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Abstract

A graph G admiting a 2-factor is pseudo 2-factor isomorphic if the parity of the number

of cycles in all its 2-factors is the same. In [1] some of the authors of this note gave

a partial characterisation of pseudo 2-factor isomorphic bipartite cubic graphs and

conjectured thatK3,3, the Heawood graph and the Pappus graph are the only essentially

4-edge-connected ones. In [7] Jan Goedgebeur computationally found a graph G on

30 vertices which is pseudo 2-factor isomorphic cubic and bipartite, essentially 4-edge-

connected and cyclically 6-edge-connected, thus refuting the above conjecture. In this

note, we describe how such a graph can be constructed from the Heawood graph and

the generalised Petersen graph GP (8, 3), which are the Levi graphs of the Fano 73

configuration and the Möbius-Kantor 83 configuration, respectively. Such a description

of G allows us to understand its automorphism group, which has order 144, using both

a geometrical and a graph theoretical approach simultaneously. Moreover we illustrate

the uniqueness of this graph.
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1. Introduction

All graphs considered in this note are simple (without loops or multiple edges) and

undirected. Most of our terminologies are standard; for further definitions and notation

not explicitly stated in the paper, please refer to [4] and [8].

A 2-factor of a graph G is a 2-regular spanning subgraph of G. A graph G admiting

a 2-factor is pseudo 2-factor isomorphic if the parity of the number of cycles in all
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its 2-factors is the same. In a cubic graph, the three edges incident with a vertex

constitute a 3-edge-cut because their removal leaves an isolated vertex, and is called

trivial, others being non-trivial. A cubic graph is said to be essentially 4-edge-connected

if it contains no non-trivial 3-edge-cut. A set S of edges of a graph G is a cyclic edge

cut if G− S has two components each of which contains a cycle. We say that a graph

G is cyclically m-edge-connected if each cyclic edge cut of G has size at least m. In

[1] some of the authors of this note gave a partial characterization of pseudo 2-factor

isomorphic bipartite cubic graphs and conjectured:

Conjecture 1.1. [1, Conjecture 3.6] Let G be an essentially 4-edge-connected pseudo

2-factor isomorphic cubic bipartite graph. Then G must be K3,3, the Heawood graph or

the Pappus graph.

In [7] Jan Goedgebeur computationally found a graph G on 30 vertices which is pseudo

2-factor isomorphic cubic and bipartite, essentially 4-edge-connected and cyclically 6-

edge-connected, thus refuting the above Conjecture 1.1 (cf. Figure 2). Here, we explain

how G (which we will also refer to as Goedgebeur’s graph) is generated and why it is

unique in its kind, providing a construction. In particular, we analyse the structure

of G describing how it arises from the Heawood graph and the generalised Petersen

graph GP (8, 3), which are the Levi graphs of the Fano 73 configuration F and the

Möbius-Kantor 83 configuration MK, respectively. This construction will completely

explain the automorphism group of G as a semidirect product of groups of order 9 and

16 respectively. This construction does not generalize in a natural way to an infinite

family of graphs preserving all properties of G , in particular being pseudo 2-factor

isomorphic.

Recall that a cubic bipartite graph on 2n vertices with girth at least 6 is the Levi graphs

of a symmetric configurations n3. When counting symmetric configurations, we must

distinguish between self-dual configurations, which give rise to one bipartite graph of

girth at least 6 (via its Levi graph), and pairs of distinct configurations dual to each

other with isomorphic Levi graphs. With increasing order n the number of pairwise

non-isomorphic structures exponentially increases but almost all of them are rigid, i.e.

they have a trivial automorphism group. Therefore it makes sense to focus on graphs

which have a large automorphism group, say at least 4n.

The graph G has 30 = 2n vertices and is the Levi graph of a n3 = 153 configuration

C . For n = 15, there are 125571 cubic bipartite graphs with girth at least 6, which

give rise to 5802 153 self-dual configurations and 119770 pairs of non-isomorphic 153

configurations dual to each other. Note that the automorphism group of the Levi graph

of a configuration n3 is twice as big as the one of the corresponding configuration. There

are 6 graphs with large automorphism group, namely the Levi graph of the generalised
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quadrangle of order 2, with automorphism group of order 2 · 8094, moreover there are

two Levi graphs of self-dual configurations with automorphism group 2 ·720 and 2 ·128,

respectively, a pair of non-isomorphic configurations with automorphism group of order

192, as well as Goedgebeur’s graph G , i.e. a self-dual graph with automorphism group

of order 144. All Levi graphs of other 153 configurations have automorphism group of

order less than 4n (cf. [2], [3], [7]).

