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Abstract
We study a nonlocal capillarity problem with interaction kernels that are possibly
anisotropic and not necessarily invariant under scaling. In particular, the lack of scale
invariance will bemodeled via two different fractional exponents s1, s2 ∈ (0, 1)which
take into account the possibility that the container and the environment present different
features with respect to particle interactions. We determine a nonlocal Young’s law
for the contact angle and discuss the unique solvability of the corresponding equation
in terms of the interaction kernels and of the relative adhesion coefficient.

Mathematics Subject Classification 35R11 · 49Q05 · 76B45 · 58E12

Contents

1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Interaction kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Preliminary results: existence theory and Euler-Lagrange equation . . . . . . . . . . . . . . . .

The first author is member of INdAM. The second and third authors are members of AustMS. The second
author is supported by the Australian Research Council DECRA DE180100957 “PDEs, free boundaries
and applications”. The third author is supported by the Australian Laureate Fellowship FL190100081
“Minimal surfaces, free boundaries and partial differential equations”. Part of this work was carried out
during a very pleasant and fruitful visit of the first author to the University of Western Australia, which we
thank for the warm hospitality. We also thank the anonymous referees for their very useful suggestions.

B Serena Dipierro
serena.dipierro@uwa.edu.au

Alessandra De Luca
alessandra.deluca@unive.it

Enrico Valdinoci
enrico.valdinoci@uwa.edu.au

1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Cà Foscari Venezia, Via Torino
155, 30172 Mestre-Venezia, Italy

2 Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy,
Crawley, WA 6009, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-023-02623-9&domain=pdf


A. De Luca et al.

1.3 Main results: nonlocal Young’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 The cancellation property in the anisotropic setting and proof of Proposition 1.3 . . . . . . . . . . .
3 Nonlocal Young’s law and proofs of Theorems 1.4 and 1.6, of Corollary 1.5 and of Proposition 1.9, .
4 Proofs of Theorems 1.7 and 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Unique determination of the contact angle and proof of Theorem 1.10 . . . . . . . . . . . . . . . . .
Appendix A. Existence of minimizers and proof of Proposition 1.1 . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction andmain results

In the classical capillarity theory (see e.g. [13, 14]) the contact angle is defined as the
angle ϑ at which a liquid interface meets a solid surface. At the equilibrium, this angle
is expressed by the Young’s law in terms of the relative adhesion coefficient σ via the
classical formula

cos(π − ϑ) = σ.

The contact angle plays also an important role in the fluid spreading on a solid sur-
face, determining also the velocity of the moving contact lines (see e.g. [15] and the
references therein).

The contact angle is certainly the “macroscopic” outcome of several complex
“microscopic” phenomena, involving physical chemistry, statistical physics and fluid
dynamics, and ultimately relying on the effect of long-range and distance-dependent
interactions between atoms or molecules (such as van derWaals forces). It is therefore
of great interest to understand how the interplay between different microscopic effects
generates an effective contact angle at a macroscopic scale, and to detect the proximal
regions of the interfaces (likely, at a very small distance from the contact line) in which
the effect of the singular long-range potentials may produce a significant effect, see
e.g. [10, 16].

To further understand the role of long-range particle interactions in models related
to capillarity theory, a modification of the classical Gauß free energy functional has
been introduced in [19] that took into account surface tension energies of nonlocal
type and modeled on the fractional perimeter presented in [2]. These new variational
principles lead to suitable equilibrium conditions that determine a specific contact
angle depending on the relative adhesion coefficient and on the properties of the
interaction kernel. The classical limit angle was then obtained from this long-range
prescription via a limit procedure, and precise asymptotics have been provided in [6].
Local minimizers in the fractional capillarity model have been studied in [7], where
their blow-up limits at boundary points have been considered, showing, by means of a
new monotonicity formula, that these blow-up limits are cones, and giving a complete
characterization of such cones in the planar case.

The main goal of this paper is to present a capillarity theory of nonlocal type in
which the long-range particle interactions are possibly anisotropic and not necessarily
invariant under scaling. This setting is specifically motivated by the case in which the
potential interactions of the droplet with the container and those with the environment
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are subject to different van der Waals forces. These two different interactions will
be modeled here by two different fractional exponents. In this setting, we determine
a nonlocal Young’s law for the contact angle, which extends the known one in the
nonlocal isotropic setting and recovers the classical one as a limit case.

We now discuss in further detail the type of particle interactions that we take into
account and the variational structure of the corresponding anisotropic nonlocal capil-
larity theory.

1.1 Interaction kernels

Owing to [2], the most widely studied interaction kernel of singular type in problems
related to nonlocal surface tension is

Ks(ζ ) := 1

|ζ |n+s
for all ζ ∈ R

n \ {0}, (1.1)

with s ∈ (0, 1). Here, we aim at consideringmore general kernels than the one in (1.1),
with a twofold objective: on the one hand,wewish to initiate and consolidate a nonlocal
capillarity theory in an anisotropic scenario; on the other hand, we want to also model
the case in which the particle interaction of the container has a different structurewith
respect to the one of the external environment.

The first of these two goals will be pursued by considering interaction kernels that
are not necessarily invariant under rotation, the second by taking into account interac-
tions with different homogeneity inside the container and in the external environment.

More specifically, the mathematical setting in which we work is the following.
Given n � 2, s ∈ (0, 1), λ � 1 and � ∈ (0,∞], we consider the family of interaction
kernels, denoted by K(n, s, λ, �), containing the even functions K : R

n \ {0} →
[0,+∞) such that, for all ζ ∈ R

n \ {0},

χB� (ζ )

λ|ζ |n+s
� K (ζ ) � λ

|ζ |n+s
. (1.2)

Here, we are using the notation B� = R
n when � = ∞. Also, for every h ∈ N, we

consider the class Kh(n, s, λ, �) of all the kernels K ∈ K(n, s, λ, �) ∩ Ch(Rn \ {0})
such that, for all ζ ∈ R

n \ {0},

|D j K (ζ )| � λ

|ζ |n+s+ j
for all 1 � j � h. (1.3)

We also say that the kernel K admits a blow-up limit if for every ζ ∈ R
n \ {0} the

following limit exists:
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K ∗(ζ ) := lim
r→0+ r

n+s K (rζ ). (1.4)

For each kernel K we consider the interaction induced by K between any two
disjoint (measurable) subsets E, F of R

n defined by

IK (E, F) :=
∫
E

∫
F
K (x − y) dx dy. (1.5)

For instance, with this definition, the so-called K -nonlocal perimeter of a set E associ-
ated to K is given by the quantity IK (E, Ec), which is the interaction of the set E with
its complement with respect to R

n (here, as usual, we use the notation Ec := R
n \ E).

See [3] for several results on the K -nonlocal perimeter. In particular, if K is the frac-
tional kernel in (1.1), then the notion of K -perimeter boils down to the one introduced
by Caffarelli, Roquejoffre and Savin in [2].

Given an open set	 ⊆ R
n , s1, s2 ∈ (0, 1) and σ ∈ R, for every K1 ∈ K(n, s1, λ, �)

and K2 ∈ K(n, s2, λ, �) and every set E ⊆ 	 we define the functional

E(E) := I1(E, E
c ∩	)+ σ I2(E,	

c). (1.6)

Here above and in what follows, we use1 the short notation I1 := IK1 and I2 := IK2 .
Moreover, given a function g ∈ L∞(	), we let

C(E) := E(E)+
∫
E
g(x) dx . (1.7)

The setting that we take into account is general enough to include anisotropic nonlocal
perimeter functionals as in [3, 17],which, in turn, can be seen as nonlocalmodifications
of the classical anisotropic perimeter functional. In this spirit, the functional in (1.7)
can be seen as a nonlocal generalization of classical anisotropic capillarity problems,
such as the ones in [5]. As customary in the analysis of nonlocal problems arising from
geometric functionals, the long-range interactions involved in (1.7) produce significant
energy contributions which will give rise to structural differences with respect to the
classical case.

The goal of this article is to study the minimizers of the nonlocal capillarity func-
tional C among all the sets E with a given volume. Specifically, we say that E ⊆ 	 is
a critical point of C among sets with prescribed Lebesgue measure if

d

dt

∣∣∣
t=0

C
(
ft (E)

) = 0,

1 We observe that when σ > 0, one could reabsorb it into the second interaction kernel up to redefining K2
into σK2. In general, one can think that σ “simply plays the role of a sign,” say it suffices to understand

the matter for σ ∈ {−1,+1}, up to changing K2 into |σ | K2: indeed, if K̃2 := |σ | K2 we have that

σ IK2 (E, 	
c) = sign(σ ) |σ |

∫
E

∫
	c

K2(x − y) dx dy = sign(σ ) IK̃2
(E, 	c).

However, we thought it was convenient to consider σ as an “independent parameter”, since this makes it
easier to compare with the classical case.
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for every family of diffeomorphisms { ft }|t |<δ such that, for each |t | < δ, one has
that f0 = Id, the support of ft − Id is a compact set, ft (	) = 	 and | ft (E)| = |E |.

A special type of critical point is the set of minimizers, for which it holds that

C(E) � C(F)

for every F ⊆ 	 for which |F | = |E |.
The case in which K1(ζ ) = K2(ζ ) = Ks(ζ ) as in (1.1) has been studied in [6,

7, 19]. Here instead we are specifically interested in the nonlocal capillarity energy
in (1.7) with two different types of interactions between E and	∩ Ec and between E
and 	c, as modeled in (1.6).

1.2 Preliminary results: existence theory and Euler-Lagrange equation

We now describe some basic features of the capillarity energy functional C in (1.7).
First of all, we have that the volume constrained minimization of this functional is
well-posed, according to the following statement:

Proposition 1.1 (Existence of minimizers) Let K1 ∈ K(n, s1, λ, �) and K2 ∈
K(n, s2, λ, �). Let 	 be an open and bounded set and suppose that

either σ � 0 or I2(	,	
c) < +∞. (1.8)

Let m ∈ (0, |	|) and g ∈ L∞(	).
Then, there exists a minimizer for the functional C in (1.7) among all the sets E

with Lebesgue measure equal to m.
Moreover, I1(E, Ec ∩	) < +∞ for every minimizer E.

In the formulation given here, Proposition 1.1 is new in the literature, though its
proof relies on an appropriate variation of standard techniques, see e.g. [2, 19]. Never-
theless, we provide its proof inAppendixA, since herewewould like to point out some
modifications due to the facts that σ ∈ R and the kernels have different homogeneities,
differently from [19].

The volume constrained minimizers (and, more generally, the volume constrained
critical points) obtained in Proposition 1.1 satisfy (under reasonable regularity assump-
tions on the domain and on the interaction kernels) a suitable Euler-Lagrange equation,
according to the following result. To state it precisely, it is convenient to denote
by RegE the collection of all those points x0 ∈ 	 ∩ ∂E for which there exists ρ > 0
and α ∈ (s1, 1) such that Bρ(x0) ∩ ∂E is a manifold of class C1,α possibly with
boundary, and the boundary (if any) is contained in ∂	, see Fig. 1.

Given a kernel K ∈ K(n, s1, λ, �), it is also convenient to recall the notion of
K -mean curvature, that is defined, for all x ∈ 	 ∩ RegE , as

HK
∂E (x) := p.v.

∫
Rn

K (x − y)
(
χEc(y)− χE (y)

)
dy. (1.9)
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Fig. 1 The geometry involved in the definition of RegE

Here p.v. stands for the principal value, that we omit from now on for the sake of
simplicity of notation (see e.g. [1] and the references therein for further information
on the notion of nonlocal mean curvature, as well as for similarities and differences
with the classical mean curvature).

With this notation, we have the following result:

Proposition 1.2 (Euler-Lagrange equation). Let K1 ∈ K1(n, s1, λ, �) and K2 ∈
K1(n, s2, λ, �). Let 	 be an open bounded set with C1-boundary, m ∈ (0, |	|)
and g ∈ C1(Rn).

Let E be a critical point of C in (1.7) among all the sets with Lebesgue measure
equal to m.

Then, there exists c ∈ R such that

∫∫
E×(Ec∩	)

div(x,y)
(
K1(x − y)

(
T (x), T (y)

))
dx dy

+ σ
∫∫

E×	c
div(x,y)

(
K2(x − y)

(
T (x), T (y)

))
dx dy

+
∫
E
div(g T ) = c

∫
E
divT

(1.10)

for every T ∈ C∞
c (R

n; R
n) with

T · ν	 = 0 on ∂	.

Moreover, if K1 ∈ K2(n, s1, λ, �) and K2 ∈ K2(n, s2, λ, �), then

HK1
∂E (x)−

∫
	c

K1(x − y) dy + σ
∫
	c

K2(x − y) dy + g(x) = c (1.11)

for all x ∈ 	 ∩ RegE .
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The proof of Proposition 1.2 relies on a modification of techniques previously
exploited in [2, 11, 19]. We omit the proof here since one can follow precisely the
proof ofTheorem1.3 in [19]with obviousmodifications due to the presenceof different
kernels.

We now present the main results of this paper, which are focused on the determi-
nation of the contact angle.

1.3 Main results: nonlocal Young’s law

One of the pivotal steps of any capillarity theory is the determination of the contact
angle between the droplet and the container (in jargon, the Young’s law). In our setting,
this Young’s law is very sensitive to the relative homogeneity of the interacting kernels.

Loosely speaking, when s1 < s2, at small scales (which are the ones which we
believe are more significant in the local determination of the contact angle), the inter-
action between the droplet and the exterior of the container prevails2 with respect to
the one between the droplet and the interior of the container. Thus, in this situation,
the sign of the relative adhesion coefficient σ becomes determinant: in the hydrophilic
regime σ < 0 the droplet is “absorbed” by the boundary of the container, thus pro-
ducing a zero contact angle; instead, in the hydrorepellent regime σ > 0 the droplet
is “held off” the boundary of the container, thus producing a contact angle equal
to π ; finally, in the neutral case σ = 0 the behavior of the second interaction kernel
becomes irrelevant. Notice also that when σ = 0 the assumptions on s1 and s2 become
somewhat redundant, since in this case the kernel K2 does not appear in the energy
functional. When σ = 0 and additionally the problem is isotropic, the contact angle
becomes π/2.

Conversely, when s1 > s2, the interaction between the droplet and the interior of
the container is, at small scales, significantly stronger than that between the droplet
and the exterior of the container. In this situation, the relative adhesion coefficient σ
does not play any role and the contact angle is determined by an integral cancellation
condition (that will be explicitly provided in (1.23)). When the first kernel is isotropic,
this condition simplifies and the contact angle is proved to be π/2.

2 For instance, when s1 < s2, 	 := {xn > 0}, E := {0 < xn < β |x ′|} and r ∈ (0, �), one sees from (1.2)
and the change of variables (X , Y ) := ( x

r ,
y
r
)
that

I1(E ∩ Br , Ec ∩	 ∩ Br )

I2(E ∩ Br ,	c ∩ Br )
� λ2

∫∫
(E∩Br )×(Ec∩	∩Br )

dx dy

|x − y|n+s1∫∫
(E∩Br )×(	c∩Br )

dx dy

|x − y|n+s2

= λ2 rs2−s1

∫∫
(E∩B1)×(Ec∩	∩B1)

dX dY

|X − Y |n+s1∫∫
(E∩B1)×(	c∩B1)

dX dY

|X − Y |n+s2

,

which is infinitesimal when r ↘ 0. This suggests that in the small vicinity of contact points, when s1 < s2,
the effect of the kernel K2 in the determination of the energy minimizers and of their geometric properties
plays a dominant role with respect to that played by K1.
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More precisely, the determination of the contact angle relies on a delicate can-
cellation of the singular kernel contributions, which requires the determination of
an auxiliary angle which is “symmetric” (in a suitable sense of “measuring singu-
lar interactions”) with respect to the contact angle itself: this “dual contact angle”
will be denoted by ϑ̂ and the cancellation property will be described in detail in the
forthcoming formula (1.23).

The detailed analysis of the contact angle when s1 
= s2 is given in the forthcoming
Theorem 1.4. When instead s1 = s2, the internal and external interactions equally
contribute at small scales. This situation will be analyzed in Theorem 1.6 and will
lead to a contact angle described by an integral condition (given explicitly in (1.28)
and reformulated in (1.31) below).

