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Abstract: Tyrosinase (EC 1.14.18.1) is implicated in melanin production in various organisms. There
is a growing body of evidence suggesting that the overproduction of melanin might be related to
several skin pigmentation disorders as well as neurodegenerative processes in Parkinson’s disease.
Based on this consideration, the development of tyrosinase inhibitors represents a new challenge
to identify new agents in pharmaceutical and cosmetic applications. With the goal of identifying
tyrosinase inhibitors from a synthetic source, we employed a cheap and facile preliminary assay using
tyrosinase from Agaricus bisporus (AbTYR). We have previously demonstrated that the 4-fluorobenzyl
moiety might be effective in interactions with the catalytic site of AbTYR; moreover, the additional
chlorine atom exerted beneficial effects in enhancing inhibitory activity. Therefore, we planned the
synthesis of new small compounds in which we incorporated the 3-chloro-4-fluorophenyl fragment
into distinct chemotypes that revealed the ability to establish profitable contact with the AbTYR
catalytic site. Our results confirmed that the presence of this fragment is an important structural
feature to improve the AbTYR inhibition in these new chemotypes as well. Furthermore, docking
analysis supported the best activity of the selected studied compounds, possessing higher potency
when compared with reference compounds.

Keywords: tyrosinase; Agaricus bisporus; molecular modelling; 3-chloro-4-fluorophenyl moiety

1. Introduction

Tyrosinase (TYR, EC 1.14.18.1) is a binuclear copper containing protein expressed in
various species including bacteria, fungi, plants, and animals. The main function of TYR
is related to its ability to catalyze the oxidation of L-tyrosine and/or L-DOPA to furnish
dopaquinone as a melanin precursor in melanosomes. Melanin plays the relevant role of
a photoprotectant and is responsible for hair, skin, and eye color. However, an overpro-
duction of melanin is considered to be related to skin disorders. Moreover, the melanin
accumulation in human neurons in the substantia nigra is associated with neurodegenera-
tion in Parkinson’s disease. The melanogenesis is a very complex and multistep process;
however, the TYR activity controls the rate-limiting step, thus determining its pivotal role
in the whole process of the synthesis of the physiological pigment. To date, there is a
large collection of anti-melanogenic agents from synthetic [1–4] and natural sources [5–9].
They have been generally identified through the determination of inhibitory properties
preventing the oxidation of physiological substrates (L-tyrosine or L-DOPA) in in vitro
assays using enzyme from mushroom Agaricus bisporus (AbTYR) as a surrogate to perform
a preliminary screening of potential TYR inhibitors (TYRIs). Despite there being several
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differences between human and mushroom isoforms, the employment of AbTYR enables
a facile screening of new potential TYRIs. Interestingly, some hit compounds identified
through AbTYR also demonstrated the ability to inhibit the human tyrosinase (hTYR) and
produce antimelanogenic effects in human cell lines, although they proved to be less potent
agents [10–12]. The catalytic cycle of TYR involves two distinct pathways: the hydroxyla-
tion of monophenol (monophenolase activity) and the subsequent oxidation of o-diphenol
to o-quinone (diphenolase activity). From a structural point of view, the TYRs contain a
catalytic pocket in which both monophenolase and diphenolase activity occurs, assisted
by the two divalent copper ions surrounded by three cooperating histidine residues [13].
The various classes of reversible TYRIs exert their effects through a network of interactions
with copper ions and/or specific residues paving the walls of the catalytic cavity. X-ray de-
termination and in silico studies contributed to the elucidation of the various mechanisms
of TYR inhibition as well as to the in-depth analysis of the differences between AbTYR and
hTYR.

As a continuation of our previous investigations into AbTYR inhibitors, we planned
the synthesis of a new small series of compounds, designed while keeping in mind that
the 4-fluorobenzyl motif exerted optimized biological activity, that is, diphenolase activity
of AbTYR, owing to its ability to occupy the catalytic cavity, engaging both π/π stacking
and the fluorine bonding interaction [14–18]. In addition, it was demonstrated that an
additional chlorine atom at the C-3 position of the phenyl ring provided an improvement
in AbTYR inhibitory effects [19]. On the basis of these observations, we considered the
3-chloro-4-fluorophenyl moiety as an essential portion to decorate other scaffolds already
distinguished as being able to engage favorable contacts within the catalytic cavity of
TYRs. Herein, we report the synthesis, in vitro assay, and structure affinity relationship
(SAR) considerations for this class of new compounds possessing 3-chloro-4-fluorophenyl
in place of the 4-fluorobenzyl pharmacophoric feature. For selected compounds, docking
simulations suggested the most plausible binding pose within the catalytic site of TYRs.

2. Results
2.1. Lead Optimization Strategy

The first goal of our hit optimization strategy was the introduction of the 3-chloro-4-
fluorophenyl moiety in the aromatic tail of several piperazine-based compounds, such as
1-(2,4-dichlorobenzoyl)-4-[(4-fluorophenyl)methyl]piperazine (1a) [18] and 2-(4-[(4-fluor-
ophenyl)methyl]piperidin-1-yl)-1-[4-(4-hydroxyphenyl)piperazin-1-yl]ethan-1-one (2a) [20],
that have been identified as inhibitors toward AbTYR (see Figure 1) at a low micromolar
concentration. Based on the consideration that the replacement of the cyclic amine core
with a 5-(pyridin-4-yl)-3-(alkylsulfanyl)-4H-1,2,4-triazol-4-amine moiety resulted a further
series of AbTYR inhibitors (e.g., 3-([(4-fluorophenyl)methyl]sulfanyl)-5-(pyridin-4-yl)-4H-
1,2,4-triazol-4-amine, 3a) [14], we chose to introduce a few structural modifications in this
class of compounds as well. Finally, we explored in depth a further series of potential
inhibitors, starting from the active 1,1’-[methylenebis(sulfanediyl)]bis(4-fluorobenzene)
(4a) as an AbTYR inhibitor [16], which we have previously identified by means of a virtual
screening campaign on a database of naturally inspired compounds.
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Figure 1. Chemical structures of selected AbTYR inhibitors 1a, 2a, 3a, and 4a bearing the 4-fluoro-
phenyl pharmacophoric feature. 

2.2. In Vitro Assay Determination of AbTYR Inhibition 
Our optimization strategy led to the design of sixteen new derivatives (Table 1). To 

assess the inhibition of AbTYR of new compounds, we employed the method previously 
described for parent compounds 1a, 2a, 3a, and 4a, with a few modifications. Table 1 col-
lects the IC50 values of inhibitory effects for the new designed compounds 1d–f, 2c–d, 3b, 
3d, and 4d–f bearing the 3-chloro-4-fluorophenyl fragment, in comparison with their par-
ent compounds 1a–c [15,17,18], 2a [20], 3a [14], and 4a [16], which have already been re-
ported, as well as new analogue derivatives 2b, 3c, 4b–c, 4g, and 4h, which were synthe-
sized for comparison purposes. All data were compared to the activity of kojic acid (KA), 
which is considered the canonical reference compound in this screening protocol [15]. 