In Section 2 we will describe the construction that gives rise to G ; in Section 3 we

investigate the automorphism group of G and in Section 4 we analyse the uniqueness

of G .

2. The Construction

In this section we describe how the configuration C , of which G is the Levi graph, arises

by appropriately joining the Fano configuration F and the Möbius-Kantor configuration

MK. The following definition will be very useful for our purposes:

Definition 2.1. A quadrilateral consists of 4 points P0, P1, P2, P3 in general position

(i.e. no three collinear) and the 4 (oriented) lines PiPi+1, indices taken modulo 4.

Now we define two structures that arise from the configurations MK and F by remov-

ing some point/line incidences without deleting neither points nor lines, and changing

only the valency of some of them.

Consider the classical representation of MK as two quadrilaterals simultaneously in-

scribed and circumscribed (e.g. cf. [6, pag. 430]). Disregarding the circumscription,

i.e. removing the corrisponding incidences it defines, we obtain an MK-residue in

which the valency of 4 points and 4 lines decreases from three to two. Similarly, re-

moving the incidences of a quadrilateral in F , we obtain an F -residue with 4 points

and 4 lines of valency two.

The configuration C then arises by suitably adding incidences among points and lines

of valency two between an F -residue and an MK-residue.

Consider the labellings of the Möbius-Kantor and Fano plane configurations as in Figure

1 and choose the MK-residue and the F -residue accordingly.

Note that the quadrilaterals P0P1P2P3 and P ′
0P

′
1P

′
2P

′
3 are both diagonal free, in the

sense that the pairs P0P2, P1P3, P
′
0P

′
2 and P ′

1P
′
3 are all non collinear. These two quadri-

laterals are in fact mutually inscribed and circumscribed. The MK-residue is obtained

by removing the circumscription, i.e. the incidences P0|l2, P1|l3, P2|l0, P3|l1, where li is

defined as in Figure 1. The F -residue is obtained by removing the incidences P ′′
i+1|l′′i

of the quadrilateral P ′′
0 , P

′′
1 , P

′′
2 , P

′′
3 , indices taken modulo 4, where l′′i is also defined as

in Figure 1. There are 576 ways to join the points and lines of the MK-residue and
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Figure 1: Möbius-Kantor and Fano plane configurations

the F -residue in order to obtain a 153 configuration (cf. Section 4), but the choice of

the incidences Pi|l′′i and P ′′
i |li, indices taken modulo 4, gives rise to C and has G as

its Levi Graph (cf. Figure 2). In Section 4 we will analyse what the other choices of

incidences give, but first we study Aut(G ).

Figure 2: Goedgebeur’s graph G

3. The Automorphism Group of G

In order to investigate the automorphism group Aut(G ), we consider the Levi graph of

the F -residue and the MK-residue described in the previous section and mantain the

inheritatd labelling on the vertices, some corresponding to points and other to lines,

on different sides of the bipartition. We refer to the edges connecting the F -residue
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with the MK-residue as the eight-bridge. Observe that in G there is a unique edge

e at distance 2 from each vertex P ′′
i , l

′′
i , i = 0, . . . , 3 and hence from the eight-bridge.

Morover, the edges fi = P ′′
i l

′′
i , i = 0, . . . , 3 are independent. Also, in the Levi graph

of the MK-residue part of G , there are exactly four independent edges m0, . . . ,m3, at

distance two from the eight-bridge (cf. Figure 2).

Theorem 3.1. Aut(G ) ∼= (Z3 × Z3) o (D4 × Z2)

Proof. Using Magma Computational Algebra System [5], we computed Aut(G ) and

realized that it can be described in terms of its action on the set of edges M :=

{e, f0, . . . , f3,m0, . . . ,m3}, so abusing notation, we will denote automorphisms of G as

permutations of the edges in M .