We now dive into the technicalities required for the determination of the contact
angle. Namely, using the Euler-Lagrange equation in (1.11) and taking blow-ups along
sequences of interior points converging to ∂	 ∩ RegE , we derive two versions of the
nonlocal Young’s law depending on whether s1 
= s2 or s1 = s2. For this, we introduce
the following notations that will be used throughout all this paper:

• given a set F ⊆ R
n , x0 ∈ R

n and r > 0, we let

Fx0,r := F − x0
r

; (1.12)

• for any two angles ϑ1, ϑ2 ∈ [0, 2π), with ϑ1 < ϑ2, we define

Jϑ1,ϑ2

:=
{
x ∈ R

n : ∃ β ∈ (ϑ1, ϑ2), ρ > 0 such that (x1, xn) = ρ(cosβ, sin β)
}
;

(1.13)

• for any angle α, we set

e(α) := cosα e1 + sin α en . (1.14)

In order to establish the nonlocal Young’s law, we consider K1 ∈ K2(n, s1, λ, �) and
K2 ∈ K2(n, s2, λ, �) such that the associated blow-up kernels defined as in (1.4) are
well-defined and given by

K ∗
1 (ζ ) = a1(

−→
ζ )

|ζ |n+s1
and K ∗

2 (ζ ) = a2(
−→
ζ )

|ζ |n+s2
, (1.15)

where
−→
ζ := ζ

|ζ | and a1, a2 are continuous functions on ∂B1, bounded from above and
below by two positive constants and satisfying

ai (ω) = ai (−ω) (1.16)

for all ω ∈ ∂B1 and i ∈ {1, 2}.
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Fig. 2 The geometry involved in the asymptotics in (1.24)

Before exhibiting the main results of this paper, we premise the following result
which has been thought in order to reproduce a cancellation of terms as in [19]. This
result points out that in this context a new construction is needed since the function a1
is anisotropic.

Proposition 1.3 Given ϑ ∈ (0, π), for every ϑ̄ ∈ (0, 2π) let

Dϑ(ϑ̄) := lim
ρ↘0

∫
Rn\Bρ(e(ϑ))

a1(
−−−−−→
x − e(ϑ))(χJϑ,ϑ+ϑ̄ − χJ0,ϑ )(x)

|x − e(ϑ)|n+s1
dx . (1.17)

Then,

Dϑ is well-defined in the principal value sense; (1.18)

Dϑ is strictly increasing in (0, 2π); (1.19)

Dϑ is continuous in (0, 2π); (1.20)

lim
ϑ̄↘0

Dϑ(ϑ̄) = −∞; (1.21)

lim
ϑ̄↗2π

Dϑ(ϑ̄) = +∞. (1.22)

Moreover, for every c ∈ R and every angle ϑ ∈ (0, π), there exists a unique angle
ϑ̂ ∈ (0, 2π) such that

Dϑ(ϑ̂) = c. (1.23)

We showcase below a first version of the nonlocal Young’s law corresponding to
the case s1 
= s2.

Theorem 1.4 Let K1 ∈ K2(n, s1, λ, �) and K2 ∈ K2(n, s2, λ, �). Suppose that K1,
K2 admit blow-up limits K ∗

1 , K
∗
2 (according to (1.4)) that satisfy assumption (1.15).

Let g ∈ C1(Rn). Let 	 be an open bounded set with C1-boundary and E be a
volume-constrained critical set of C.
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Let x0 ∈ RegE ∩ ∂	 and suppose that H and V are open half-spaces such that

	x0,r → H and Ex0,r → H ∩ V in L1
loc(R

n) as r → 0+. (1.24)

Let alsoϑ ∈ [0, π ] be the angle between the half-spaces H and V , that is H∩V = J0,ϑ
in the notation of (1.13) (up to a rigid motion).

Then, the following statements hold true.

1) If s1 < s2 and σ < 0 then ϑ = 0.
2) If s1 < s2 and σ > 0 then ϑ = π .
3) If

either s1 < s2 and σ = 0, or s1 > s2, (1.25)

then ϑ ∈ (0, π). Also, letting ϑ̂ ∈ (0, 2π) be as in (1.23) with c = 0, we have
that ϑ̂ = π − ϑ . Moreover, for all v ∈ H ∩ ∂V ,

H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − y) dy = 0. (1.26)

The asymptotics in (1.24) are depicted in Fig. 2. As a particular case of Theorem1.4,
we single out the special situation in which the kernel K ∗

1 is isotropic. In this setting,
the cancellation condition in (1.23) boils down to an explicit condition for the contact
angle, and we have:

Corollary 1.5 Under the same assumptions of Theorem 1.4, we additionally suppose
that a1 ≡ const.

Then, the following statements hold true.

(1) If s1 < s2 and σ < 0 then ϑ = 0.
(2) If s1 < s2 and σ > 0 then ϑ = π .
(3) If either s1 < s2 and σ = 0, or s1 > s2, then ϑ = π

2 .

We exhibit below the nonlocal Young’s law in the case s1 = s2, which was left out
of Theorem 1.4.

Theorem 1.6 Let s ∈ (0, 1) and K1, K2 ∈ K2(n, s, λ, �). Suppose that K1, K2 admit
blow-up limits K ∗

1 , K
∗
2 (according to (1.4)) that satisfy assumption (1.15). Assume

that there exists ε0 ∈ (0, 1) such that

|σ | K2(ζ ) � (1 − ε0) K1(ζ ) for all ζ ∈ Bε0 \ {0}. (1.27)

Let g ∈ C1(Rn). Let 	 be an open bounded set with C1-boundary and E be a
volume-constrained critical set of C.

Let x0 ∈ RegE ∩ ∂	 and suppose that H and V are open half-spaces such that

	x0,r → H and Ex0,r → H ∩ V in L1
loc(R

n) as r → 0+.
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Let alsoϑ ∈ [0, π ] be the angle between the half-spaces H and V , that is H∩V = J0,ϑ
in the notation of (1.13) (up to a rigid motion).

Then, we have that ϑ ∈ (0, π) and, for all v ∈ H ∩ ∂V ,

H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − z) dz + σ

∫
Hc

K ∗
2 (v − z) dz = 0. (1.28)

Even in the very special situation in which K1(ζ ) = K2(ζ ) = 1
|ζ |n+s , Theorem 1.6

here can be seen as a strengthening of Theorem 1.4 in [19] (and, in particular, of
formula (1.24) there): indeed, the result here establishes explicitly the nondegeneracy
of the contact angle ϑ by proving that ϑ ∈ (0, π).

We point out that the case σ = 0 makes indistinguishable the setting s1 = s2 from
that of s1 
= s2: consistently with this, we observe that the contact angle prescription
when s1 = s2, as given in (1.28), reduces to (1.26) when additionally σ = 0.

Also, we remark that when σ = 0 condition (1.27) is automatically satisfied.
Furthermore, when K1 = K2, condition (1.27) reduces to σ ∈ (−1, 1), which is
precisely the assumption taken in [19].

Besides, we think that the detection of a contact angle in a nonlocal capillarity set-
ting is an interesting feature in itself, especially when we compare this situation with
the stickiness phenomenon for the nonlocal minimal surfaces, as discovered in [8].
More specifically, for nonlocal minimal surfaces, the long-range interactions make it
possible for the surface to stick to a domain (even if the domain is smooth and con-
vex), thus changing dramatically the boundary analysis (moreover, this phenomenon
is essentially “generic”, see [9]). The possible detection of the contact angle for the
nonlocal capillarity theory instead highlights the fact that the boundary analysis of this
theory is somewhat “sufficiently robust” with respect to the classical case. Roughly
speaking, we believe that this important difference3 between nonlocal minimal sur-
faces and nonlocal capillarity theory is due to the fact that in the latter the mass is
always placed in a bounded region, whence the energy contributions coming from
infinity have a different nature than the ones occurring for nonlocal perimeter func-
tionals.

We also stress that conditions (1.25) and (1.27) basically state that if the kernel K2 is
“too strong”, then one cannot expect nontrivial minimizers. Roughly speaking, while
Proposition 1.1 always guarantees the existence of aminimizer,when conditions (1.25)
and (1.27) are violated the minimizer can “detach from the boundary” (or “completely
stick to the boundary”), hence the notion of contact angle becomes degenerate or void.
That is, while for the existence of minimizers we do not need to require any bound
on the relative adhesion coefficient σ in dependence of the interaction kernels, to

3 In some sense, we tend to consider the stickiness phenomenon as typical for nonlocal minimal surfaces,
while we expect the nonlocal capillarity theory to arguably have closer resemblance with the classical case,
due to the lack of mass outside the container. It is however possible to interpret the “degenerate nature
of the contact angle” (namely ϑ = 0 or ϑ = π ) as a kind of exotic behavior. This is a reason for us to
discussing these cases in quite detail and to state clearly when these degeneracies can be avoided by relying
on structural assumptions on the kernels.
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Fig. 3 The configuration in
which the droplet tends to stick
to the container

Fig. 4 The configuration in
which the droplet tends to detach
from the container

speak about a contact angle some quantitative condition is in order (roughly speaking,
otherwise the droplet does not meet the boundary of the container with a nontrivial
angle, rather preferring to either detach from the container and float, or to completely
stick at the boundary by surrounding it).

The configuration in which the droplet tends to be squashed on the container, thus
producing a contact angle ϑ close to zero, is sketched in Fig. 3. The opposite situation
in which the droplet tends to detach from the container, thus producing a contact
angle ϑ close to π , is depicted in Fig. 4.

These concepts are made explicit in the following exemplifying4 observations:

Theorem 1.7 Let σ > 0, 	 := B1, g := 0, K1(ξ) := k1
|ξ |n+s1

and K2(ξ) := k2
|ξ |n+s2

,
for some k1, k2 > 0.

Let E be a volume-constrained minimizer of C. Assume that there exist p ∈ ∂B1
and ε0 > 0 such that Bε0(p) ∩ B1 ⊆ E. Assume also that RegE ∩	 
= ∅.

Then, either s1 > s2, or s1 = s2 and k1 > σk2.

Theorem 1.8 Let σ < 0, 	 := B1, g := 0, K1(ξ) := k1
|ξ |n+s1

and K2(ξ) := k2
|ξ |n+s2

,
for some k1, k2 > 0.

4 In Theorems 1.7 and 1.8 we assumed that the regular part of the boundary of the minimizer is not empty
just to avoid technical complications related to boundary regularity theory, whose full understanding is not
yet complete and to focus here on the structural conditions on the kernels allowing interesting contacts
angles (provided that the notion of contact angle is well-defined).

123



Nonlocal capillarity for anisotropic…

Let E be a volume-constrained minimizer of C. Assume that there exist p ∈ ∂B1
and ε0 > 0 such that Bε0(p) ∩ B1 ⊆ (	 \ E). Assume also that RegE ∩	 
= ∅.

Then, either s1 > s2, or s1 = s2 and −k1 < σk2.

Wenow reformulate the condition of contact angle according to the following result:

Proposition 1.9 Let K ∗
1 and K ∗

2 be as in (1.15). Let σ ∈ R. Assume that5

either s1 = s2, or σ = 0. (1.29)

Let H and V be open half-spaces and let ϑ ∈ (0, π) be the angle between H and V ,
that is H ∩ V = J0,ϑ in the notation of (1.13). Let also ϑ̂ ∈ (0, 2π) be as in (1.23)
with c := 0

Suppose that there exists v ∈ H ∩ ∂V such that

H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − z) dz + σ

∫
Hc

K ∗
2 (v − z) dz = 0. (1.30)

Then, we have that ϑ and σ satisfy the relation

∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
dx −

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
dx + σ

∫
Hc

a2(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
dx = 0.

(1.31)

A topical question in view of Proposition 1.9 is therefore to understand whether or
not Eq. (1.31) identifies a unique contact angle ϑ . This is indeed the case, precisely
under the natural condition in (1.29), according to the following result inTheorem1.10.
To state it in full generality, it is convenient to introduce some notation. Indeed, in
the forthcoming computations, it comes in handy to reduce the problem to a two-
dimensional situation. For this, one revisits the setting in (1.13) by defining its two-
dimensional projection onto the variables (x1, xn), namely one sets

J�ϑ1,ϑ2

:=
{
(x1, xn) ∈ R

2 : ∃ β ∈ (ϑ1, ϑ2), ρ > 0 such that (x1, xn) = ρ(cosβ, sin β)
}
.

(1.32)

5 Regarding condition (1.29), note that when σ = 0 the kernel K2 can really be anything, as it does not
appear in the energy functional, therefore the second condition in (1.29) does not need to require that s1 
= s2.
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Let also e�(ϑ) := (cosϑ, sin ϑ) and, for every x = (x1, x2) ∈ ∂B1 ⊆ R
2 and j ∈

{1, 2},

a�j (x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a j (x) if n = 2,

∫
Rn−2

a j

(−−−−−−−−−−−−−−−−−−→
x1 e1 + x2 en + |x |(0, ȳ, 0)

)
(
1 + |ȳ|2) n+s j

2

d ȳ if n � 3.

(1.33)

Let also

φ j (ϑ) := a�j (cosϑ, sin ϑ). (1.34)

We remark that, as a byproduct of (1.16),

a�j (x) = a�j (−x) and φ j (ϑ) = φ j (π + ϑ). (1.35)

With this framework,we can state the existence and uniqueness result for the contact
angle equation as follows:

Theorem 1.10 Let K ∗
1 and K ∗

2 be as in (1.15). Let σ ∈ R and assume that (1.29) holds
true.

Then, there exists at most one ϑ ∈ (0, π) satisfying the contact angle condition
in (1.31).

Furthermore, if

|σ | <

∫ π

0
φ1(α) (sin α)

s1 dα
∫ π

0
φ2(α) (sin α)

s1 dα
, (1.36)

then there exists a unique solution ϑ ∈ (0, π) of (1.31).
We stress once again that when a1 = a2 (and in particular for constant a1 = a2),

assumption (1.36) reduces to the structural assumption |σ | < 1 that was taken in [19].
Moreover, if K1(ξ) := k1|ξ |s1 and K2(ξ) := k2|ξ |s2 for some k1, k2 > 0, then assump-

tion (1.36) boils down to |σ | < k1
k2
, which is precisely the condition for nontrivial

minimizers obtained in Theorems 1.7 and 1.8.
For these reasons, Theorem 1.10 showcases the interesting fact that the equation

prescribing the contact angle in (1.31) admits one and only one solution precisely in
the natural range of kernels given by (1.29) and (1.36).

We also observe that if (1.27) holds true for K ∗
1 and K ∗

2 , then |σ |φ1 � φ2 and
therefore condition (1.36) is also satisfied.

Additionally, as we will point out in Remark 5.3 at the end of Section 5, the unique-
ness statement in Theorem 1.10 heavily depends on the strict positivity of the kernel
and it fails for kernels that are merely nonnegative.
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1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we provide the proof of the
cancellation property stated in Proposition 1.3.

In Section 3 we prove the nonlocal Young’s law in Theorems 1.4 and 1.6 and
Proposition 1.9, as well as Corollary 1.5. Section 4 deals with the possible complete
stickiness or detachment of the nonlocal droplets and it presents the proofs of Theo-
rems 1.7 and 1.8. Section 5 is devoted to the existence and uniqueness theory of the
equation prescribing the contact angle and contains the proof of Theorem 1.10.

Finally, the proof of Proposition 1.1 is contained in Appendix A.

2 The cancellation property in the anisotropic setting and proof of
Proposition 1.3

In this section we prove the desired cancellation property stated in Proposition 1.3.
The argument relies on a delicate analysis of the geometric properties of the integrals
involved in the definition of the function in (1.17).

Proof of Proposition 1.3 We focus on the proof of (1.18), (1.19), (1.20), (1.21)
and (1.22): once these statements are proved, we can conclude that for every c ∈ R

there exists a unique angle ϑ̂ ∈ (0, 2π) such thatDϑ(ϑ̂) = c, thus establishing (1.23).
We start by proving (1.18). Hence we want to show that the limit in (1.17) exists

and is finite. To this end, given ϑ̄ ∈ (0, 2π), we let δ := min{sin ϑ̄, sin ϑ} and we
note that Bδ(e(ϑ)) is contained in J0,ϑ+ϑ̄ . Then, for every ρ ∈ (0, δ] we set

f (ρ) :=
∫
Jϑ,ϑ+ϑ̄\Bρ(e(ϑ))

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx −

∫
J0,ϑ\Bρ(e(ϑ))

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx .

We also define Aδ,ρ(e(ϑ)) := Bδ(e(ϑ)) \ Bρ(e(ϑ)), see Fig. 5. By the change of
variable x �→ 2e(ϑ)− x , we see that

∫
Jϑ,ϑ+ϑ̄∩Aδ,ρ (e(ϑ))

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx −

∫
J0,ϑ∩Aδ,ρ (e(ϑ))

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx

=
∫
J0,ϑ∩Aδ,ρ (e(ϑ))

[
a1(

−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
− a1(

−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1

]
dx = 0,

since a1 is symmetric. From this, we deduce that for every ρ ∈ (0, δ]

f (ρ)− f (δ) =
∫
Jϑ,ϑ+ϑ̄∩Aδ,ρ (e(ϑ))

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx

−
∫
J0,ϑ∩Aδ,ρ (e(ϑ))

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx = 0.
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Fig. 5 The geometry involved in the proof of the existence and finiteness of the limit in (1.17)

Hence we conclude that

lim
ρ↘0

f (ρ) = f (δ), (2.1)

thus proving the existence and finiteness of the limit in (1.17).
This completes the proof of (1.18) andwenow focus on the proof of (1.19) and (1.20)

(and, for notational simplicity, we omit the principal value notation).
For this, we notice that, if ϑ̃ , ϑ̄ ∈ (0, 2π) with ϑ̄ � ϑ̃ ,

Dϑ(ϑ̄)− Dϑ(ϑ̃) =
∫
Jϑ,ϑ+ϑ̄

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx −

∫
Jϑ,ϑ+ϑ̃

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx

=
∫
Jϑ+ϑ̃,ϑ+ϑ̄

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx .

This gives the monotonicity property in (1.19). Moreover, since the denominator in
the latter integral is bounded from below by a positive constant (depending on ϑ̃), the
claim in (1.20) follows from the Dominated Convergence Theorem.

We now deal with the proof of (1.21) and (1.22). We focus on the proof of (1.21)
since a similar argument can be used to deduce (1.22). For this, let R be the rota-
tion by an angle ϑ in the (x1, xn) plane that sends e(ϑ) in e1 = (1, 0, . . . , 0). Let
also a1,ϑ := a1 ◦ R and notice that a1,ϑ inherits the properties of a1, that is a1,ϑ is a
continuous function on ∂B1, bounded from above and below by two positive constants
and satisfying a1,ϑ (ω) = a1,ϑ (−ω) for all ω ∈ ∂B1.

With this notation, we have that claim (1.21) is equivalent to

lim
ε↘0

(∫
J0,ε

a1,ϑ (
−−−→
x − e1)

|x − e1|n+s1
dx −

∫
J−ϑ,0

a1,ϑ (
−−−→
x − e1)

|x − e1|n+s1
dx

)
= −∞. (2.2)
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Fig. 6 The set decomposition involved in the proof of (2.2), with congruent regions canceling out marked
in different colors

Let δ ∈ (0, 1) be small enough (in dependence of ϑ) to have that

Bδ(e1) ∩ J−ϑ,0 = Bδ(e1) ∩ {xn < 0},

as depicted in Fig. 7. Since we want to compute a limit as ε ↘ 0, it is not restrictive to
suppose that δ > | tan ε|, thus having that Bδ(e1) ∩ (J−ε,0)c ∩ {xn < 0} is not empty.

The idea is to get rid of as many contributions as possible in the vicinity of e1 since
outside Bδ(e1) the contributions given by both integrals are bounded uniformly in ε.

We observe that, exploiting the symmetry properties of a1,ϑ , the integral over the
set J0,ε ∩ {xn < tan ε (2 − x1)} is equal to the integral over the set J−ε,0 ∩ {xn >
− tan ε (2−x1)} and also the integrals over the sets J0,ε∩Bδ(e1)∩{xn > tan ε (2−x1)}
and (J−ε,0)c ∩ Bδ(e1) ∩ {xn > − tan ε (2 − x1)} cancel out.

Moreover, the integrals outside Bδ(e1) also cancel out by the symmetry properties
of a1,ϑ . A sketch of the above mentioned cancellations is visible, by different colors,
in Fig. 6.

Putting together all these bits of information, and possibly disregarding the con-
tribution of J−θ,0 ∩ {xn < − tan ε(2 − x1)} ∩ (Bδ(e1))c (which plays in our favor
anyway), we infer that to prove (2.2) it suffices to show that

lim
ε↘0

∫
Sε

a1,ϑ (
−−−→
x − e1)

|x − e1|n+s1
dx = +∞, (2.3)

where

Sε := {x ∈ Bδ(e1) : xn < − tan ε(2 − x1)}.

We refer to Fig. 7 for a representation of the set Sε.
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Fig. 7 The set Sε

By the Monotone Convergence Theorem and the uniform positivity of a1,ϑ , we
finally obtain

lim
ε↘0

∫
Sε

a1,ϑ (
−−−→
x − e1)

|x − e1|n+s1
dx =

∫
Bδ(e1)∩{xn<0}

a1,ϑ (
−−−→
x − e1)

|x − e1|n+s1
dx

�
(
inf
∂B1

a1,ϑ

)∫
Bδ∩{zn<0}

dz

|z|n+s1
= +∞

thus proving (2.3), which in turn leads to (1.21). ��

3 Nonlocal Young’s law and proofs of Theorems 1.4 and 1.6, of
Corollary 1.5 and of Proposition 1.9,

In order to prove Theorems 1.4 and 1.6, Corollary 1.5 and Proposition 1.9, we first
recall an ancillary result on the continuity of the nonlocal K -mean curvature defined
in (1.9) (for the usual fractional mean curvature, that is when the kernel K is as in (1.1),
similar continuity results were presented in [4, 11]).

From now on, we denote points x ∈ R
n as x = (x ′, xn) ∈ R

n−1 × R and we set

C := {x = (x ′, xn) ∈ R
n : |x ′| < 1, |xn| < 1}

and D := {z ∈ R
n−1 : |z| < 1}.

Lemma 3.1 Let λ � 1, s ∈ (0, 1) and α ∈ (s, 1). Let {Fk}k∈N be a sequence of Borel
sets in R

n such that 0 ∈ ∂Fk and

Fk → F in L1
loc(R

n) for some F ⊆ R
n .
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and uk, u ∈ C1,α(Rn−1) be such that

C ∩ Fk = {x ∈ C : xn � uk(x
′)}

and

lim
k→+∞ ‖uk − u‖C1,α(D) = 0.

Let Kk, K ∈ K(n, s, λ, 0) be such that Kk → K pointwise in R
n \ {0} as k → +∞.

Then

lim
k→+∞HKk

∂Fk
(0) = HK

∂F (0).

For the proof of Lemma 3.1 here, see Lemma 4.1 in [19].
We will also need a technical lemma to distinguish between the nondegenerate

case ϑ ∈ (0, π) and the particular cases in which ϑ ∈ {0, π}.
Lemma 3.2 Let K1 ∈ K2(n, s1, λ, �) be such that it admits a blow-up limit K ∗

1
(according to (1.4)). Let 	 be an open bounded set with C1-boundary and E be
a volume-constrained critical set of C.

Let x0 ∈ RegE ∩ ∂	, xk ∈ RegE ∩	 such that xk → x0 as k → +∞ and rk > 0
such that rk → 0 as k → +∞.

Suppose that H and V are open half-spaces such that

	x0,rk → H and Ex0,rk → H ∩ V in L1
loc(R

n) as k → +∞. (3.1)

Set vk := xk−x0
rk

and suppose that there exists v ∈ H ∩ ∂V such that vk → v

as k → +∞.
Let ϑ ∈ [0, π ] be the angle between the half-spaces H and V , that is H ∩V = J0,ϑ

in the notation of (1.13) (up to a rigid motion).
Then,

i) if ϑ = 0 then

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]
= +∞;

ii) if ϑ = π then

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]
= −∞;

iii) if ϑ ∈ (0, π) then

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]
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= H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − y) dy ∈ R.

Proof The proof is quite technical, therefore we split it into several steps.
Step 1. Proof of i). We start by proving i). This is the lengthiest step in the proof,
which is divided into different substeps.

Step 1.1. Preliminary nonlocal curvature estimates. We notice that

�k := rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]

= rs1k

[∫
Ec∩	

K1(xk − y) dy −
∫
E
K1(xk − y) dy

]

= rn+s1
k

[∫
(Ex0,rk )c∩	x0,rk

K1(xk − x0 − rk z) dz −
∫
Ex0,rk

K1(xk − x0 − rk z) dz

]

= rn+s1
k

[∫
(Ex0,rk )c∩	x0,rk

K1
(
rk(vk − z)

)
dz −

∫
Ex0,rk

K1
(
rk(vk − z)

)
dz

]
,

where the change of variable z = y−x0
rk

has been used.
Now we point out that

rn+s1
k

∫
Rn\B1/2(vk )

K1
(
rk(vk − z)

)
dz � λ

∫
Rn\B1/2(vk )

dz

|vk − z|n+s1
� C,

thanks to (1.2), for some positive constant C , depending only on n, s1 and λ.
From these observations we conclude that

�k � rn+s1
k

[∫
(Ex0,rk )c∩	x0,rk∩B1/2(vk)

K1
(
rk(vk − z)

)
dz

−
∫
Ex0,rk∩B1/2(vk)

K1
(
rk(vk − z)

)
dz

]
− C . (3.2)

Step 1.2. Some graphical estimates. Now we notice that Ex0,rk ∩ B1/2(vk) can be
written as a portion of space included between the graphs of the functions describ-
ing ∂	x0,rk and ∂Ex0,rk , that we denote respectively by ψk and uk . More precisely,
recalling that x0 ∈ RegE ∩ ∂	, in the vicinity of x0 we can describe ∂	 and ∂E
by the graphs of two functions ψ and u, respectively, with ψ of class C1 and u of
class C1,α with α ∈ (s1, 1), and ψ(x ′

0) = u(x ′
0) = x0,n . Up to a rotation, we also

assume that ∇ψ(x ′
0) = 0. In this way,

ψk(x
′) = ψ(x ′

0 + rk x ′)− x0,n
rk

and uk(x
′) = u(x ′

0 + rk x ′)− x0,n
rk

. (3.3)
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Moreover,

Ex0,rk ∩ B1/2(vk) =
{
x ∈ B1/2(vk) : xn ∈ (ψk(x

′), uk(x ′)
)}

and notice that, since E ⊆ 	, it follows that ψ � u and so ψk � uk . As a result,

{
x ∈ B1/2(vk) : xn > uk(x

′)
} ⊆ (Ex0,rk )c ∩	x0,rk ∩ B1/2(vk).

Hence, from (3.2) we obtain that

�k � rn+s1
k

[∫
B1/2(vk )∩{xn>uk (x ′)}

K1
(
rk(vk − z)

)
dz

−
∫
B1/2(vk )∩{xn∈(ψk (x ′),uk (x ′))}

K1
(
rk(vk − z)

)
dz

]
− C . (3.4)

Step 1.3. Further graphical estimates. We now define

ũk(x
′) := uk(v

′
k)+ ∇uk(v

′
k) · (x ′ − v′

k)

and we point out that, if |x ′ − v′
k | � 3,

|uk(x ′)− ũk(x
′)| =

∣∣∣∣u(x
′
0 + rk x ′)− u(x ′

0 + rkv′
k)

rk
− ∇u(x ′

0 + rkv
′
k) · (x ′ − v′

k)

∣∣∣∣
=
∣∣∣∣∣
u
(
x ′
k + rk(x ′ − v′

k)
)− u(x ′

k)

rk
− ∇u(x ′

k) · (x ′ − v′
k)

∣∣∣∣∣
=
∣∣∣∣
∫ 1

0
∇u
(
x ′
k + trk(x

′ − v′
k)
) · (x ′ − v′

k) dt − ∇u(x ′
k) · (x ′ − v′

k)

∣∣∣∣
� ‖u‖C1,α(B′

ρ(x
′
0))

rαk |x ′ − v′
k |1+α,

for a suitable ρ > 0. As a consequence,

rn+s1
k

∫
({xn>uk (x ′)}�{xn>ũk (x ′)})∩B1/2(vk )

K1
(
rk(vk − z)

)
dz

� λ
∫
({xn>uk (x ′)}�{xn>ũk (x ′)})∩B1/2(vk )

dz

|vk − z|n+s1

� λ‖u‖C1,α(B′
ρ(x

′
0))

rαk

∫
B′
1/2(v

′
k)

|v′
k − z′|1+α

|v′
k − z′|n+s1

dz′

� C rαk ,

up to renaming C , possibly in dependence of u as well.
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Plugging this information into (3.4), and possibly renaming C again, we obtain
that

�k � rn+s1
k

[∫
B1/2(vk )∩{xn>ũk (x ′)}

K1
(
rk(vk − z)

)
dz

−
∫
B1/2(vk )∩{xn∈(ψk (x ′),̃uk (x ′))}

K1
(
rk(vk − z)

)
dz

]
− C . (3.5)

Now, from (3.3) we see that ψk(x ′) → ∇ψ(x ′
0) · x ′ and uk(x ′) → ∇u(x ′

0) · x ′
as k → +∞. Hence, if ϑ = 0 it follows that ∇ψ(x ′

0) = ∇u(x ′
0). Consequently,

if x ′ ∈ B ′
1/2(v

′
k) then

|̃uk(x ′)− ψk(x ′)|

=
∣∣∣∣∣uk(v′k)+ ∇uk(v

′
k) · (x ′ − v′k)−

ψ(x ′
0 + rk x

′)− ψ(x ′
0)

rk

∣∣∣∣∣

=
∣∣∣∣∣
u(x ′

0 + rkv
′
k)− u(x ′

0)

rk
+ ∇u(x ′

0 + rkv
′
k) · (x ′ − v′k)−

∫ 1

0
∇ψ(x ′

0 + trk x
′) · x ′ dt

∣∣∣∣∣

=
∣∣∣∣∣
∫ 1

0
∇u(x ′

0 + trkv
′
k) · v′k dt + ∇u(x ′

0 + rkv
′
k) · (x ′ − v′k)

−
∫ 1

0
∇ψ(x ′

0 + trk x
′) · x ′ dt

∣∣∣∣∣

�
∣∣∣∣∣
∫ 1

0
∇u(x ′

0) · v′k dt + ∇u(x ′
0) · (x ′ − v′k)

−
∫ 1

0
∇ψ(x ′

0) · x ′ dt
∣∣∣∣∣+ δk

= δk , (3.6)

for a suitable δk such that δk → 0 as k → +∞.
This and (3.5) give that

�k � rn+s1
k

[∫
B1/2(vk)∩{xn>ũk (x ′)}

K1
(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(̃uk (x ′)−δk ,̃uk (x ′))}

K1
(
rk(vk − z)

)
dz

]
− C . (3.7)

Step 1.4. Sets inclusions and changes of variables. Now we define the map Y (z) :=
2vk − z and we show that

Y
(
B1/2(vk) ∩ {xn ∈ (̃uk(x ′)− δk, ũk(x ′))}

)
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⊆ B1/2(vk) ∩ {xn ∈ (̃uk(x ′), ũk(x ′)+ δk)}. (3.8)

Indeed, let z ∈ B1/2(vk) ∩ {xn ∈ (̃uk(x ′) − δk, ũk(x ′))} and call y := Y (z). We
have that |y − vk | = |vk − z| < 1/2. Moreover, since vk = (v′

k, vk,n) belongs to the
boundary of Ex0,rk (and hence to the graph of uk), we have that

vk,n = u(v′
k)

and accordingly

yn − ũk(y
′) = 2vk,n − zn − ũk

(
2v′

k − z′
)

= 2uk(v
′
k)− zn − ũk

(
2v′

k − z′
)

∈
(
2uk(v

′
k)− ũk(z

′)− ũk
(
2v′

k − z′
)
, 2uk(v

′
k)− ũk(z

′)

−ũk
(
2v′

k − z′
)+ δk

)

=
(
2uk(v

′
k)− 2ũk(v

′
k), 2uk(v

′
k)− 2ũk(v

′
k)+ δk

)

= (
0, δk

)

and the proof of (3.8) is thus complete.
Using (3.8) and changing variable y = Y (z) we see that

∫
B1/2(vk )∩{xn∈(̃uk (x ′)−δk ,̃uk (x ′))}

K1
(
rk(vk − z)

)
dz

�
∫
B1/2(vk)∩{xn∈(̃uk (x ′),̃uk (x ′)+δk )}

K1
(
rk(y − vk)

)
dy

=
∫
B1/2(vk )∩{xn∈(̃uk (x ′),̃uk (x ′)+δk )}

K1
(
rk(vk − y)

)
dy.