 

  

Figure 1. Chemical structures of selected AbTYR inhibitors 1a, 2a, 3a, and 4a bearing the 4-
fluorophenyl pharmacophoric feature.

2.2. In Vitro Assay Determination of AbTYR Inhibition

Our optimization strategy led to the design of sixteen new derivatives (Table 1). To
assess the inhibition of AbTYR of new compounds, we employed the method previously
described for parent compounds 1a, 2a, 3a, and 4a, with a few modifications. Table 1 collects
the IC50 values of inhibitory effects for the new designed compounds 1d–f, 2c–d, 3b, 3d,
and 4d–f bearing the 3-chloro-4-fluorophenyl fragment, in comparison with their parent
compounds 1a–c [15,17,18], 2a [20], 3a [14], and 4a [16], which have already been reported,
as well as new analogue derivatives 2b, 3c, 4b–c, 4g, and 4h, which were synthesized for
comparison purposes. All data were compared to the activity of kojic acid (KA), which is
considered the canonical reference compound in this screening protocol [15].
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Table 1. Biochemical data of diphenolase inhibition of AbTYR for compounds 1a–f, 2a–d, 3a–d, and
4a–h, as well as the reference compound kojic acid (KA).

Entry IC50 (µM) a ± SD b

1a c 0.79 ± 0.11
1b d 0.24 ± 0.03
1c e 3.60 ± 0.33
1d 0.42 ± 0.03
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Table 1. Cont.

Entry IC50 (µM) a ± SD b

1e 0.19 ± 0.07
1f 1.72 ± 0.11

2a f 4.49 ± 0.13
2b 4.43 ± 0.54
2c 1.73 ± 0.28
2d 1.38 ± 0.15

3a g 83.61 ± 15.65
3b 24.15 ± 1.02
3c >350
3d 67.32 ± 6.67

4a h 48.42 ± 0.76
4b >350
4c >350
4d 6.26 ± 0.37
4e 10.65 ± 1.51
4f 2.96 ± 0.34
4g 26.02 ± 2.63
4h 183.46 ± 6.12

Kojic Acid (KA) c 17.76 ± 0.18
a All compounds were tested using a set of experiments performed in triplicate; IC50 values correspond to the
concentration causing 50% enzyme activity loss. b SD represents the standard deviation. c Data taken from [18].
d Data taken from [15]. e Data taken from [17]. f Data taken from [20]. g Data taken from [14]. h Data taken
from [16].

The new 3-chloro-4-fluorophenyl-based benzamide compounds 1d–f achieved signif-
icant IC50 values, spanning from 0.19 to 1.72 µM, as AbTYR inhibitors, showing a light
improvement in potency with respect to previous reports for active 4-fluorophenyl-based
analogues 1a–c. Based on the confirmation of the activity of compounds containing the
3-chloro-4-fluorophenyl moiety, we further adopted this strategy toward 4-hydroxyphenyl-
based compounds and studied new analogues of prototype 2a (IC50 value of 4.49 µM).
Considering that the piperazine core could be more prone to being variously decorated, our
investigation began with the evaluation of AbTYR inhibitory effects of analogue compound
2b, which was demonstrated to still be an active inhibitor (IC50 value of 4.43 µM). Subse-
quently, we introduced the additional 3-chloro-4-fluorosubstituent to furnish the active
compound 2c (IC50 value of 1.73 µM); when a methyl group was added to the acetyl linking
group, we obtained the homologue compound 2d (IC50 value of 1.38 µM), which displayed
a similar potency to compound 2c, suggesting that the methyl group occupied a large area
of the pocket and that the change in steric hindrance of the linking group did not affect the
binding interaction. The chlorine atom was also introduced on the 3-position of the phenyl
ring of the previously reported 5-(pyridin-4-yl)-3-(alkylsulfanyl)-4H-1,2,4-triazol-4-amine-
based derivative 3a; inhibitor 3b was obtained, which was about 3.5-fold more potent than
parent compound 3a. In contrast, the inhibitory effects dramatically disappeared when
the chlorine atom was positioned at the 2-position of the phenyl ring, as evidenced for
derivative 3c. To gain further information, we replaced the pyridin-4-yl-substituent with
the phenyl ring to furnish compound 3d; as a result, the AbTYR inhibitory activity was
lower than that of parent compound 3b. Finally, we extended our investigations toward
a series of alkylsulfanyl-based compounds 4b–h; these new potential AbTYR inhibitors
were inspired by prototype 4a, which emerged from an in silico screening campaign in
our previous studies. In the current investigation, we introduced a few structural modi-
fications and replaced the aromatic feature with small alkyl groups. Among the series of
compounds 4b–f bearing two aromatic tails, it might be observed that the presence of the
3-chloro-4-fluorophenyl fragment led to a remarkable enhancement in the inhibitory activ-
ity; the unsubstituted compounds 4b–c were inactive agents, whereas the poly-substituted
derivatives 4d–f displayed inhibitory effects in the low micromolar range (IC50 values
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from 2.96 to 10.65 µM); they were still more potent than the precursor 4a. By comparing
the IC50 values of the two methylsulfanyl-derivatives 4g and 4h, we confirmed that the
4-fluorine atom substitution gained better AbTYR affinity than that of the 3-fluorine atom
substitution.

2.3. Docking Studies on Mushroom Tyrosinase

To confirm the important role of the 3-chloro-4-fluorophenyl fragment in the binding
to the AbTYR catalytic pocket, a semi-flexible docking protocol was applied for selected
representative compounds 1d, 2c, 3b, and 4f using the software Gold [21]. The results of our
molecular modelling analysis of the best potent inhibitors 1d, 2c, 3b, and 4f are depicted in
Figure 2. For all of the docked inhibitors, the fluorine atom formed relevant contacts in the
AbTYR cavity: (i) it was involved in halogen bond interactions with the copper-coordinating
histidine; (ii) it generally acted as a metal acceptor toward di-copper ions CuA and CuB,
with the exception of the compound 3b, which interacted exclusively with CuA (see
Figure 2C); and (iii) it formed hydrophobic contacts with Phe292. Furthermore, we observed
that the 4-fluorosubstituted phenyl ring interacted by π–π stacks with the side chain of
His263. Particularly, in compounds 1d, 3b, and 4f, the different fragments characterizing
each chemotype showed a similar rearrangement, engaging favorable contacts with the
residues forming the entrance of the catalytic site, such as Val248, Met257, Asn260, and
Phe264.
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A distinguishable binding mode is observed for compound 2c, probably due to its
greater length compared with the other candidates. As a result, folding of the 4-piperazine-
phenyl tail occurs to accommodate the ligand in the pocket, stabilized by hydrophobic
contacts with the side chain of His244 and Val283 and a hydrogen bond between the
phenolic OH group and Cys83, supporting that the increase in chain length should not
affect the binding affinity.

