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a b s t r a c t

We consider bodies with active microstructure described by a vector field with values ν ∈ R3. It
complements the macroscopic displacement u ∈ R3. We prove existence and uniqueness for the
dynamics of such a body under memory effects and a nonlinear microstructural behavior.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Memory is non-locality in time. Attention to it dates back to
. Boltzmann’s and V. Volterra’s independent works. An extensive
ystematic treatment of memory effects for bodies undergo-
ng a large strain regime has been developed in the sixties
f the twentieth century (see, e.g., [1–7]). A reprisal of foun-
ational work is evident in the ten years of the twenty-first
entury, above all for a characterization of free energies (see, e.g.,
8–10]). Materials considered are commonly those with response
epending on the deformation gradient history. Actions are local
n space, distinguished into bulk and contact families. In short,
hey are what we call Cauchy’s bodies.

However, physico-chemical phenomena in materials may de-
elop at different time scales when events at different spatial
cales are accounted for. Including memory effects in a contin-
um representation of the mechanical behavior is an indirect way
o account for delays in the different scale dynamics.

In particular, here it is aimed to describe micro-to-macro
nteractions and by the use of order parameter fields to bring at
he macro scale information of microscopic events; introducing
emory effects connected with these fields is a way to account

or the possibility that at micro-scale events occur with different
ynamics. Also, depending on the kernel choice, we may describe
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the influence of critical events in the past, as an abrupt occurrence
of damage in a specific time interval.

The analysis of memory effects in the general model-building
framework for the mechanics of complex bodies, i.e., those with
active microstructure strongly influencing the gross behavior, has
been proposed in Ref. [11] with respect to the definition of free
energies in linearized setting. In this framework the body mor-
phology is represented not only by the region the body occupies
in 3D space. Fields taking values ν into a manifold complement
the deformation maps [12]. They bring at gross scale information
on the microstructural events characterizing the behavior of a
complex body. Specific examples are as follows:

• Example 1: In a body made of polymer linear chains embed-
ded into a melt, ν may be taken as the end-to-tail vector of
a single molecule attributed to x (or y), when the molecule
is schematized as a dumbbell [13–15].

• Example 2: In quasicrystals ν describes locally inner de-
grees of freedom exploited to assure the quasi-periodic ar-
rangement of atoms characterizing quasicrystals [16–18].
Indeed a quasi-periodic arrangement of atoms in (say) 3D
space (atoms viewed as mass points) can be obtained as the
projection of a six-dimensional periodic lattice onto a 3D
incommensurate subspace. The standard displacement in the
6D hyperspace has a component along the chosen subspace
(the so-called phonon field because it is associated with
the propagation of acoustic waves), which is here u, and
an orthogonal one (the so-called phason field), which is
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https://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2023.133683&domain=pdf
mailto:diego.berti@dm.unipi.it
mailto:luca.bisconti@unifi.it
mailto:paolomaria.mariano@unifi.it
https://doi.org/10.1016/j.physd.2023.133683


D. Berti, L. Bisconti and P.M. Mariano Physica D 446 (2023) 133683

d
κ
t
d
a

t
o
e
γ

w
t
y
t
w
a
o

W
c
d
s
o

x
y
E
a

s

t
u
t

m
s
t
m
f
d
e
m
g
n
l
d
a

here ν. The phason field is (obviously) insensitive to rigid
translations of observers in the chosen subspace (i.e., the
physical space) where we project the 6D periodic lattice,
because it is orthogonal to that space (such a remark is an
example clarifying choices below made).

• Example 3: A vector phase field is also appropriate to de-
scribe the microstructure of diatomic-type bodies [19]. Lo-
cally, every ν represents a vector connecting the two atoms
imagined at that point. It plays a role analogous to the
end-to-tail vector in Example 1.

Bulk and contact peculiar actions (those with microstructural
character) are defined by the power that they perform in the time
rate of these microstructure descriptors and satisfy appropri-
ate balance equations derived from invariance principles [20,21].
Here, we refer to that approach and consider the dynamics of a
complex body with memory. Its microstructure is described by a
vector-valued field ν, with ν(t, x) ∈ R3. It supplements the com-
mon displacement field u = u(t, x) ∈ R3. With B ⊂ R3 a bounded,
simply connected, fit region endowed with Lipschitz boundary
∂B, working in small-strain setting, we consider in [0, T ] ×B the
following balance equations of forces and microstructural actions:

ρutt + γ̃ ut − µ∆u + λ1

∫ t

0
ϖ (t − s)∆u(s)ds

= ξ∇divu + κ∆ν + ξ̄∇divν,

(1)

ςνt − ζ∆ν + η̂|ν|σ−1ν − λ2

∫ t

0
ϖ̃ (t − s)ν(s)ds

= γ∇divν + κ∆u + ξ̄∇divu − κ0ν .

(2)

The subscript t indicates time derivative. They involve linear
constitutive equations and a non-linearity B(ν) := η̂|ν|σ−1ν in
the microstructural self-action structure (for the existence of such
an action see [20]). We require 2 ≤ σ ≤ 3. Also, we take the
constitutive parameters λ1, λ2, η̂, µ, ξ , κ , ξ̄ , ς , ζ , γ and κ0 to
be positive, and µ > λ1; ρ is the mass density. To characterize
memory effects, we take positive kernels ϖ = ϖ (t) and ϖ̃ =

ϖ̃ (t) (positiveness defined in Section 2, see (5)) and, in particular,
we assume ϖ (t) = ϖ̃ (t) = γ̌ e−δt , δ > 0 with γ̌ > 0. We restrict
attention to the case
γ̌ < 1, κ0 > 2λ2γ̌ /δ, ζ > 2(κ + 2ξ̄ ),

and µ > 2(λ1γ̌ /δ + κ + ξ̄ ).
(3)

We adopt initial conditions u|t=0 = u0, ut |t=0 = u̇0, ν|t=0 =

ν0, on B and slip-without-friction-like boundary conditions, given
by
u · n = 0, curl u × n = 0, on [0, T ] × ∂B

and ν · n = 0, curl ν × n = 0, on [0, T ] × ∂B .
(4)

In the balance of momentum (1) the terms µ∆u and ξ∇divu
escribe the present contribution of the macroscopic stress, while
∆ν+ξ̄∇divν the direct influence on the occurrence of stress due
o the microstructural effects, a coupling term; the time integral
escribes the influence of memory on the Cauchy’s stress; γ̃ ut is
live load.
In the balance of micro-momentum (2), the terms ςνt +

η̂|ν|σ−1ν and κ0ν report cumulatively the present value of a
microstructural self-action (i.e., the one of microstructure on
itself), and in particular ςνt is a self-action dissipative compo-
nent; the time integral accounts for the effects of memory on
this type of action, the only ones considered at microstructural
level; ζ∆ν and γ∇divν account for the microstress due to the
microstructure spatial variations while κ∆u+ ξ̄∇divu is a macro-
o-micro coupling term. The dynamics of a memory-less version
f the present scheme has been discussed in Ref. [22], where the
xistence of a pertinent weak attractor is shown even in the limit
˜ = 0.
2

