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Abstract 

The building sector is one of the most resource-intensive 

and carbon-intensive sectors in the European Union and 

globally. Reliable building performance data are essential 

for providing the evidence needed in the design of energy 

efficiency interventions and planning of decarbonisation 

strategies for the existing stock. Indeed, the development of 

effective solutions aimed at lowering energy consumption, 

emissions and costs in existing buildings is an open 

challenge where actual performance characterisation is 

crucial. The normalisation of measured energy 

consumption with respect to weather and usage patterns 

may be performed in a straightforward and scalable manner 

leveraging state-of-the-art approaches that can, in turn, be 

linked to more detailed simulation techniques and used to 

inform both design and operational decisions. In this study, 

10 public buildings in the Italian city of Melzo were 

analysed and modelled to address the above-mentioned 

challenges while streamlining and partially automating the 

process of building stock digitalisation. 

Introduction 

Data-driven building energy modelling methods that use 

machine-learning techniques have been shown to be useful 

in a variety of applications (Hong et al., 2020), from design 

(Westermann and Evins, 2019) to operation (Manfren et al., 

2020b). As a result, they have the potential to become a key 

tool for accelerating the ongoing process of building stock 

decarbonisation  (Norton et al., 2021) as well as an integral 

part of innovative services and technologies (Manfren et al., 

2021a), where digitalisation is a key component. 

Nonetheless it is challenging to introduce data-driven 

methods effectively and reliably in the process of digital 

transformation of built environment. Establishing a robust 

baseline data-driven energy model using measured energy 

consumption (with data collected on a continuous basis) at 

the whole facility or sub-facility/sub-meter level over a 

given period and calibrating (Chong et al., 2021) 

simulations of the energy consumption using more detailed 

tools, for example, is a challenging task in and of itself and 

becomes even more daunting if this is not done using a 

simple, interpretable, and reproducible methodology.  

For this reason, in this research, regression models trained 

on measured building energy consumption are used in 

combination with simulated building performance to 

highlight the potential use of (interpretable) data-driven 

methods with more detailed simulation techniques. A 

cohort of 10 public buildings located in Melzo, which is a 

town in the northern Italian province of Milan, was selected 

as a test. The goal of this research was testing a way to 

streamline and making the energy model calibration process 

more robust, considering the evidence collected in previous 

research and the request from the public administration, 

described in the background and motivation section 

hereafter. 

Background and motivation 

This article is the result of a multi-year research contract 

between Politecnico di Milano (ABC Department) and the 

Melzo Municipal Administration. The primary objective of 

the study is the digitalisation of a portion of the municipal 

existing building stock, and the study's title is “Informative 

Modeling of the Real Estate Assets for Strategic Planning 

and Programming of Energy Retrofit Interventions and 

Redevelopment of the Built Environment”. Politecnico di 

Milano research group has carried out the following 

activities: 

1. Survey and acquisition of available information 

(building geometry, construction technology, building 

services, energy consumption, etc.). 

2. Verification of the adequacy of the spaces in 

accordance with current legislation (school 

construction, fire protection, accessibility, state of 

conservation). 

3. Creation of a simplified model for calculating energy 

performance that can be used to hypothesise targeted 

retrofit interventions, connected to an economic 

analysis, and validated with dynamic simulations.  

4. Creation of simplified BIM models to be used as a 

single digital archive of building information to 

support technical evaluation. 

5. Development of an electronic building dossier that 

collects and organises the documentation supplied to 

the BIM model of each building. 

