.
We conduct an extensive simulation study that consid-
ers various degrees of complexity and different basis
functions. To facilitate comparison with a number of
competitors, an experimental study is also carried out for
one-dimensional functions, both for synthetic data and
for benchmark datasets. The results demonstrate that the
PFC-L1 approach is a promising method for clustering
functional data and performs similarly to, or better than,
other competitors in various scenarios.

• We address the challenging problem of clustering spa-
tially dependent functional data. Clustering this type of
data is a complex problem that requires careful con-
sideration of the dependence structure of the data and
the computational challenges of high-dimensional data.
Compared to the case of clustering independent func-
tions, the literature on clustering spatially dependent
functional data is not as rich (see Sect. 5), particularly in
the framework ofmodel-based clustering. To address this
gap, we propose within the EM algorithm a reduced rank
weightedmultinomial logistic regressionmodel that gen-
eralizes some of the approaches found in the literature.
This is achieved by modeling spatial dependence of the
prior mixing probabilities through a generalized covari-
ance function whose parametrization leads to a thin-plate
spline solution.

• We further address the problem of working with func-
tional data with more complex domains such as surface
mesh data. Determining the similarity between these
data is a fundamental task in shape-based recognition,
retrieval, classification, and clustering. One common
approach is to use global and/or local features depend-
ing on surface information of 3D objects (Shilane and
Funkhouser 2007). Once the objects are represented
using these descriptors, standard algorithms can be used
for clustering. The use of many local shape descriptors
dramatically increases the size of the feature vector and
this leads to investigate methods for selecting a small
subset of shape descriptors to be used for clustering. In
contrastwith this approach,weusefinite element analysis
techniques to represent the object in a lower-dimensional

123



  122 Page 4 of 20 Statistics and Computing           (2023) 33:122 

space using data adaptive Laplace-Beltrami eigenfunc-
tions in the framework of heat kernel regression. We
show that this approach allows for model-based sparse
clusteringof 3Dobjectswhilemaking inferences on func-
tional data observed on a compact manifold. By reducing
the dimensionality of the data, our approach can handle
high-dimensional surface mesh data and overcome the
computational challenges of clustering in this setting.

The rest of the manuscript is organised as follows. Section2
introduces a parametrization in which a functional object
is modelled hierarchically by a low-dimensional latent ran-
dom process. This is then followed by the description of the
considered GMM. In Sect. 3 we consider the issues asso-
ciated with: (i) model specification, where we discuss the
choice of the basis functions that map the vector of expansion
coefficients to the random object of interest; (ii) model fit,
where we describe the EM algorithm (Dempster et al. 1977)
as a method for parameter estimation; (iii) model selection,
wherewe discuss the use of information criteria used to select
the number of clusters; and (iv) implementation, where we
propose a possible data-driven procedure to define the dimen-
sion of the subspace where data are represented. Section4
discusses results from an intensive simulation study where
different scenarios are considered to assess the performance
of the proposed clustering algorithm. Also it shows results
on benchmark datasets, whereas results for the two real case
studies, with spatially dependent functions, and surface data
are shown in Sects. 5 and 6. Section7 concludes the paper
with a discussion on further developments.

2 Penalizedmodel-based functional
clustering

Let Y = {Y (t), t ∈ T } be a functional random variable
represented by the following measurement equation

Y (t) = X(t) + ε(t), (1)

where X = {X(t), t ∈ T } represents an unobservable func-
tional random variable of interest taking values in L2

(
T
)
,

with T ⊂ Rd , and ε(t) is an uncorrelated measurement
error, with zero mean, variance σ 2

ε and independent of X(t).
A hierarchical representation of Y (t) assumes that the true
process X(t) admits the following basis expansion

X(t) =
p∑

j=1

β j φ j (t) + η(t)

= φ(t)′β + η(t) (2)

where φ(t) = (φ1(t) . . . φp(t))′ is a p-dimensional expan-
sion vector that maps the low-dimensional random vector,
β = (β1 . . . βp)

′, to the true object of interest, and p is the
number of basis functions which is usually assumed to be
fixed and known. The residual error term, η(t), accounts for
possible differences between X(t) and its low-dimensional
representation, φ(t)′β. Typically, as p increases, the resid-
ual structure X(t) − φ(t)′β will tend to have smaller scale
dependence until it degenerates to have zero variance. In
such specific case X(t) is completely reconstructed through
a truncated expansion and the difference with Y (t) is thus
represented only by the measurement error ε(t).

With the goal of clustering n objects into K homoge-
neous clusters, we consider the set of true (latent) objects{
x1, x2, . . . , xn

}
, each considered as a realization of the func-

tional random variable X , and use the projection vectors
β i , i = 1, . . . , n, as the data of a GMM.

To this end, we assume that it exists an unobservable
grouping variable Z = (Z1, ..., ZK ) ∈ [0, 1]K indicating
the cluster membership: zk,i = 1 if xi belongs to cluster
k and 0 otherwise. By following a model-based clustering
approach, we denote with πk the (a priori) probabilities of
belonging to a group,

πk = p(Zk = 1), k = 1, . . . , K ,

such that
∑K

k=1 πk = 1 and πk > 0 for each k, and we
assume that, conditionally onZ, the random vector β follows
a multivariate Gaussian distribution, that is for each cluster

β|(Zk = 1) = βk ∼ N (μk,�k)

where μk = (μ1,k, . . . , μp,k)
T and �k are respectively the

mean vector and the covariancematrix of the kth group. Then
the marginal distribution of β can be written as a finite mix-
ture with mixing proportions πk as

p(β) =
K∑

k=1

πk f (βk;μk,�k)

where f is the multivariate Gaussian density function. It is
then possible to write the log-likelihood function as

l(θ;β) =
n∑

i=1

log
K∑

k=1

πk f (β i ;μk,�k),

where θ = {π1, . . . , πK ;μ1, . . . ,μK ;�1, . . . ,�K } is the
vector of parameters to be estimated andβ i = (β1,i , . . . , βp,i )

T

is the vector of projection coefficients of the i th object.
In this modeling framework, we consider a very gen-

eral situation without introducing any kind of constraints
neither for cluster means nor for covariance matrices, that
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are allowed to be different in each cluster. The possible
overparametrization which might follow from this model
flexibility is treated by introducing two penalties that allow
regularized parameter estimation as in Zhou et al. (2009).
Given the projection coefficients β i , and conditional on the
number of groups K , the proposed penalized log-likelihood
function is given by

lP (θ;β) =
n∑

i=1

log

[
K∑

k=1

πk f (β i ;μk,�k)

]

−λ1

K∑

k=1

p∑

j=1

|μk, j | − λ2

K∑

k=1

p∑

j,l

|Wk; j,l |, (3)

where λ1 > 0 and λ2 > 0 are tuning parameters to be suit-
ably chosen, μk, j are cluster mean elements and Wk; j,l are
entries of the group precision matrix Wk = �−1

k . Note that
the penalty terms contain sums of absolute values and so they
are of L1 (or LASSO) type; thismotivates the namePenalized
model-based Functional Clustering (PFC-L1). The penalty
term on the cluster mean vectors allows for basis functions
selection; when the j th term in the expansion is not use-
ful in separating groups it is because it shows a common
mean across groups. On the other hand, the second part of
the penalty imposes a shrinkage on the elementsWk; j,l , thus
avoiding possible singularity problems and facilitating the
estimation of large and sparse covariance matrices.

