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Abstract

Semi-supervised learning has shown its potential in many real-world applications where only few
labeled examples are available. However, when some fairness constraints need to be satisfied, semi-
supervised classification models often struggle as they are required to cope with the lack of sufficient
information for predicting the target variable while forgetting its relationships with any sensitive and
potentially discriminatory attribute. To address this issue, we propose a fair semi-supervised represen-
tation learning architecture that leads to fair and accurate classification results even in very challenging
scenarios with few labeled (but biased) instances. We show experimentally that our model can be easily
adopted in very general settings, as the learned representations may be employed to train any super-
vised classifier. Moreover, when applied to several real-world datasets, our method is competitive with
state-of-the-art fair semi-supervised approaches.
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1. Introduction

In an ideal scenario, modern supervised machine learning algorithms are able to get the most
from all available training data instances so to accomplish the task at hand, be it classification,
regression or ranking. Unfortunately, in real-world applications, this is almost never the case due
to several reasons, among the others, the necessity to access huge amounts of labeled instances to
train supervised algorithms. Labels often require cost-intensive collection procedures and huge
efforts from human experts, especially in challenging domains such as medical and financial
ones. Semi-supervised learning precisely addresses this issue by considering, together with a
small amount of labeled information, unlabeled instances during the learning process, leveraging
the so-called smoothness and cluster assumptions: if two data instances are close to each other
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or belong to the same cluster in the input distribution, then they are likely to belong to the
same class [1, 2]. If the few available labels are of good quality, and clusters are well separated,
unlabeled instances contribute to improve the accuracy significantly. Nonetheless, the labels
might contain biases against certain groups. This might be an effect of historical explicit
discriminations which may be reflected in a human expert’s beliefs, data scarcity or even biases
in the data generation/measuring process itself [3]. Beyond ethical issues, fairness in machine
learning models is becoming an increasingly pressing concern at a practical level as regulators
and the general public become more aware of the potential for automatic discrimination.

If the lack of labeled training instances and fairness are complex problems individually,
avoiding biases in a semi-supervised learning scenario is even more challenging. In a worst-case
scenario, the few available labeled instances could be all or almost all associated to unfair sources,
thus leading to very biased results or preventing any debiasing process. On the other hand,
unlabeled instances do not carry any explicit bias and could be useful for driving the learning
algorithm towards a fairer model. Despite its clear potential, fair semi-supervised learning
has not been deeply investigated. The few existing approaches are based on preprocessing
strategies that seek to extract fair training datasets by leveraging unlabeled instances [4, 5]. In
short, these strategies train the model on a “fair subset” of the original data [4], although it is
also possible to perform pseudo-labeling over the remaining data [5]. These techniques bear
some resemblance to well-known preprocessing strategies in fully-supervised fair classification
[6]. However, to the best of our knowledge, no representation learning method specifically
designed for semi-supervised learning with fairness constraints has been proposed so far.

Representation learning allows one to automatically construct a new feature space that better
captures the different factors of variation behind the data [7]. Such new representation can then
be used to feed any machine learning algorithms, including supervised and unsupervised ones.
Autoencoders are among the most popular representation learning methods and both fair [8]
and semi-supervised [9] versions of them have been proposed. Louizos et al.’s Variational Fair
Autoencoder (VFAE) [10] could be employed in semi-supervised settings, in principle, however,
it has only been tested in the fully supervised ones.

This paper is an extended abstract of [11], where we propose a fair semi-supervised autoen-
coder that leads to fair and accurate classification results even in very challenging scenarios with
few labeled (but biased) instances. The classic auto-encoding architecture [12] is enhanced with
two components. One is trained to classify instances and employs the available labeled training
instances. The second is a debiasing component that removes as much information as possible
about the sensitive attribute, in an adversarial fashion. Additionally, our model is inductive
and, as such, it can be used to classify unseen examples as well. We name our contribution
FairswiRL, which stands for Fair Semi-supervised classification with Representation Learning.

Through an extensive experimental validation on synthetic and real world datasets, we show
that the representations learned by FairSwiRL as the training data for different classifiers leads
to reasonably accurate models while respecting the fairness constraint. Moreover, our method
compares favorably to other state-of-the-art fair semi-supervised classification approaches.



2. Problem Setting

In this section, we describe the problem of semi-supervised fair classification. In this scenario,
one seeks to learn a classifier by using both labeled instances and unlabeled ones. Moreover, we
would also like to satisfy a fairness constraint with respect to a given sensitive attribute, i.e. a
feature representing an individual’s membership in an historically underprivileged group. The
rationale here is to avoid potentially discriminatory decisions by the learned classifier [3].