 

The research procedure involved 21 structures, such as 

schools, libraries, town halls, theatres, senior centres, 

bowling alleys, youth centres, sports centres, and gyms, 

among others. The experimental work reported in this 

study, which considers a group of 10 buildings for brevity, 

does not include all the buildings. Regarding point 3, 

different computation methods have been employed over 

the duration of the research, and some of them have been 

abandoned as unsuitable (due to time, effort, and cost 

constraints). One of the goals of the digitalisation process is 

to provide useful analytics regarding buildings' energy 



consumption and costs, so that the administration can 

allocate funds appropriately. The strategy can be 

periodically revised in light of the evolution of the building 

stock. The most recent iteration of the modelling approach 

proposed in relation to point 3 mentioned above requires 

few input data and is structured based on measured 

consumption; the work presented here aims to expand this 

concept with data-driven methods to support and streamline 

the calibration process further in its development, in 

relation to the integration of simple baseline data-driven 

energy models to be used in combination with more detailed 

dynamic simulation tools. 

Literature review 

Providing the administration with the ability to allocate 

financial resources for efficiency measures appropriately is 

among the goals of the project; hence, the concept of 

structuring the modelling tools around measured energy 

performance is crucial. However, due to the dynamic 

variability of operational conditions, metered energy 

consumption must be normalised by weather and other 

factors affecting operation (occupancy, periods of 

operation, etc.). 

This part of the energy modelling workflow is frequently 

indicated as baseline energy modelling and it is indeed 

crucial also in the case of building retrofit because it 

guarantees the correct estimation of the energy performance 

better retrofit and the related costs (Manfren et al., 2022b). 

Multiple techniques can be used for this purpose and have 

been reviewed recently by (Grillone et al., 2020) and 

(Alrobaie and Krarti, 2022). Focusing on data-driven 

methods (Fu et al., 2021) indicated how, over the years, a 

large part of researchers and analysts have continued to 

prefer piecewise linear (change-point, segmented) 

regression models using outdoor air temperature as an 

independent variable and additional variables to subset data 

with respect to operation modes. Further, as shown by 

(Afroz et al., 2021), other techniques may outperform 

piecewise linear regression, but regression is more 

insightful do to its interpretability (ISO/IEC, 2020). This 

issue has been reviewed by (Chen et al., 2023), indicating 

the issue of “ante-hoc” (or intrinsic) and “post-hoc” 

interpretability. Piecewise linear models are intrinsically 

(ante-hoc) interpretable, so they are the preferred approach 

in this case, if they respect the criteria for model 

acceptability specified later in this section. 

The starting point for the analysis of measured energy 

consumption is the consolidated variable-based degree-

days regression, originally proposed by Kissock et al. in the 

Inverse Modeling Tool (IMT) (Kissock et al., 2003) which 

has been included in standard ASHRAE 14:2014 

(ASHRAE, 2014) and has been steadily evolving with 

different algorithmic formulations, that offer some benefits 

in relation, for example, to the improved scalability 

(temporal and spatial) of the modelling approaches 

(Manfren et al., 2021b), and to the possibility to be used 

across different phases of the building life cycle (Manfren 

et al., 2020b). 

At the same time, regression-based formulations could 

enable the approximate physical interpretation of the 

quantities estimated (Rasmussen et al., 2020; Tronchin et 

al., 2019), including components of the building energy 

balance energy balance's components (Vesterberg et al., 

2016a, 2016b). Further, as demonstrated by (Pistore et al., 

2019; Westermann et al., 2020), building energy data can 

also be used effectively in unsupervised learning 

workflows, for instance to cluster the behaviour of 

buildings with respect to a set of characteristics, and as a 

function of outdoor air temperature, which is inherent to the 

process of weather normalisation (Fazeli et al., 2016) and 

can be easily interpreted graphically. Normalisation with 

respect to occupancy can also be considered; however, this 

variable is rarely recorded, and higher resolution data 

techniques typically enable automated detection of 

occupied hours based on electricity consumption, such as 

the Time Of Week and Temperature (TOWT) regression 

algorithm (Borgeson, 2013; Mathieu et al., 2011; Price, 

2010). In a more simplistic way, dummy variables can be 

introduced to differentiate between days of the week (daily 

interval models), or months/seasons (monthly interval 

models). 