Moreover, despite that a different fitting of 3-chloro-4-fluorophenyl is encountered
in all compounds, the chlorine atom stabilized the binding to the catalytic cavity through
van der Waals interactions, specifically with Ala286 and Val283 in the ligand 1d and with
Phe90 and Val283 in the inhibitors 2c, 3b, and 4f. The collected results corroborated the
importance of this moiety and were consistent with the biochemical data displayed in
Table 1.

2.4. Chemistry

The synthesis of the designed compounds was performed employing the synthetic
routes described in Schemes 1–3. The preparation of the designed compounds followed the
procedures described in our previous publications [14,18,20], with slight modifications.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 15 
 

 

 
Scheme 1. Synthesis of the designed compounds 1d–f [18] and 2b–d [20]. Reagents and conditions: 
(i) tert-butylpiperazine-1-carboxylate, K2CO3, EtOH, reflux, 18 h, 98 %; (ii) TFA, dichloromethane 
(DCM), rt, 5 h, ca 60% over two steps; (iii) route (a) RCOCl, N,N-diisopropylethylamine (DIPEA), 
DCM, rt, 5 h, 40–58%, and route (b) RCOOH, triethylamine (TEA), N,N,N′,N′-tetramethyl-O-(1H-
benzotriazol-1-yl)uronium hexafluorophosphate (HBTU), N,N-dimethylformamide (DMF), rt, 18 h, 
51%; (iv) ClCOCH(R1)Cl, DMF, rt, 3 h, 49–64%; (v) 1-[(4-fluorophenyl)methyl]piperazine (9) or [(3-
chloro-4-fluorophenyl)methyl]piperazine (6), K2CO3, DMF, reflux, 18 h, 39–85%. 

 
Scheme 2. Synthesis of the designed compounds 3b–d [14]. Reagents and conditions: (i) NaOH, 
MeOH, rt, 3 h, quantitative. 

 
Scheme 3. Synthesis of the designed compounds 4b–h. Reagents and conditions: (i) NaOH, CH2I2, 
iPrOH, 80 °C, 2 h, 93% [22]; (ii) preparation of starting material 14c: paraformaldehyde, toluene/HCl, 
50 °C 2 h to rt 3 h, 90% [23]; (iii) K2CO3, DMF, rt, overnight, 87–94% [24]. 

Scheme 1. Synthesis of the designed compounds 1d–f [18] and 2b–d [20]. Reagents and conditions:
(i) tert-butylpiperazine-1-carboxylate, K2CO3, EtOH, reflux, 18 h, 98 %; (ii) TFA, dichloromethane
(DCM), rt, 5 h, ca 60% over two steps; (iii) route (a) RCOCl, N,N-diisopropylethylamine (DIPEA),
DCM, rt, 5 h, 40–58%, and route (b) RCOOH, triethylamine (TEA), N,N,N′,N′-tetramethyl-O-(1H-
benzotriazol-1-yl)uronium hexafluorophosphate (HBTU), N,N-dimethylformamide (DMF), rt, 18 h,
51%; (iv) ClCOCH(R1)Cl, DMF, rt, 3 h, 49–64%; (v) 1-[(4-fluorophenyl)methyl]piperazine (9) or
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iPrOH, 80 ◦C, 2 h, 93% [22]; (ii) preparation of starting material 14c: paraformaldehyde, toluene/HCl,
50 ◦C 2 h to rt 3 h, 90% [23]; (iii) K2CO3, DMF, rt, overnight, 87–94% [24].

The first series of three target compounds 1d–f was readily prepared in three steps
in a moderate yield via the N-alkylation reaction, removal of the protective group, and
condensation with carboxylic acid or acyl-chlorides, as reported in Scheme 1. In detail, the
key intermediate 1-[(3-chloro-4-fluorophenyl)methyl]piperazine (6) was generated by the
reaction of 3-chloro-4-fluorobenzylbromide (5) with tert-butylpiperazine-1-carboxylate and
the subsequent deprotection with trifluoroacetic acid (TFA) in dichloromethane (DCM). The
intermediate 6 reacted with aryl/heteroaryl-compounds to generate variously substituted
piperazine-amides 1d–f under distinct experimental conditions (see Scheme 1). Meanwhile,
the desired compounds 2c–d were prepared in a two-step sequence in moderate-to-good
yields through the coupling reaction of 4-hydroxyphenylpiperazine (7) with 2-chloroacetyl
chloride or 2-chloropropionyl chloride at room temperature in N,N-dimethylformamide
(DMF) to yield the intermediate 8a or 8b, and subsequent reaction with 1-[(3-chloro-4-
fluorophenyl)methyl]piperazine 6 as the central reagent to obtain this series of compounds
2c and 2d, respectively. The parent 4-fluoro-substituted compound 2b was prepared under
similar conditions using 1-[(4-fluorophenyl)methyl]piperazine (9) in place of 1-[(3-chloro-4-
fluorophenyl)methyl]piperazine (6).

The synthesis of the compounds 3b–d bearing the 4H-1,2,4-triazol-4-amine core was
carried out by the coupling of reactants 10a–b with the suitable benzylbromide 11a–b under
basic conditions, as displayed in Scheme 2.

Moreover, we prepared compounds 4b–h displaying an alternative fragment to in-
corporate the pharmacophoric 3-chloro-4-fluorophenyl moiety. To obtain the targeted
compounds, the synthetic procedure described in Scheme 3 was applied, thus furnishing
the desired compounds in a good yield. In detail, derivatives 4b and 4f were synthesized by
reacting the suitable thiophenol (12a–b) with diiodomethane and NaOH. Compounds 4c–e
and 4g–h were prepared via a simple nucleophilic substitution between the proper thiophe-
nol and the chloro(methylsulfanyl) derivative (14a–c) in a basic environment. The starting
materials chloro(methylsulfanyl)methane (14a) and [(chloromethyl)sulfanyl]benzene (14b)
were commercially available, whereas 1-[(chloromethyl)sulfanyl]-4-fluorobenzene (14c)
was prepared by the reaction of 4-fluorobenzene-1-thiol (13) with paraformaldehyde.

All compounds were structurally characterized through spectroscopic measurements,
as reported in Section 3 and the Supplementary Materials.
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3. Materials and Methods
3.1. Biochemical Assays

Mushroom tyrosinase (EC 1.14.18.1) was supplied by Merck (Cat. No. T3824). In vitro
assay was performed according to the method of Mirabile et al. [15]. Each sample (0.05 mL)
at different concentrations (0.10–200 µM) was mixed with 0.5 mL of L-DOPA solution
(1.25 mM) and 0.9 mL of phosphate buffer solution (pH 6.8). After a 10 min incubation
at 25 ◦C, 0.05 mL of an aqueous solution of the enzyme was added to the mixture. Ab-
sorbance was recorded at 475 nm using a spectrophotometer (Agilent Technologies, Cary
60, UV/Vis). Kojic acid [5-hydroxy-2-(hydroxymethyl)-4-pyran-4-one] was employed as
a positive standard (10–30 µM). The inhibition rate was calculated with the following
mathematical equation:

Inhibition % = (A − B/A) × 100

where A = absorbance of negative control and B = absorbance of test sample.
Finally, IC50 values were determined by interpolation of the dose–response curves.