Combining this and (3.7), and recalling (1.2), we arrive at

�k � rn+s1
k

∫
B1/2(vk )∩{xn>ũk (x ′)+δk }

K1
(
rk(vk − z)

)
dz − C

� 1

λ

∫
B1/2(vk )∩{xn>ũk (x ′)+δk }

dz

|vk − z|n+s1
dz − C . (3.9)

Now we define

νk := (−∇uk(v′
k), 1)√

1 + |∇uk(v′
k)|2

and ζk := vk + 3δkνk (3.10)

and we claim that, if k is sufficiently large,

Bδk (ζk) ⊆ B1/2(vk) ∩ {xn > ũk(x
′)+ δk}. (3.11)
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To check this, we observe that

lim
k→+∞ |∇uk(v

′
k)| = lim

k→+∞ |∇u(x ′
k)| = |∇u(x ′

0)| = |∇ψ(x ′
0)| = 0

and consequently

lim
k→+∞

3√
1 + |∇uk(v′

k)|2
− 4|∇uk(v

′
k)| − 2 = 1. (3.12)

Now, pick w ∈ Bδk (ζk). We have that

|w − vk | � |w − ζk | + |ζk − vk | < δk + 3δk = 4δk

and thus w ∈ B1/2(vk) as long as k is large enough.
Moreover,

wn − ũk(w
′)− δk � (ζk,n − δk)− uk(v

′
k)− ∇uk(v

′
k)(w

′ − v′
k)− δk

=
⎛
⎝vk,n + 3δk√

1 + |∇uk(v′
k)|2

− δk
⎞
⎠− vk,n

−∇uk(v
′
k)(w

′ − v′
k)− δk

= 3δk√
1 + |∇uk(v′

k)|2
− ∇uk(v

′
k)(w

′ − v′
k)− 2δk

� 3δk√
1 + |∇uk(v′

k)|2
− |∇uk(v

′
k)| |w′ − v′

k | − 2δk

�

⎛
⎝ 3√

1 + |∇uk(v′
k)|2

− 4|∇uk(v
′
k)| − 2

⎞
⎠ δk

> 0,

thanks to (3.12).
The proof of (3.11) is thereby complete.
Thus, exploiting (3.9) and (3.11), we find that

�k �
∫
Bδk (ζk)

dz

|vk − z|n+s1
dz − C .

Notice also that if z ∈ Bδk (ζk) then |vk − z| � |vk − ζk | + |ζk − z| � 3δk + δk = 4δk
and accordingly

�k �
∫
Bδk (ζk)

dz

(4δk)n+s1
dz − C = c

δ
s1
k

− C,
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for some c > 0. This establishes the claim in i), as desired.
Step 2. Proof of ii). The claim in ii) can be proved similarly to what exposed in Step
1.

Step 3. Proof of iii).As for the claim in iii), we suppose that ϑ ∈ (0, π) and, for every
k ∈ N, we denote by Fk the set obtained by a suitable rigidmotion of the set Ex0,rk −vk
so as to have that 0 ∈ ∂Fk and

C ∩ Fk = {
x ∈ C : xn � uk(x

′)
}
, (3.13)

for some uk ∈ C1,α(Rn−1). Let also u be the linear function such that uk → u in
C1,α(D) as k → +∞. We notice that, by (3.1), up to a rigid motion,

Fk → F := H ∩ V − v in L1
loc(R

n) as k → +∞. (3.14)

Furthermore, recalling the definition of mean curvature in (1.9) and exploiting the
change of variable y = x0 + rk z, we see that

HK1
∂E (xk) =

∫
Rn

K1(xk − y)
(
χEc (y)− χE (y)

)
dy

= r−s1
k

∫
Rn

rn+s1
k K1(xk−x0−rk z)

(
χ(Ex0,rk )c (z)−χEx0,rk (z)

)
dz. (3.15)

We also introduce, for every ζ ∈ R
n \ {0}, the kernel

K1,k(ζ ) := rn+s1
k K1(rkζ ),

and we observe that, in light of (3.15),

HK1
∂E (xk) = r−s1

k HK1,k
∂Fk
(0). (3.16)

Furthermore, we recall that K1,k → K ∗
1 pointwise in R

n \ {0}, hence one can infer
from (3.13), (3.14), (3.16) and Lemma 3.1 that

lim
k→+∞ rs1k HK1

∂E (xk) = H
K ∗
1

∂(H∩V )(v). (3.17)

Moreover, since ϑ ∈ (0, π), one can use the Lebesgue’s Dominated Convergence
Theorem and find that

lim
k→+∞ rs1k

∫
	c

K1(xk − y) dy = lim
k→+∞

∫
(	x0,rk )c

rn+s1
k K1(rk(vk − y)) dy

=
∫
Hc

K ∗
1 (v − y) dy.

From this and (3.17) we obtain the desired result in iii). ��
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Now we showcase a refinement of Lemma 3.2 which will be needed to exclude the
degenerate blow-up limits ϑ ∈ {0, π} in the case s1 > s2.

Lemma 3.3 Let s1 > s2, K1 ∈ K2(n, s1, λ, �) and K2 ∈ K2(n, s2, λ, �). Let 	 be an
open bounded set with C1-boundary and E be a volume-constrained critical set of C.

Let x0 ∈ RegE ∩ ∂	, xk ∈ RegE ∩	 such that xk → x0 as k → +∞ and rk > 0
such that rk → 0 as k → +∞.

Suppose that H and V are open half-spaces such that

	x0,rk → H and Ex0,rk → H ∩ V in L1
loc(R

n) as k → +∞.

Let ϑ ∈ [0, π ] be the angle between the half-spaces H and V , that is H ∩ V = J0,ϑ
in the notation of (1.13) (up to a rigid motion).

Then,

i) if ϑ = 0 then

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]

+σ rs1−s2
k r s2k

∫
	c

K2(xk − y) dy = +∞;

ii) if ϑ = π then

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]

+σ rs1−s2
k r s2k

∫
	c

K2(xk − y) dy = −∞.

Proof We focus on the proof of i), since the proof of ii) is similar, up to sign changes.
To this end, we exploit the notation introduced in Lemma 3.2, and specifically (3.5),
and we set vk := xk−x0

rk
, to see that

ϒk := rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]
+ σ rs1−s2

k r s2k

∫
	c

K2(xk − y) dy

� �k − |σ | rs1−s2
k r s2k

∫
	c

K2(xk − y) dy

� rn+s1
k

[∫
B1/2(vk )∩{xn>ũk (x ′)}

K1
(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk (x ′),̃uk (x ′))}

K1
(
rk(vk − z)

)
dz

]

−|σ | rs1−s2
k rn+s2

k

∫
Rn\	x0,rk

K2
(
rk(vk − z)

)
dz − C
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� rn+s1
k

[∫
B1/2(vk )∩{xn>ũk (x ′)}

K1
(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk (x ′),̃uk (x ′))}

K1
(
rk(vk − z)

)
dz

]

−|σ | rs1−s2
k rn+s2

k

∫
B1/2(vk)∩{xn<ψk (x ′)}

K2
(
rk(vk − z)

)
dz − C, (3.18)

up to changing C > 0 from line to line.
Also, by (3.6),

∫
B1/2(vk )∩{xn<ψk (x ′)}

K2
(
rk(vk − z)

)
dz

=
∫
B1/2(vk)∩{xn∈(̃uk (x ′)−δk ,ψk (x ′))}

K2
(
rk(vk − z)

)
dz

+
∫
B1/2(vk)∩{xn<ũk (x ′)−δk }

K2
(
rk(vk − z)

)
dz.

Therefore, we can write (3.18) as

ϒk � rn+s1
k

[∫
B1/2(vk)∩{xn>ũk (x ′)}

K1
(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(ψk (x ′),̃uk (x ′))}

K1
(
rk(vk − z)

)
dz

]

−|σ | rs1−s2
k rn+s2

k

∫
B1/2(vk)∩{xn∈(̃uk (x ′)−δk ,ψk (x ′))}

K2
(
rk(vk − z)

)
dz

−|σ | rs1−s2
k rn+s2

k

∫
B1/2(vk)∩{xn<ũk (x ′)−δk }

K2
(
rk(vk − z)

)
dz − C . (3.19)

Now we set

Zk(x) := max
{
rn+s1
k K1(x), |σ | rs1−s2

k rn+s2
k K2(x)

}
. (3.20)

In this way, we deduce from (3.19) that

ϒk � rn+s1
k

∫
B1/2(vk )∩{xn>ũk (x ′)}

K1
(
rk(vk − z)

)
dz

−
∫
B1/2(vk)∩{xn∈(̃uk (x ′)−δk ,̃uk (x ′))}

Zk
(
rk(vk − z)

)
dz

−|σ | rs1−s2
k rn+s2

k

∫
B1/2(vk)∩{xn<ũk (x ′)−δk }

K2
(
rk(vk − z)

)
dz − C . (3.21)
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Let Y (z) := 2vk − z. We also use the short notation

Pk := B1/2(vk) ∩ {xn > ũk(x
′)},

Qk := B1/2(vk) ∩ {xn ∈ (̃uk(x ′)− δk, ũk(x ′))}
and Rk := B1/2(vk) ∩ {xn < ũk(x

′)− δk}.

We know from (3.8) that

Y (Qk) ⊆ B1/2(vk) ∩ {xn ∈ (̃uk(x ′), ũk(x ′)+ δk)} ⊆ Pk . (3.22)

We also claim that

Y (Rk) ⊆ Pk \ Y (Qk). (3.23)

Indeed, if there were a point y ∈ Y (Qk)∩ Y (Rk) we would have that y = 2vk − Q =
2vk − R for some Q ∈ Qk and R ∈ Rk , but this would entail that Q = R ∈ Qk ∩Rk =
∅, which is a contradiction. This shows that Y (Rk) lies in the complement of Y (Qk),
thus, to complete the proof of (3.23), it only remains to show that Y (Rk) ⊆ Pk . To
this end, we observe that if zn < ũk(z′)− δk and y = Y (z), then

yn − ũk(y
′) = 2vk,n − zn − ũk(y

′) = 2ũk(v
′
k)− zn − ũk(2v

′
k − z′)

> 2ũk(v
′
k)− ũk(z

′)+ δk − ũk(2v
′
k − z′) = δk > 0.

This completes the proof of (3.23).
Hence, by (3.21), (3.22) and (3.23),

ϒk � rn+s1
k

∫
Pk

K1
(
rk(vk − z)

)
dz −

∫
Qk

Zk
(
rk(vk − z)

)
dz

−|σ | rs1−s2
k rn+s2

k

∫
Rk

K2
(
rk(vk − z)

)
dz − C

= rn+s1
k

∫
Pk

K1
(
rk(vk − z)

)
dz −

∫
Y (Qk)

Zk
(
rk(vk − y)

)
dy

−|σ | rs1−s2
k rn+s2

k

∫
Y (Rk)

K2
(
rk(vk − y)

)
dy − C

= rn+s1
k

∫
Pk\(Y (Qk)∪Y (Rk ))

K1
(
rk(vk − z)

)
dz

+
∫
Y (Qk)

αk(z) dz +
∫
Y (Rk )

βk(z) dz − C, (3.24)

where

αk(z) := rn+s1
k K1

(
rk(vk − z)

)− Zk
(
rk(vk − z)

)
and βk(z) := rn+s1

k K1
(
rk(vk − z)

)− |σ | rs1−s2
k rn+s2

k K2
(
rk(vk − z)

)
.
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We stress that up to now the condition s1 > s2 has not been used. We are going to
exploit it now to bound αk and βk . For this, we note that, if z ∈ B1/2(vk) and k is large
enough, then

|σ | rs1−s2
k rn+s2

k K2
(
rk(vk − z)

)
�
λ |σ | rs1−s2

k
|vk − z|n+s2

�
λ |σ | rs1−s2

k
|vk − z|n+s1

= λ |σ | rs1−s2
k rn+s1

k∣∣rk(vk − z)
∣∣n+s1

� λ2 |σ | rs1−s2
k rn+s1

k K1
(
rk(vk − z)

)
� 1

2
rn+s1
k K1

(
rk(vk − z)

)
.

This and (3.20) entail that if z ∈ B1/2(vk) and k is large enough, thenZk
(
rk(vk −z)

) =
rn+s1
k K1

(
rk(vk − z)

)
, and therefore αk(z) = 0. In addition,

βk(z) � 1

2
rn+s1
k K1

(
rk(vk − z)

)
.

From these observations and (3.24) we arrive at

ϒk � rn+s1
k

∫
Pk\(Y (Qk)∪Y (Rk))

K1
(
rk(vk − z)

)
dz

+1

2
rn+s1
k

∫
Y (Rk )

K1
(
rk(vk − z)

)
dz − C

� 1

2
rn+s1
k

∫
Pk\Y (Qk)

K1
(
rk(vk − z)

)
dz − C . (3.25)

Now we utilize the notation in (3.10), the inclusion in (3.11) and the first inclusion
in (3.22) to see that

Pk \ Y (Qk) ⊇ Pk \
(
B1/2(vk) ∩ {xn ∈ (̃uk(x ′), ũk(x ′)+ δk)}

)

= B1/2(vk) ∩ {xn � ũk(x
′)+ δk}

⊇ Bδk (ζk). (3.26)

By plugging this information into (3.25), we thereby conclude that

ϒk � 1

2
rn+s1
k

∫
Bδk (ζk)

K1
(
rk(vk − z)

)
dz − C

� 1

2

∫
Bδk (ζk)

dz

|vk − z|n+s1
− C

= c

δ
s1
k

− C, (3.27)

for some c > 0. From this, the desired result in i) plainly follows. ��
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With this, we are in the position of providing the proof of Theorem 1.4, where we
suppose that a1 and a2 are anisotropic functions and then, as a special case, we exhibit
the proof of Corollary 1.5 where we take a1 ≡ const.

Proof of Theorem 1.4 We fix a point x0 ∈ ∂	 ∩ RegE and a sequence of points xk ∈
	∩RegE such that xk → x0 as k → +∞. We also set rk := |xk − x0| and we observe
that rk → 0 as k → +∞.

From (1.11) evaluated at xk , we get

HK1
∂E (xk)−

∫
	c

K1(xk − y) dy + σ
∫
	c

K2(xk − y) dy + g(xk) = c,

where c does not depend on k. Multiplying both sides by rs1k , we thereby obtain that

rs1k HK1
∂E (xk)− rs1k

∫
	c

K1(xk − y) dy + σ rs1−s2
k r s2k

∫
	c

K2(xk − y) dy + rs1k g(xk)

= c rs1k .

Notice that, since g is locally bounded, we have that rs1k g(xk) → 0 as k → +∞. As
a consequence,

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]
+ σrs1−s2

k r s2k

∫
	c

K2(xk − y) dy = 0.

(3.28)

Now, we prove the statement in 1) of Theorem 1.4. For this, we suppose that s1 < s2
and σ < 0. In this case,

σ rs1−s2
k r s2k

∫
	c

K2(xk − y) dy � 0,

and therefore by ii) in Lemma 3.2 and (3.28) we deduce that ϑ 
= π . Hence, to prove
1) it remains to check that

ϑ /∈ (0, π). (3.29)

To this end, we suppose by contradiction that ϑ ∈ (0, π). Then, we set vk := xk−x0
rk

and we deduce from Lebesgue’s Dominated Convergence Theorem that

lim
k→+∞ rs2k

∫
	c

K2(xk − y) dy = lim
k→+∞

∫
(	x0,rk )c

rn+s2
k K2(rk(vk − y)) dy

=
∫
Hc

K ∗
2 (v − y) dy. (3.30)

We stress that the latter quantity in (3.30) is finite, as a consequence of (3.29).
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Consequently,

lim
k→+∞ σ r

s1−s2
k r s2k

∫
	c

K2(xk − y) dy = −∞.

This and iii) in Lemma 3.2 contradict (3.28), and thus (3.29) is proved.
Accordingly, if s1 < s2 and σ < 0, then necessarily ϑ = 0, which establishes 1).
We now prove the statement in 2). Namely we consider the case in which s1 < s2

and σ > 0, and thus

σ rs1−s2
k r s2k

∫
	c

K2(xk − y) dy � 0.

From this, i) in Lemma 3.2 and (3.28) we infer that ϑ 
= 0. Hence, to establish 2) we
show that

ϑ /∈ (0, π). (3.31)

We argue as before and we suppose by contradiction that ϑ ∈ (0, π). Then, exploit-
ing (3.30) we see that

lim
k→+∞ σ r

s1−s2
k r s2k

∫
	c

K2(xk − y) dy = +∞.