Methodology 

Overall, the purpose of this study is to support and simplify 

the process of building energy model calibration (Chong et 

al., 2021) using as a starting point a regression-based 

method which is employed for the normalization of 

measured energy consumption and originates from the 

Inverse Modeling Tool (IMT) (Kissock et al., 2003), now 

included in standard ASHRAE 14:2014 (ASHRAE, 2014). 

However, differently from its original implementation, in 

this paper energy signature is used (i.e. energy divided by 

the number of operating hours in the time interval of the 

analysis, corresponding to an average power), as defined in 

ISO 16346 (‘ISO 16346:2013). Further, data are scaled by 

building size (gross volume and net floor area) as indicated 

later in this section. Finally, the methods implemented use 

a piecewise linearization technique (Lin et al., 2013) 

employing dummy variables to tackle nonlinearity and 

change points, as shown in related research (Manfren et al., 

2022a). The proposed changes compared to the standard 

approach are aimed at simplifying the process of model 

fitting that can be applied to a heterogeneous stock of 

buildings, while retaining "interpretability" (ISO/IEC, 

2020), i.e. the possibility to be easily understood in human 

terms. Following are further details regarding model 

construction and calibration. 

Data-driven building performance analysis & building 

performance simulation 

The proposed method is designed for the analysis of 

existing buildings with heterogeneous characteristics and 

end-uses for which specific information that can be used in 

building energy modelling is lacking. In previous phases of 

the study, the usage of detailed and complex simulation 

models was deemed too time-consuming and expensive in 

relation to the goals of the public administration. A 

combination of regression-based data-driven 

methodologies and simplified dynamic simulations has 

been applied in the research to avoid the shortcomings of 

using excessively detailed and unsuitable modelling 



approaches. Recent research on this topic has shown 

promising results in terms of quantification of savings due 

to energy efficiency measures (Grillone et al., 2020; 

Manfren et al., 2020a) and, more generally, the use of 

whole-building statistical energy consumption models (Fu 

et al., 2021) to aid in decision-making processes.  

As indicated before, the building stock considered is 

heterogeneous and, for this reason, energy signature data 

are divided by gross volume as shown in research by 

(Tronchin et al., 2016) and (Pistore et al., 2019). In general, 

by scaling the quantities in this way it become easier to 

visualise energy signature across different sets of building 

as will be shown in the results and discussion section. In 

general, this approach is suitable in combination with 

archetypes (representing average statistical buildings) and 

supervised modelling techniques (Pasichnyi et al., 2019) as 

well as less “structured” data and unsupervised techniques 

(Westermann et al., 2020) to find clustering, or eventually 

a combination of unsupervised and supervised techniques 

(Lumbreras et al., 2023). 

Another fundamental advantage of energy signature 

analysis is its ability to leverage approximated physical 

interpretation of slopes and intercepts in the model 

(Rasmussen et al., 2020), or even approximations of energy 

balance's components (Vesterberg et al., 2016a, 2016b). 

Considering both the thermal transmittance of the envelope 

(opaque and transparent) and infiltration/natural ventilation 

air-change rates, the interpretation of the regression slope is 

crucial to determining the heat transfer coefficient of the 

building. Even though these building parameters can be 

measured in situ, this cannot be done economically at scale, 

so approximations are used to estimate them from energy 

metered and weather data (Manfren and Nastasi, 2019), 

resulting inherently in a higher level of uncertainty 

regarding the estimated quantities. 

Following these considerations, regression models used in 

the research are a modified version of the 3-parameter 

model described in (ASHRAE, 2014), but the constant term 

(i.e. base load) has been eliminated. The presence of a 

consumption equal to zero in certain months (e.g. summer 

months, since we are modelling metered heating services) 

is handled by using dummy variables (0-1 binary variables) 

used as interaction terms, as shown in previous research 

(Manfren et al., 2022a). The binary variables multiply the 

original variables and enable to “turn on and off” the 

independent variable when necessary. Two types of models 

are tested, type 1 and type 2, whose formulas are reported 

in Table 1. 