3.2. Molecular Modelling

Docking studies were carried out using Gold software V 2020.2.0 [21]. To achieve
this purpose, our studies were carried out on the basis of the structure of the complex
of Agaricus bisporus tyrosinase (AbTYR) and tropolone (PDB ID 2Y9X) [25]. The protocols
applied for the protein and ligands’ preparation and the docking calculation have been
reported in our previous works [18,20]. The analysis of the docked poses was carried out
by means Discovery Studio Visualizer [26] and Ligand Scout V 4.4.9 [27].

3.3. Chemistry

All of the employed reagents were purchased from common commercial suppliers
(Sigma-Aldrich, Milan, Italy and Alfa Aesar, Karlsruhe, Germany). A Buchi B-545 in-
strument (BUCHI Labortechnik AG, Flawil, Switzerland) was used to determine melting
points. Combustion analysis (C, H, N), performed with a Carlo Erba Model 1106-Elemental
Analyzer (Milan, Italy), revealed ≥95% purity of the obtained compounds. Merck Silica
Gel 60 F254 plates (Milan, Italy) were employed for thin-layer chromatography (TLC;
Merck KGaA, Darmstadt, Germany). 1H NMR and 13C NMR spectra were recorded in
deuterated dimethylsulfoxide (DMSO-d6) or chloroform (CDCl3) with a Varian Gemini 500
spectrometer (Palo Alto, CA, USA), Bruker Avance III 400 (Rheinstetten, Germany), or Jeol
ECZR600 (Milan, Italy), with chemical shifts (δ) expressed in ppm and coupling constants
(J) in hertz (Hz).

3.3.1. General Procedures for the Synthesis of Key Intermediate
1-[(3-Chloro-4-fluorophenyl)methyl]piperazine (6)

A mixture of tert-butyl piperazine-1-carboxylate (300 mg, 1.61 mmol), 3-chloro-4-
fluorobenzylbromide (5, 217.6 µL, 1.61 mmol), and K2CO3 (445 mg, 3.22 mmol) in EtOH
(10 mL) was refluxed for 18 h. Then, the mixture was diluted with water (20 mL) and
extracted with DCM (20 mL, ×3) to furnish different organic phases, which were collected
and dried over Na2SO4; then, the mixture was concentrated in vacuo to yield the intermedi-
ate tert-butyl 4-[(3-chloro-4-fluorophenyl)methyl]piperazine-1-carboxylate. Subsequently, a
solution of tert-butyl 4-[(3-chloro-4-fluorophenyl)methyl]piperazine-1-carboxylate (519 mg,
1.57 mmol) in DCM (8 mL) was treated with TFA (15.7 mmol); the resulting mixture was
stirred at room temperature for 5 h. After the reaction was completed, it was cooled on
ice and diluted with DCM (2 mL) and a solution of K2CO3 (2M, 2 mL). The mixture was
extracted with DCM (10 mL, ×2); the combined organic layers were dried over Na2SO4
and the solvent was removed in vacuo. Finally, the desired intermediate 1-[(3-chloro-4-
fluorophenyl)methyl]piperazine (6) was obtained by crystallization with diethyl ether.
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tert-Butyl 4-[(3-chloro-4-fluorophenyl)methyl]piperazine-1-carboxylate (intermediate)
Yield: 98%. Oily residue. 1H-NMR (500 MHz, CDCl3): (δ) 1.44 (s, 9H, 3CH3), 2.35 (bs,

4H, 2CH2), 3.40 (m, 4H, 2CH2), 3.42 (s, 2H, CH2), 7.06 (t, J = 8.7 Hz, 1H, ArH, H-5′), 7.16 (m,
1H, ArH, H-6′), 7.36 (d, J = 7.1 Hz, 1H, ArH, H-2′). Anal. Calculated for C16H22ClFN2O2: C
58.44, H 6.74, N 8.52. Found: C 58.39, H 6.71, N 8.56.

1-[(3-Chloro-4-fluorophenyl)methyl]piperazine (6)
Yield: 62%. White powder. M.p. 147–150 ◦C. 1H-NMR (500 MHz, DMSO-d6): (δ) 2.54

(m, 4H, 2CH2), 3.08 (t, J = 5.1 Hz, 4H, 2CH2), 3.33 (s, 1H, NH), 3.53 (s, 2H, CH2), 7.33 (m,
1H, ArH, H-5′), 7.39 (t, J = 8.8 Hz, 1H, ArH, H-6′), 7.53 (dd, J = 7.4, 2.1 Hz, 1H, ArH, H-2′).
Anal. Calculated for C11H14ClFN2: C 57.77, H 6.17, N 12.25. Found: C 57.81, H 6.13, N
12.19.

3.3.2. General Procedures for the Synthesis of Amides 1d–f

Route (a) To a solution of 1-[(3-chloro-4-fluorophenyl)methyl]piperazine (6) (0.66 mmol)
in DCM (4 mL), the suitable benzoyl chloride (0.66 mmol) and N,N-diisopropylethylamine
(DIPEA, 0.99 mmol) were added. The reaction mixture was stirred at room temperature for
5 h; after the completion of the reaction, the work-up to obtain target compounds 1d and
1e was performed as previously reported for analogues 1a and 1b [15,18].

Route (b) A mixture of benzothiophene-2-carboxylic acid (1.05 mmol) and N,N,N′,N′-
tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) (1.05 mmol) in
DMF (4 mL) was stirred at room temperature for 1 h. Then, 1-[(3-chloro-4-fluorophenyl)met-
hyl]piperazine (1.05 mmol) and TEA (2.1 mmol) were added and it was stirred for 17 h.
The target compound 1f was obtained as previously reported for analog compound 1c [17].

(4-(3-Chloro-4-fluorobenzyl)piperazin-1-yl)(2,4-dichlorophenyl)methanone (1d)
Yield: 58%. White powder. M.p. 121–124 ◦C. 1H-NMR (500 MHz, DMSO-d6): (δ) 2.33

(t, J = 3.36 Hz, 2H, CH2), 2.43 (m, 2H, CH2), 3.13 (m, 2H, CH2), 3.49 (s, 2H, CH2), 3.63 (m,
2H, CH2), 7.31 (m, 1H, ArH, H-5′), 7.35 (d, J = 9.2 Hz, 1H, ArH, H-6′), 7.39 (m, 1H, ArH,
H-2′), 7.49 (d, J = 2.02 Hz, 1H, ArH, H-5”), 7.51 (d, J = 2.02 Hz, 1H, ArH, H-6”), 7.72 (d,
J = 1.9 Hz, 2H, ArH, H-3”). 13C-NMR (126 MHz, DMSO-d6): (δ) 41.1 (C-5), 46.2 (C-3), 51.8
(C-2), 52.5 (C-6), 60.1 (CH2), 116.6 (d, JC-F = 20.77 Hz, C-5′), 119.1 (d, JC-F = 17.66 Hz, C-3′),
127.9 (C-5”), 129.1 (C-6′), 129.3 (C-6”), 129.4 (C-3”), 130.3 (C-2′), 130.6 (C-2”), 134.2 (C-4”),
134.7 (C-1”), 135.9 (d, JC-F = 3.86 Hz, C-1′), 156.3 (d, JC-F = 245.5 Hz, C-4′), 164.6 (C=O). Anal.
Calculated for C18H16Cl3FN2O: C 53.82, H 4.01, N 6.97. Found: C 53.88, H 3.99, N 7.03.