This and iii) in Lemma 3.2 contradict (3.28), and thus (3.31) is proved.
As a consequence, if s1 < s2 and σ > 0, then ϑ = π , hence we have established 2)

as well. Hence, we now focus on the statement in 3).
For this, we first suppose that s1 < s2 and σ = 0. Then, (3.28) becomes

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]
= 0. (3.32)

This and Lemma 3.2 give that ϑ ∈ (0, π) in this case.
In the case in which s1 > s2, if ϑ ∈ {0, π} then we would use Lemma 3.3 to find a

contradiction with (3.28), hence we conclude that necessarily ϑ ∈ (0, π) in this case
as well.

Now, in order to prove (1.26), we take v ∈ H ∩ ∂V , then by (1.24) we have that,
for every k, there exists vk ∈ 	x0,rk ∩ ∂Ex0,rk such that vk → v as k → +∞,
where rk is an infinitesimal sequence as k → +∞. As a consequence, for every k,
there exists xk ∈ RegE ∩ 	 such that vk = xk−x0

rk
and xk → x0 as k → +∞. Then,

we are in the position to apply iii) in Lemma 3.2 and conclude that

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]

= H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − y) dy. (3.33)
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Also, if s1 > s2, we recall that the limit in (3.30) is finite (since ϑ ∈ (0, π)) and
that rk is infinitesimal to infer that

lim
k→+∞ rs1−s2

k r s2k

∫
	c

K2(xk − y) dy = 0.

This, together with (3.28), gives that (3.32) holds true in this case as well.
Accordingly, from (3.32) and (3.33) we deduce that

H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − y) dy = 0,

which establishes (1.26).
Hence, to complete the proof of the statement in 3), it remains to check that ϑ̂ =

π − ϑ , being ϑ̂ ∈ (0, 2π) the angle given in (1.23) with c = 0.
For this, we exploit the notation in (1.14), the assumption in (1.15) and the change

of variable z = y/|v|, to see that, for all v ∈ H ∩ ∂V , the left hand side of (1.26) can
be written as

H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − y) dy

=
∫
Rn

K ∗
1 (v − y)

(
χ(H∩V )c∩H (y)− χH∩V (y)

)
dy

=
∫
Rn

a1(
−−−→
v − y)

|v − y|n+s1

(
χ(H∩V )c∩H (y)− χH∩V (y)

)
dy

= |v|−s1

∫
Rn

a1(
−−−−−→
e(ϑ)− z)

(
χJ c0,ϑ∩H (z)− χJ0,ϑ (z)

)
|e(ϑ)− z|n+s1

dz

= |v|−s1

∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz − |v|−s1

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz.

Therefore, by (1.26),

∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz −

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz = 0. (3.34)

Consequently, recalling the notation in (1.17) and exploting (1.23) with c = 0, we
have that

Dϑ(π − ϑ) =
∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz −

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz = 0 = Dϑ(ϑ̂).

By the uniqueness claim in Proposition 1.3, we conclude that π − ϑ = ϑ̂ , as desired.
This completes the proof of 3), and in turn of Theorem 1.4. ��
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As a consequence of Theorem 1.4 we now obtain the particular case in which a1 ≡
const dealt with in Corollary 1.5.

Proof of Corollary 1.5 Wepoint out that 1) and 2) in Corollary 1.5 follow from 1) and 2)
in Theorem 1.4, respectively.

To prove 3) of Corollary 1.5, we first notice that ϑ ∈ (0, π) in these cases. Also,
if a1 ≡ const, then the cancellation property in (1.23) boils down toDϑ(ϑ) = 0, and
therefore, by the uniqueness claim in Proposition 1.3 we obtain that ϑ̂ = ϑ .

Furthermore, we recall that (1.26) holds true in this case, thanks to 3) of The-
orem 1.4, and therefore, using the equivalent formulation of (1.26) given in (3.34)
(with a1 ≡ const in this case), we find that

Dϑ(π − ϑ) =
∫
Jϑ,π

a1
|e(ϑ)− z|n+s1

dz −
∫
J0,ϑ

a1
|e(ϑ)− z|n+s1

dz = 0 = Dϑ(ϑ).

Hence, using again the uniqueness claim in Proposition 1.3 we conclude that π−ϑ =
ϑ , which gives that ϑ = π

2 , as desired. ��
We now deal with the case s1 = s2, as given by Theorem 1.6. For this, we need a

variation of Lemma 3.3 that takes into account the situation in which s1 = s2.

Lemma 3.4 Let s ∈ (0, 1) and K1, K2 ∈ K2(n, s, λ, �). Assume that there exists ε0 ∈
(0, 1) such that

|σ | K2(ζ ) � (1 − ε0) K1(ζ ) for all ζ ∈ Bε0 \ {0}. (3.35)

Let 	 be an open bounded set with C1-boundary and E be a volume-constrained
critical set of C.

Let x0 ∈ RegE ∩ ∂	, xk ∈ RegE ∩	 such that xk → x0 as k → +∞ and rk > 0
such that rk → 0 as k → +∞.

Suppose that H and V are open half-spaces such that

	x0,rk → H and Ex0,rk → H ∩ V in L1
loc(R

n) as k → +∞.

Let ϑ ∈ [0, π ] be the angle between the half-spaces H and V , that is H ∩ V = J0,ϑ
in the notation of (1.13) (up to a rigid motion).

Then,

i) if ϑ = 0 then

lim
k→+∞ rsk

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy + σ
∫
	c

K2(xk − y) dy

]
= +∞;

ii) if ϑ = π then

lim
k→+∞ rsk

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy + σ
∫
	c

K2(xk − y) dy

]
= −∞.
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Proof We establish i), being the proof of ii) analogous. For this, we use the notation
introduced in the proof of Lemma 3.3, and specifically we recall formula (3.24), to be
used here with s1 = s2 = s. In this case, we use (3.35) to see that, if k is large enough,
for all z ∈ B1/2(vk) we have that

|σ | K2
(
rk(vk − z)

)
� (1 − ε0) K1

(
rk(vk − z)

)
. (3.36)

This and (3.20) give that

Zk
(
rk(vk − z)

) = rn+s
k max

{
K1
(
rk(vk − z)

)
, |σ | K2

(
rk(vk − z)

)}

= rn+s
k K1

(
rk(vk − z)

)
,

which entails that αk(z) = 0.
Also, using again (3.36), it follows that

βk(z) = rn+s
k

(
K1
(
rk(vk − z)

)− |σ | K2
(
rk(vk − z)

))
� ε0 rn+s

k K1
(
rk(vk − z)

)
.

In light of these observations, (3.24) in this framework reduces to

ϒk � ε0 rn+s
k

∫
Pk\Y (Qk)

K1
(
rk(vk − z)

)
dz − C .

We have thus recovered the last inequality in (3.25), with 1/2 replaced by the con-
stant ε0. Then it suffices to proceed as in (3.26) and (3.27) to complete the proof.

��

With this additional result, we are now in the position of giving the proof of Theo-
rem 1.6.

Proof of Theorem 1.6 We fix a point x0 ∈ ∂	 ∩ RegE and a sequence of points xk ∈
	∩RegE such that xk → x0 as k → +∞. We also set rk := |xk − x0| and we observe
that rk → 0 as k → +∞.

From (1.11) evaluated at xk , we get

HK1
∂E (xk)−

∫
	c

K1(xk − y) dy + σ
∫
	c

K2(xk − y) dy + g(xk) = c,

where c does not depend on k. Thus, multiplying both sides by rsk , we find that

rsk H
K1
∂E (xk)− rsk

∫
	c

K1(xk − y) dy + σ rs1k
∫
	c

K2(xk − y) dy + rsk g(xk) = c rsk .

Since g is locally bounded, we have that rsk g(xk)→ 0 as k → +∞, and therefore
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lim
k→+∞ rsk

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

+σ
∫
	c

K2(xk − y) dy

]
= 0. (3.37)

In light of Lemma 3.4 (which can be exploited here thanks to assumption (1.27)), this
gives that the angle ϑ between H and V lies in (0, π).

Thus, in order to prove (1.28), we can take v ∈ H ∩∂V and we see that, for every k,
there exists vk ∈ 	x0,rk ∩ ∂Ex0,rk such that vk → v as k → +∞, where rk is an
infinitesimal sequence as k → +∞. As a consequence, for every k, there exists xk ∈
RegE ∩ 	 such that vk = xk−x0

rk
and xk → x0 as k → +∞. Then, we are in the

position to apply iii) in Lemma 3.2 and conclude that

lim
k→+∞ rs1k

[
HK1
∂E (xk)−

∫
	c

K1(xk − y) dy

]
= H

K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − y) dy.

Also, by Lebesgue’s Dominated Convergence Theorem,

lim
k→+∞ rsk

∫
	c

K2(xk − y) dy = lim
k→+∞

∫
(	x0,rk )c

rn+s
k K2(rk(vk − y)) dy

=
∫
Hc

K ∗
2 (v − y) dy

and this limit is finite.
These considerations and (3.37) give the desired result in (1.28). ��
We are now in the position of establishing Proposition 1.9.

Proof of Proposition 1.9 We exploit the notation in (1.14), the assumption in (1.15) and
the change of variable z = y/|v|, to see that (1.30) can be written as

0 =H
K ∗
1

∂(H∩V )(v)−
∫
Hc

K ∗
1 (v − y) dy + σ

∫
Hc

K ∗
2 (v − y) dy

=
∫
Rn

K ∗
1 (v − y)

(
χ(H∩V )c∩H (y)− χH∩V (y)

)
dy + σ

∫
Hc

K ∗
2 (v − y) dy

=
∫
Rn

a1(
−−−→
v − y)

|v − y|n+s1

(
χ(H∩V )c∩H (y)− χH∩V (y)

)
dy + σ

∫
Hc

a2(
−−−→
v − y)

|v − y|n+s2
dy

= |v|−s1

∫
Rn

a1(
−−−−−→
e(ϑ)− z)

(
χJ c0,ϑ∩H (z)− χJ0,ϑ (z)

)
|e(ϑ)− z|n+s1

dz

+ σ |v|−s2

∫
Hc

a2(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s2
dz

= |v|−s1

∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz − |v|−s1

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s1
dz
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+ σ |v|−s2

∫
Hc

a2(
−−−−−→
e(ϑ)− z)

|e(ϑ)− z|n+s2
dz.

Hence, recalling the assumption in (1.29), this gives the desired result in (1.31). ��

4 Proofs of Theorems 1.7 and 1.8

We now deal with the possibly degenerate cases in which the nonlocal droplets either
detach from the container or adhere completely to its surfaces. These cases depend
on the strong attraction or repulsion of the second kernel and are described in the
examples provided in Theorems 1.7 and 1.8, which we are now going to prove. For
this, we need some auxiliary integral estimates to detect the interaction between “thin
sets”. This is formalized in Lemmata 4.1 and 4.2 here below:

Lemma 4.1 Let r , t > 0, s ∈ (0, 1) and

D := {
x = (x ′, xn) ∈ R

n : |x ′| < r and xn ∈ (0, t)}.
Then,

∫∫
D×{yn<0}

dx dy

|x − y|n+s
= c� r

n−1 t1−s,

for a suitable c� > 0, depending only on n and s.

Proof We recall that the surface area of the (n − 1)-dimensional unit sphere is equal

to 2π
n
2

�( n2 )
, where � is the Gamma Function. Furthermore,

∫ +∞

0

�n−2 d�(
�2 + 1

) n+s
2

= �
( n−1

2

)
�
( 1+s

2

)
2�
( n+s

2

) .

Hence, we use the substitution ξ := y′−x ′
xn−yn

to see that

∫∫
D×{yn<0}

dx dy

|x − y|n+s

=
∫ t

0

⎡
⎣
∫
{|x ′|<r}

⎡
⎣
∫ 0

−∞

⎡
⎣
∫
Rn−1

dξ

(xn − yn)1+s
(|ξ |2 + 1

) n+s
2

⎤
⎦ dyn

⎤
⎦ dx ′

⎤
⎦ dxn

= 2π
n−1
2

�
(
n−1
2

)
∫ t

0

⎡
⎣
∫
{|x ′|<r}

⎡
⎣
∫ 0

−∞

⎡
⎣
∫ +∞
0

�n−2 d�

(xn − yn)1+s
(
�2 + 1

) n+s
2

⎤
⎦ dyn

⎤
⎦ dx ′

⎤
⎦ dxn

=
π

n−1
2 �

(
1+s
2

)

�
( n+s

2

)
∫ t

0

[∫
{|x ′|<r}

[∫ 0

−∞
dyn

(xn − yn)1+s

]
dx ′
]
dxn
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=
2π

2n−1
2 �

(
1+s
2

)

�
( n
2

)
�
( n+s

2

) rn−1
∫ t

0

[∫ 0

−∞
dyn

(xn − yn)1+s

]
dxn

=
2π

2n−1
2 �

(
1+s
2

)

s �
( n
2

)
�
( n+s

2

) rn−1
∫ t

0

dxn
xsn

=
2π

2n−1
2 �

(
1+s
2

)

s (1 − s) �
( n
2

)
�
( n+s

2

) rn−1 t1−s ,

as desired. ��
Lemma 4.2 Let r , t > 0, s ∈ (0, 1),

D := {
x = (x ′, xn) ∈ R

n : |x ′| < r and xn ∈ (0, t)}
and F := {

y = (y′, yn) ∈ R
n : |y′| > r and yn ∈ (0, t)}.

Then,

∫∫
D×F

dx dy

|x − y|n+s
� Ct rn−1−s,

for some C > 0 depending only on n and s.

Proof Differently from the proof of Lemma 4.1, here it is convenient to exploit the
substitutions α := xn|x ′−y′| and β := yn

|x ′−y′| . In this way we see that

∫∫
D×F

dx dy

|x − y|n+s

=
∫
{|x ′|<r}

[∫
{|y′|>r}

[∫ t/|x ′−y′|
0

[∫ t/|x ′−y′|
0

dβ

|x ′ − y′|n+s−2(1 + (α − β)2) n+s
2

]
dα

]
dy′
]
dx ′

� 2
∫
{|x ′|<r}

[∫
{|y′|>r}

[∫ t/|x ′−y′|
0

[∫ +∞
0

dγ

|x ′ − y′|n+s−2(1 + γ 2) n+s
2

]
dα

]
dy′
]
dx ′

= C
∫
{|x ′|<r}

[∫
{|y′|>r}

[∫ t/|x ′−y′|
0

dα

|x ′ − y′|n+s−2

]
dy′
]
dx ′

= Ct
∫
{|x ′|<r}

[∫
{|y′|>r}

dy′
|x ′ − y′|n+s−1

]
dx ′

= Ct rn−1−s
∫
{|X ′|<1}

[∫
{|Y ′|>1}

dY ′
|X ′ − Y ′|n+s−1

]
dX ′

= Ct rn−1−s ,

where we used the change of variable X ′ := x ′/r and Y ′ := y′/r , and, as customary,
we took the freedom of renaming C line after line. ��

Now, in the forthcomingLemma4.3we present a further technical result that detects
suitable cancellations involving “thin sets”. This is a pivotal result to account for the
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nonlocal scenario. Indeed, in the classical capillarity theory, to look for a competitor
for a given set, one can dig out a (small deformation of a) cylinder with base radius
equal to ε and height δε and then add a ball with the same volume. A very convenient
fact in this scenario is that the surface error produced by the cylinder is of order εn−1,

while the one produced by the balls are of order (δεn)
n−1
n = δ n−1

n εn−1. That is, for δ
suitably small, the surface tension produced by the new ball is negligible with respect
to the surface tension of the cylinder, thus allowing us to construct competitors in a
nice and simple way.

Instead, in the nonlocal setting, for a given value of the fractional parameter, the
corresponding nonlocal surface tension produced by cylinders and balls of the same
volume are comparable. This makes the idea of “adding a ball to compensate the
loss of volume caused by removing a cylinder” not suitable for the nonlocal frame-
work. Instead, as we will see in the proof of Theorem 1.7, the volume compensation
should occur through the addition of a suitably thin set placed at a regular point of the
droplet. The fact that the corresponding nonlocal surface energy produces a negligible
contribution will rely on the following result:

Lemma 4.3 Let s ∈ (0, 1), 0 < ε < δ < 1 and η ∈ (0, 1). Let f ∈
C1,α
0

(
R
n−1,

(− δ
2 ,
δ
2

))
for some α ∈ (0, 1) and assume that f (0) = 0 and ∂i f (0) = 0

for all i ∈ {1, . . . , n − 1}.
Let ϕ ∈ C∞(Rn−1, [0,+∞)) be such that ϕ(x ′) = 0 whenever |x ′| � 1

and
∫
Rn−1 ϕ(x ′) dx ′ = 1.