 
Table 1: Formulation of regression models 

Mode 

type 

Model 

formula 
 

1 𝑞ℎ = 𝑎0(𝑋ℎ) + 𝑎1(𝑋ℎ𝜃𝑒) + 𝜀ℎ (1) 

2 𝑞ℎ = 𝑎0(𝑋ℎ) + 𝑎1(𝑋ℎ𝜃𝑒) +∑𝑏𝑗𝑚𝑗

𝑛−1

𝑗=1

+ 𝜀ℎ (2) 

 

In the first case the independent variable is outdoor air 

temperature, in the second case the independent variables 

are outdoor air temperature and an additional dummy 

variable corresponding the month of the year, used 

essentially to detect seasonality in the behaviour (Hyndman 

and Athanasopoulos, 2018), depending on different months 

of the year. 

In both cases, the dependent variables are the energy 

signatures calculated from the monitored heating energy 

consumption and divided by building gross volume, as will 

be illustrated later in relation to the case study. The 

calculation of statistical indicators reported later clear 

excluded the time intervals when consumption is equal to 

zero (e.g. summer months) and output solutions are 

constrained to be positive, because small negative values 

can be calculated sometimes near to the change-point, but 

clearly they have no physical meaning. 

The diagram in Figure 1 illustrates the two different parts 

of the workflow, the one involving measured data (top) and 

the one involving simulated data (bottom). Regression 

(model training) is used to normalize performance and, if 

the model is within the calibration limits reported at the end 

of this Section (model evaluation), can make measured and 

simulated data correctly comparable (model prediction). 

The difference between measured and simulated 

(normalized) results can inform the calibration process (as 

a feed-back loop), leveraging basic interpretability (e.g. 

slope and balance-point of the regression model) or more 

detailed physical interpretation of quantities, as indicated 

before. 

 

Figure 1: Modelling workflow diagram 

Calibration criteria for models’ acceptability 

Table 2 provides the acceptability thresholds for regression 

models calibrated with monthly data, as suggested by 

Measurement and Verification (M&V) protocol ASHRAE 

14:2014 (ASHRAE, 2014), considered as reference.  

Table 2 – Model calibration criteria, ASHRAE Guidelines 

14:2014 

Data interval Metric Threshold 

Monthly NMBE ±5 % 

 Cv(RMSE) 15 % 

 

Similar thresholds can be found in other protocols such as 

Efficiency Value Organization (EVO) by IPMVP (EVO, 



2003) and Federal Energy Management Program (FEMP) 

(FEMP, 2008). This demonstrates that the calibration 

criteria employed in this study are well established and 

based on empirical methodologies, i.e. the measured energy 

consumption and monitored operational conditions. 

Case study 

The case study consists of 10 public buildings in Melzo, 

which is located in the northern Italian province of Milan. 

These buildings were picked from a broader group of 

facilities that have been examined as part of the research. 

The essential building facts are displayed in Table 3, 

including the building's name, end use, gross floor area, and 

net floor area. 

 
Table 3: Summary data for the case study buildings 

N. Building name End-use 
Net floor 

area 

Gross 

volume 

   m2 m3 

1 Bocciodromo Sport facilities 610 4510 

2 Mensa Catering 1015 5285 

3 Centro Anziani Public spaces 1355 6440 

4 Centro Giovani Public spaces 720 3555 

5 Casa 

Associazioni 

Public spaces 535 2810 

6 Palestra Sport facilities 435 3245 

7 Materna Boves Education 1400 6680 

8 Materna Cervi Education 1540 6635 

9 Villa Nogara Public spaces 340 1425 

10 Municipio Local 

authorities 

3120 12420 

 

The buildings have been monitored for 3 years with data 

acquisition at monthly interval and concentrating the 

analysis on natural gas demand for heating service. 