(4-(3-Chloro-4-fluorobenzyl)piperazin-1-yl)(5-fluoro-2-(trifluoromethyl)phenyl)meth-
anone (1e)

Yield: 40%. White powder. M.p. 133–135 ◦C. 1H-NMR (500 MHz, CDCl3): (δ) 2.42
(bs, 2H, CH2), 2.59 (bs, 2H, CH2), 3.24 (bs, 2H, CH2), 3.55 (s, 2H, CH2), 3.84 (m, 2H, CH2),
7.03 (d, J = 8.1 Hz, 1H, ArH, H-5′), 7.09 (m, 1H, ArH, H-6′), 7.20 (m, 2H, ArH, H-3” and
H-6”), 7.39 (m, 1H, ArH, H-2′), 7.70 (m, 1H, ArH, H-4”). 13C-NMR (126 MHz, CDCl3):
(δ) 41.6 (C-5), 46.9 (C-3), 52.3 (C-2), 52.4 (C-6), 61.4 (CH2), 114.9 (d, JC-F = 23.67 Hz, C-
5′), 116.5 (d, JC-F = 21.86 Hz, C-6”), 116.6 (d, JC-F = 21.05 Hz, C-4”), 116.9 (C-2”), 121.1 (q,
JC-F = 17.8 Hz, CF3, C-3′), 124.4 (d, JC-F = 272.45 Hz, CF3), 128.9 (d, JC-F = 7.2 Hz, C-6′), 129.6
(q, JC-F = 4.5 Hz, C-3”), 131.2 (C-2′), 134.1 (C-1′), 137.4 (C-1”), 157.6 (d, JC-F = 248.6 Hz, C-4′),
164.4 (d, JC-F = 255.5 Hz, C-5”), 165.9 (C=O). Anal. Calculated for C19H16ClF5N2O: C 54.49,
H 3.85, N 6.69. Found: C 54.56, H 3.90, N 6.62.

Benzo[b]thiophen-2-yl(4-(3-chloro-4-fluorobenzyl)piperazin-1-yl)methanone (1f)
Yield: 51%. White powder. M.p. 111–113 ◦C. 1H-NMR (500 MHz, CDCl3): (δ) 2.49

(bs, 4H, 2CH2), 3.49 (s, 2H, CH2), 3.79 (bs, 4H, 2CH2), 7.09 (m, 1H, ArH, H-5′), 7.18 (m, 1H,
ArH, H-6′), 7.39 (m, 3H, ArH, H-2”, H-5” and H-6”), 7.46 (bs, 1H, ArH, H-2′), 7.80 (m, 1H,
ArH, H-4”), 7.85 (m, 1H, ArH, H-5”). 13C-NMR (126 MHz, CDCl3): (δ) 29.8 (C-3 and C-5),
53.1 (C-2 and C-6), 61.7 (CH2), 116.5 (d, JC-F = 20.95 Hz, C-5′), 121.0 (C-3′), 122.5 (C-3”),
124.7 (C-7”), 124.9 (C-3”a), 125.3 (C-5”) 125.9 (C-6”), 128.6 (d, JC-F = 7.05 Hz C-6′), 131.0
(C-2′), 134.9 (d, JC-F = 3.74 Hz C-1′), 136.7 (C-3”), 138.7 (C-7”a) 140.3 (C-2”), 157.5 (d, JC-F =
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247.4 Hz, C-4′), 163.9 (C=O). Anal. Calculated for C20H18ClFN2OS: C 61.77, H 4.67, N 7.20.
Found: C 61.80, H 6.64, N 7.22.

3.3.3. General Procedures for the Synthesis of Amides 2b–d

To a solution of 4-(1-piperazinyl)phenol (7, 300 mg, 1.68 mmol) in DMF (4 mL), the
suitable acyl chloride (1.68 mmol) was slowly added at 0 ◦C. Then, the reaction mixture
was stirred at room temperature for 3 h. After the completion of the reaction, as indi-
cated by TLC, a saturated solution of NaHCO3 (5 mL) was added to quench the reaction.
The reaction mixture was extracted with EtOAc (×2); the organic layers were collected
and dried over Na2SO4 and the solvent was removed under vacuum to afford interme-
diates 2-chloro-1-[4-(4-hydroxyphenyl)piperazin-1-yl]ethanone (8a, R1 = H) or 2-chloro-
1-(4-(4-hydroxyphenyl)piperazin-1-yl)propan-1-one (8b, R1 = Me) as powder through
treatment with EtOH and Et2O. To a solution of 2-chloro-1-[4-(4-hydroxyphenyl)piperazin-
1-yl]ethanone (8a, 210 mg, 0.82 mmol) or 2-chloro-1-(4-(4-hydroxyphenyl)piperazin-1-
yl)propan-1-one (8b, 220 mg, 0.82 mmol) in DMF (4 mL), 1-[(3-chloro-4-fluorophenyl)methy-
l]piperazine (6) (0.82 mmol) or 1-[(4-fluorophenyl)methyl]piperazine (9, 0.82 mmol) was
added. This was followed by the addition of K2CO3 (56.7 mg, 0.41 mmol); then, the reaction
mixture was refluxed for 18 h and quenched with a saturated solution of NaHCO3 (5 mL).
The aqueous layer was extracted with EtOAc (3 × 10 mL) and the obtained organic phases
were washed with brine, dried over Na2SO4, filtered, and concentrated under a reduced
pressure. Finally, the desired compounds 2b–d were crystallized with Et2O and EtOH.

2-Chloro-1-[4-(4-hydroxyphenyl)piperazin-1-yl]ethanone (8a)
Yield: 49%. White powder. M.p.: 162–163 ◦C. 1H-NMR (500 MHz, DMSO-d6): (δ)

2.92 (m, 2H, CH2), 2.98 (m, 2H, CH2), 3.58 (m, 4H, 2CH2), 4.41 (s, 2H, CH2), 6.66 (d, J =
8.9 Hz, 2H, ArH, H-2′ and H-6′), 6.81 (d, J = 8.9 Hz, 2H, ArH, H-3′ and H-5′), 8.89 (bs,
1H, OH). Anal. Calculated for C12H15ClN2O2: C 56.59, H 5.94, N 11.00. Found: C 56.65,
H 5.83, N 11.07. The structural characterization of the pure intermediate 2-chloro-1-[4-(4-
hydroxyphenyl)piperazin-1-yl]ethanone (8a) was in good agreement with previous data
reported in the literature [20].