Let

ψ(x ′) := η

εn−1 ϕ

(
x ′

ε

)
,

P := {
x = (x ′, xn) ∈ R

n : |x ′| < δ and xn > f (x ′)+ ψ(x ′)
}
,

Q := {
y = (y′, yn) ∈ R

n : |y′| < δ and yn ∈ ( f (y′), f (y′)+ ψ(y′)
)}

and R := {
x = (x ′, xn) ∈ R

n : |x ′| < δ and xn < f (x ′)
}
.

Then, there exist δ0 ∈ (0, 1) and C > 0, depending only on n, s, α, f and ϕ, such that
if δ < δ0 and η < δ0εn then

∣∣∣∣
∫∫

P×Q

dx dy

|x − y|n+s
−
∫∫

R×Q

dx dy

|x − y|n+s

∣∣∣∣ � C
(
δα + η

εn

)
ε(n−1)s η1−s .

Proof The gist of this proof is to use a suitable reflection to simplify most of the
integral contributions. For this, we consider the map

T (x) := (
x ′, 2 f (x ′)+ ψ(x ′)− xn

)
.

We observe that when |x ′| < δ the distance between the Jacobian of T and minus the
identity matrix is bounded from above by

C sup
|x ′|<δ

(|∇ f (x ′)| + |∇ψ(x ′)|)
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� C sup
|x ′|<δ

(
|∇ f (x ′)− ∇ f (0)| + η

εn

)
� C

(
δα + η

εn

)
,

and the latter is a small quantity, as long as δ0 is chosen sufficiently small.
Moreover, the condition T (x) ∈ Q is equivalent to |x ′| < δ and 2 f (x ′)+ψ(x ′)−

xn ∈ ( f (x ′), f (x ′)+ ψ(x ′)
)
, which is in turn equivalent to x ∈ Q.

Similarly, the condition T (x) ∈ P is equivalent to x ∈ R, as well as the condi-
tion T (x) ∈ R is equivalent to x ∈ P.

From these observations and the change of variable (x, y) := (T (X), T (Y )) we
arrive at

∫∫
P×Q

dx dy

|x − y|n+s
=
(
1 + O

(
δα + η

εn

)) ∫∫
R×Q

dX dY

|X − Y |n+s
.

As a result,

∣∣∣∣
∫∫

P×Q

dx dy

|x − y|n+s
−
∫∫

R×Q

dx dy

|x − y|n+s

∣∣∣∣ � C
(
δα + η

εn

) ∫∫
R×Q

dx dy

|x − y|n+s
.

(4.1)

Now we consider the transformation S(x) := (x ′, xn − f (x ′)). When |x ′| < δ the
distance between the Jacobian of S and the identity matrix is bounded from above by

C sup
|x ′|<δ

|∇ f (x ′)| � Cδα.

Besides, if x ∈ R then S(x) ∈ {x ∈ R
n : |x ′| < δ and xn < 0

}
. Also, if x ∈ Q then

S(x) ∈ {x ∈ R
n : |x ′| < δ and xn ∈ (0, ψ(x ′))}

⊆
{
x ∈ R

n : |x ′| < ε and xn ∈
(
0,

Cη

εn−1

)}
.

We stress that we are using here the fact that ψ(x ′) = 0 when |x ′| � ε.
From these remarks and (4.1), using now the change of variable (X ,Y ) :=

(S(x), S(y)), it follows that

∣∣∣∣
∫∫

P×Q

dx dy

|x − y|n+s
−
∫∫

R×Q

dx dy

|x − y|n+s

∣∣∣∣
� C

(
δα + η

εn

) ∫∫
{Xn<0}×

{
|Y ′|<ε, Yn∈

(
0, Cη
εn−1

)} dX dY

|X − Y |n+s
.

We can thus employ Lemma 4.1 with r := ε and t := Cη
εn−1 and conclude that

∣∣∣∣
∫∫

P×Q

dx dy

|x − y|n+s
−
∫∫

R×Q

dx dy

|x − y|n+s

∣∣∣∣ � C
(
δα + η

εn

)
εn−1

( η

εn−1

)1−s
,
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Fig. 8 Removing the thin set B
to E near p and adding the thin
set B′ with the same volume

from which the desired result follows. ��
With this preliminary work, we can now complete the proofs of Theorems 1.7

and 1.8.

Proof of Theorem 1.7 We split the proof into several steps.
Step 1. Cut-and-paste methods. Up to a rigid motion we can suppose that p = en .
We let ε > 0 and δ > 0, to be taken as small as we wish in what follows. We also
define

B :=
{
x = (x ′, xn) ∈ B1 \ B1−δε : xn > 0 and |x ′| < ε

}
.

We stress that B ⊆ Bε0/2(p) ∩ B1 as long as ε is small enough. Also, we pick a
point q ∈ RegE ∩ B1 and we modify the surface of ∂E in the normal direction in
an ε-neighborhood of q by a set B′ with |B′| = |B|, see Fig. 8 and notice that the
geometry of Lemma 4.3 can be reproduced, up to a rigid motion. We stress that η in
Lemma 4.3 corresponds to the volume of the perturbation induced by ψ , therefore in
this setting we will apply Lemma 4.3 with

η := |B′| = |B| � Cδεn . (4.2)

We also denote by� a cylinder centered at q (oriented by the normal ofB′ at q) of
height equal to 2δ and radius of the basis equal to δ. In this way, we have that if x ∈ B′
and y ∈ R

n \� then |x − y| � |y − q| − |q − x | � δ
2 −Cε � δ

4 , as long as ε is small
enough, possibly in dependence of δ, see Fig. 9, whence

I1(B
′, B1 \�) � C

∫
B′×B1

dx dy

δn+s1
� C |B′|
δn+s1

.
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Fig. 9 Surrounding B′ with a
small cylinder �

To ease the notation, we denote from now on the set (A \ B) \C simply by A \ B \C .
Then, we have that

I1(B
′, B1 \ E \ B′)− I1(B

′, E)

� I1
(
B′, (B1 \ E \ B′) ∩�)− I1(B

′, E ∩�)+ C |B′|
δn+s1

� I1
(
B′, (B1 \ E \ B′) ∩�)− I1(B

′, E ∩�)+ Cεn

δn−1+s1
, (4.3)

for some C > 0 that, as usual, gets renamed line after line.
We now apply Lemma 4.3 to estimate the term I1

(
B′, (B1 \ E \ B′) ∩ �) −

I1(B′, E ∩ �). More specifically, the function f in Lemma 4.3 corresponds here to
the parametrization of ∂E in the vicinity of q, while the function ψ in Lemma 4.3
represents here the deformation of ∂E in the vicinity of the point q which gives rise
to the set B′.

Thus, it holds that

I1
(
B′, (B1 \ E \ B′) ∩�)

−I1(B
′, E ∩�) � Cδαε(n−1)s1 (δεn)1−s1 = Cδ1−s1+αεn−s1 .

This and (4.3) lead to

I1(B
′, B1 \ E \ B′)− I1(B

′, E) � Cδ1−s1+αεn−s1 + Cεn

δn−1+s1
. (4.4)

Step 2. Estimating the interactions. Now we claim that

I1(B, B1 \ E)+ I1(B
′, E)+ σ I2(B, Bc

1)

� I1(B, (E \ B) ∪ B′)+ I1(B
′, B1 \ E \ B′)

+I1(B,B
′)+ σ I2(B′, Bc

1). (4.5)

To prove this, we construct a competitor for the minimal set E and compare their
energies. Indeed, the set Ẽ := (E \ B) ∪ B′ is a competitor for E , with the same
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volume of E , and accordingly, using the notation X := E \B and Y := B1 \ E \B′,

0 � E(E)− E(Ẽ)

= I1(E, B1 \ E)− I1(Ẽ, B1 \ Ẽ)+ σ I2(E, Bc
1)− σ I2(Ẽ, Bc

1)

= I1(X ∪ B,Y ∪ B′)− I1(X ∪ B′,Y ∪ B)

+σ I2(X ∪ B, Bc
1)− σ I2(X ∪ B′, Bc

1)

= I1(X ,B
′)+ I1(B,Y )− I1(X ,B)− I1(B

′,Y )
+σ I2(B, Bc

1)− σ I2(B′, Bc
1)

=
(
I1(E,B

′)− I1(B,B
′)
)

+
(
I1(B, B1 \ E)− I1(B,B

′)
)

−
(
I1((E \ B) ∪ B′,B)− I1(B

′,B)
)

− I1(B
′, E \ B \ B′)

+σ I2(B, Bc
1)− σ I2(B′, Bc

1)

= I1(E,B
′)+ I1(B, B1 \ E)− I1(B,B

′)
−I1(E ∪ B′ \ B,B)− I1(B

′, (E \ B) ∪ B′)
+σ I2(B, Bc

1)− σ I2(B′, Bc
1).

This proves (4.5).
By combining (4.4) and (4.5) we find that

I1(B, B1 \ E)+ σ I2(B, Bc
1)

� I1(B, (E \ B) ∪ B′)+ I1(B,B
′)+ σ I2(B′, Bc

1)+ Cδ1−s1+αεn−s1

+ Cεn

δn−1+s1
. (4.6)

Besides, since the distance between B′ and Bc
1 is bounded from below by a uniform

quantity, only depending on q and ε0 (and, in particular, independent of ε), we have
that

I2(B
′, Bc

1) � C |B′| = C |B| � Cεn,

for some C > 0 depending only on n, s2, k2, ε0 and q. This and (4.6) yield that

σ I2(B, B
c
1) � I1((E \ B) ∪ B′)+ I1(B,B

′)+ Cεn + Cδ1−s1+αεn−s1 + Cεn

δn−1+s1

� I1(B, B1 \ B)+ I1(B,B
′)+ Cεn + Cδ1−s1+αεn−s1 + Cεn

δn−1+s1

� I1(B, B1 \ B)+ Cδ1−s1+αεn−s1 + Cεn

δn−1+s1
, (4.7)

up to renaming C line after line. Notice that here we have used (4.2) to estimate
I1(B,B′) with Cδ2ε2n � Cεn , since δ can be taken as small as we wish, and then we
have reabsorbed the term Cεn into Cδ−n+1−s1εn .

123



Nonlocal capillarity for anisotropic…

Step 3. Sets inclusions and changes of variables. Now, we use the change of vari-
ables X := x−en

ε
and Y := y−en

ε
to see that

εs1−n I1(B, B1 \ B) = k1 ε
s1−n

∫∫
B×(B1\B)

dx dy

|x − y|n+s1

= k1

∫∫
Zε×Aε

dX dY

|X − Y |n+s1
, (4.8)

where

Zε := B − en
ε

=
{
X ∈ R

n : |X ′| < 1, Xn > −1

ε
and

∣∣∣X + en
ε

∣∣∣ ∈
[
1

ε
− δ, 1

ε

)}

and

Aε := (B1 \ B)− en
ε

= Lε ∪ Mε ∪ Nε,

with

Lε :=
{
X ∈ R

n :
∣∣∣X + en

ε

∣∣∣ < 1

ε
− δ

}
,

Mε :=
{
X ∈ R

n : |X ′| � 1 and
∣∣∣X + en

ε

∣∣∣ ∈
[
1

ε
− δ, 1

ε

)}

and Nε :=
{
X ∈ R

n : |X ′| < 1, Xn � −1

ε
and

∣∣∣X + en
ε

∣∣∣ ∈
[
1

ε
− δ, 1

ε

)}
.

Similarly,

εs2−n I2(B, B
c
1) = k2 ε

s2−n
∫∫

B×Bc
1

dx dy

|x − y|n+s2
= k2

∫∫
Zε×Oε

dX dY

|X − Y |n+s2
,

(4.9)

where

Oε :=
{
X ∈ R

n :
∣∣∣X + en

ε

∣∣∣ � 1

ε

}
.

Plugging (4.8) and (4.9) into (4.7), we arrive at

σ εs1−s2 k2

∫∫
Zε×Oε

dX dY

|X − Y |n+s2
� k1

∫∫
Zε×Aε

dX dY

|X − Y |n+s1

+Cδ1−s1+α + Cεs1

δn−1+s1
. (4.10)
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Now we claim that, if ε > 0 is suitably small, possibly in depedence of δ, then

B ⊆ {
x = (x ′, xn) ∈ R

n : |x ′| < ε and xn ∈ [1 − (1 + δ)δε, 1)}. (4.11)

Indeed, if x ∈ B then

xn =
√

|x |2 − |x ′|2 �
√
(1 − δε)2 − ε2 =

√
1 − 2δε + δ2ε2 − ε2

�
√
1 − 2(1 + δ)δε + (1 + δ)2δ2ε2 =

√
(1 − (1 + δ)δε)2 = 1 − (1 + δ)δε

and this establishes (4.11).
It follows from (4.11) that

Zε ⊆ {
X = (X ′, Xn) ∈ R

n : |X ′| < 1 and Xn ∈ [−(1 + δ)δ, 0)} =: Z�δ.
(4.12)

Note also that

Oε ⊇ {Yn > 0}. (4.13)

We now claim that

Zε ⊇
{
X ∈ R

n : |X ′| < 1, Xn ∈ (−δ, 0) and
∣∣∣X + en

ε

∣∣∣ < 1

ε

}
=: Wε.

(4.14)

To check this, suppose by contradiction that there exists X ∈ Wε with
∣∣X + en

ε

∣∣ <
1
ε

− δ. Then, we have that

0 <

(
1

ε
− δ

)2

−
∣∣∣X + en

ε

∣∣∣2 = 1

ε2
+ δ2 − 2δ

ε
− |X ′|2 −

(
Xn + 1

ε

)2

= δ2 − 2δ

ε
− |X ′|2 − X2

n − 2Xn

ε
� δ2 − |X ′|2 − X2

n,

that is |X | < δ, and thus

1

ε
− δ >

∣∣∣X + en
ε

∣∣∣ �
∣∣∣en
ε

∣∣∣− |X | = 1

ε
− |X | > 1

ε
− δ.

This is a contradiction which establishes (4.14).
Hence, by (4.13) and (4.14), we see that

∫∫
Zε×Oε

dX dY

|X − Y |n+s2
�
∫∫

Wε×{Yn>0}
dX dY

|X − Y |n+s2

�
∫∫

W�
δ×{Yn>0}

dX dY

|X − Y |n+s2
−
∫∫
(W�

δ\Wε)×{Yn>0}
dX dY

|X − Y |n+s2
, (4.15)
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where

W�
δ := {

X ∈ R
n : |X ′| < 1 and Xn ∈ (−δ, 0)}.

Since
∫∫
(W�

δ\Wε)×{Yn>0}
dX dY

|X − Y |n+s2
�
∫∫

W�
δ×{Yn>0}

dX dY

|X − Y |n+s2
< +∞

and

lim
ε↘0

∣∣W�
δ \ Wε

∣∣ = 0,

we have that

lim
ε↘0

∫∫
(W�

δ\Wε)×{Yn>0}
dX dY

|X − Y |n+s2
= 0

and, as a consequence, we infer from (4.15) that

lim inf
ε↘0

∫∫
Zε×Oε

dX dY

|X − Y |n+s2
�
∫∫

W�
δ×{Yn>0}

dX dY

|X − Y |n+s2
. (4.16)

We also note that if a � b > 0 then

∣∣∣∣
√
a2 − b2 − a + b2

2a

∣∣∣∣ =
∣∣∣∣∣∣a
√
1 − b2

a2
− a + b2

2a

∣∣∣∣∣∣ � b4

a3
,

whence if X ∈ Nε then

−Xn − 2

ε
=
∣∣∣∣Xn + 1

ε

∣∣∣∣− 1

ε
=
√∣∣∣X + en

ε

∣∣∣2 − |X ′|2 − 1

ε

∈
[∣∣∣X + en

ε

∣∣∣− |X ′|2
2
∣∣X + en

ε

∣∣ − |X ′|4∣∣X + en
ε

∣∣3 − 1

ε
,

∣∣∣X + en
ε

∣∣∣

− |X ′|2
2
∣∣X + en

ε

∣∣ + |X ′|4∣∣X + en
ε

∣∣3 − 1

ε

]

⊆ [−δ − 2ε, 2ε] ⊆ [−2δ, 2δ],

as long as ε is sufficiently small, leading to

|Nε| �
∣∣∣∣
{
X ∈ R

n : |X ′| < 1, and Xn ∈
[
−2

ε
− 2δ,−2

ε
+ 2δ

]}∣∣∣∣ � Cδ.