3 Modeling and inference

In this section we show how some standard methods for
model fitting and identification can be used in the framework
of the PFC-L1 procedure.

3.1 Model specification and estimation of the latent
process X

Equations (1) and (2) provide a reduced-rank random effects
parametrization of a functional measurement Y (t). In this
context, an important part of model specification refers to the
choice of the form of the expansion vector, φ(t). In general,
there is a long tradition of using orthogonal basis func-
tions with typical examples provided by Fourier, orthogonal
polynomials (e.g., Hermite polynomials), certain wavelets,
or eigenvectors from specified covariance matrices. How-
ever, although there are some computational advantages to
choosing orthogonal basis functions when constructing φ(t),
there is no requirement to do so. In fact, there are many
other examples for nonorthogonal basis functions, including
wavelets, radial basis functions, spline functions, and kernel
functions. In this paper, we do not rely on a specific form

of the basis functions φ j (t). The choice of preferring one
approach over the others is somewhat subjective, although
there can be advantages and disadvantages to each, depend-
ing on the problem at hand. The effect of using different
basis functions in the proposed clustering procedure will be
assessed here by means of a simulation study described in
Sect. 4.

Given a specific basis of functions and denoting with
�p the expansion matrix collecting all the p chosen basis
functions φ j (·), the p-dimensional vector of expansion coef-
ficients for the i th object can be estimated by applying
standard least squares

β̂ i = (�′
p�p)

−1�′
p yi , i = 1, 2, . . . , n, (4)

so that the smooth process X(t) is estimated by

X̂(t) = φ(t)′β̂

where β̂ collects all β̂ i .

3.2 Model parameter estimation

The problem of estimating the parameters in a finite mix-
ture has been studied extensively in the literature. Direct
optimization of the likelihood function given in Eq. (3)
can be quite complicated because the objective function
is nonconvex and the optimization problem is of rather
high dimensionality. Since Z is not given, the maximiza-
tion of log-likelihood can be efficiently carried out using the
Expectation-Maximization (EM) algorithm (Dempster et al.
1977). In this case, the dth iteration of the E-step provides
the expected conditional complete log-likelihood

QP (θ; θ (d)) = EZ |β̂,θ (d) (l(θ , β̂, Z))

=
K∑

k=1

n∑

i=1

τ
(d)
k,i [logπk + log f (β̂ i ;μk , �k)]

−λ1

K∑

k=1

p∑

j=1

|μk, j | − λ2

K∑

k=1

p∑

j,l

|Wk; j,l |, (5)

where

τ̂
(d)
k,i = π̂

(d)
k f (β̂ i ; μ̂

(d)
k , �̂

(d)
k )

∑K
k=1 π̂

(d)
k f (β̂ i ; μ̂

(d)
k , �̂

(d)
k )

(6)

is the posterior probability that an object i , summarised here
by β̂ i , belongs to the kth group. The M-step then maximizes
the function QP in order to update the estimate of θ . By
setting to zero the first derivates of QP w.r.t. πk we obtain
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π̂
(d+1)
k =

n∑

i=1

τ
(d)
k,i

n
. (7)

Then, for the mean vectors, given j and k, the EM algorithm
leads to the following updating formulas forμ j,k (Zhou et al.
2009)

⎧
⎪⎪⎨

⎪⎪⎩

μ̂
(d+1)
j,k = 0 if

∣∣∣
∑n

i=1 τ
(d)
k,i

(∑p
l=1,l �= j (β̂l,i − μ̃

(d+1)
l,k )Wk; j,l + β̂ j,iWk; j, j

)∣∣∣ ≤ λ1

μ̂
(d+1)
j,k =

[(
H − λ1sign(H)

)
/
∑n

i=1 τ
(d)
k,i

]
W−1

k; j, j otherwise,

(8)

where H = ∑n
i=1 τ

(d)
k,i (β̂

′
iWk;. j ) −

(∑n
i=1 τ

(d)
k,i

) (
μ̃

(d+1)′
k

Wk;. j − μ̃
(d)
k, jWk; j, j

)
, Wk;. j = (Wk;1, j , . . . ,Wk;p, j )′, and

μ̃
(d+1)
k = ∑n

i=1 τ
(d+1)
k,i β̂ i/

∑n
i=1 τ

(d+1)
k,i .

Finally, for the elements of the precision matrices Wk =
�−1

k , to maximize Qp we maximize

1

2

K∑

k=1

n∑

i=1

τ
(d)
k,i log det (Wk)

− 1

2

K∑

k=1

n∑

i=1

τ
(d)
k,i

(
β̂ i − μk

)′
Wk

(
β̂ i − μk

)

− λ2

K∑

k=1

p∑

j,l

|Wk; j,l |

=
K∑

k=1

(∑n
i=1 τ

(d)
k,i

2
log det (Wk)

−
∑n

i=1 τ
(d)
k,i

2
tr
(
S̃kWk

)
− λ2

p∑

j,l

|Wk; j,l |
⎞

⎠ , (9)

where S̃k is the empirical covariance matrix in each cluster

S̃k =
∑n

i=1 τ
(d)
k,i (β̂ i − μk)

′(β̂ i − μk)
∑n

i=1 τ
(d)
k,i

.

As shown by Zhou et al. (2009), these equations are at the
base of the “graphical lasso” (GLASSO) algorithm (Fried-
man et al. 2008) such that the estimates of Ŵ (d+1)

k; j,l can be
obtained by using the R package glasso ( Friedman et al.
2019). For themore restricted cases of common and diagonal
covariance matrices the solutions can be adapted from those
in Pan and Shen (2007) and Zhou et al. (2009).

3.3 Model selection

Thus far, we have treated the number of clusters K and the
tuning parameters λ1 and λ2 as fixed. In practice, the choice
is critical in determining the performance of our clustering
procedure.A commonly used strategy to choose these param-
eters is to find the best combination of values for (K , λ1, λ2)

using a cross-validation procedure (CV). Despite its general
applicability and competitive performance, a major draw-
back of CV is the intensive computation it requires. To
overcome this problem, we first determine candidate values
of λ1, λ2 and K from a discrete three-dimensional grid and
then we evaluate the choice of the triplet (K , λ1, λ2) rely-
ing on likelihood-based measures of model fit that include a
penalty for model complexity. In particular, we consider the
Bayesian Information Criterion (BIC)

BIC(K , λ1, λ2) = l(θ̂K ; β̂|K , λ1, λ2) − M

2
log(n),

and the Integrated Classification Likelihood (ICL) index
(Baudry 2015)

ICL(K , λ1, λ2) = BIC(K , λ1, λ2)

+
K∑

k=1

n∑

i=1

T̂k,i log(T̂k,i )

where ẑ are the MLE allocations/membership correspond-
ing to the estimated parameters, l(θ̂K ) is the value of the
maximized log-likelihood objective function with parame-
ters θ̂K estimated under the assumption of a model with
K components, M is the number of parameters under the
assumption of K groups and τ̂k,i is the estimated posterior
probability that an object i belongs to the kth group. The key
difference between BIC and ICL is that the latter includes an
additional term (the estimated mean entropy) that penalises
clustering configurations exhibiting overlapping groups: low
entropy solutions with well-separated groups are preferred to
configurations that give the best match with regard to the dis-
tributional assumptions.