Results and discussion 

In this Section the results of the regression models’ training 

are reported, indicating both numerical results represented 

by statistical indicators, referring to the thresholds in Table 

2, and visualization of energy signatures for the different 

models fitted. The use of both visual and numerical analysis 

is aimed at enabling a more intuitive interpretation of 

results, which is on the motivations for the research work, 

as discussed in the methodology section. 

Data-driven analysis from EDA to regression models 

type 1 and 2 

The energy signature of natural gas consumption per unit of 

gross volume is shown in Figure 2 for the various buildings, 

which are coloured according to their end use (i.e. grouped). 

The goal of providing data per unit of volume is to enable a 

comparison that is independent of the building's size and 

reliable, given the presence of diverse typologies (built-

forms) with varying heights. This would reduce the "fitness 

for purpose" of a representation per unit of net floor area, 

considering also the potential for a more in depth analysis 

of quantities based on their approximated physical 

interpretation (Rasmussen et al., 2020; Tronchin et al., 

2019). In addition, the choice to colour them by end-use is 

intended to highlight potential data patterns with a distinct 

separation, which is not visible in this instance. A further 

classification could be based on the age of the building, 

which is not given here for the sake of brevity but was 

considered as part of the research. 

 
 

Figure 2: Monthly energy signature per unit of gross volume, 

measured data 

Monthly energy signatures in Figure 2 indicates that linear 

regression as a function of outdoor air temperatures may fit 

measured data in a satisfactory way and the results of the 

model fitting process is shown in Table 4 for model type 1, 

using 3 years of monthly data and considering the 

thresholds for model acceptability reported in Table 2 in the 

methodology section. Building 7 is indicated as non-

calibrated even if it is just slightly outside the calibration 

threshold for CV(RMSE), 15%. Buildings 2, 5 and 6 have 

much higher CV(RMSE) values indicating a much less 

predictable behaviour. 

 
Table 4: Statistical indicators for type 1 model fitting 

N. End-use R2 NMBE Cv(RMSE) Calibrated 

  % % %  

1 Sport facilities 98.61 0.03 9.04 Yes 

2 Catering 88.07 -0.06 30.32 No 

3 Public spaces 97.38 -0.02 10.05 Yes 

4 Public spaces 98.30 0.09 9.39 Yes 



5 Public spaces 84.79 0.25 28.51 No 

6 Sport facilities 83.27 0.39 37.52 No 

7 Education 96.66 0.08 15.13 No 

8 Education 97.95 0.09 10.04 Yes 

9 Public spaces 96.14 0.15 13.84 Yes 

10 Local authorities 97.04 -0.11 11.96 Yes 

 

It can be clearly seen that model type 1 after 3 years obtains 

values for the indicators NMBE and CV(RMSE) that make 

them acceptable as calibrated (according to the thresholds 

in Table 2) for 6 buildings out of 10. The model predictions 

plotted in Figure 3 show clearly a more regular patterns 

compared to measured data. 

 
Figure 3: Monthly energy signature per unit of gross volume, 

type 1 model prediction 

The analysis process is then continued with model type 2, 

with the inclusion of dummy monthly variables to detect 

possible seasonal patterns, as explained in the methodology 

section. In this case the number of calibrated buildings is 7 

out of 10, indicating that some small seasonal variations in 

operations are present. The performance of model type 2, 

reported in Table 5.  