(4.17)
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Furthermore, if X ∈ Zε then Xn � −(1 + δ)δ, thanks to (4.12), and therefore
if Y ∈ Nε we have that

|X − Y | � Xn − Yn � −(1 + δ)δ + 1

ε
� 1

2ε
.

This and (4.17) yield that

∫∫
Zε×Nε

dX dY

|X − Y |n+s1
� Cεn+s1 |Zε| |Nε| � Cεn+s1 . (4.18)

Step 4. Further sets inclusions. Now we set

M′
ε := Mε ∩ B2 and M′′

ε := Mε \ B2.

We remark that, if ε > 0 is suitably small, possibly in depedence of δ, then

M′
ε ⊆ {

X ∈ R
n : |X ′| ∈ [1, 2] and Xn ∈ [−(1 + δ)δ, 0)} =: M�

δ. (4.19)

Indeed, if X ∈ M′
ε then |X ′| � 1 and |X ′| � |X | < 2. Furthermore,

1 +
∣∣∣∣Xn + 1

ε

∣∣∣∣
2

� |X ′|2 +
∣∣∣∣Xn + 1

ε

∣∣∣∣
2

=
∣∣∣X + en

ε

∣∣∣2 � 1

ε2

which gives that Xn < 0.
Moreover,

4 +
∣∣∣∣Xn + 1

ε

∣∣∣∣
2

� |X ′|2 +
∣∣∣∣Xn + 1

ε

∣∣∣∣
2

=
∣∣∣X + en

ε

∣∣∣2 �
(
1

ε
− δ

)2

.

Since Xn � −|X | � −2, this gives that

Xn + 1

ε
=
√∣∣∣∣Xn + 1

ε

∣∣∣∣
2

�

√(
1

ε
− δ

)2

− 4 =
√

1

ε2
− 2δ

ε
+ δ2 − 4

= 1

ε

√
1 − 2δε + δ2ε2 − 4ε2 � 1

ε
(1 − (1 + δ)δε)

and accordingly Xn � −(1 + δ)δ. These observations complete the proof of (4.19).
We now use (4.19) in combination with (4.12). In this way, we see that

∫∫
Zε×M′

ε

dX dY

|X − Y |n+s1
�
∫∫

Z�δ×M�
δ

dX dY

|X − Y |n+s1
. (4.20)
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Besides, if X ∈ Zε and Y ∈ M′′
ε then |X − Y | � |Y | − |X | � 2 − 3

2 = 1
2 and, as a

result,

∫∫
Zε×M′′

ε

dX dY

|X − Y |n+s1
� C |Zε|

∫
Rn\B1/2

dZ

|Z |n+s1
� Cδ.

Combining this and (4.20) we conclude that

∫∫
Zε×Mε

dX dY

|X − Y |n+s1
�
∫∫

Z�δ×M�
δ

dX dY

|X − Y |n+s1
+ Cδ.

Using the latter inequality and (4.18) we obtain that

lim sup
ε↘0

∫∫
Zε×Aε

dX dY

|X − Y |n+s1

�
∫∫

Z�δ×M�
δ

dX dY

|X − Y |n+s1
+ Cδ + lim sup

ε↘0

∫∫
Zε×Lε

dX dY

|X − Y |n+s1
. (4.21)

Step 5. Further changes of variables. Now we consider the map

{
X ∈ R

n : |X ′| < 2
} � X = (X ′, Xn) �−→ T (X)

:=
⎛
⎝X ′, Xn −

√(
1

ε
− δ

)2

− |X ′|2 + 1

ε

⎞
⎠

and we observe that if X ∈ Zε then X := T (X) satisfies |X ′| < 1 and

Xn =
∣∣∣∣Xn + 1

ε

∣∣∣∣−
√(

1

ε
− δ

)2

− |X ′|2

=
√∣∣∣X + en

ε

∣∣∣2 − |X ′|2 −
√(

1

ε
− δ

)2

− |X ′|2

∈
⎡
⎣0,

√
1

ε2
− |X ′|2 −

√(
1

ε
− δ

)2

− |X ′|2
⎞
⎠ ⊆ [0, (1 + δ)δ].

In addition, if Y ∈ L′
ε := Lε ∩ B2 and Y := T (Y ), we have that |Y ′| < 2 and

Yn �
∣∣∣∣Yn + 1

ε

∣∣∣∣−
√(

1

ε
− δ

)2

− |Y ′|2

=
√∣∣∣Y + en

ε

∣∣∣2 − |Y ′|2 −
√(

1

ε
− δ

)2

− |Y ′|2 � 0.
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We also observe that the distance of the Jacobian matrix of T from the identity is
bounded from above by

C

∣∣∣∣∣∣DX ′

√(
1

ε
− δ

)2

− |X ′|2
∣∣∣∣∣∣ � C |X ′|√( 1

ε
− δ)2 − |X ′|2

� Cε,

yielding that, in the above notation, |X − Y | � (1 + Cε)|X − Y |, with the freedom,
as usual, of renaming C .

These observations allow us to conclude that
∫∫

Zε×L′
ε

dX dY

|X − Y |n+s1
� (1 + Cε)n+2+s1

∫∫
X�δ×Y�

dX dY

|X − Y |n+s1

� (1 + Cε)
∫∫

X�δ×Y�

dX dY

|X − Y |n+s1
, (4.22)

up to6 renaming C , where

X�δ := {
X ∈ R

n : |X ′| < 1 and Xn ∈ (0, (1 + δ)δ)}
and Y� := {

X ∈ R
n : |X ′| < 2 and Xn < 0

}
.

Also, setting L′′
ε := Lε \ B2, we have that

∫∫
Zε×L′′

ε

dX dY

|X − Y |n+s1
� C |Zε|

∫
Rn\B1/2

dZ

|Z |n+s1
� Cδ.

Combining this inequality and (4.22) we find that

∫∫
Zε×Lε

dX dY

|X − Y |n+s1
� (1 + Cε)

∫∫
X�δ×Y�

dX dY

|X − Y |n+s1
+ Cδ.

From this and (4.21) we arrive at

lim sup
ε↘0

∫∫
Zε×Aε

dX dY

|X − Y |n+s1

�
∫∫

Z�δ×M�
δ

dX dY

|X − Y |n+s1

+ lim sup
ε↘0

(1 + Cε)
∫∫

X�δ×Y�

dX dY

|X − Y |n+s1
+ Cδ. (4.23)

6 More explicitly, the exponent n + 2 + s1 comes from the denominator (for the quantity n + s1) and the
two Jacobians (for the additional 2). Then, we are using the fact that, for small ε,

(1 + Cε)n+2+s1 = 1 + C(n + 2 + s1)ε + O(ε2) � 1 + C(n + 3 + s1)ε,

and then we change the name of C for the sake of readability.

123



Nonlocal capillarity for anisotropic…

Step 6. Taking the limit in ε. Now, given δ > 0, to be taken conveniently small, we
consider the limit ε ↘ 0 and we deduce from (4.10), (4.16) and (4.23) that, as ε ↘ 0,

σ εs1−s2 k2

(∫∫
W�
δ×{Yn>0}

dX dY

|X − Y |n+s2
+ o(1)

)

� k1

(∫∫
Z�δ×M�

δ

dX dY

|X − Y |n+s1
+ (1 + Cε)

∫∫
X�δ×Y�

dX dY

|X − Y |n+s1

)

+Cδ + Cδ1−s1+α + Cεs1

δn−1+s1
. (4.24)

This yields that necessarily

s1 � s2. (4.25)

Furthermore, if s1 = s2 then we obtain, passing to the limit (4.24) as ε ↘ 0, that

σ k2

∫∫
W�
δ×{Yn>0}

dX dY

|X − Y |n+s1

� k1

(∫∫
Z�δ×M�

δ

dX dY

|X − Y |n+s1
+
∫∫

X�δ×Y�

dX dY

|X − Y |n+s1

)

+Cδ + Cδ1−s1+α. (4.26)

Step 7. Taking the limit in δ and conclusions. We are now ready to send δ ↘ 0. To
this end, we multiply (4.26) by δs1−1 and we make use of Lemmata 4.1 and 4.2 to find
that

c� σ k2 = lim
δ↘0

σ k2 δ
s1−1

∫∫
W�
δ×{Yn>0}

dX dY

|X − Y |n+s1

� lim
δ↘0

[
k1 δ

s1−1

(∫∫
Z�δ×M�

δ

dX dY

|X − Y |n+s1
+
∫∫

X�δ×Y�

dX dY

|X − Y |n+s1

)

+Cδs1 + Cδα
]

� lim
δ↘0

[
Cδs1(1 + δ)+ c� k1 (1 + δ)1−s1 + Cδs1 + Cδα

]

= c� k1

and therefore σk2 � k1. Thanks to this, we have that, to complete the proof of Theo-
rem 1.7, it only remains to rule out the case s1 = s2 and k1 = σk2. In this situation,

C(F) = E(F) = k1

∫∫
F×Fc

dx dy

|x − y|n+s1
,

hence all the minimizers with prescribed volume correspond to balls, thanks to [12].
But this violates the assumptions about the point p in Theorem 1.7. ��
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Proof of Theorem 1.8 This can be seen as a counterpart of Theorem 1.7 based on com-
plementary sets. For this argument, we denote by Cσ , instead of C, the functional
in (1.7), in order to showcase explicitly its dependence on the relative adhesion coef-
ficient σ . Thus, in the setting of Theorem 1.8, if F ⊆ 	 and F̃ := 	 \ F ,

Cσ (F̃) = I1
(
	 \ F, (	 \ F)c ∩	)+ σ I2(	 \ F,	c)

= I1(	 \ F, F)+ σ I2(	 \ F,	c)

= C−σ (F)+ σ I2(F,	
c)+ σ I2(	 \ F,	c)

= C−σ (F)+ σ I2(	,	
c).

Since the latter term does not depend on F , we see that if E , as in the statement of
Theorem 1.8, is a volume-constrained minimizer of Cσ , then Ẽ := 	\ E is a volume-
constrained minimizer of C−σ . Now, the set Ẽ fulfills the assumptions of Theorem 1.7
with σ replaced by −σ . It follows that either s1 > s2, or s1 = s2 and k1 > −σk2, as
desired. ��

5 Unique determination of the contact angle and proof of
Theorem 1.10

Here we discuss the existence and uniqueness theory for the equation that prescribes
the nonlocal angle of contact between the droplet and the container. This analysis will
ultimately lead to the proof of Theorem 1.10: for this, it is convenient to perform some
integral computations in order to appropriately rewrite integral interactions involving
cones, detecting cancellations, using a dimensional reduction argument and a well
designed notation of polar angle with respect to the kernel singularity. The details go
as follows.

Lemma 5.1 In the notation of (1.13), (1.32), (1.33) and (1.34), if ϑ ∈ (0, π), then
∫
Jϑ,π

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx −

∫
J0,ϑ

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx

= 1

s1(sin ϑ)s1

(∫ ϑ

0
φ1(α) (sin α)

s1 dα −
∫ π

ϑ

φ1(α) (sin α)
s1 dα

)
. (5.1)

Proof We stress that each of the integrals on the left hand side of (5.1) is divergent,
hence the two terms have to be considered together, in the principal value sense.
However, for typographical convenience, we will formally act on the integrals by
omitting the principal value notation and perform the cancellations necessary to have
only finite contributions to obtain the desired result.

To this end, we recall (1.13) and observe that x ∈ J0,ϑ ∩ {xn < 2 sin ϑ} if and only
if z := 2e(ϑ)− x ∈ Jϑ,π ∩{xn < 2 sin ϑ}, see Fig. 10. Hence, by the symmetry of a1,

∫
J0,ϑ∩{xn<2 sin ϑ}

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx =

∫
Jϑ,π∩{zn<2 sin ϑ}

a1(
−−−−−→
z − e(ϑ))

|z − e(ϑ)|n+s1
dz.
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Fig. 10 A geometric argument involved in the proof of Lemma 5.1, accounting for reflected points to show
that x ∈ J0,ϑ ∩ {xn < 2 sin ϑ} if and only if 2e(ϑ)− x ∈ Jϑ,π ∩ {xn < 2 sin ϑ}

Consequently, if we denote byϒ the left hand side of (5.1), we see after a cancellation
that

ϒ =
∫
Jϑ,π∩{xn>2 sin ϑ}

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx −

∫
J0,ϑ∩{xn>2 sin ϑ}

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx .

(5.2)

It is useful now to reduce the problem to that in dimension 2. To this end, we adopt
the notation in (1.32) and (1.33) and note that

∫
Jϑ,π∩{xn>2 sin ϑ}

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx

=
∫∫∫

{(x1,xn )∈J�
ϑ,π
, x̄∈Rn−2, xn>2 sin ϑ}

a1
(−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(x1 − cosϑ)e1 + (xn − sin ϑ)en + (0, x̄, 0)

)
(
(x1 − cosϑ)2 + (xn − sin ϑ)2 + |x̄ |2

) n+s1
2

dx̄ dx1 dxn

=
∫∫

{y=(y1,y2)∈J�
ϑ,π
, ȳ∈Rn−2, y2>2 sin ϑ}

a1
(−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(y1 − cosϑ) e1 + (y2 − sin ϑ) en + |y − e�(ϑ)|(0, ȳ, 0)

)

|y − e�(ϑ)|2+s1
(
1 + |ȳ|2) n+s1

2

d ȳ dy

=
∫
J�
ϑ,π

∩{y2>2 sin ϑ}
a�1(

−−−−−−→
y − e�(ϑ))

|y − e�(ϑ)|2+s1
dy. (5.3)

Note that we have introduced here the new variables y = (y1, y2) ∈ R
2 and ȳ =

(y3, . . . , yn) ∈ R
n−2; in this way, if x = (x1, x̄, xn) ∈ R

n , then x1 = y1, xn = y2
and x̄ = ȳ|y − e∗(ϑ)|, and the determinant of the corresponding Jacobian matrix is
|y − e∗(ϑ)|n−2.

123



A. De Luca et al.

Fig. 11 Another geometric argument involved in the proof of Lemma 5.1

Similarly,

∫
J0,ϑ∩{xn>2 sin ϑ}

a1(
−−−−−→
x − e(ϑ))

|x − e(ϑ)|n+s1
dx =

∫
J �0,ϑ∩{y2>2 sin ϑ}

a�1(
−−−−−−→
y − e�(ϑ))

|y − e�(ϑ)|2+s1
dy.

Thanks to these observations, we rewrite (5.2) in the form

ϒ =
∫
J �ϑ,π∩{x2>2 sin ϑ}

a�1(
−−−−−−→
x − e�(ϑ))

|x − e�(ϑ)|2+s1
dx −

∫
J �0,ϑ∩{x2>2 sin ϑ}

a�1(
−−−−−−→
x − e�(ϑ))

|x − e�(ϑ)|2+s1
dx .

(5.4)

Now we use polar coordinates centered at e�(ϑ). For this, if x ∈ J �0,ϑ ∩ {x2 >
2 sin ϑ}, we write x = (cosϑ, sin ϑ)+ ρ(cosα, sin α) with α ∈ (0, ϑ) and ρ > sin ϑ

sin α .
Similarly, if x ∈ J �ϑ,π ∩ {x2 > 2 sin ϑ}, we write x = (cosϑ, sin ϑ)+ ρ(cosβ, sin β)
with β ∈ (ϑ, π) and ρ > sin ϑ

sin β , see Fig. 11.
As a result, using the notation in (1.34), we deduce from (5.4) that

ϒ =
∫ ϑ

0

(∫ ∞
sin ϑ
sin α

φ1(α)

ρ1+s1
dρ

)
dα −

∫ π

ϑ

(∫ ∞
sin ϑ
sin β

φ1(β)

ρ1+s1
dρ

)
dβ

= 1

s1(sin ϑ)s1

(∫ ϑ

0
φ1(α) (sin α)

s1 dα −
∫ π

ϑ

φ1(β) (sin β)
s1 dβ

)
,

which establishes (5.1). ��
Lemma 5.2 Let the notation in (1.13), (1.32), (1.33) and (1.34) hold true. Then,

∫
Hc

a2(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
dx = 1

s1(sin ϑ)s1

∫ 0

−π
φ2(α) | sin α|s1 dα. (5.5)
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Fig. 12 A geometric argument involved in the proof of Lemma 5.2

Proof As in (5.3), we have that the left hand side of (5.5) equals to

 :=
∫
R×(−∞,0)

a�2(
−−−−−−→
y − e�(ϑ))

|y − e�(ϑ)|2+s1
dy.