One difficulty in using the above criteria is that it is not
always clear what is M in a penalized model. In our case we
set
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M =
K∑

k=1

p∑

j=1

I
(
μ̂k, j �= 0

)
+

K∑

k=1

∑

i≤ j

I
(

̂k; j,l �= 0

)
+(K − 1)

where I (·) is the indicator function which applies to the
(sparse) likelihood estimate ofμk and�k . In practice, we set
the degrees of freedomM as the number of nonzero entries in
both the means and the upper half of the covariance matrices
plus the number of parameters for the mixing proportions.

3.4 Implementation of PFC-L1

In order to implement the PFC-L1 algorithm, the first step is
to specify the number of basis functions, p, in the expansion
of Eq. (2), to recover the true smooth process X(t). There
are two cases to consider. If the data are observed without a
measurement noise, a possibility is to choose p big enough to
interpolate exactly xi . On the other hand, by choosing p < T ,
where T is the number of evaluation points, the expansion
will be a smoothed version of the original data Y (t) and this
choice of p appears thus suitable in the presence of a mea-
surement noise ε(t). A useful assumption for us is to assume
that the noise variance is homoscedastic and constant across
the objects. In this case, the presence of the measurement
noise can be detected through several methods and some of
them have been compared in Ippoliti et al. (2005) in the con-
text of image analysis. One possibility, for example, is to
estimate the variance σ 2

ε by the median absolute deviations
(MAD) of the wavelet coefficients obtained for each random
object Y (Donoho et al. 1995) or, alternatively, following a
geostatistical approach, by considering the behaviour of the
variogram of the data near the origin—i.e., treating ε(t) as
nugget effect (Huang and Cressie 2000). Both these meth-
ods can be used for one-dimensional functional data and
surface data. If there is evidence of a measurement noise,
the model assumptions under equations (1) and (2) suggest
to choose p as the value for which the corresponding esti-
mated correlation matrix of the noise, R̂ε(p), as a function of
p, becomes spherical. In practice, considering the observed
objects

{
y1, y2, . . . , yn

}
, where yi = (yi1 . . . yiT )′ is defined

over a discrete domain with T points, the correlation matrix
of the noise is estimated as

R̂ε(p) = diag(�̂ε(p)
−1/2) �̂ε(p) diag(�̂ε(p)

−1/2)

where �̂ε(p) = 1
n−1

∑n
i=1(ei−ei )(ei−ei )′ is the covariance

matrix, ei = yi − ŷi and ŷi = �pβ̂ i . By evaluating the
Frobenius norm

F(p) = ||R̂ε(p) − I ||F , (10)

we consider a distance from the assumptionof sphericity such
that we choose the value of p, say p0, for which F(p) is min-

Fig. 1 The F(p) function at different values of number of basis func-
tions p (p0 = 25 is chosen at the minimum)

imized. We note that this is a specific case of the Procrustes
size-and-shape distance used by Dryden et al. (2009).

To give a flavour of the performance of the proposed
procedure, Fig. 1 shows the results of choosing p0 for the
representation of a set of 200 one-dimensional functions gen-
erated by using equations (1) and (2) with 25 Fourier basis
functions and an additive measurement noise with σ 2

ε = 1.
Byworking with the same family of basis functions, the min-
imum in Fig. 1 clearly suggests a choice of p0 = 25. Note
that these results refer to the first scenario of the simulation
setting described in Sect. 4.1.
To sum up, the proposed PFC-L1 algorithm thus follows the
steps delineated below:

Algorithm 1 PFC-L1 algorithm
Input: p, the dimensionality of the reduced rank regression (possibly
determined by minimizing the Frobenius norm in (10));(

β̂1 β̂2 . . . β̂n

)
, the expansion coefficients matrix for n objects

of size (p × n);
K , the number of clusters;
λ1 and λ2, the regularization parameters;

Step 1: initialize θ (0);
Step 2:
repeat

E-step: calculate the posterior probabilities by Eq. (6);
M-step: update the model parameters by Eqs. (7), (8) and (9);

until convergence is achieved;
Output: τ̂k,i for k = 1, . . . , K and i = 1, . . . , n;

π̂1, π̂2, . . . , π̂K ;{
μ̂1, �̂1

}
, . . . ,

{
μ̂K , �̂K

}
.

4 Simulation results and benchmark data

An initial assessment of the methodology proposed for clus-
tering functional data is performed by means of a simulation
study performed in R (R Core Team 2023). To compare our
procedure with other approaches, the simulations are carried
out for one-dimensional functions.

Section 4.1 of this study aims to first ensure the appro-
priate identification of the features of the generating mixture
model. To this end, we provide an illustration of the behavior
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of the penalized functional clustering method PFC-L1 under
different scenarios that correspond to various sources of vari-
ability. Additionally, in Sect. 4.2, we compare PFC-L1 with
existing methods in the literature through experiments where
the stochastic part of the functions is simulated usingWiener
processes. Finally, we conclude the section by discussing the
performance of PFC-L1 on benchmark datasets.

Given that labels are known both in simulations and
benchmark datasets, performances are evaluated in terms of
clustering accuracy, that is the percentage of correctly clas-
sified functions.

4.1 Simulation 1: functional clustering and
discriminant basis function retrieval

The selection of cluster-relevant discriminant basis functions
appears an important and challenging issue within functional
clustering. Since the inclusion of unnecessary components
might mask the cluster structure, the aim of this simulation
is twofold: (i) show that the L1 penalization on the set of
the expansion coefficients of Eq. (2) favours an adaptive reg-
ularization that removes noise while preserving dominant
local features, accommodating for possible heterogeneity
along the domain of the curves; (ii) investigate how differ-
ent sources of variability affect the clustering performance
of PFC-L1, measured as clustering accuracy.

In the following scenarios, the statistical analysis is illus-
trated for data simulated by means of a finite mixture of
specific distributions. In particular, based on Eqs. (1) and
(2), the curves are simulated (except for scenario E) using
a combination of p = 25 Fourier basis functions defined
over a one-dimensional regular grid with 100 discrete points
(i.e.T = {0, 1, . . . , 99}). Cluster-relevant basis functions are
defined as thosewith specific frequency content (from 1 to 12
Hz) and for which the corresponding expansion coefficients
appear “significantly” larger than others and particularly rel-
evant for discriminating between groups. In all cases, the
measurement noise is considered as independent with mean
zero and variance σ 2

ε = 1, and the estimate of the latent/true
function X(t) follows the procedure described in Sect. 3.1
using the MAD estimator for σ 2

ε . The estimate of the num-
ber of groups K is performed using both the BIC and the ICL
indices.

To generate distinct patterns across the domain and define
the axes of group separability, we specify the distributions of
the expansion coefficients according to five scenarios. Firstly,
coefficient vectors are drawn fromNormal distributions with
isotropic, diagonal, and non-diagonal covariance matrices
(scenarios A, B, and C). Secondly, to assess the performance
of PFC-L1 under non-Gaussian assumptions, coefficient vec-
tors are drawn from SkewNormal distributions (scenario D).
Finally, to examine the effect of the choice of basis functions
on classification, we generate functions using a wavelet basis

and reconstruct them using Fourier basis functions (scenario
E). Specifically:

(1) Scenario A considers a mixture of four (K = 4) multi-
variate Gaussian distributions with isotropic covariance
matrices, i.e.