2. Deriving Eqs. (1) and (2) from a fully nonlinear setting

2.1. Morphology of bodies with vector-valued microstructure and
motions

Consider two isomorphic copies of the three-dimensional real
space, namely R3 and R̃3. The isomorphism ι : R3

−→ R̃3

is simply the identification. We select a fit region B in R3 as
reference (macroscopic) shape of a body (i.e., it is a bounded,
simply connected region with surface-like boundary, oriented by
the outward unit normal n everywhere to within a finite number
of corners and edges), and detect in R̃3 all those shapes Ba that
e consider deformed in time with respect to the reference one
hrough time-dependent deformation mappings (t, x) ↦−→ y :=

˜(t, x) ∈ R̃3, x ∈ B, taken to be differentiable (twice with respect
o time) and orientation preserving, so that Ba := ỹ(B, t). We will
rite ∇y for ∇ ỹ(x, t). As usual, we define the displacement field u
s u(t, x) := ỹ(t, x)− ι(x). It is a Lagrangian field, i.e., one defined
ver the reference shape.
The condition |∇u| ≦ 1 defines the small deformation regime.
hen it holds, we avoid distinguishing between reference and

urrent configurations. However, in this section we maintain the
istinction and act in the more general setting including large
trains because in this way we may have a more clear picture
f the scenario in which our analysis is embedded.
The Lagrangian vector field ẏ :=

dỹ(t,x)
dt , which is also such

that ẏ = ut , indicates the (macroscopic) velocity. At each point
and time t , ẏ = ut belongs to the tangent space to Ba at
= ỹ(t, x). Consequently, we can consider the velocity field as an
ulerian field, i.e., one defined over Ba, a field that we can write
s (t, y) ↦−→ v := ṽ(t, y) and we obviously have ẏ = ut = v.
We describe the minute architecture of the material, its mi-

crostructure at a certain spatial scale, through a descriptor field
(a phase field, if one prefers another common nomenclature)
taken here to be a 3D differentiable vector field (t, x) ↦−→ ν :=

ν̃(t, x) ∈ R̄3 in Lagrangian representation (R̄3 is a copy of the
3D real space in principle distinguished, although isomorphic to
R3). We will write ∇ν for ∇ν̃(t, x). The map ν̃ admits an Eulerian
representation given by ν̄ := ν̃ ◦ ỹ−1. Once again, when we refer
to small strain setting, we will not distinguish between the two
representation, because (as it common in this setting) we do not
distinguish between B and Ba. However, for the moment, we
maintain as above the distinction and will write ν̇ for the time
rate of ν̃, which we will rewrite as νt when referring to the small
train setting.
Notice: ν represents some geometric property pertaining to

he material element that we attribute to x (or y) in the contin-
um representation. (Think that we are acting in the sense of field
heories.) Examples have been already listed in the Introduction.

Other examples can be listed, as for example the one of elastic
icrocracked bodies (see, e.g., [23]) but those listed above as
ufficiently significant so that we do not dwell further. Of course
hat ν is a 3D real vector here is a special choice. The general
odel-building framework for the mechanics of complex bodies

oresees that ν should be read in general over a finite-dimensional
ifferentiable manifold [12,20]. When we discuss existence of
nergy minimizers in elastostatics, we also need that such a
anifold (the one of microstructural shapes) be Riemannian and
eodesic-complete [21]. Also, when we aim at linearizing, we
eed to embed the manifold of microstructural shapes into a
inear space (the embedding is always possible due to the finite
imensionality but it is not unique) or, when such a manifold is
Lie group, we need to reduce to the pertinent algebra.



D. Berti, L. Bisconti and P.M. Mariano Physica D 446 (2023) 133683

2

(
c
a
(

w

D
d
d
r
w
t
t

.2. Observers and their changes

An observer is a representation (i.e., the assignment of frames
of reference) over all the spaces adopted for representing the
morphology of a body and its motion [20,21]. Here the spaces
involved are the reference one (namely R3), the physical space
i.e., R̃3), and the one in which ν̃ takes values (namely R̄3). We
onsider changes of observers that first leave invariant R3 and
re related by time-dependent orientation-preserving isometries
i.e., rigid-body motions) in the physical space R̃3 so that if y is
a place evaluated by the first observer, the second one records
y′

= a(t) + Q (t)(y − y0) + y0, where t ↦−→ a(t) ∈ R3 is a vector-
valued smooth map depending only on time, y0 an arbitrary fixed
point, and t ↦−→ Q (t) ∈ SO(3) a smooth map depending only on
time and taking values into the special orthogonal group SO(3).
The first observer records a velocity ẏ while for the second one it
is ẏ′

= ȧ+Q̇ (y−y0)+Q ẏ, where the superposed dot over a and Q
means time derivative as for the other fields. When we pull-back
ẏ′ in the frame of the first observer, we get a velocity ẏ⋄ given by
ẏ⋄

= Q Tẏ′
= Q Tȧ + Q TQ̇ (y − y0) + ẏ = c + q × (y − y0) + ẏ,

here the superscript T means standard transposition; c := Q Tȧ
is a relative translation velocity between the two observers; q is
the axial vector of the skew-symmetric second-rank tensor Q TQ̇ ,
a relative rotation velocity, indeed; in other words, the skew-
symmetric second-rank tensor q× = Q TQ̇ is an element of the
Lie algebra so(3).

Microstructures are in the physical space: their description in
terms of the field ν̃ is only a convenient tool. Changing observers
in the physical space may alter the perception of microstructures,
depending on the way they are described. Since ν is here a 3D
real vector, it is influenced by rotations. (Example: Consider the
case in which ν ∈ R̄3 is a end-to-tail vector representing a linear
polymer chain, the properties of which are attributed to y. A rigid
translation of an observer in the physical space leaves invariant
the representation of ν because it is transported parallel to itself
without any change. At variance, a rotation alters the way the
orientation of the molecules is perceived.) Consequently, under
rigid-body type changes in observers in the physical space, the
value ν recorded by the first observer changes into ν ′

= Q (t)ν,
and the time rate ν̇ becomes ν̇ ′

= ν̇ + Q̇ν. By pulling back this
last vector in the frame of the first observer, we obtain a new
vector ν̇⋄ given by ν̇⋄

= ν̇ + Q TQ̇ = ν̇ + q × ν, which we may
write as ν̇⋄

= ν̇ + A(ν)q, with the linear operator A(ν) given
by A(ν) = −ν×. (A more detailed analysis concerning changes
of observers in the mechanics of complex bodies, i.e., those with
active microstructure, is in Ref. [21]; it deals with the general case
in which ν belongs to a finite-dimensional differentiable manifold
generically not embedded into a linear space.)