 
Table 5: Statistical indicators for type 2 model fitting with 

additional dummy variables 

N. End-use R2 NMBE Cv(RMSE) Calibrated 

  % % %  

1 Sport facilities 98.96 0.00 8.59 Yes 

2 Catering 90.86 0.01 27.18 No 

3 Public spaces 98.67 0.00 7.61 Yes 

4 Public spaces 98.70 0.00 8.61 Yes 

5 Public spaces 90.09 0.00 23.01 No 

6 Sport facilities 88.19 0.41 33.03 No 

7 Education 98.05 0.00 11.79 Yes 

8 Education 98.78 0.00 10.16 Yes 

9 Public spaces 97.70 0.00 13.08 Yes 

10 Local authorities 98.50 0.00 10.52 Yes 

 

The performance of type 2 model is slightly better than type 

1 but while building 7 is now calibrated, buildings 2, 5 and 

6 have still CV(RMSE) values much higher than the 

calibration threshold (15%), highlighting the fact that the 

variations in consumption are not due to a specific seasonal 

pattern but rather to a lower predictability of their operation. 

Therefore, the root cause of performance anomaly should 

be investigated further. 

 
Figure 4: Monthly energy signature per unit of gross volume, 

type 2 model prediction 

The predicted energy signatures in Figure 4 for Model type 

2 are less regular than those for Model type 1 (which are on 

a straight line), but they are still highly recognisable and 

less dispersed than the original measured data. If measured 

solar radiation data were available, the regression 

modelling procedure might have been continued using it as 

an additional variable. 

Fitting regression model type 1 to simulated data and 

partial calibration 

In this section, the type 1 regression model is fitted to 

dynamic simulation data results. Instead of calibrating the 

dynamic simulation directly to measured monthly data, 

which would have required the reconstruction of weather 

data files with average monthly data matching the ones for 

the monitored period (time consuming and not easy to do in 

practice), we attempted to fit a linear regression to the 

simulated data for a typical standard meteorological year 

and then compared the results, in particular slope and base 

temperature (when heating demand is equal to zero), to the 

ones achieved on measured data. This was due to the fact 



that regression models are usually employed for weather 

normalisation of energy demand for heating and cooling, as 

discussed in the methodology section. The regression type 

1 can be calibrated to dynamic simulation data and 

compared to the measured one in terms of slope and 

balance-point, which have an approximated physical 

interpretation (Rasmussen et al., 2020; Tronchin et al., 

2019), and could therefore give insights in the calibration 

process. The Cv(RMSE) is quite smaller compared to the 

measured case, lower than 10% for all the buildings, as 

shown in Table 6. On simulated data, the simple regression 

calibration performed better than on measured data that are 

more scattered, demonstrating the difficulties of simulating 

a dynamic regime that accurately reflects reality in the 

absence of sufficient data. 

 
Table 6: Statistical indicators for type 1 model fitted on 

simulated 

N. End-use R2 NMBE Cv(RMSE) Calibrated 

  % % %  

1 Sport facilities 98.76 -0.19 9.06 Yes 

2 Catering 99.93 -0.01 2.08 Yes 

3 Public spaces 99.42 -0.05 5.92 Yes 

4 Public spaces 98.10 -0.13 9.61 Yes 

5 Public spaces 99.90 -0.02 1.89 Yes 

6 Sport facilities 99.80 -0.04 2.65 Yes 

7 Education 99.78 -0.06 3.53 Yes 

8 Education 99.51 -0.10 4.48 Yes 

9 Public spaces 99.70 -0.03 4.61 Yes 

10 Local authorities 99.30 -0.06 6.77 Yes 

 

 
Figure 5: Monthly energy signature per unit of gross volume, 

simulated data on typical meteorological year 

The results of the dynamic simulation are displayed in 

Figure 5, and it can be observed that they tend to be more 

clustered than the measured in Figure 2 but with a similar 

dispersion as in Figure 3 and 4 for the regression model type 

1 and 2 respectively. In this sense, a simple visual analysis 

can help quickly identify the differences between the 

regressions conducted on measured and simulated data 

(representation as a function of outdoor air temperature is 

used in weather normalization). 

Energy model predictions comparison 

In order to provide an accurate comparison of performance, 

the annual heating energy consumption determined by the 

various models is projected for a typical meteorological 

year and reported in Table 7. 