Now we use polar coordinates centered at e�(ϑ) by considering y = (cosϑ, sin ϑ)+
ρ(cosα, sin α) with α ∈ (−π, 0) and ρ > sin ϑ

| sin α| , see Fig. 12. In this way, and
recalling (1.34), it follows that

 =
∫ 0

−π

(∫ ∞
sin ϑ

| sin α|

φ2(α)

ρ1+s1
dρ

)
dα = 1

s1(sin ϑ)s1

∫ 0

−π
φ2(α) | sin α|s1 dα,

as desired. ��
With this, we can uniquely determine the contact angle, as presented in Theo-

rem 1.10:

Proof of Theorem 1.10 We let

W(ϑ) := s1(sin ϑ)
s1

(∫
Jϑ,π

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
dx −

∫
J0,ϑ

a1(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
dx

+σ
∫
Hc

a2(
−−−−−→
e(ϑ)− x)

|e(ϑ)− x |n+s1
dx

)

and we observe that solutions of (1.31) correspond to zeros of W in [0, π ].
Also, by Lemmata 5.1 and 5.2, and recalling (1.35),

W(ϑ) =
∫ ϑ

0
φ1(α) (sin α)

s1 dα−
∫ π

ϑ

φ1(α) (sin α)
s1 dα

+σ
∫ 0

−π
φ2(α) | sin α|s1 dα
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=
∫ ϑ

0
φ1(α) (sin α)

s1 dα −
∫ π

ϑ

φ1(α) (sin α)
s1 dα

+σ
∫ 0

−π
φ2(π + α) (sin(π + α))s1 dα

=
∫ ϑ

0
φ1(α) (sin α)

s1 dα−
∫ π

ϑ

φ1(α) (sin α)
s1 dα

+σ
∫ π

0
φ2(α) (sin α)

s1 dα. (5.6)

In particular, W is continuous in [0, π ], differentiable in (0, π) and, for each ϑ ∈
(0, π),

W′(ϑ) = 2φ1(ϑ) (sin ϑ)
s1 > 0,

which shows thatW admits at most one zero in (0, π). This establishes the uniqueness
result stated in Theorem 1.10.

Now we show the existence result claimed in Theorem 1.10 under assump-
tion (1.36). To this end, it suffices to notice that, by (1.36) and (5.6), we have that

W(0) = −
∫ π

0
φ1(α) (sin α)

s1 dα + σ
∫ π

0
φ2(α) (sin α)

s1 dα < 0

and

W(π) =
∫ π

0
φ1(α) (sin α)

s1 dα + σ
∫ π

0
φ2(α) (sin α)

s1 dα > 0.

From this and the continuity ofW, we obtain the existence of a zero ofW in (0, π). ��
Remark 5.3 We stress that the strict positivity of the kernel is essential for the unique-
ness result in Theorem 1.10: indeed, if one allows degenerate kernels in which a1
is only nonnegative, such a uniqueness claim can be violated. As an example, con-
sider σ := 0 and pick ϑ0 ∈ (

0, π2
)
. Let φ1 ∈ C∞(R) be such that φ1(α) := 0 for

all α ∈ [ϑ0, π − ϑ0]. Assume also that φ1
(
π
2 + α) = φ1

(
π
2 − α) for all α ∈ (0, π2

)
and that φ1(α + π) = φ1(α) for all α ∈ (0, π). See e.g. Fig. 13 for a sketch of this
function.

Then, by (5.6), for every ϑ̄ ∈ [ϑ0, π2
]
,

W(ϑ̄) =
∫ ϑ̄

0
φ1(α) (sin α)

s1 dα −
∫ π

ϑ̄

φ1(α) (sin α)
s1 dα

=
∫ ϑ0

0
φ1(α) (sin α)

s1 dα −
∫ π

π−ϑ0
φ1(α) (sin α)

s1 dα

=
∫ ϑ0

0
φ1(α) (sin α)

s1 dα −
∫ ϑ0

0
φ1(π − β) (sin(π − β))s1 dβ
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Fig. 13 A degenerate example of φ1 leading to a multiplicity of the contact angle in (1.29)

=
∫ ϑ0

0
φ1(α) (sin α)

s1 dα −
∫ ϑ0

0
φ1

(π
2

+ π

2
− β

)
(sin β)s1 dβ

=
∫ ϑ0

0
φ1(β) (sin β)

s1 dβ −
∫ ϑ0

0
φ1

(π
2

−
(π
2

− β
))
(sin β)s1 dβ

= 0,

which shows that in this degenerate case every angle ϑ̄ ∈ [ϑ0, π2
]
would be a zero ofW,

hence a solution of the contact angle equation in (1.31). Accordingly, the assumption
of strict positivity of the kernel cannot be dropped in Theorem 1.10.

Appendix A. Existence of minimizers and proof of Proposition 1.1

The proof of the existence result in Proposition 1.1 is based on a semicontinuity
argument and on a direct minimization procedure. We first check the existence of a
competitor with finite energy:

Lemma A.1 Let 	 be a bounded, open subset of R
n. Given m ∈ (0, |	|), there exists

a set E� ⊆ 	 with Lipschitz boundary, such that |E�| = m and with

I1(E�, E
c
�)+ I2(E�, E

c
�) < +∞. (A.1)

Proof Wewrite	 as a countable union of nonoverlapping cubes (see e.g. Theorem1.11
in [20]), say

	 =
+∞⋃
j=0

Q j .
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In this way,

m < |	| =
+∞∑
j=0

|Q j |.

Therefore, we take N ∈ N such that

m <
N∑
j=0

|Q j | =
∣∣∣∣∣∣
N⋃
j=0

Q j

∣∣∣∣∣∣ .

Actually, we can even shrink the cubes {Q j } j∈{1,...,N } a bit (without renaming them),

in such a way that these cubes are now closed and disjoint and still m <
∣∣∣⋃N

j=0 Q j

∣∣∣
(with this, we also have that the set

⋃N
j=0 Q j is Lipschitz).

By continuity, we can thereby find R > 0 such that

∣∣∣∣∣∣BR ∩
⎛
⎝ N⋃

j=0

Q j

⎞
⎠
∣∣∣∣∣∣ = m,

hence we can choose E� := BR ∩
(⋃N

j=0 Q j

)
and obtain that E� has Lipschitz

boundary and |E�| = m.
The fact that E� has Lipschitz boundary also gives (A.1), as desired. ��
Now we have the following lower semicontinuity lemma.

Lemma A.2 (Semicontinuity of the energy) If I2(	,	c) < +∞, E j ⊆ 	 and E j →
E in L1(	), then

lim inf
j→+∞ E(E j ) � E(E).

Proof If σ � 0, the proof follows by Fatou’s Lemma. If instead σ < 0, then we
observe that

I2(	,	
c) = I2(E,	

c)+ I2(E
c ∩	,	c),

and therefore, using that σ = −|σ |, we can write

E(E) = I1(E, E
c ∩	)− |σ |I2(E,	c)+ (|σ | + 1)I2(	,	

c)− (|σ | + 1)I2(	,	
c)

= I1(E, E
c ∩	)+ I2(E,	

c)+ (|σ | + 1)I2(E
c ∩	,	c)− (|σ | + 1)I2(	,	

c).

As a consequence, we can exploit Fatou’s Lemma and obtain the desired result. ��
With this we are able to prove Proposition 1.1:
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Proof of Proposition 1.1 We observe that, if K1 ∈ K(n, s1, λ, �), then, for any p ∈ R
n

and any disjoint sets F , G ⊆ R
n ,

I1(F,G) � 1

λ
Is1(F ∩ B�/2(p),G ∩ B�/2(p)). (A.2)

Here above, for short, we have denoted by Is1 the interaction in (1.5) corresponding
to the kernel K (ζ ) = 1

|ζ |n+s1
.

To prove (A.2),wenotice that if x, y ∈ B�/2(p), then |x−y| � |x−p|+|p−y| < �,
and therefore, recalling (1.2),

I1(F,G) �
∫
F∩B�/2(p)

∫
G∩B�/2(p)

K1(x − y) dx dy

� 1

λ

∫
F∩B�/2(p)

∫
G∩B�/2(p)

dx dy

|x − y|n+s1
,

which establishes (A.2).
We define

γ := inf {C(E) : E ⊆ 	, |E | = m}

and we remark that γ < +∞, thanks to Lemma A.1.
We also observe that, for every F ⊆ 	,

σ I2(F,	
c) � −c, (A.3)

for some constant c � 0 which only depends on n, σ , K2 and 	. Indeed, if σ � 0 we
can take c := 0. If instead σ < 0, we take c := |σ | I2(	,	c), which is finite in light
of (1.8).

Let now E j ⊆ 	 be such that |E j | = m and C(E j ) = E(E j ) + ∫
E j

g → γ

as j → +∞. Then, if j is large enough, we have that

c̃ := γ + 1 +
∫
	

|g| � E(E j ) = I1(E j , E
c
j ∩	)+ σ I2(E j ,	

c)

� I1(E j , E
c
j ∩	)− c, (A.4)

in view of (A.3).
Now we perform a diagonal method. We consider a sequence of open sets 	k

contained in 	, with Lipschitz boundary, such that

	k ⊆ 	k+1 (A.5)

and

	 =
+∞⋃
k=0

	k,
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see e.g. Theorem 1.11 in [20] (for instance, as done in the proof of Lemma A.1, one
can exploit Theorem 1.11 in [20] to obtain a family of nonoverlapping cubes and then
shrink them a bit to find a family of disjoint closed cubes which produce a Lipschitz
set arbitrarily close to 	).

By (A.4), if j is sufficiently large, for every k ∈ N we have that

I1(E j ∩	k, E
c
j ∩	k) � I1(E j , E

c
j ∩	) � c + c̃.

Thus, for every k ∈ N, for every p ∈ R
n , using (A.2) with F := E j ∩ 	k and G :=

Ec
j ∩	k , we arrive at

Is1
(
E j ∩	k ∩ B�/2(p), E

c
j ∩	k ∩ B�/2(p)

)
� λI1(E j ∩	k, E

c
j ∩	k) � λ(c + c̃).

(A.6)

Thus, we cover 	 (and therefore 	k) with a finite number of balls B�/16(p1), . . . ,
B�/16(pL), for suitable p1, . . . , pL ∈ R

n .
Now, let �,m ∈ {1, . . . , L} and suppose that |p�− pm | � �/4 and let x ∈ B�/16(p�)

and y ∈ B�/16(pm). Then,

|x − y| � |p� − pm | − |x − p�| − |y − pm | � �

4
− �

16
− �

16
= �

8

and therefore in this case we have that

Is1
(
E j ∩	k ∩ B�/16(p�), E

c
j ∩	k ∩ B�/16(pm)

)

�
∫
B�/16(p�)

∫
Rn\B�/8(x)

dx dy

|x − y|n+s1
� C0, (A.7)

for some C0 > 0 depending only on n, s1 and �.
If instead |p� − pm | < �/4 and x ∈ B�/16(p�), we have that

|x − pm | � |x − p�| + |p� − pm | < �

16
+ �

4
<
�

2
,

whence x ∈ B�/2(pm).
This observation and (A.6) yield that, in this case,

Is1
(
E j ∩	k ∩ B�/16(p�), E

c
j ∩	k ∩ B�/16(pm)

)
� Is1

(
E j ∩	k ∩ B�/2(pm), E

c
j ∩	k ∩ B�/2(pm)

)
� λ(c + c̃).
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From this inequality and (A.7) it follows that

Is1(E j ∩	k, E
c
j ∩	k) �

L∑
�,m=1

Is1
(
E j ∩	k ∩ B�/16(p�), E

c
j ∩	k ∩ B�/16(pm)

)

=
∑

1��,m�L
|p�−pm |��/4

Is1
(
E j ∩	k ∩ B�/16(p�), E

c
j ∩	k ∩ B�/16(pm)

)

+
∑

1��,m�L
|p�−pm |<�/4

Is1
(
E j ∩	k ∩ B�/16(p�), E

c
j ∩	k ∩ B�/16(pm)

)

� C0L
2 + λ(c + c̃)L2

=: C�.

That being the case, since the space W
s1
2 ,2(	k) is compactly embedded in L1(	k),

we find that, up to a subsequence, E j → E�k in L1(	k) for some

E�k ⊆ 	k . (A.8)

More explicitly, there exists an increasing function φ0 : N → N such that χEφ0( j) →
χE�0

a.e. and in L1(	0) as j → +∞; then, there exists an increasing function φ1 :
N → N such that χEφ1◦φ0( j) → χE�1

a.e. and in L1(	1) as j → +∞; and so on, there
exists an increasing function φk : N → N such that

χEφk◦···◦φ0( j) → χE�k
a.e. and in L1(	k) as j → +∞. (A.9)

We observe that, since Eφk◦···◦φ0( j) is a subsequence of the original sets E j whose
mass was prescribed, we have that

|Eφk◦···◦φ0( j)| = m. (A.10)

Furthermore, a.e. in 	k ,

χE�k
= lim

j→+∞χEφk◦···◦φ0( j) = lim
j→+∞χEφk+1◦···◦φ0( j) = χE�k+1

and therefore, up to null sets,

E�k ∩	k = E�k+1 ∩	k .

As a result, up to null sets

E�k ∩	k = E�h ∩	k for all h � k. (A.11)
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We define

E :=
⋃
k∈N

E�k and Ẽk := Eφk◦···◦φ0(k).

We remark that, for all � ∈ N,

|E ∩	�| = |Z1 ∪ Z2|, (A.12)

where

Z1 :=
�−1⋃
h=0

(E�h ∩	�) and Z2 :=
+∞⋃
h=�
(E�h ∩	�).

In view of (A.11) we know that E�h = E�� for all h � �, therefore

Z2 =
+∞⋃
h=�
(E�� ∩	�) = E�� ∩	�. (A.13)

Furthermore, by (A.5) and (A.8), for each h ∈ {0, . . . , �− 1},

E�h ∩	� ⊆ E�h ∩	h ∩	� = E�h ∩	h . (A.14)

Actually, equality holds here above, but we only need one inclusion. In light of (A.11)
and (A.14) we deduce that, for each h ∈ {0, . . . , �− 1}, up to null sets,

E�h ∩	� ⊆ E�� ∩	h .

Thus, using (A.5) once again, for each h ∈ {0, . . . , � − 1}, we find that E�h ∩ 	� ⊆
E�� ∩	�, whence

Z1 ⊆ E�� ∩	�.

We combine this information with (A.12) and (A.13) and we arrive at

|E ∩	�| = |E�� ∩	�|.

Hence, up to null sets,

E ∩	� = E�� ∩	�. (A.15)

Now we claim that, a.e. and in L1(	),

lim
k→+∞χẼk

= χE . (A.16)
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Indeed, given � ∈ N, a.e. in 	�, we have that χẼk
= χEφk◦···◦φ0(k) is a subsequence,

for large k � �, of χEφ�◦···◦φ0(k) , which converges a.e. to χE�� (i.e., in view of (A.15),
to χE ) as k → +∞. This proves the a.e. convergence in (A.16). From this and the
Dominated Convergence Theorem we also obtain the convergence in L1(	) and the
proof of (A.16) is thereby complete.

We also claim that

|E | = m. (A.17)

To this end, by (A.15) and the Dominated Convergence Theorem,

|E | = lim
�→+∞ |E ∩	�| = lim

�→+∞ |E�� ∩	�|.

This, (A.9) and (A.10) yield that

|E | = lim
�→+∞ lim

j→+∞ |Eφ�◦···◦φ0( j) ∩	�|

= lim
�→+∞ lim

j→+∞

(
|Eφ�◦···◦φ0( j)| − |Eφ�◦···◦φ0( j) ∩ (	 \	�)|

)

= lim
�→+∞ lim

j→+∞

(
m − |Eφ�◦···◦φ0( j) ∩ (	 \	�)|

)
. (A.18)

Notice also that

lim
�→+∞ lim

j→+∞ |Eφ�◦···◦φ0( j) ∩ (	 \	�)| � lim
�→+∞ lim

j→+∞ |	 \	�|
= lim
�→+∞ |	 \	�| = 0.

From this and (A.18) we obtain (A.17), as claimed.
Hence, using (A.16), (A.17) and the semicontinuity property in Lemma A.2, we

conclude that E is a minimizer.
We also remark that, on account of (A.3),

I1(E, E
c ∩	) = E(E)− σ I2(E,	

c) = C(E)−
∫
E
g − σ I2(E,	

c)

= γ −
∫
E
g − σ I2(E,	

c) � γ +
∫
	

|g| + c < +∞,

as desired. ��

Data Availability There are no data to be made available.
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