2.3. External power, invariance, and balance

Actions are those entities involved in changes of body mor-
phology. They are defined by the power that they perform. For
them we accept the standard subdivision into bulk and contact
families.

By part we indicate a subset b of B with non-vanishing volume
that is a fit region too as B is. The external power Pext

b over b along
a motion (ỹ, ν̃) is defined by

Pext
b (ẏ, ν̇) :=

∫
b

(
b‡

· ẏ + β‡
· ν̇
)
dx +

∫
∂b

(t∂ · ẏ + τ∂ · ν̇) dH̄2(x),

where dH̄2(x) is the surface measure; the dot indicated dual-
ity pairing, identified with the scalar product when the metrics
considered are flat as we do here for the sake of simplicity.

Subscript ∂ associated with the contact action t∂ indicates that we j

3

presume dependence of t and τ on the boundary ∂b. The covector
b‡ indicates bulk actions.

We consider balanced those actions for which the exter-
nal power is invariant under isometric changes of observers,
those defined previously. Formally, we then impose Pext

b (ẏ, ν̇) =

Pext
b (ẏ⋄, ν̇⋄) and presume that the identity holds for any choice

of b, c, and q. The arbitrariness of the relative translational and
rotational velocities c and q implies the common integral balance
of forces and a non-standard balance of couples, namely∫
b

b‡ dx +

∫
∂b

t∂ dH̄2(x) = 0,

∫
b

(
(y − y0)× b‡

+ ATβ‡) dx
+

∫
∂b

(
(y − y0)× t∂ + ATτ∂

)
dH̄2(x) = 0 .

Cauchy’s and Hamel–Noll’s theorems directly apply to the first
balance. Their techniques can be adapted to the second balance.
Pertinent results are summarized in the items below.

• If
⏐⏐b‡
⏐⏐ is bounded over B and t∂ depends continuously on x,

the action–reaction principle holds first on flat boundaries,
and, on its basis, one may further show that t∂ depends
on ∂b only through the normal n to it in all points where
it is well-defined and extends there the action–reaction
property, i.e., t∂ = t := t̃ (x, t, n) = −t̃ (x, t,−n). Also, as
a function of n, t̃ is homogeneous and additive, i.e., there
exists a second-rank tensor field (x, t) ↦−→ P (x, t) such
that t̃ (x, t, n) = P (x, t) n (x). This is the standard Cauchy
theorem preceded by the Hamel–Noll result; P is the first
Piola–Kirchhoff stress.

• Since B is bounded, as above selected, we can choose the
arbitrary point y0 in a way such that the boundedness of
|b‡

| implies the one of |(y − y0) × b‡
|. If in addition

⏐⏐ATβ‡
⏐⏐

is bounded over B and τ∂ depends continuously on x, the
microstructural contact action τ∂ satisfies a non-standard
action–reaction principle and depends on ∂b only through
the normal n to it in all points where it is well-defined;
we have, in fact, AT (τ̃ (x, t, n)+ τ̃ (x, t,−n)) = 0. Also, as
a function of n, τ̃ is homogeneous and additive, i.e., there
exists a second-rank tensor field (x, t) ↦−→ S (x, t), so called
microstress, such that τ̃ (x, t, n) = S (x, t) n (x).

• If both stress fields are in C1 (B)∩C
(
B̄
)
and the bulk actions

x ↦−→ b‡, x ↦−→ β‡ are continuous over B, the point-wise
balance of forces

DivP + b‡
= 0

holds and there exists a field x ↦−→ z (x) ∈ T ∗
νM such that

DivS +β‡
− z = 0 , skwP(∇y)T =

1
2
e
(
ATz +

(
∇AT

)
S
)
,

where I is the second-rank identity tensor; moreover,

Pext
b (ẏ, ν̇) =

∫
b

(P · ∇ ẏ + z · ν̇ + S · ∇ν̇) dx ,

with the right-hand side integral called internal (or inner)
power.

etails of the pertinent proofs are in Ref. [21]. Since we are
istinguishing in this section between B and Ba, capitalizing the
ifferential operator Div reminds that it includes derivatives with
espect to x. Lower case letters, namely div refer to derivatives
ith respect to y. However, when the analysis is restricted to
he small strain regime, as in the subsequent sections, not dis-
inguishing between x and y, as usual in that regime, we will use
ust div, as in Eqs. (1) and (2).
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The bulk actions b‡ are assumed to be a sum of inertial (bin)
and non-inertial (b) terms, namely b‡

= bin + b, the inertial
nes defined to be such that their power equals a negative of the
inetic energy time derivative. With ρ the mass density, taking
s a kinetic energy the standard quadratic form of the velocity,
e get bin = −ρÿ = −ρutt . In the present case we do not
ttribute peculiar relative kinetic energy to the microstructure,
n attribution that is not excluded in general (see Refs. [12,20]
or discussions on the matter).

The interactions appearing in the previous local balances ad-
it their Eulerian counterparts defined by

‡
a := det(∇y)−1b‡ , σ := det(∇y)−1P(∇y)T ,

a := det(∇y)−1z ,

‡
a := det(∇y)−1β‡ , Sa := det(∇y)−1S(∇y)T

remind to distinguish between σ, a second-rank tensor, the
tandard Cauchy stress, indeed, and the exponent σ appearing
n Eq. (2)). The balance equations in Eulerian representation then
ollow: we just recall the local balance of forces
‡
a + divσ = 0

nd the one of microstructural interactions, namely
‡
a − za + divSa = 0 .

he rest follows.
In small deformation setting we have P ≈ σ, z ≈ za, and
≈ Sa, and, as already mentioned, we ‘confuse’ B with Ba,

onsidering all fields depending on x and t .

.4. Histories and history-dependent free energies

At every x ∈ B, let us define Ht
: R+

−→ M3×3 × R3
× M3×3

y
t (s) := (∇ ỹ(s), ν̃(s),∇ν̃(s)) = (∇u(s) + I, ν̃(s),∇ν̃(s))

or 0 ≤ s < t , where M3×3 is the space of 3 × 3 matrices. Thus, Ht

s the history of those state variables listed in the above definition
rior t . Of course, we admit a prolongation of the history to t and
ndicate by H the present value at t . A restriction of an history to
he interval [r, p), with 0 < r < p, is indicated by Kr

p and defined
y
r
p(s) := (∇ ỹ(r + s), ν̃(r + s),∇ν̃(r + s)) ,

for 0 ≤ s < p − r . Given a pair (Hr ,Kr
p), we define a prolongation

of Hr through Kr
p as the history given by

(Kr
p ∗ Hr )(s) :=

{
Hr (s) if 0 ≤ s < r,
Kr
p(s) if r ≤ s < p .