 
Table 7: Energy consumption per unit of net floor area predicted 

for a typical meteorological year 

N. End-use Type 1   Type 2   Simulation 

  kWh/m2 kWh/m2 kWh/m2 

1 Sport facilities 108.8 104.6 117.9 

2 Catering 273.5 276.9 206.4 

3 Public spaces 156.2 155.4 148.4 

4 Public spaces 83.8 81.5 77.4 

5 Public spaces 208.4 202.8 200.5 

6 Sport facilities 270.5 274.9 253.8 

7 Education 228.8 228.8 210.4 

8 Education 104.5 103.0 89.8 

9 Public spaces 158.0 159.0 158.5 

10 Local authorities 91.4 88.2 75.4 

 

The results are now given per unit of net floor area, as in 

Energy Performance Certificates (which, however, are 

based on a standard evaluation technique and are not 

calibrated to the specific conditions, like in this case), to 

show the wider range of values as opposed to the initial 

scaling by gross volume. Apart from building 2, which was 

among those that were not calibrated using both model type 

1 and 2, it is possible to observe that the variation in 

findings is relatively small, less than 20% in all cases 

(except for building 2). Based on the existing evidence and 

the methods at the state-of-the-art reported in the 

methodology, the workflow for calibration can be refined 

further, and this will be the focus of future research. 

Conclusions 

Building energy modelling techniques based on machine 

learning have proven effective in a variety of applications. 



However, streamlining the process of calibrating building 

energy models, which may be employed for both design 

(e.g. deep retrofit) and operational optimization, continues 

to be an issue. 

In addition, it is essential that machine learning algorithms 

retain interpretability, simplicity, and scalability, improve 

generalisation capabilities, and are human-comprehensible 

(i.e. avoiding the "black box" effect). To enable wider 

implementation of these techniques, which could make the 

model calibration process more appealing and competitive 

in terms of time, effort, and cost, several challenges must be 

considered. In this study, monitored data from a cohort of 

ten public buildings in Melzo, a municipality in the northern 

Italian province of Milan, were analysed using an 

interpretable piecewise linear regression modelling 

approach. These buildings were selected from a larger range 

of facilities studied as part of the investigation. 

All the buildings were monitored for three years, and while 

the proposed formulations were quite simple to implement, 

their results were encouraging and opened the door to 

further investigation, particularly in regard to the process of 

ML-supported calibration of detailed building performance 

simulation. In particular, the visualisation of energy 

signatures scaled by gross volume is advantageous for 

comprehending the comparability of buildings with 

significantly varied attributes and size, as well as the real 

distribution of measured data in comparison to that of 

simulated data.  

To effectively handle the challenges of interpretability (in 

approximations of physical concepts) and generalisation, 

additional efforts including the classification of 

construction data according to archetypes may be 

undertaken. Interpretability is crucial due to the need to 

promote a "human-in-the-loop" approach when using ML 

tools, and the transparent link between regression model 

formulation and other analytical techniques at the state-of-

the-art could represent an interesting research area, with 

clear advantages over the use of ML and simulation tools in 

a "black-box" manner. 

In the continuation of this research, we aim to make the 

modelling workflow as streamlined as possible and to 

employ a combination of numerical and visual tools so that 

the process is easily understood by analysts. 

Nomenclature 

Symbol  Quantity Unit 

a0 regression coefficients, intercept kW/m3 

a1 regression coefficients, temperature dependence 

term 

kW/(m3K) 

bj regression coefficients, dummy monthly 
variable 

kW/m3 

Cv(RMSE) coefficient of variation of RMSE - 

mj monthly dummy variable (binary 0-1) - 

NMBE normalized mean bias error (expressed in 

percentage) 

- 

qh energy signature heating kW/m3 

R2 determination coefficient (expressed in 

percentage) 

- 

Xh dummy variable (binary 0-1) heating - 

θe outdoor air temperature ºC 

εh error term heating kW/m3 
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