2-Chloro-1-(4-(4-hydroxyphenyl)piperazin-1-yl)propan-1-one (8b)
Yield: 64%. White powder. M.p.: 148–150 ◦C. 1H-NMR (500 MHz, DMSO-d6): (δ) 1.52

(d, J = 6.4 Hz, 3H, CH3), 2.96 (m, 4H, 2CH2), 3.63 (m, 4H, 2CH2), 5.09 (q, J = 6.4 Hz, 1H, CH),
6.66 (d, J = 8.9 Hz, 2H, ArH, H-2′ and H-6′), 6.81 (d, J = 8.9 Hz, 2H, ArH, H-3′ and H-5′),
8.88 (bs, 1H, OH). Anal. Calculated for C13H17ClN2O2: C 58.10, H 6.38, N 10.42. Found: C
58.16, H 6.40, N 10.39.

2-(4-(4-Fluorobenzyl)piperazin-1-yl)-1-(4-(4-hydroxyphenyl)piperazin-1-yl)ethanone (2b)
Yield: 85%. White powder. M.p. 185–187 ◦C. 1H-NMR (500 MHz, DMSO-d6): (δ) 2.38

(m, 6H, 3CH2), 2.87 (bs, 2H, CH2), 2.95 (bs, 2H, CH2), 3.15 (s, 2H, CH2), 3.22 (s, 2H, CH2),
3.42 (s, 2H, CH2), 3.55 (bs, 2H, CH2), 3.65 (bs, 2H, CH2), 6.66 (d, J = 8.84 Hz, 2H, ArH, H-2′

and H-6′), 6.80 (d, J = 8.84 Hz, 2H, ArH, H-3′ and H-3′), 7.12 (m, 2H, ArH, H-3” and H-5”),
7.30 (m, 2H, ArH, H-2” and H-6”), 8.86 (s, 1H, OH). 13C-NMR (126 MHz, DMSO-d6): (δ)
41.2 (C-2a and C-6a), 45.3 (C-3a and C-5a), 50.3 (C-3b and C-5b), 50.9 (C-2b and C-6b), 52.5
(CH2-C=0), 61.1 (CH2), 114.8 (d, JC-F = 20.84 Hz, C-3” and C-5”), 115.4 (C-2′ and C-6′), 118.3
(C-3′ and C-5′), 130.6 (d, JC-F = 7.82 Hz, C-2” and C-6”), 134.3 (C-1”), 144.0 (C-1′), 151.3
(C-4′), 161.2 (d, JC-F = 241.71 Hz, C-4”), 167.3 (C=O). Anal. Calculated for C23H29FN4O2: C
66.97, H 7.09, N 13.58. Found: C 67.00, H 7.12, N 13.54.

2-(4-(3-Chloro-4-fluorobenzyl)piperazin-1-yl)-1-(4-(4-hydroxyphenyl)piperazin-1-yl)e-
thanone (2c)

Yield: 53%. White powder. M.p. 165–168 ◦C. 1H-NMR (500 MHz, DMSO-d6): (δ) 2.40
(m, 4H, 2CH2), 2.88 (m, 2H, CH2), 2.96 (m, 2H, CH2), 3.22 (m, 2H, CH2), 3.46 (s, 2H, CH2),
3.56 (m, 2H, CH2), 3.64 (s, 2H, CH2), 6.66 (d, J = 8.94 Hz, 2H, ArH, H-2′ and H-6′), 6.80
(d, J = 8.94 Hz, 2H, ArH, H-3′ and H-3′), 7.30 (m, 1H, ArH, H-5”), 7.35 (t, J = 6.6 Hz, 1H,
ArH, H-6”), 7.48 (d, J = 8.9 Hz, 1H, ArH, H-2”), 8.88 (s, 1H, OH). 13C-NMR (126 MHz,
DMSO-d6): (δ) 41.3 (C-2a and C-6a), 45.2 (C-3a and C-5a), 50.3 (C-3b and C-5b), 50.9 (C-2b
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and C-6b), 52.4 (CH2-C=0), 60.2 (CH2), 115.5 (C-2′ and C-6′), 116.6 (C-5”), 118.4 (C-3′ and
C-5′), 118.5 (C-3”), 119.1 (C-6”), 129.3 (C-2”), 130.6 (C-1”), 143.9 (C-1′), 151.3 (C-4′), 156.2 (d,
JC-F = 245.23 Hz, C-4”), 172.0 (C=O). Anal. Calculated for C23H28ClFN4O2: C 61.81, H 6.31,
N 12.54. Found: C 61.84, H 6.35, N 12.50.

2-(4-(3-Chloro-4-fluorobenzyl)piperazin-1-yl)-1-(4-(4-hydroxyphenyl)piperazin-1-yl)-
propan-1-one (2d)

Yield: 39%. Beige powder. M.p. 172–174 ◦C. 1H-NMR (500 MHz, DMSO-d6): (δ) 1.03
(d, J = 6.64 Hz, 3H, CH3), 2.34 (bs, 4H, 2CH2), 2.45 (bs, 4H, 2CH2), 2.71 (m, 2H, CH2), 2.89
(m, 2H, CH2), 3.02 (m, 2H, CH2), 3.41 (s, 2H, CH2), 3.65 (d, J = 6.68 Hz, 1H, CH), 3.80 (m,
2H, CH2), 6.66 (d, J = 8.83 Hz, 2H, ArH, H-2′ and H-6′), 6.80 (d, J = 8.83 Hz, 2H, ArH, H-3′

and H-5′), 7.28 (m, 1H, ArH, H-5”), 7.33 (1H, ArH, H-6”), 7.46 (1H, ArH, H-2”), 8.90 (s, 1H,
OH). 13C-NMR (126 MHz, DMSO-d6): (δ) 9.6 (CH3), 41.5 (C-2a and C-6a), 45.3 (C-3a and
C-5a), 50.4 (C-3b), 51.1 (C-5b), 52.9 (C-2b and C-6b), 58.9 (CH), 60.5 (CH2), 115.5 (C-2′ and
C-6′), 116.6 (C-5”), 118.4 (C-3′ and C-5′), 119.1 (C-3”), 129.3 (C-6”), 130.5 (C-2”), 136.4 (C-1”),
144.1 (C-1′), 151.4 (C-4′), 156.2 (d, JC-F = 244.7 Hz, C-4”), 169.8 (C=O). Anal. Calculated for
C24H30ClFN4O2: C 62.53, H 6.56, N 12.15. Found: C 62.57, H 6.53, N 12.10.

3.3.4. General Procedure for the Synthesis of the 4H-1,2,4-Triazol-4-amines (3b–d)

To a mixture of suitable 4-amino-4H-1,2,4-triazole-3-thiol (10a or 10b, 1.03 mmol) and
NaOH (41 mg, 1.03 mmol) in MeOH (8 mL), the suitable fluorobenzylbromide derivative
11a or 11b (1.03 mmol) was added dropwise. The pure compounds 3b–d were obtained
following the procedure already reported for parent compound 3a [14].