When both Hr and Kr
p are differentiable and lims↘0 K

r
p(s) = Hr ,

the prolonged history is differentiable too.
Let us assume that P , z, and S all depend on H and Ht . We say

that two histories Ht and H̄t are equivalent, and we write in this
case Ht

∼ H̄t , when

P(Kr
p ∗ Hr ) = P(Hr ) , z(Kr

p ∗ Hr ) = z(Hr ) ,
S(Kr

p ∗ Hr ) = S(Hr )

for any r and p. In other words, two state histories are equivalent
when they are indistinguishable with respect to stress measures
(precisely, interaction measures). Then, with this proviso, the
state space considered here, i.e., the space of histories, say Σ , can
be endowed with a semi-metric (see the explicit definition and
the pertinent proof in Ref. [11]). We say that f : Σ −→ R is a
state function when Ht

∼ H̄t implies f (Ht ) = f (H̄t ).
4

At every x ∈ B we define the work density performed along a
history, and indicate it by w, as

w(Ht
;H) :=

∫ t

0

(
P(Ht

;H)(s) · ∇u̇(s) + z(Ht
;H)(s) · ν̇(s)

+ S(Ht
;H)(s) · ∇ν̇(s)

)
ds

and

w(Kr
p,H

r
;H) = w(Kr

p ∗ Hr
;H) − w(Hr

;H) .

The work density performed along a history is evidently ad-
ditive with respect to prolongations. Also, by adapting straight
away a technique in Ref. [11], we can prove that w(Kr

p, ·;H) is
continuous and (above all) is a state function.

We say that ψ : Σ×M3×3×R3
×M3×3 −→ R is a free energy in

isothermal setting when it is lower semicontinuous over Σ and
satisfies the inequality

ψ(Kr
p ∗ Hr

;H) − ψ(Hr
;H) < w(Hr

;H) .

Physical admissibility requires also that ψ is a polyconvex func-
tion overM3×3 with respect to ∇y (see Coleman–Noll’s result [24])

2.5. A chain rule and a local form of the Clausius–Duhem inequality

Take F : Σ × M3×3 × R3
× M3×3 −→ R, defined for every

H ∈ M3×3 × R3
× M3×3 and every Ht such that Ht (s) is in the

open, connected set U ⊂ M3×3 × R3
× M3×3 where det∇y > 0

for almost every s. Assume that

(1) F is continuously differentiable;
(2) the map t ↦−→ H(t) has two continuous derivatives Ḣ(t) and

Ḧ(t); they are values of histories in Σ .

Under these assumptions, the function h(t) := F(Ht
;H(t)) is

continuously differentiable and its derivative is given by

ḣ(t) = DF(Ht
;H(t)) · Ḣ(t) + δF(Ht

;H(t)|Ḣt ) ,

where DF(Ht
;H(t)) is a continuous functional taking values in the

cotangent space to U at H, while δF(Ht
;H(t)|Jt ) is a continuous

functional depending linearly on J and defined on the closed
subspace ofΣ spanned by the histories Jt such that Ht (s)+Jt (s) ∈

U .
By taking into account such a chain rule, we take a local

isothermal version of the Clausius–Duhem inequality given by

ψ̇(Ht
;H) − P(Ht

;H) · ∇u̇ − z(Ht
;H) · ν̇ − S(Ht

;H) · ∇ν̇ ≤ 0 ,

presuming its validity for any choice of the rates considered. We
also assume that the microstructural self-action z is the sum
ze(Ht

;H) + zd(H), where zd has a current dissipative character,
namely it independently satisfies the local dissipation inequality
zd · ν̇ ≥ 0 for any choice of ν̇. Such an assumption means
that we attribute to the microstructure a diffusive character,
independently of memory effects (quasicrystals are an example
— see [25] and references therein).

As it is customary for the exploitation of Clausius–Duhem’s
inequality, such arbitrariness implies

P(Ht
;H) =

∂ψ(Ht
;H(t))

∂∇y
, z(Ht

;H) =
∂ψ(Ht

;H(t))
∂ν

,

S(Ht
;H) =

∂ψ(Ht
;H(t))

∂∇ν

and

δψ(Ht
;H(t)|Ḣt ) − zd(H) · ν̇ ≤ 0 .

The last inequality underlines the dissipative character of the
memory.
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.6. Special choices leading to Eqs. (1) and (2)

We restrict our attention to the small strain setting, the pecu-
iarities of which we have already recalled.

We choose ψ(Ht
;H(t)) with an additive structure ψ1(H) +

2(Ht ) and select

1(H) =
1
2
λ (sym∇u · I)2 + µ sym∇u · sym∇u

+
1
2
k1 (∇ν · I)2 + k2 sym∇ν · sym∇ν

+ k′

2 skw∇ν · skw∇ν

+ k3 (sym∇u · I) (∇ν · I)+ k′

3 sym∇ν · sym∇u

+
1
2
κ0 |ν|2 + η̂|ν|σ .

This is an isotropic energy. The derivation in terms of symmetry
group properties of its quadratic part is in Ref. [25]. From previous
relations and a choice of ψ2(Ht ) involving only the time integrals
of |∇u|2 and |ν|2, with λ1 and λ2 chosen as to satisfy relations (3)
that assure the positive definiteness of the energy, in small strain
regime we eventually get

P ≈ σ = λ (tr (sym∇u)) I + 2µsym∇u + k3 (tr∇ν) I

+ k′

3sym∇ν + ϵ∇u̇ − λ1

∫ t

0
ϖ (t − s)∇u(s)ds,

z ≈ za = κ0ν + ςν̇ − λ2

∫ t

0
ϖ̃ (t − s)ν(s)ds + η̂|ν|σ−1ν,

S ≈ Sa = k1 (tr∇ν) I + 2k2sym∇ν

+ 2k′

2skw∇ν + k3 (tr(sym∇u)) I
+ 2k′

2skw∇ν + k3 (tr(sym∇u)) I + k′

3sym∇u + δ∇ν̇

y inserting such structures in the balance equations, we get the
ystem (1)–(2) after setting ξ = λ+µ, ξ̄ = k3 +

1
2k

′

3, ζ = k2 + k′

2,
= k1+k2−k′

2, κ =
1
2k

′

3 . In deriving such constitutive structures
e also considered that the inequality zd · ν̇ ≥ 0, assumed to be
alid for any choice of ν̇, is compatible with zd = ςν̇, where ς
s a positive constant. We also set β‡

= 0 and admit a live load
= γ̃ ut . It has a regularizing role. However, we prove our result
resuming γ̃ ≥ 0, i.e., we include the (natural) case γ̃ = 0.
As far as we know, the existence result proven in the next

ections is the first one concerning the dynamics of complex bod-
es with memory, although in small strain setting and R3-valued
icrostructural descriptors.