βk ∼ N (μk; Ik), k = 1, . . . , 4.

With the exclusion of 3 entries per group, the means μk
are all zero mean vectors. The amplitude of the non-
zero expansion coefficients identify the cluster-relevant
variables and, at the same time, highlight the dominant
frequency contents of the sine and cosine functions per
each group. The number (n) of simulated curves is 200,
with 50 functions per group.

(2) Scenario B considers a mixture of two (K = 2) multi-
variate Gaussian distributions with diagonal covariance
matrices, �k , i.e.

βk ∼ N (μk; �k) with

�k = diag{σ 2
j,k}, σ 2

j,k ∼ U (1, 3), j = 1, . . . , 25, k = 1, 2.

As in the previous scenario, with the exclusion of 3
entries per group, the means μk are all zero mean vec-
tors. However, differently from scenarioA, the expansion
coefficients for the two groups are defined at the same
frequencies such that the difference is only in their ampli-
tude. The number (n) of simulated curves is 200,with 100
functions per group.

(3) Scenario C considers a mixture of two (K = 2)
multivariate Gaussian distributions with non-diagonal
covariance matrices, i.e.

βk ∼ N (μk;�k), k = 1, 2.

In this case, apart from 5 entries per group, the means
μk are all zero mean vectors and the covariance matri-
ces are sparse. The expansion coefficients of the two
groups are specified at the same frequencies and the
group covariance matrices are obtained by rescaling a
given correlation matrix by a diagonal matrix of stan-
dard deviations drawn from a Uniform distribution with
interval [1, 3]. The covariancematrices result sparse with
maximum correlations of 0.6 between coefficients. The
number (n) of simulated curves is 200,with 100 functions
per group.

(4) Scenario D considers a mixture of four (K = 4) multi-
variate Skew Normal distributions, i.e.

βk ∼ SN (μk; Ik;αk) with αk ∼ U(−4; 4), k = 1, . . . , 4.
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with the exclusion of 3 entries per group, the location
parameters μk are all zero vectors. The amplitude of
the non-zero expansion coefficients identify the cluster-
relevant variables and, at the same time, highlight the
dominant frequency contents of the sine and cosine func-
tions per each group. Note that here, differently from
Scenario A, the parameters (μk; Ik) are not the mean and
the covariance in each cluster, while the vector parame-
ter αk regulates the skewness of the distribution in each
cluster (see, for example, Azzalini and Capitanio 1999
for more details). The number (n) of simulated curves is
200, with 50 functions per group.

(5) Scenario E considers a mixture of four (K = 4) mul-
tivariate Gaussian distributions with spheric covariance
matrices, i.e.

βk ∼ N (μk; Ik), k = 1, . . . , 4.

Here the main difference from the previous scenarios is
that the functions are generated from a series of p =
128Daubechies extremal phasewavelets basis functions
(Daubechies 1999) but reconstructed using Fourier basis
functions.

In the following we provide a brief summary of the results
of the simulations. More details, including the complete set
of associated figures, can be found in the Supplementary
Material. The comments refer to estimates averaged over 100
replicated functional datasets, each consisting of 200 curves
recontructed using Fourier basis functions. The performance
of the PFC-L1 method is satisfactory in general; moreover
the strategy based on F(p) illustrated in Sect. 3.4 shows an
high level of accuracy in selecting the number of basis func-
tions for the first four scenarios. Furthermore, the number of
clusters is estimated correctly and both the BIC and the ICL
indices appear to be robust estimators of K considering the
different types of complexity of the generated data. In all the
proposed scenarios the results provided by BIC and ICL are
very similar.

Considering scenarios A and B, results show that the
PFC-L1 procedure is able to correctly retrieve the cluster-
discriminant basis functions (i.e. the correct sparseness
structure) and the number of groups. The level of accuracy
of the identified groups is very high being 100% for A and
97% for B. For the second and third scenarios it seems to be
slightly more difficult to retrieve the discriminant basis func-
tions as some coefficients fixed at zero in the simulation are
included in the model (see Figures 5 and 7 in the Supplemen-
taryMaterial). There is the hint that the retrieval of the correct
structure becomes more difficult when the expansion coeffi-
cients are correlated. However, also for these scenarios the
number of clusters is always correctly identified. For the third
and fourth scenarios the level of accuracy remains signifi-

cantly high being 86% on average for scenario C and 100%
for scenario D. Finally, regarding the scenario E, the simu-
lation suggests that using Fourier basis functions requires a
smaller number (p0 = 35) of functions compared with the
number of wavelets (p = 128) used to generate the data.
Also, Figure 11 in the Supplementary Material shows that it
is difficult to obtain a sparse structure in themean component
under this scenario. The number of estimated clusters is cor-
rectly estimated at 96% with only a 4% associated to a value
of K = 3. The quality of the estimated clusters remains very
good as the clustering procedure gives a 99% of accuracy.

4.2 Simulation 2: a comparison with other
approaches

To evaluate the performance of PFC-L1 and compare it with
other existing clustering methods, we conduct an experiment
where groups of functions are generatedusingoneof the three
different models defined in the simulation design proposed in
Aguilera et al. (2021) for homogeneity tests. This simulation
design has also been discussed (Górecki and Smaga 2015).

In particular, the generating model assumes the following
decomposition

yk(t) = μk(t) + ζ(t), k = 1, . . . , K ,

where μk(t) is the mean function of the kth group and ζ(t)
is a Wiener process with mean zero and covariance function
Cζ (s, t) = σ 2min(s, t), with (s, t) ∈ [0, 1]. Note that the
groups only differ in terms of themeans functionμk(t). Since
the eigenfunctions and the eigenvalues of theWiener process
are known, the truncated Karhunen–Loève expansion can be
used to generate realisations of ζ(t) as follows

ζ(t) �
q∑

j=1

√
ξ j ψ j (t) Z j

where ξ j = σ 2
(
j− 1

2

)2
π2

and ψ j (t) = √
2 sin

((
j − 1

2

)
π t
)

are, respectively, the eigenvalues and the eigenfunctions
of the covariance operator Cζ (s, t), while Z j are inde-
pendent Gaussian random variables N (0, 1). In order to
differentiate the groups, the mean functions are defined as
μk(t) = 0.025 k |sin(4π t)|, with k = 1, 2, 3. This
parametrization for the mean corresponds to model M3 in
Aguilera et al. (2021), which is the most challenging sce-
nario considered in their simulation experiment. Also, as
in Aguilera et al. (2021), we set the truncation param-
eter at q = 20 and consider 5 values for σ , namely
σ ∈ (0.02, 0.05, 0.10, 0.20, 0.40). Finally, to evaluate the
robustness of the procedure in a non-Gaussian scenario, we
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compute the exponential of the error terms ζ(t), suitably cen-
tered.

Overall, 10 different parameterizations are considered in
this simulation study providing two scenarios considering
Gaussian and non-Gaussian processes, and 5 different val-
ues for the dispersion parameter σ . For 51 equally spaced
points in the interval [0, 1], and for K = 3, examples of two
simulated datasets, obtained with σ = 0.02 and σ = 0.10,
and forGaussian andnon-Gaussian errors, are shown inFig. 2
− other plots can be found in the Supplementary Material.
As can be observed, the identification of the three clusters
becomes more challenging for larger values of σ and in the
case of Gaussianity, where the differences between mean
functions become smaller relative to the variability of the
data.