3-(3-Chloro-4-fluorobenzylthio)-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-amine (3b)
Yield: 100%. Yellow powder. M.p. 164–165 ◦C. 1H NMR (500 MHz, DMSO-d6): (δ) 4.46

(s, 2H, CH2), 6.28 (s, 2H, NH2), 7.36 (t, J = 9.1 Hz, 1H, ArH, H-5”), 7.48 (m, 1H, ArH, H-6”),
7.70 (d, J = 7.1 Hz, 1H, ArH, H-2”), 8.00 (d, J = 3.2 Hz, 2H, pyridine, H-2′ and H-6′), 8.72 (d,
J = 3.2 Hz, 2H, pyridine, H-3′ and H-5′). 13C NMR (126 MHz, DMSO-d6): (δ) 33.4 (CH2),
116.8 (C-3”), 119.1 (C-5”), 121.3 (C-2′ and C-6′), 129.8 (C-2”), 131.1 (C-1”), 133.9 (C-6”), 135.9
(C-1′), 150.1 (C-3′ and C-5′), 152.1 (C-3), 154.3 (C-5), 156.4 (C-4”, d, JC-F = 246 Hz). Anal.
Calculated for C14H11ClFN5S: C 50.08, H 3.30, N 20.86. Found: C 51.10, H 3.76, N 20.31.

3-((2-Chloro-4-fluorobenzyl)thio)-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-amine (3c)
Yield 100%. Whitish powder. M.p. 171–172 ◦C. 1H NMR (500 MHz, DMSO-d6): (δ)

4.52 (s, 2H, CH2), 6.27 (s, 2H, NH2), 7.20 (m, 1H, ArH, H-5”), 7.49 (m, 1H, ArH, H-3”),
7.66 (m, 1H, ArH, H-6”), 8.00 (dd, J = 4.5, 1.6 Hz, 2H, pyridine, H-2′ and H-6′), 8.73 (dd,
J = 4.5, 1.6 Hz, 2H, pyridine, H-3′ and H-5′). 13C-NMR (126 MHz, DMSO-d6): (δ) 32.3
(CH2), 114.4 (C-5”), 116.8 (C-3”), 121.4 (C-2′ and C-6′), 131.3 (C-1”), 132.9 (C-6”), 133.9 (C-1′),
134.1 (C-2”), 150.1 (C-3′ and C-5′), 152.2 (C-3), 153.9 (C-5), 161.4 (C-4”, d, JC-F = 246.4 Hz).
C14H11ClFN5S Anal. Calculated for C14H11ClFN5S: C 50.08, H 3.30, N 20.86. Found: C
50.38, H 3.60, N 21.16.

3-(3-Chloro-4-fluorobenzylthio)-5-phenyl-4H-1,2,4-triazol-4-amine (3d)
Yield: 100%. White powder. M.p. 164–166 ◦C. 1H NMR (500 MHz, DMSO-d6): (δ)

4.43 (s, 2H, CH2), 6.17 (bs, 2H, NH2), 7.36 (t, J = 9.0 Hz, 1H, ArH, H-5”), 7.47 (m, 1H, ArH,
H-6”), 7.50 (d, J = 5.14 Hz, 1H, ArH, H-3” and 5”), 7.69 (d, J = 7.15 Hz, 1H, ArH, H-2′), 7.97
(m, 2H, ArH, H-2′ and H-6′).13C NMR (126 MHz, DMSO-d6): (δ) 33.5 (CH2); 116.8 (C-5”);
119.1 (C-3”); 126.2 (C-2′ and C-6′); 127.9 (C-1′); 128.5 (C-3′ and C-5′); 130.5 (C-6”); 130.9
(C-4′); 131.2 (C-1”); 135.9 (C-2”); 153.1 (C-3); 154.1 (C-5); 156.4 (C-4”, d, JC-F = 246 Hz). Anal.
Calculated for C15H12ClFN4S: C 53.81, H 3.61, N 16.73. Found: C 53.87, H 3.68, N 16.75.
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3.3.5. General Procedures for the Synthesis of Dithioacetals 4b and 4f

To a stirred solution of thiophenol (1.2 mmol) in dry isopropanol, NaOH (2.4 mmol)
was added. After stirring the reaction at 80 ◦C under argon for 1 h, it was cooled to rt and
diiodomethane was added (1.2 mmol). The mixture was then stirred for a further hour
at 80 ◦C under argon. Afterwards, it was cooled to rt, the solvent was removed under
reduced pressure, and the mixture was quenched with water (5 mL). The extraction of
the water phase was carried out with EtAOc (3 × 5 mL), while the organic phase was
washed with water (2 × 5 mL) and brine (2 × 5 mL) and dried over Na2SO4. The solvent
was concentrated in vacuo and the crude compounds were purified through column
chromatography on silica gel (96:4 v/v, petroleum ether/dichloromethane).

Phenylsulfanylmethylsulfanylbenzene (4b)
Yield: 93%. White solid. M.p. 34–35 ◦C. 1H NMR (400 MHz, CDCl3): (δ) 4.35 (s, 2H,

SCH2), 7.25 (m, 2H, ArH, H-4′), 7.32 (m, 4H, ArH, H-3′ and H-5′), 7.43 (m, 4H, ArH, H-2′

and H-6′). 13C NMR (100 MHz, CDCl3): (δ) 40.6 (SCH2), 127.1 (C-4), 129.0 (C-3 and C-5),
130.7 (C-2 and C-6), 135.0 (C-1). Anal. Calculated for C13H12S2: C 67.20, H 5.21. Found: C
67.24, H 5.19.

2-Chloro-4-[(3-chloro-4-fluorophenyl)sulfanylmethylsulfanyl]-1-fluorobenzene (4f)
Yield: 93%. Colorless oil. 1H NMR (600 MHz, CDCl3): (δ) 4.24 (s, 2H, SCH2), 7.09

(m, 2H, ArH), 7.29 (m, 2H, ArH), 7.46 (m, 2H, ArH). 13C NMR (150 MHz, CDCl3): (δ) 42.5
(SCH2), 117.1 (d, J = 21.6 Hz), 121.6 (d, J = 18.6 Hz), 130.6 (d, J = 3.5 Hz), 131.8 (d, J = 7.2 Hz),
133.9, 157.8 (d, JC-F = 249.5 Hz). Anal. Calculated for C13H8Cl2F2S2: C 46.30, H 2.39. Found:
C 46.27, H 2.20.

3.3.6. Synthesis of 1-[(Chloromethyl)sulfanyl]-4-fluorobenzene (14c)

To a mixture of toluene (5 mL) and HCl (37%, 5 mL), paraformaldehyde was added
(152 mg, 5.1 mmol). The resulting mixture was stirred at 50 ◦C for 10 min and then a
solution of 4-fluorobenzene-1-thiol (13) (500 mg, 3.9 mmol) in toluene (5 mL) was added
dropwise at the same temperature. The reaction was stirred at 50 ◦C for 1 h and then at
room temperature for 3 h and then flushed with Ar, and the layers were separated. The
water phase was extracted with DCM (3 × 10 mL) and the organic phase was concentrated
in vacuo to obtain the desired compound, which was used without further purification.