. Functional preliminaries to the analysis of system (1)-(2)

We consider the spaces H :=
(
L2(B)

)3
∩ {(v · n)|∂B = 0}, and

:=
(
W 1,2(B)

)3
∩{(v ·n)|∂B = 0, and (curl v×n)|∂B = 0}, where

he conditions v ·n = 0 on ∂B and curl v×n = 0 on ∂B are meant,
espectively, in a weak sense. V ′ denotes the dual of V . The space
k is defined as Hk

:=
(
W k,2(B)

)3, k ∈ N, with norm ∥ · ∥k,2.
he norm in Lp spaces will be indicated by ∥ · ∥p. With ( · , · ) we
enote the L2-product while with ⟨ · , · ⟩ := ⟨ · , · ⟩V ′,V the duality
roduct.
For the sake of conciseness, we define F (w(t)) := (ϖ ∗w)(t) =

t
0 ϖ (t − s)w(s)ds and ∥curlw, divw∥

2
:= ∥curlw∥

2
+ ∥divw∥

2,
or w ∈ V ; also ∇̃ := div ⊕ curl , so that we write

(
∇̃v, ∇̃w

)
=

div v, divw) + (curl v, curlw) and (∇̃w, ∇̃w) = ∥∇̃w∥
2

=

curlw, divw∥
2, for v,w ∈ V .

A function ϖ = ϖ (t), 0 ≤ t ≤ T , is called a positive kernel
on L2(0, T ;H) (see, e.g., [26]), if∫ T(

F (w(t)), w(t)
)
dt =

∫ T∫ t

ϖ (t − s)
(
w(s), w(t)

)
ds dt
0 0 0

5

=

∫ T

0

∫ t

0

∫
B
ϖ (t − s)w(s) · w(t) dxdsdt ≥ 0 ,

(5)

for all w ∈ H and every T > 0. In the previous relation we left
understood the dependence on x, as we will do in the rest of the
paper, for the sake of conciseness.

More generally ([26, Lemma 2.6]), for ϖ ∈ L1(0, T ), and f , g ∈
2(0, T ) for some T > 0, we have∫ T

0
g2(t)

(∫ t

0
ϖ (t − s)f (s) ds

)2

dt

≤

(∫ T

0
|ϖ (t)| dt

)2 ∫ T

0
g2(t)f 2(t) dt .

(6)

Since we have taken it to be simply connected, there exists
> 0, only depending on 1 < p < +∞ and B, such that

∥∇v∥p ≤ C
(
∥div v∥p + ∥curl v∥p

)
, for all v ∈ Hp,

with v · n = 0 on ∂B,
(7)

ee [27, Theorem 3.2]. Moreover, the following Poincaré-like in-
quality holds: ∥v∥p ≤ C∥∇v∥p, for v ∈ Hp, with v · n =

on ∂B. It will be expedient to reconstruct the whole W 1,2-
orm for the displacement u.
We will omit dx in (most of) the space-integrals while we will

eep ds in the time dependent ones.

. Existence theorem

Let T > 0. A weak solution (u, ν) of (1)–(2) is meant as defined
y smooth compactly supported test functions in [0, T ] taking
alues in V , i.e., elements of C∞

0 ([0, T ]; V ) (see also [28]).

heorem 4.1. Take T > 0, u0, ν0 ∈ V , and u̇0 ∈ H. Then
ystem (1)–(2), with initial conditions u|t=0 = u0, ut |t=0 =

˙0, ν|t=0 = ν0 on B, and boundary conditions (4), admits a unique
eak solution (u, ν) such that u, ν ∈ L∞(0, T ; V ), ut ∈ L∞(0, T ;H),
tt ∈ L2(0, T ; V ′), and νt ∈ L2(0, T ;H).

The proof follows below.

.1. Energy estimates

First, proceed formally, with the aim of adopting later a suit-
ble Galerkin’s scheme. By testing in L2(B) Eq. (1) with ut , inte-
ration by parts and conditions (4) lead to
ρ

2
d
dt

∥ut∥
2
+
µ

2
d
dt

∥curl u∥2
+
µ+ ξ

2
d
dt

∥div u∥2

+ γ̃ ∥ut∥
2
− λ1

(
(ϖ ∗ ∇̃u)(t), ∇̃ut (t)

)
= −(κ + ξ̄ )

(
div ν, div ut

)
− κ

(
curl ν, curl ut

)
.

ime integration for t ∈ [0, τ ] implies
ρ

2
∥ut (τ )∥2

+
µ

2
∥curl u(τ )∥2

+
µ+ ξ

2
∥div u(τ )∥2

+ γ̃

∫ τ

0
∥ut (s)∥2ds − λ1

∫ τ

0

∫ t

0

(
ϖ (t − s)∇̃u(s), ∇̃ut (t)

)
dsdt

= K0 − κ

∫ τ

0

(
div ν, div ut

)
ds − κ

∫ τ

0

(
curl ν, curl ut

)
ds

− ξ̄

∫ τ

0

(
div ν, div ut

)
ds ≜ K0 +

3∑
i=1

Ii(τ ),

(8)

here K0 =
ρ

2 ∥u̇0∥
2
+

µ

2 ∥curl u0∥
2
+

µ+ξ

2 ∥divu0∥
2. Since ϖ (t) =

γ̌ e−δt , for the last term on the left-hand side of Eq. (8), we
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ompute∫ τ

0

∫ t

0

(
ϖ (t − s)∇̃u(s), ∇̃ut (t)

)
dsdt

= −

∫ τ

0

∫ τ

s

(
ϖ (t − s)∇̃u(s), ∇̃ut (t)

)
dtds

=

∫ τ

0

∫ τ

s

(
∂t (ϖ (t − s)∇̃u(s)), ∇̃u(t)

)
dtds

−

∫ τ

0

(
ϖ (t − s)∇̃u(s), ∇̃u(t)

)⏐⏐⏐t=τ
t=s

ds

= −δ

∫ τ

0

∫ τ

s

(
ϖ (t − s)∇̃u(s), ∇̃u(t)

)
dtds

−

∫ τ

0

(
ϖ (τ − s)∇̃u(s), ∇̃u(τ )

)
ds +

∫ τ

0
∥∇̃u(s)∥2ds ,

(9)

so that, from Eq. (8), we find

ρ

2
∥ut (τ )∥2

+
µ

2
∥curl u(τ )∥2

+
µ+ ξ

2
∥div u(τ )∥2

+ γ̃

∫ τ

0
∥ut (s)∥2ds + λ1

∫ τ

0
∥∇̃u(s)∥2ds

= K0 +

3∑
i=1

Ii(τ ) + λ1δ

∫ τ

0

∫ τ

s

(
ϖ (t − s)∇̃u(s), ∇̃u(t)

)
dtds

+ λ1

∫ τ

0

(
ϖ (τ − s)∇̃u(s), ∇̃u(τ )

)
ds

(10)

By setting Ĩ(u(τ )) :=
∫ τ
0

∫ τ
s

(
ϖ (t − s)∇̃u(s), ∇̃u(t)