The following comments refer to estimates of the accuracy
index averaged over 100 replicated functional datasets, each
containing n = 75 curves divided into K = 3 groups, each
consisting of 25 curves.

As competing algorithms for PFC-L1, we consider sev-
eral methods implemented in R packages. Specifically, we
compare PFC-L1 with FunHDDC proposed by Bouveyron
and Jacques (2011), Curvclust by Giacofci et al. (2013), and
FunFEM byBouveyron et al. (2015),which are implemented
in the homonymous R packages (Schmutz et al. 2021; Gia-
cofci et al. 2012;Bouveyron 2021).Additionally,we evaluate
the performance of the most recent method SaS-Funclust
by Centofanti et al. (2023), which is implemented in the R
package sasfunclust (Centofanti et al. 2021). Finally,
we implement Fclust by James and Sugar (2003) using the
sasfunclust package without penalties.

Figure3 shows the average clustering accuracy as a func-
tion of the dispersion parameter σ (in logarithmic scale) for
the considered models in the two cases of Gaussian and non
Gaussian errors. As can be observed, possible differences in
the clustering results among the different procedures become
more apparent for the first two values of σ . As expected, as
σ increases, it becomes more challenging to retrieve the true
clusters, and all methods perform similarly, resulting in small
values for the accuracy index. Under Gaussianity assump-
tions, results show that PFC-L1 has the best performance,
followed by SaS-Funclust and Fclust, whose accuracy val-
ues are similar. Our results also suggest that, for small values
of σ , FunFEM—with default values - has the worst perfor-
mance among the methods evaluated. Finally, we also notice
that the task of accurately clustering the functions is less chal-
lenging in the non-Gaussian case, and all methods achieve
higher accuracy values. This may be due to the lower level
of variability in the data (see Fig. 2). In this scenario, all the
methods perform similarly well, with slight preferences for
SaS-Funclust andFclust. In general,FunFEM andCurvclust
perform the worst among the methods evaluated.

4.3 Results from benchmark datasets

In this section, we also briefly compare the performance of
PFC-L1 with other existing clustering algorithms by con-
sidering three well-known benchmark data sets, namely the
electrocardiogram (ECG), the Face and the Wafer dataset.1

The ECG dataset comprises a set of 200 electrocardio-
grams from 2 groups of patients, myocardial infarction and
healthy, sampled at 96 time instants in time, while the Face
dataset consists of 112 outlines of face sampled at 350 dis-
crete points for four groups. Finally, the Wafer data collects
7174 curves sampled from 2 groups at 152 instants of time
collection of in-line process control measurements recorded
from various sensors during the processing of silicon wafers
for semiconductor fabrication.

These data were previously used to compare the perfor-
mance of several functional clustering models in Bouveyron
et al. (2015), with p = 20 cubic spline basis functions.
The results in their Table 5 show that the FunFEM model,
compared with other clustering techniques, achieved the
best performance in terms of accuracy (according to known
labels) in two out of the three datasets considered. Table 1
reports their clustering accuracy results updated with ours
obtained by using PFC-L1 (and the BIC index for model
selection) and with results of SaS-Funclust by Centofanti
et al. (2023). As it can be noticed, PFC-L1 is the second best
for the ECG data, and stands apart from the others together
with the best SaS-Funclust in the Face case. For the Wafer
data PFC-L1 is reasonably close to FunFEM and compa-
rable (or slightly better) with the others. Actually, PFC-L1

behaves well in all three cases showing a sort of robustness
with respect to the case study.

5 Functional zoning for air quality
monitoring

In this section we still focus on one-dimensional functional
data but now consider the more complicated case of working
with spatially indexed functional data. In this case, the curves
Y (s, t) show a spatial component s ∈ R2 that represents the
locations in a given region of interest, while t represents
the continuous parameter of the functional data (time in our
case).

The literature on clustering spatially dependent functions
is not as extensive as for the case of independent functions, as
it can be also seen in Sect. 6 of the updated review by Zhang
and Parnell (2023). Proposals in the frameworks of hierarchi-
cal and dynamic clustering approaches, where the similarity
between pairs of curves is based on the use of the variogram

1 The data can be found at the UCR Time Series Classification Archive
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
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Fig. 2 Simulated curves with Gaussian (first row) and not Gaussian (second row) error functions, with dispersion parameter σ = 0.02 (left)
and σ = 0.10 (right) (Note that the value interval is larger for larger σ )

Fig. 3 Average Clustering Accuracy as a function of σ in logarithmic scale in the Gaussian error (left) and not Gaussian error case (right)
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Table 1 Clustering accuracies on the ECG, Face and Wafer data set
for other state of the arts models as shown in Table 5 of Bouveyron
et al. (2015), augmented with SaS-Funclust by Centofanti et al.
(2023) and the selected PFC-L1 results in the last line.

Method ECG Face Wafer

kmeans-d0 74.50 48.21 63.34

kmeans-d1 61.50 34.80 62.53

Funclust 84.00 33.03 63.10

FunHDDC 75.00 57.14 63.41

Fclust 74.50 − −
Curvclust 74.50 58.92 63.30

FunFEM DFM 71.00 53.57 66.89

SaS-Funclust 74.50 71.43 63.09

PFC-L1 81.50 67.86 63.48

The clustering algorithms of kmeans-d0 and kmeans-d1 refer
to Ieva et al. (2013); Funclust refers to Jacques and Preda (2013);
FunHDDC refers to Bouveyron and Jacques (2011); Fclust refers
to James and Sugar (2003); Curvclust refers to Giacofci et al.
(2013) and FunFEM DFM refers to Bouveyron et al. (2015)

function, are given by Giraldo et al. (2012), Romano et al.
(2012) and Romano et al. (2017). Other approaches based
on the use of spatial heterogeneity measures and spatial par-
titioning methods were also proposed by Dabo-Niang et al.
(2010) and Secchi et al. (2013), respectively. Proposals in a
model-based framework, instead, can be found in Jiang and
Serban (2012), where spatial dependence is introduced by
assuming a Gibbs distribution for the cluster membership
variable Z , and Vandewalle et al. (2021), as well as Wu and
Li (2022), where a multinomial logistic regression model
for πk , with longitude and latitude coordinates included as
regressors, is used to account for the spatial information.Also
Liang et al. (2021) model cluster membership but by means
of a locally dependent Markov Random Field to account for
spatial dependence. In this paper, we consider a multino-
mial logistic regression model too and extend this approach
by properly modelling the spatial dependence of the mixing
coefficients of the GMM model.

We consider the problem of functional zoning introduced
in Sect. 1 and use daily PM10 time series as in Ignaccolo et al.
(2013). In particular, the data refer to calibrated output of
a three-dimensional deterministic modeling system (Chem-
istry Transport Model Flexible Air Quality Regional Model)
implemented by the environmental agency ARPA Piemonte
(Italy). The calibration is obtained by “assimilating” data
observed at monitoring stations through a spatial kriging for
each day, where the output of the deterministic model plays
as a covariate in the external drift. The “krigged” PM10 con-
centrations are available on a regular grid with resolution
4km × 4km covering a surface of 220 × 284 km2. Overall,
there are n = 1763 sampled curves available (one for each
knot of the grid), each with T = 365 temporal observations.