Yield: 90%. Yellow oil. 1H NMR (600 MHz, CDCl3): (δ) 4.89 (s, 2H, SCH2Cl), 7.08
(m, 2H, Ar H), 7.54 (m, 2H, ArH). 13C NMR (150 MHz, CDCl3): (δ) 52.0 (SCH2Cl), 128.1
(d, J = 2.8 Hz), 116.4 (d, J = 21.9 Hz), 134.3 (d, J = 8.4 Hz), 163.0 (d, JC-F = 249.6 Hz). Anal.
Calculated for C7H6ClFS: C 47.60, H 3.42. Found: C 47.66, H 3.47.

3.3.7. General Procedure for the Preparation of the Dithioacetals 4c–e and 4g–h

To a stirred solution of the suitable chloro(methylsulfanyl) derivative (1.0 mmol)
(14a–c) and K2CO3 (2.0 mmol) in DMF (5 mL), the proper thiophenol (1.5 mmol) was added.
The reaction was stirred at room temperature overnight and then quenched with water and
extracted with Et2O (3× 5 mL). The organic phase was washed with brine and concentrated
in vacuo. The desired products 4c–e and 4g–h were obtained after purification through
column chromatography on silica gel (96:4 v/v, petroleum ether/dichloromethane).

1-Fluoro-4-{[(phenylsulfanyl)methyl]sulfanyl}benzene (4c)
Yield: 91%. Yellow oil. 1H NMR (400 MHz, CDCl3): (δ) 4.29 (s, 2H, SCH2), 7.01 (m, 2H,

ArH, H-2′ and H-6′), 7.26 (m, 1H, ArH, H-4”), 7.32 (m, 2H, ArH, H-3′ and H-5”), 7.41 (m,
2H, ArH, H-2” and H-6”), 7.44 (m, 2H, ArH, H-3′ and H-5”). 13C NMR (100 MHz, CDCl3):
(δ) 41.9 (d, J = 1.2 Hz, SCH2), 116.1 (d, J = 21.9 Hz, C’2 and C-6′), 127.1 (C”-4), 129.0 (C”-3
and C”-5), 129.6 (d, J = 3.3 Hz, C’-4), 130.7 (C-2” and C-6”), 134.1 (d, J = 8.2 Hz, C-3′), 134.2
(d, J = 8.2 Hz, C-5′), 134.8 (C-1”), 162.5 (d, JC-F = 247.9 Hz). Anal. Calculated for C13H11FS2:
C 62.37, H 4.43. Found: C 62.53, H 4.48.
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2-Chloro-1-fluoro-4-{[(phenylsulfanyl)methyl]sulfanyl}benzene (4d)
Yield: 87%. Colorless oil. 1H NMR (600 MHz, CDCl3): (δ) 4.29 (s, 2H, SCH2), 7.28 (m,

1H, ArH), 7.32 (m, 2H, ArH), 7.41 (m, 2H, ArH), 7.47 (m, 1H, ArH). 13C NMR (150 MHz,
CDCl3): (δ) 41.7 (SCH2), 117.0 (d, J = 21.7 Hz), 121.4 (d, J = 17.6 Hz), 127.4, 129.1, 131.0, 131.1
(d, J = 4.1 Hz), 131.7 (d, J = 7.1 Hz), 133.7, 134.3, 157.7 (d, JC-F = 248.4 Hz). C13H10ClFS2
Anal. Calculated for C13H10ClFS2: C 54.83, H 3.54. Found: C 54.90, H 3.55.

2-Chloro-1-fluoro-4-(([(4-fluorophenyl)sulfanyl]methyl)sulfanyl)benzene (4e)
Yield: 94%. Colorless oil. 1H NMR (600 MHz, CDCl3): (δ) 4.23 (s, 2H, SCH2), 7.02 (m,

2H, Ph H), 7.08 (m, 1H, ArH), 7.28 (m, 1H, ArH), 7.43 (m, 3H, ArH). 13C NMR (150 MHz,
CDCl3): (δ) 42.8 (SCH2), 116.2 (d, J = 21.2 Hz), 117.0 (d, J = 23.3 Hz), 121.4 (d, J = 19.6 Hz),
129.1 (d, J = 2.7 Hz), 131.0 (d, J = 4.3 Hz), 131.5 (d, J = 7.0 Hz), 133.6, 134.2 (d, J = 8.5 Hz),
157.6 (d, JC-F = 251.9 Hz), 162.6 (d, JC-F = 245.9 Hz). Anal. Calculated for C13H9ClF2S2: C
51.57, H 3.00. Found: 51.33, H 2.95.

1-Fluoro-4-{[(methylsulfanyl)methyl]sulfanyl}benzene (4g)
Yield: 88%. Colorless oil. 1H NMR (600 MHz, CDCl3): (δ) 2.22 (s, 3H, SCH3), 3.93 (s,

2H, SCH2), 7.02 (m, 2H, ArH), 7.44 (m, 2H, ArH). 13C NMR (150 MHz, CDCl3): (δ) 15.0
(SCH3), 41.8 (SCH2), 116.0 (d, J = 21.9 Hz), 129.8 (d, J = 2.8 Hz), 133.9 (d, J = 8.0 Hz), 162.4
(d, JC-F = 245.7 Hz). Anal. Calculated for C8H9FS2: C 51.04, H 4.82. Found: C 51.34, H 4.75.

1-Fluoro-3-{[(methylsulfanyl)methyl]sulfanyl}benzene (4h)
Yield: 94%. Brown oil. 1H NMR (400 MHz, CDCl3): (δ) 2.24 (s, 3H, SCH3), 4.01 (s, 2H,

SCH2S), 6.92 (m, 1H, ArH, H-6), 7.13 (m, 1H, ArH, H-2), 7.17 (m, 1H, ArH, H-4), 7.27 (m,
1H, ArH, H-5). 13C NMR (100 MHz, CDCl3): (δ) 15.2 (SCH3), 39.8 (SCH2S), 113.7 (d, J =
21.2 Hz, C-6), 116.7 (d, J = 23.0 Hz, C-2), 125.4 (d, J = 3.0 Hz, C-4), 130.1 (d, J = 8.5 Hz, C-5),
137.6 (d, J = 7.8 Hz, C-3), 162.7 (d, JC-F = 248.4 Hz). Anal. Calculated for C8H9FS2: C 51.04,
H 4.82. Found: C 51.11, H 4.78.

4. Conclusions

In summary, potent inhibitors of TYR from Agaricus bisporus were identified through
very simple modifications of 4-fluorophenyl-based compounds that have been previously
described. This investigation confirmed that the 3-chloro-4-fluorophenyl moiety was a
fragment able to enhance the AbTYR inhibitory activity of distinct chemotypes of molecules
targeting AbTYR. Our docking studies suggested that the improvement in activity might
be due to additional interactions within the enzyme cavity that are able to reinforce the
fluorine bond with crucial residues.
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