)
dtds, we also

have

Ĩ(u(t)) =

∫ τ

0

∫ t

0

(
ϖ (t − s)∇̃u(s), ∇̃u(t)

)
dsdt

≤

(∫
B

∫ τ

0

(∫ t

0
ϖ (t − s)∇̃u(s) ds

)2

dt

) 1
2 (∫ τ

0
∥∇̃u(s)∥2ds

) 1
2

≤

(∫ τ

0
∥ϖ ∗ ∇̃u(s)∥2ds

) 1
2
(∫ τ

0
∥∇̃u(s)∥2ds

) 1
2

≤

∫ τ

0
ϖ (s)ds

∫ τ

0
∥∇̃u(s)∥2ds ≤

γ̌

δ

∫ τ

0
∥∇̃u(s)∥2ds,

(11)

after exploiting the Cauchy–Schwarz and Hölder inequalities, the
inequality (6) with g = 1 and f = ∇̃u, and the kernel structure.
Similarly, by setting Î(u(τ )) := λ1

∫ τ
0

(
ϖ (τ − s)∇̃u(s), ∇̃u(τ )

)
ds,

we compute

Î(u(t)) ≤ λ1∥∇̃u(τ )∥
∫ τ

0
ϖ (τ − s)∥∇̃u(s)∥ds

≤ λ1 sup
0≤t≤τ

∥∇̃u(t)∥2
∫ τ

0
ϖ (s)ds ≤

λ1γ̌

δ
sup
0≤t≤τ

∥∇̃u(t)∥2.

(12)

y inserting these last two results in the inequality (10), since
ˇ < 1, we get

ρ

2
∥ut (τ )∥2

+
µ

2
∥curl u(τ )∥2

+
µ+ ξ

2
∥divu(τ )∥2

+ γ̃

∫ τ

0
∥ut (s)∥2ds + λ1(1 − γ̌ )Ĉ

∫ τ

0
∥∇u(s)∥2ds

≤ K0 +

3∑
Ii(τ ) +

λ1γ̌

δ
sup ∥∇̃u(t)∥2,

(13)
i=1 0≤t≤τ R

6

on the basis of the identity (7), and Ĉ > 0 is a suitable constant.
The inequality implies

ρ

2
sup
0≤t≤τ

∥ut (t)∥2
+
(µ
2

−
λ1γ̌

δ

)
sup
0≤t≤τ

∥∇̃u(t)∥2

+ γ̃

∫ τ

0
∥ut (s)∥2ds + λ1(1 − γ̌ )Ĉ

∫ τ

0
∥∇u(s)∥2ds ≤ K0 +

3∑
i=1

Ii(τ ),

(14)

where µ > 2λ1γ̌ /δ thanks to the assumed constitutive restric-
tions (3).

Also, by testing Eq. (2) with νt in L2(B), we get

ς∥νt∥
2
+
κ0

2
d
dt

∥ν∥2
+
ζ

2
d
dt

∥curl ν∥2
+
ζ + γ

2
d
dt

∥div ν∥2

+
η̂

σ + 1
d
dt

∥ν∥σ+1
σ+1 − λ2

∫ t

0

(
ϖ (t − s)ν(s), νt (t)

)
ds

= −κ

∫
B
divu · div νt − κ

∫
B
curl u · curl νt − ξ̄

∫
B
div u · div νt .

subsequent integration on [0, τ ] and analogous calculations to
hose implying relation (9) give∫ τ

0
∥νt (s)∥2ds +

κ0

2
∥ν(τ )∥2

+
ζ

2
∥curl ν(τ )∥2

+
ζ + γ

2
∥divν(τ )∥2

+
η̂

σ + 1
∥ν∥σ+1

σ+1 + λ2

∫ τ

0
∥ν(s)∥2ds

≤ λ2δ

∫ τ

0

∫ t

0

(
ϖ (t − s)ν(s), ν(t)

)
ds

+ λ2

∫ τ

0

(
ϖ (τ − s)ν(s), ν(τ )

)
ds + L0 +

3∑
i=1

Ji(τ ),

(15)

here L0 =
κ0
2 ∥ν0∥

2
+

ζ

2∥curl ν0∥2
+

ζ+γ

2 ∥divν0∥2
+ ∥ν0∥

σ+1
σ+1. For

he memory terms on the right-hand side, proceeding as for the
nequalities (11)–(12), we have∫ τ

0

∫ t

0

(
ϖ (t − s)ν(s), ν(t)

)
ds dt +

∫ τ

0

(
ϖ (τ − s)ν(s), ν(τ )

)
ds

≤ γ̌

∫ τ

0
∥ν(s)∥2 ds +

γ̌

δ
sup
0≤t≤τ

∥ν(t)∥2.

irect calculations (see [28, §3]) give
3

i=1

(
Ii(τ ) + Ji(τ )

)
≤ κ∥curl u(τ ), curl ν(τ )∥2

+(κ + ξ̄ )∥div u(τ ), div ν(τ )∥2
+ R0,

(16)

ith R0 = κ
⏐⏐(curl u0, curl ν0)

⏐⏐ + (κ + ξ̄ )
⏐⏐(div u0, div ν0)

⏐⏐. On the
asis of such two last estimates, under the assumptions (3), by
umming the inequalities (14), (15), and taking the supremum
ver [0, τ ], we get

ρ

2
sup
0≤t≤τ

∥ut (t)∥2
+

(
µ

2
−
λ1γ̌

δ
− κ − ξ̄

)
sup
0≤t≤τ

∥∇̃u(t)∥2

+

(
ζ

2
− κ − ξ̄

)
sup
0≤t≤τ

∥∇̃ν(t)∥2
+

(
κ0

2
−
λ2γ̌

δ

)
sup
0≤t≤τ

∥ν(t)∥2

+
η̂

σ + 1
sup
0≤t≤τ

∥ν∥σ+1
σ+1 + γ̃

∫ τ

0
∥ut (s)∥2ds + ς

∫ τ

0
∥νt (s)∥2ds

+ C1

∫ τ

0
∥ν(s)∥2 ds + C2

∫ τ

0
∥∇u(s)∥2ds ≤ K0+ L0+ R0,

here Ci = λi
(
1 − γ̌

)
Ĉ > 0, i = 1, 2 (see (13)), while K0, L0, and

are defined by the formulas (8), (15), and (16).
0
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.1.1. Estimate for utt
The L2(B)-product of (1) with test φ ∈ V and time integration

n (s, τ ), with 0 < s < τ < T , lead to∫ τ

s
⟨utt , φ⟩dt

⏐⏐⏐⏐ ≤ C̄
(
(τ − s) +

∫ τ

s
∥ut (t)∥2dt

+

∫ τ

s

(
∥∇̃u(t)∥2

+ ∥∇̃ν(t)∥2)dt +

∫ τ

s
∥ϖ ∗ ∇̃u(t)∥2dt

)
∥φ∥1,2

where C̄ = C̄(δ, λ1, µ, κ, ξ, ξ̄ ) and ∥ϖ ∗ ∇̃u(t)∥2
= ∥ϖ ∗

div u(t),ϖ ∗ curl u(t)∥2
= ∥ϖ ∗ div u(t)∥2

+ ∥ϖ ∗ curl u(t)∥2,
because for the memory term we have

⏐⏐ ∫ τ
s ⟨F (∇̃u(t)), ∇̃φ⟩dt

⏐⏐ ≤

c∥φ∥1,2
∫ τ
s ∥ϖ ∗ ∇̃u(t)∥dt , c > 0. Thus, by following the same

path adopted above, we can conclude that utt ∈ L2(s, τ ; V ′).