Fig. 4 The F(p) function at different values of number of basis func-
tions p. The Frobenius norm is minimized by using p0 = 200 Fourier
basis functions

Since the time series show some periodicities, we use
Fourier basis functions to obtain our smoothed curves. The
MAD estimator, providing an estimate of σ̂ε equal to 6.02,
gives evidence of the presence of measurement noise. As
shown in Fig. 4, it follows that 200 basis functions are neces-
sary to minimize the Frobenius norm F(p) and to improve
the signal-to-noise ratio.

Because the spatial dependence of the smoothed curves
cannot be neglected in partitioning the Piemonte region in
spatially homogeneous zones, the second step of the algo-
rithm outlined at the end of Sect. 3 is adjusted by introducing
spatially varying mixing coefficients in the GMM model.

As inVandewalle et al. (2021),wemodel the spatial depen-
dence of the curves by modelling the distribution of the
weights such that observations corresponding to nearby loca-
tions are more likely to have similar allocation probabilities
than observations that are far apart in space. In particular, we
denote the mixing proportions as πk(s), s = (s1, s2) ∈ R2

and, considering the K th group as a baseline, we also define
the log-odds γk(si ) = log

(
πk(si )/πK (si )

)
, for i = 1, . . . , n

and k = 1, . . . , K − 1. Considering a multinomial logit
model, we thus assume that the log-odds at each site follow
a linear model

γk(si |ωk) =
L∑

l=1

ωl,k ψ l(si ), (11)

where ψ l are basis functions lying in a L-dimensional vec-
tor space of functionsP specifying how the process can vary
spatially,ωk = (

ω1,k, . . . , ωL,k
)
aremodel regression coeffi-

cients and L ≤ n. Estimation of the parameters of this model
can be carried out by maximum likelihood thus obtaining

ω̂
(d+1)
k = arg max

ϑk

n∑

i=1

K∑

k=1

τ̂
(d)
k,i (si ) log

(
πk(si |ωk)

)

where τ̂
(d)
k,i (si ) are the estimated posterior probabilities

computed as in (6) but with the spatially varying mixing
coefficients π̂k(si |ωk).

To provide more details about the spatial structure of the
log-odds γk(si ), we note that Eq. (11) represents a truncated
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expansion of the spatial process γ k = (
γk(s1), . . . , γk(sn)

)
.

This can be done as a result of the Karhunen-Loéve (KL)
theorem (Adler 2010), which establishes that γk(s) admits
a decomposition γk(s) = ∑∞

l=1 ωl,k ψ l(s), where ωl,k are
pairwise uncorrelated random variables and the ψ l(s) are
pairwise orthogonal basis functions in the domain of γk(s). In
practice, the prediction of γk(s) is typically the truncated KL
expansion based on the property that given any orthonormal
basis functions ψ l(s), we can choose a large integer L , so
that γk(s) can be approximated by the finite weighted sum of
basis functions. In this paper, to specify the basis functions
in Eq. (11), we define the matrices

� =
(
V U
U′ 0

)
and �−1 =

(
B R
R′ C

)

and assume that U is the (n × 3) design matrix con-
taining the coordinates of the sites, i.e. the i th row is
ui (si ) = (1 s1i s2i ), i = 1, . . . , n, and V is the General-
ized covariance (variogram)matrixwith elementsv(si , s j ) =
1
8π ‖si − s j‖2 log ‖si − s j‖ (Chilès and Delfiner 2012).
Then, the basis functions ψ l(si ) are defined as the eigen-
vectors of the spectral decomposition of B = �� ′,
where � = (

ψ1, . . . ,ψn

)
, ψ l =

(
ψ l(s1), . . . ,ψ l(sn)

)′

and  = diag(ξ1, . . . , ξn). Since for this choice of U and
V, BU = 0 and P0 = span(1, s1i , s2i ) is a vector space
of functions called the null space, which forms a subspace
of P , it follows that the first three eigenvalues are equal
to zero, and writing them in non-decreasing order we thus
have 0 = ξ1 = ξ2 = ξ3 < ξ4 ≤ ξ5 ≤ . . . ≤ ξn . Under
these assumptions, it follows that Eq. (11) can be rewritten
as

γk(si |ωk) = ω0,k + ω1,k s1i + ω2,k s2i +
L∑

l=3

ωl,k ψ l(si )

=
L∑

l=0

ωl,k ψ l(si ), (12)

where ψ0(si ) = 1, ψ1(si ) = s1i , ψ2(si ) = s2i and
L ≤ n. Furthermore, because the eigenfunctions are esti-
mated through a spectral decomposition ofB, theψ l(si ) have
been sometime denoted in the past as principal functions.
Similar approaches, in fact, can be found, for example, in
Mardia et al. (1998) in the field of spatio-temporal statistics
and then in Kent et al. (2001), Fontanella et al. (2019a) and
Fontanella et al. (2019b) for applications in shape analysis.
It also turns out that under this model parametrization, the
ψ l(si ) is also an interpolating thin-plate splinewhich, subject
to the constraints ψ l(s) ≡ ψ l(si ) for any s ∈ {s1, . . . , sn},
minimises the penalty (Mardia et al. 1996)

J (ψ l) =
∫
⎡

⎣

(
∂2 ψ l

∂s21

)2

+ 2

(
∂2 ψ l

∂s1∂s2

)2

+
(

∂2 ψ l

∂s22

)2
⎤

⎦ ds

where the integral is over R2. It thus follows that, given
the relationship between thin-plate splines and the kriging
interpolator, for any new site s0 /∈ {s1, . . . , sn}, the spatial
process of the log-odds can be predicted as

γk(s0|ωk) = ω0,k + ω1,k s10 + ω2,k s20

+
L∑

l=3

ωl,k ψ l(s0) (13)

where the eigenfunctionsψ l are predicted by kriging through

ψ l(s0) = [B v0(si , s0) + R u(s0)] ′ψ l for l ≥ 3,

with v0(si , s0) = (
v(s0, s1) . . . v(s0, sn)

)′ and u(s0) =
(1 s10 s20).

In our case, the vector γ k is thus treated as an intrinsic spa-
tial process with variogram function as specified above. This
is different from Vandewalle et al. (2021) where the spatial
variability of the log-odds is only modelled through a linear
spatial trend surface. Furthermore, our principal functions
have some advantages over polynomials in general. First they
grow less quickly than polynomials outside the domain of the
data and so are more stable for extrapolation. Second, they
allow more structures at locations with more data around
them, and are also automatically adaptive to data locations,
so that they can represent more detailed behaviour where
the sites are most dense. Finally, since the basis functions
are given in a decreasing order in terms of their degrees of
smoothness, the spatial process can be parsimoniously rep-
resented by using only a limited number, L ≤ n of basis
functions. For our case study, we have chosen L = 18 basis
functions which, in practice, explain about the 90% of the
spatial variability. To provide an example of their spatial
structure, the panels in Fig. 5 provide the spatial maps of
ψ l , l = 1, . . . , 18 which, as expected, show a decreasing
order of smoothness. Note that the first basis function ψ0(s)
is not reported as it is constant equal to one overall the domain
of interest.