There are 8 automorphisms characterised by the fact that they map the edge e onto one

edge out of {f0, . . . , f3,m0, . . . ,m3}. Together with the identity, these automorphisms

are a subgroup K of Aut(G ) generated by automorphisms σ0 and σ1:

σ0 = (e,m0,m2)(m1, f3, f0)(m3, f2, f1)

σ1 = (e, f1, f3)(f0,m0,m3)(f2,m1,m2)

These automorphisms have order 3, and K, which is not cyclic, is hence isomorphic to

Z3 × Z3. Moreover, K / Aut(G ).

On the other hand, the stabilizers in Aut(G ) of each edge in M represent isomorphic

non-abelian subgroups of order 16, none of which is normal in Aut(G ). Besides the

identity, in each group there are 11 and 4 elements of order 2 and 4 respectively. Using

the well-known classification of groups (cf. [9]), these are isomorphic to D4 × Z2, and

they form a unique class of conjugacy in Aut(G ). Hence, we may choose the stabilizer

of the edge e, say H. In H, we find a transpostion τ which inverts the endvertices of

the edges in M , acting as a horizontal mirror through the center of Figure 2. Moreover

there are two automorphisms:

δ = (e)(f0, f2)(f1)(f3)(m0,m1)(m2,m3)

ρ = (e)(f0, f1, f2, f3)(m0,m1,m2,m3)

such that < δ, ρ >= D4.

In conclusion we have that

Aut(G ) ∼= K oH ∼= (Z3 × Z3) o (D4 × Z2).
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4. The uniqueness of G

In the construction of G , we made a very specific choice of the eight-bridge. We now

analyse what the other choices are, and to some extent, what graphs they give rise

to. On the first place, we observe that not every eight-bridge preserves bipartition

and girth 6 and that those that do, correspond to two permutations of four elements,

i.e. from the symmetric group S4, say α and β which are used to establish the edges

Pi|l′′α(i) and li|P ′′
β(i). There are 24 choices for each of α and β for a total of 576 choices

for the eight-bridge (preserving bipartition and girth). Let Gα,β be the graph with the

choice of the eight-bridge according to α and β. To describe and analyse the choices

we consider a partition of the symmetric group S4 as in Table 1 in which the first row

contains the normal Klein subgroup Z2×Z2, and the other rows its laterals. In the last

column of Table 1, we have represented the effect of, say α, on the other adjacencies

between l′′i and the vertices {a, b} (as in Figure 2).

Class I id (02) (13) (02)(13)

Class II (01)(23) (0123) (0321) (03)(12)

Class III (01) (012) (031) (0312)

Class IV (23) (023) (132) (0213)

Class V (03) (032) (013) (0132)

Class VI (12) (021) (123) (0231)

Table 1: The partition of S4
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We distinguish among two types of choices of α and β.

• Case 1: When α = β

• Case 2: When α 6= β.

In case 1, τ , the mirror automorphism of G described in the previous section, is still

an automorphism of Gα,β. The choice of α from the first two rows of Table 1 gives rise

to graphs isomorphic to G because the rest of the F -residue is preserved. Thus, we

have 8 graphs isomorphic to G . The other 16 graphs with α from rows 3− 6 of Table

1 do no longer preserve the automorphisms σ0 and σ1, but they all belong to the same

isomorphism class. Such graphs have automorphism group of order 24, having lost the

Z3 × Z3 part of the automorphism group of G .

In case 2 the situation of symmetries gets much worse, and the results are summarized

in Table 2.

|Aut(G)| # Isomorphism Classes # Representants

16 1 8

8 6 16

4
1 64

4 32

2 2 64

1 1 128

Table 2: Summary of Gα,β

In conclusion, the graph G is unique, up to automorphisms of the F -residue, which as

described in case 1.

There is also another sense in which G seems to be unique. As far as we could check,

the construction of joining residues of Levi graphs of n3 configurations, do not preserve,

in general a strong property such as being pseudo 2-factor isomorphic. The problem

lies in the kinds of cycles which are created that are, thus, able to produce 2-factors

of both parities. Intuitively, there is too much room, whereas the MK-residue and the

F-residue are very compact. Moreover, also using several copies of the same residues

does not preserve the behavior of the parity of cycles in a 2–factor.
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