4.1.2. Nonlinearity
Here, B(ν) = η̂|ν|σ−1ν, 2 ≤ σ ≤ 3, defines a locally Lipschitz

operator from V to H . For w, w̃ ∈ V , we have

∥B(w) − B(w̃)∥2

≤ C∥(|w|
σ−1

− |w̃|
σ−1)w∥

2
+ C∥|w̃|

σ−1(w − w̃)∥2

≤ C∥w∥
2
6∥|w|

σ−1
− |w̃|

σ−1
∥
2
3 + C∥|w̃|

σ−1
∥
2
3∥w − w̃∥

2
6

≤ C∥w∥
2
1,2

(
∥|w|

σ−2
∥
2
6 + C∥|w̃|

σ−2
∥
2
6

)
∥w − w̃∥

2
6

+ C∥w̃∥
2(σ−1)
3(σ−1)∥w − w̃∥

2
1,2

≤ C∥w∥
2
1,2

(
∥w∥

2(σ−2)
6(σ−2) + ∥w̃∥

2(σ−2)
6(σ−2)

)
∥w − w̃∥

2
6

+ C∥w̃∥
2(σ−1)
3(σ−1)∥w − w̃∥

2
1,2

≤ C
[
∥w∥

2(σ−1)
1,2 + ∥w∥

2
1,2∥w̃∥

2(σ−2)
1,2 + ∥w̃∥

2(σ−1)
1,2

]
∥w − w̃∥

2
1,2,

(17)

after exploiting Hölder’s and Gagliardo–Nirenberg’s inequalities
(both 3(σ − 1) ≤ 6 and 6(α − 2) ≤ 6 are satisfied) along with
|xq − yq| ≤ Cq

(
|x|q−1

+ |y|q−1)
|x − y|, for any x, y ≥ 0, q ≥ 1, and

C > 0.

4.2. Galerkin approximation scheme

We need a sequence {ωk}k∈N ⊂ H2
∩ {(v · n)|∂B = 0, and

(curl v × n)|∂B = 0}, which is a complete orthogonal basis of
H (for the classical version of the argument adopted here, see,
e.g., Ref. [29]). To get {ωk}k we make use of the Helmholtz–Leray
decomposition. So, after setting ω = ωk, we write ω = v + ∇q,
with div v = 0, and we determine v and q as solutions of the
following auxiliary eigenvalue problems:
−µ∆v = λv in B, div v = 0 in B,

curl v × n = 0 on ∂B, v · n = 0 on ∂B,
(18)

and

− µ∆2q = λ̌∆q in B, ∇q · n = 0 on ∂B, q = 0 on ∂B. (19)

According to a result in Ref. [30, Theorem 3.3], system (18) admits
sequence of eigenfunctions {vk}k ⊂ H2

∩ {div v = 0 in B, (v ·

n)|∂B = 0, and (curl v×n)|∂B = 0} that is a complete orthogonal
basis for

(
L2(B)

)3
∩ {div v = 0 in B and (v · n)|∂B = 0}. Also,

from the weak formulation of the second system (19), and the
variational spectral theory, we have a sequence of eigenfunctions
{qk}k ⊂ W 2,2

∩ {p|∂B = 0, and (∇p · n)|∂B = 0} that is a
complete orthogonal basis for W 1,2(B) ∩ {p|∂B = 0} (see for a
similar case [31, Problem (2.8)]). Since ∇qk · n = 0 on ∂B, the
sequence {∇qk}k is a basis for H1

∩ {w = ∇p, (w · n)|∂B =

0} and, clearly, curl (∇qk) = 0. As a consequence, {(vk,∇qk)}k
is the desired sequence {ωk}k, with ωk = vk + ∇qk, k ∈ N.
We define X := span{ω , . . . , ω } and indicate by P the
m 1 dm m

7

orthogonal projection from V on Xm. Analogously, but considering
the Helmholtz equation, i.e. −ζ∆ν+κ0ν = σ̌ ν, in place of the first
equation in (19), we introduce the set {ϑr}r∈N ⊂ H2

∩{(v ·n)|∂B =

0, and (curl v × n)|∂B = 0} that is a complete orthogonal basis
of H . Define Ym := span{ϑ1, . . . , ϑδm} and indicate by Πm the
orthogonal projection from V over Ym. We look for um(t, x) =

dm
i=1 d

m
i (t)ωi(x) and νm(t, x) =

∑δm
j=1 e

m
j (t)ϑj(x), which are, for

(ωk, ϑr ) ∈ Xm × Ym, 1 ≤ k ≤ dm, 1 ≤ r ≤ δm, and t ∈ [0, T ],
olutions of the system of ordinary differential equations∫

B
um
tt · ωk + γ̃

∫
B
um
t · ωk + µ

∫
B
div um div ωk

+ (µ+ ξ )
∫
B
curl um

· curl ωk − λ1

∫
B
(ϖ ∗ ∇̃)um

· ∇̃ωk

= −κ

∫
B
div νm div ωk − κ

∫
B
curl νm · curlωk

− ξ̄

∫
B
div νm div ωk,

(20)

∫
B
νmt · ϑr + κ0

∫
B
νm · ϑr + ζ

∫
B
curl νm · curlϑr

+ (ζ + γ )
∫
B
div νmdivϑr − λ2

∫
B
(ϖ ∗ νm) · ϑr

+ η̂

∫
B

|νm|
σ−1

νm · ϑr

= −κ

∫
B
curl um

· curl ϑr − κ

∫
B
div umdiv ϑr − ξ̄

∫
B
div umdivϑr .

(21)

Since B(ν) = η̂|ν|σ−1ν is locally Lipschitz (see (17)), the system
(20)–(21) has a unique solution (um, νm): Existence is due to
Carathéodory’s theorem and uniqueness follows from Picard’s
theorem.