Using L = 18 and evaluating M (see Sect. 3.3) with the
last term equal to L(K − 1) to consider all the parameters of
the spatially varying mixing proportions, the BIC suggests a
model with K = 3 spatial clusters whose spatial representa-
tion in given in Fig. 6. Figure7, instead, shows the patterns
of the estimated shrinked cluster-mean functions; this rep-
resentation gives some insights on how actually the clusters
differ. In particular, it emerges a less polluted area which
roughly overlaps with the Alps belt and piedmont territory
(green cluster) while the plain area is divided in two zones:
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Fig. 5 Spatial maps of the basis function ψ l , l = 1, . . . , 18 used to model the spatial variability of the log-odds as in Eq. (12)

Fig. 6 Left: Functional zoning of Piemonte with three clusters. Right: Spatial distribution of the estimated prior probabilities π̂k(s) for each cluster

the first one in red around Turin metropolitan area (white
dot in Fig. 6) moving towards Lombardy, while the second in
blue overlaps with the province of Alessandria. Those find-
ings partially confirms the ones reported by Ignaccolo et al.
(2013), however it seems that by modeling the spatial corre-
lation in the data it is possible to isolate an area in the south
west of the region (blue cluster). This last insight seems in
line with the results reported independently by Gamerman
et al. (2022) regarding PM10 concentration. As expected,

by estimating an increased number of clusters, it is possi-
ble to show maps featuring more spatial details (see Fig. 8).
Although sub-optimal in terms of information criteria, solu-
tions with 4 and 5 clusters show a more specific descriptive
analysis of the spatial distribution of PM10. In particular, the
western and southermost parts of Cuneo are now split from
the Po valley while, in the north, a cluster represented by
piedmont municipalities (cluster 2, Fig. 8 right) clearly sep-
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Fig. 7 Smooth estimated mean
functions in each cluster

Fig. 8 Functional zoning with K = 4 and K = 5

arates the region bordered by the mountains (cluster 5) from
the main road networks leading toward Milan (cluster 1).

Note that an advantage of our proposal is that, given θ̂

estimated by the EM-algorithm and the associated final clus-
tering partition, it is possible to obtain optimal predictions of
the clustering membership of a new functional observation
in s0. In fact, by interpolating the eigenvectors at a new site s0
by kriging, predictions of π̂(s0) can be obtained by using Eq.
(13). This motivates the alternative name principal kriging
function for ψ l(si ). Finally, by means of Eq. (6), it is also
possible to get an estimate of τ̂k,0 = P̂(Z0 = k|s0).

6 Mandibular shape changes

Further challenging data analysis tasks that motivate our
research refer to data that appear on non-Euclidean man-
ifolds. Current strategies use surface or shape descriptors
as features in a clustering algorithm, or consider appropri-
ate distances between shapes such as the geodesic one (see
Srivastava and Klassen 2016; Marron and Dryden 2022).
Here we consider the problem introduced in Sect. 1 and that
deals with the study of the dynamicmandibular changes from
childhood to adulthood. This problem has been extensively

described in the literature in 2D (see, for example, Enlow
and Hans 1997; Franchi et al. 2001), but how and when each
region of the mandible develops in 3D from childhood to
adulthood is not fully understood yet. Hence, one might be
interested to determine whether sudden changes occur and
where these are located in time.

As a case study,we consider the shape of registered human
mandibles for a group of n = 77 subjects with ages between
0 and 19 years. The objects have identical mesh topology so
that they have an anatomical correspondence across different
mesh vertices and there are no global size differences across
subjects—see Chung et al. (2015) for details on the registra-
tion of the mandible surfaces. To evaluate the shape changes
we consider the length of the displacement vector defined
at each point t , as a functional random variable Y(t) with
t varying on a compact manifold M ⊂ R3, taking values
in L2(M). The displacement vector is a vector map defined
at each position that matches an anatomically corresponding
point onto another object. Hence, the displacement length
has a biological interpretation since it provides a measure
of local shape variation.M is a known manifold that in this
case study is specified by a referencemandible (template) and
formed by trianglemesheswith 4326 triangles and T = 2165
vertices.
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The displacement lengthY(t) can be represented through
the Eqs. (1) and (2) where the set of basis functions in �p

are now associated with the mesh. In some cases, the fit of
the surface can be obtained by using basis functions that are
piece-wise polynomials and that represent elegant general-
izations of univariate B-splines to planar and curved domains
with fully irregular knot configuration. Applications in this
context can be found, for example, in Hou et al. (2017), San-
galli et al. (2013) or Sangalli (2020). Here, we do not follow
this approach as they either involve an optimization-driven
knot selection for spline construction or add further penal-
ization components to the estimation process. Here, instead,
following Rosenberg (1997) and Seo et al. (2010), we use a
heat kernel regression approach where the φ j are the eigen-
functions of the Laplace-Beltrami (LB) operator, denoted
with �, which solves the equation

� φ j = d j φ j

over the manifold M, where 0 = d1 < d2 ≤ d3 ≤ . . . are
ordered eigenvalues of φ1,φ2,φ3, . . .. These eigenfunctions
form an orthonormal basis in L2(M) and can be ordered in
terms of their degrees of smoothness with higher order func-
tions corresponding to larger-scale features and lower-order
ones corresponding to smaller-scale details. Furthermore,
unlike spline-based functions, we do not need to be con-
cerned about the allocation of the basis functions, but we
can simply select the number of functions, which links to a
specific resolution.

Using the eigenfunctions, the heat kernel is written as

Kδ(t, t ′) =
∞∑

j=1

e−d j δφ j (t) φ j (t ′)

where δ is the bandwidth of the kernel (Rosenberg 1997).
Since the closed form expression for the eigenfunctions of
the LB-operator on an arbitrary curved surface is unknown,
the eigenfunctions are estimated numerically by discretizing
the the operator by using the Cotan formulation (Chung and
Taylor 2004). This leads to solve a generalized eigenvalue
problem

P φ j = d j H φ j

where P and H are the stiffness and the mass matrices in a
Finite Element system (these matrices are sparse and can be
used without consuming large amount of memory).

In practice, to find the eigenfunctionsφ j ,we solve the gen-
eralized eigenvalues problem over the referenceM obtained
as the average of all 77 configurations (Chung et al. 2015). By
setting δ = 0 and convolving the heat kernel with the surface
values Y (t) from the heat kernel regression we obtain

Fig. 9 Groups reflecting stages of development of the human mandible
basedon shape similarity. The77 subjects are binned into four categories
for which we show the age distribution of the individuals. The number
of subjects per group is: 8, 40, 23 and 6

X̂(t) =
p∑

j=1

φ j (t)β̂ j

where the expansion coefficients are obtained through Eq.
(4). Note that, for the statistical analysis, we have used
p0 = 500 basis functions for 2165 vertices. The coefficients
β̂ i , i = 1, . . . , n, are then used in the PFC-L1 algorithm to
identify the maturational stages of the individuals through a
clustering procedure based on shape similarity. The results
of the clustering are reported in Fig. 9 which shows that the
estimated maturational levels (groups) do correlate with the
age of the individuals. However, there exist some overlaps
among the 4 groups, especially between the second and the
third, suggesting that, because of the variation in the age
at which children reach puberty, chronological age may not
reflect accurately the developmental stages. Hence, to fur-
ther analyse the local shape changes of the mandible, instead
of grouping the subjects into age categories defined a pri-
ori (see Chung et al. 2015, and Fontanella et al. 2019b),
we compare the mean displacement differences between the
identified groups.