4.2.1. Existence and uniqueness of weak solutions to the system (1)
–(2)

By using a compactness argument in the style of the Aubin–
Lions lemma along with the energy estimates for the Galerkin
scheme provided in the previous section, we can extract a sub-
sequence (still labeled by (um, νm)) such that

um
→ u in L2(0, T ;H), L∞(0, T ; V )weak⋆ , L2(0, T ; V )weak;

um
t → ut in L∞(0, T ;H)weak⋆ , L2(0, T ;H)weak,

um
tt → utt in L2(0, T ; V ′)weak; νmt → νt in L2(0, T ;H)weak,

m
→ ν in L2(0, T ;H), Lp(0, T ; Lp), L∞(0, T ;H)weak⋆ ,

Lσ+1(0, T ; Lσ+1)weak, L2(0, T ; V )weak,

ith 1 < p < σ +1. When not specified, it is understood that the
onvergence is strong (see, e.g., [28,29,32]). Then, it is possible to
ompute a limit in the Galerkin’s formulation (20)–(21).
The limiting pair (u, ν) actually satisfies the weak formulation

f system (1)–(2). Indeed, it is sufficient to check the memory
erms and the nonlinear term in (2); for the others we exploit
consequence of the above convergence types. Since um

→ u in
2(0, T ; V )weak, for any φ ∈ L2(0, T ; V ), fixing τ ∈ [0, T ], we have∫ τ

0

(
ϖ ∗ ∇̃um(t), ∇̃φ(t)

)
dt = γ̌

∫ τ

0

∫ τ

s

(
eδs∇̃um(s), e−δt

∇̃φ(t)
)
dtds

= γ̌

∫ τ

0

(
∇̃um(s), eδs

∫ τ

s
e−δt

∇̃φ(t)dt
)
ds

−→
m→∞

γ̌

∫ τ

0

(
∇̃u(s), eδs

∫ τ

s
e−δt

∇̃φ(t)dt
)
ds

=

∫ τ(
ϖ ∗ ∇̃u(t), ∇̃φ(t)

)
dt,
0
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ecause
∫ τ
s e−δ(t−s)

∇̃φ(t)dt ∈ L2(0, τ ;H). Consider τ = T . Jensen’s
inequality and a slight modification of the estimate (6) (see
[26, Proof of Lemma 2.6]), with g = 1 and f = ∥∇̃u∥, imply∫ T

0

∫
B

(∫ T

s
e−δ(t−s)

∇̃φ(t)dt
)2

dxds

≤

∫ T

0

(∫ T

0
e−δ(t−s)

∥∇̃φ(t)∥dt
)2

ds

≤

(∫ T

0
eδtdt

)2 ∫ T

0
∥∇̃φ(t)∥2dt.

Similarly, we have
∫ τ
0

(
ϖ ∗νm(t), ψ(t)

)
dt →

∫ τ
0

(
ϖ ∗ν(t), ψ(t)

)
dt

as m → ∞, for ψ ∈ L2(0, T ; V ). Since tests in the weak
formulation are taken in C∞

0 ([0, T ]; V ), the previous requirements
are satisfied.

For 0 ≤ τ ≤ T , and ψ ∈ C∞

0 ([0, T ]; V ) ⊂ L2(0, T ; V ) ∩

Lσ+1(0, T ; Lσ+1(B)) we also have∫ τ

0

(
B(νm) − B(ν), ψ

)
dt =

∫ τ

0

((
|νm|

σ−1
− |ν|σ−1)νm, ψ)dt

+

∫ τ

0

(
νm − ν, |ν|σ−1ψ

)
dt = Im1 + Im2 −−→

m→∞

0,

since Im2 → 0, as m → 0, due to weak convergence of νm → ν in
Lσ+1(0, T ; Lσ+1) and the inclusion |ν|σ−1ψ ∈ Lσ+1(0, T ; Lσ+1(B)),
which holds for ψ ∈ Lσ+1(0, T ; Lσ+1(B)). Also, by taking 2 < p <
σ + 1, we get

Im1 ≤ C
∫ τ

0

∫
B

⏐⏐|νm| − |ν|
⏐⏐(|νm|

σ−2
+ |ν|σ−2)

|νm||ψ | dxdt

≤ C
∫ τ

0

∫
B

⏐⏐|νm| − |ν|
⏐⏐(|νm|

σ−1
+ |ν|σ−1)

|ψ | dxdt

≤ ∥νm − ν∥Lp(0,T ;Lp)

(∫ τ

0

∫
B

(
|νm|

(σ−1)p
p−1 |ψ |

p
p−1

+|ν|
(σ−1)p
p−1 |ψ |

p
p−1
)
dxdt

) p−1
p

−−→
m→∞

0,

(22)

ue to the strong convergence of νm → ν in Lp(0, T ; Lp(B)) and
ecause, for 4/3 < p/(p − 1) < 2 and 1 ≤ σ − 1 ≤ 2, the
econd integral factor on the right-hand side of inequality (22) is
ounded. In fact, we have∫ τ

0

∫
B

|νm|
(σ−1)p
p−1 |ψ |

p
p−1 dxdt ≤ C

∫ τ

0

∫
B
(1 + |νm|

4)(1 + |ψ |
2)dxdt

≤ C
∫ τ

0

(∫
B
(1 + |νm|

6)dx
) 2

3
(∫

B
(1 + |ψ |

6)dx
) 1

3

dt,

nd the conclusion follows by using the embedding W 1,2(B) ↪→
6(B), and the regularity of νm and ψ . For the term involving ν
he calculations are analogous.

.3. The key step for uniqueness

Uniqueness of the weak solution follows directly by using the
ame argument in Ref. [28]. It requires a suitable estimate for the
onlinear term in (2). Let (u, ν) and (ũ, ν̃) be two solutions with
he same initial data. Take the system (1)–(2) for the differences
u− ũ, ν− ν̃) and use as test functions, in the L2-norm, ut − ũt and
t − ν̃t . We obtain inequalities of type (14)–(15) for (u− ũ, ν− ν̃)
nd uniqueness comes from an application of Gronwall’s lemma.
e must control, however, the nonlinear term. To this aim we
8

an use the following inequality (see also [33]):∫
B

(
|ν|α−1ν − |ν̃|

α−1
ν̃
)
· (νt − ν̃t )

⏐⏐⏐⏐
≤ C

∫
B

(
|ν|α−1

+ |ν̃|
α−1)

|ν − ν̃||νt − ν̃t |

≤ C∥|ν|α−1
+ |ν̃|

α−1
∥3∥ν − ν̃∥6∥νt − ν̃t∥

≤ C
(
∥ν∥L∞(0,T ;V ) + ∥ν̃∥L∞(0,T ;V )

)
∥∇(ν − ν̃)∥∥νt − ν̃t∥

≤ Cε(T )∥∇̃(ν − ν̃)∥2
+ ε∥νt − ν̃t∥

2 ,

hich rests on Hölder’s and Young’s inequalities, the embedding
1,2(B) ↪→ L6(B), the assumption on σ that implies 3(σ−1) ≤ 6,

he estimate (7), and Poincaré’s inequality. Here ε > 0 is small
nough in order to control ε∥νt − ν̃t∥

2 and reabsorb it on the
ight-hand side (15) written for ν − ν̃.
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