For illustrative purposes, Fig. 10 provides a 3D representa-
tion of the reference mandible that is used to show the results
of the statistical analysis. Viewed from the side, each half of
the mandible is L-shaped. Starting from the left, we find the
posterior border of the ramuswhich is straight (vertical) and
continuouswith the inferior border of the body of the bone.At
the superior aspect of each ramus we also find the coronoid
and condylar processes. At its junction with the posterior
border is the angle of the mandible which is important for
the attachment of theMasseter and the Pterygoideusmuscles.
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Fig. 10 Pairwise local differences between the mean displacements of
groups 1 and 2. The differences are displayed by arrows and colors
indicate their lengths in mm. Longer arrows imply larger mean dis-
placement. The arrows have been blown up by a factor of 5 for clarity.

On the right, regions of significant changes between the two groups
are coloured in black and correspond to point-wise confidence intervals
which do not include zero

Moving toward the right,we thenfind the “menton” (the point
of the chin) which is the most inferior part of themandibular
symphysis. This ridge, which sometimes presents a centrally
depressed area, represents themedian line of the external sur-
face of the mandible. The first two pictures of Fig. 10 show
different views of the differences between groups 1 and 2 as a
result of an heat kernel regression of the displacement length
obtained using 500 basis functions. In particular, they display
the group mean vector difference on top of its length as quiv-
ers. The arrows show the direction of the shape changes with
their length being representative ofmeandisplacement differ-
ences and with colors indicating the variation in millimetres.
Being in a regression framework, it is relatively easy to use
bootstrap (Efron and Tibshirani 1993) to perform marginal
inference for single locations on the surface for any hypothe-
ses of interest. To this purpose, the third picture of Fig. 10
shows the regions of significant changes as measured by
mean displacement differences between the two groups. The
regions correspond to point-wise 95% confidence intervals
computed by resampling the residuals for updating the pre-
dictions of the functional variable. In particular, the regions
in black correspond to point-wise confidence intervals which
do not include zero. Similar graphical comparisons for other
group mean shapes can be seen in Sect. 2 of the Supple-
mentary Material. As a whole, we notice that the condyle
shows active morphological changes, elongating predomi-
nantly posteriorly and superiorly along with the lengthening
of the ramus. During the first years the changes are especially
visible at the alveolar border, at the distal and superior sur-
faces of the ramus, at the condyle, along the lower border of
the mandible and on its lateral surfaces. The ramus height, in
particular, clearly increases vertically, and the two sides of the

ramus diverge outward to increase the inter-ramus distance.
The mandibular body also elongates and the chin protrudes
distinctively over time confirming the expected vertical and
sagittal changes in the mandible (Enlow and Hans 1997). In
general, year by year, the mandibular changes become more
selective.

7 Discussion

In recent years, model-based clustering has become a power-
ful tool for performing functional cluster analysis, due to its
ability to handle high-dimensional and complex data. How-
ever, despite the recent advances, there still exist several
challenging statistical issues that need to be addressed. One
of these issues is how to achieve a dimensional reduction
able to optimize clustering performance and to this end we
maximize the log likelihood subject to a penalty that pro-
motes sparsity in the features. This is a crucial problem, as it
can help reduce the dimensionality of the feature space and
improve the interpretability of the clustering results. How-
ever, the choice of the penalty function and the selection of
the tuning parameters can be difficult, as they can affect the
sparsity and accuracy of the clustering model.

In this paper, we obtain dimensionality reduction of the
data prior to clustering, in order to reduce the complexity of
the feature space. Then, to induce sparsity structures within
the expansion coefficients, we follow the approach presented
in Zhou et al. (2009) where the log likelihood is maximized
subject to an L1-penalty function applied to the parameters
of the Gaussian distributions of the mixture.
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Both simulation studies and the analysis of real data sug-
gest that the PFC-L1 procedure is worth considering for
clustering complex objects. In particular, experiments on
one-dimensional functions demonstrate that the PFC-L1 pro-
cedure is robust to distributional assumptions and, compared
with other competing methods, performs similarly, if not
better, in terms of accuracy. Moreover, the simplicity and
flexibility of the PFC-L1 procedure make it an attractive
option for functional clustering, and its versatility has been
demonstrated by its ability to cluster complex objects, includ-
ing spatially correlated functions and surface mesh data.

For spatially dependent functions, we have proposed a
simple and straightforward parametrization of the multino-
mial logitmodel that does not require the estimation of spatial
covariance parameters. However, there are other solutions
that can be used to model spatial dependence in functional
data, including the use of different basis functions. For exam-
ple, Cressie and Johannesson (2008) proposed the use of
bisquare basis functions, which can capture both smooth and
abrupt changes in the spatial dependence structure. Alterna-
tively, Gamerman et al. (2022) proposed the use of univariate
and multivariate Gaussian processes in a Bayesian setting,
which can provide a flexible approach to modeling spatial
dependence in functional data. Overall, the choice of method
for modeling spatial dependence in model-based clustering
for functional data is an important and challenging problem
that requires careful consideration and further investigation.

For surface mesh data, dimensionality reduction can be
achieved by relying on the heat kernel smoothing approach
and the eigenfunctions of the Laplace-Beltrami (LB) opera-
tor. The eigenfunctions of the LB-operator provide a natural
basis for representing the surface geometry, and can be
used to obtain a low-dimensional representation of complex
data. The expansion coefficients obtained using a standard
regression framework can then be used for clustering the
objects, enabling accurate and reliable clustering of high-
dimensional surfaces. Furthermore, this approach allows for
subsequent analysis and inference. Overall, the use of heat
kernel smoothing and the eigenfunctions of the LB-operator
provides a powerful and effective approach to dimensionality
reduction for surface mesh data, and can be combined with
various clustering algorithms to enable accurate and reliable
clustering of complex and high-dimensional surfaces.

There still exist several challenging statistical issues that
need to be addressed in future works. For example, an
important issue in functional clustering is determining the
appropriate number of clusters (K ) and penalization param-
eters. In this work,model selection and validation procedures
were performed using two information criteria, BIC and ICL,
with reliable results demonstrated under the proposed sim-
ulation designs. An alternative approach would be to use
a non-parametric Bayesian approach with a Dirichlet pro-
cess prior (Ferguson 1973) over mixture components, which

has the advantage of automatically selecting the number
of clusters during the clustering procedure within a suit-
able Markov chain Monte Carlo (MCMC) algorithm (see
also White and Gelfand 2021, and Margaritella et al. 2021).
Stochastic Search Variable Selection (SSVS) priors (George
and McCulloch 1993) for variable selection could also be
included in the model, allowing for simultaneous identi-
fication of cluster-relevant variables and estimation of the
number ofmixture components. This approach could provide
a unified procedure for estimating both the model parameters
and the free-noise process X(t), which naturally incorporates
uncertainty into the posterior inference. The hierarchical
structure of the process provided by Eqs. (1) and (2) is
consistent with a Bayesian formulation of themodel, and fur-
ther investigation in this direction will be a topic for future
research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10288-
2.
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