We denote with (X, s;,y;) the features, the sensitive attributes, and the target variables of
labeled instances, with (X, s,,) the features and the sensitive attributes of unlabeled instances.
In semi-supervised fair classification, we seek to learn a classifier which is able to leverage both
(X1, 81, y1) and (X, s,) such that the predictions of target variable y; computed on an unseen
test set (X, s;) are accurate and satisfy some fairness constraints. In the following, capital
non-bold letters will be used to denote random variables (e.g., X, Y, S will denote the stochastic
variables associated with examples, labels and sensitive attributes).

As a fairness constraint, we here consider independence, or statistical parity (SP [13, 3]). Thus,
we require that the probability of assigning a positive outcome to an individual is independent of
the sensitive information S. Formally, we require that P(Y =1 | S =0)=P(Y =1| 8 = 1),
where Y is the stochastic variable associated with the prediction of the model. As a way to
quantify how far we are from the statistical parity, we consider the statistical absolute difference
(SAD) measure, [14]:

SAD = [E[Y | S=0]-E[Y | S =1]|. (1)

The lower the SAD, the better it is, with statistical parity at SAD = 0. We note here that removing
the sensitive attributes s; and s,, is usually insufficient to achieve statistical parity as some
information about S may be present in the remaining variables X; and X,, or the labels y;.
Thus, FairSwiRL seeks to optimize the SAD metric by learning a debiased representation of the
original data - i.e. a new representation of the data X in which all information about S has been
removed. After the debiasing, any classifier trained on the latent representation will be able
to achieve low SAD values without being specifically optimized for this metric. Our proposal
is a semi-supervised representation learning method which is able to leverage the unlabeled
examples and obtain a less biased representation of the data. We describe our contribution in
detail in the next section.

3. Fair Semi-supervised Representations for Classification

In our problem setting, label scarcity is paired with fairness constraints. To face these issues,
we design an inductive and fair semi-supervised model which leverages representation learning
techniques. We employ an auto-encoding architecture [12] which is able to leverage both labeled
X; and unlabeled data X,,. This architecture maps the original data X = {X; U X, } into a
compact representation z via a series of fully-connected layers, a process which is commonly
referred to as encoding. In the following we will refer to this section of our model as the encoder
Ey,(x), where 0. are the learnable parameters for the fully connected layers, and the learned
latent representation as z. The dimension of this representation is a hyperparameter for the
algorithm and may be set up to be lower than x, therefore compressing information. Another



series of fully connected layers, a decoder Dy, (z), then maps back the latent representation
into an approximation X of the original data. This architecture may be learned via gradient
descent over a reconstruction loss L. which is defined as follows:

Lice(Bo,, Do) = Y |xi — Do, (Eg, (x2))|I*
XiG(XuUXl)

In the semi-supervised setting there is also the additional opportunity to exploit the limited
amount of class information provided by the labeled examples x; € X;. Exploiting this is
paramount to obtain representations that are also useful for classification. Therefore, we employ
an auxiliary network Cp,_(z;) and train it on the representations z; = Fy,_(x;) for which label
data are available. As is commonly done in classification with neural networks, we exploit the
cross entropy loss to drive the training of this component of the network:

V|
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x;€X Jj=1

where the notation y; ; assumes the one-hot encoding of the class j for the labeled example
x; € X, and ) is the set of possible labels (numbered from 1 to |)|). Lastly, we employ a
component which is able to remove information about the sensitive attribute s from the obtained
representations z. This is possible by training another auxiliary classifier which predicts the
sensitive attribute from the representation, which we will refer to in the following as Fp,. Once
again, this may be trained via cross-entropy, albeit over both labeled and unlabeled examples,
as we assume that sensitive information is available for all data samples:

S|
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where s; ; is the j-th component of the one-hot-encoded s vector and S is the set of possible
sensible values. Formally, the overall training objective for our method is as follows:

Etot(987 Qd, 90) ef) = wclaﬁcla(gey 90) + wrecﬁrec(eea ed) - wfairﬁfair(eea ef)a

where Weyir, Wela, Wree are hyperparameters which may be picked to control the fairness/classifi-
cation/reconstruction trade-off. The networks are pitted against one another in an adversarial
fashion. This implies setting up a min-max game where networks FEy_, Dy, and Cy_ are em-
ployed to respectively minimize the reconstruction and classification losses; the network Fj ., on
the other hand, should have maximal loss, i.e., it should be impossible to reconstruct information
about the sensitive attribute s from the learned representations z. This leads to the following
multi-objective optimization problem:

967 9d> éca éf = arg {emin [wclaﬁcla(eey 90) + wrecﬁrec(gea 0d> — Wair n;in ﬁfair(gm 9f):| } .
esYd,Ve f

The equilibrium point in the above problem can be found via gradient reversal [15], a procedure
where the gradient information from a sub-network is multiplied by —1 when backpropagating



Table 1
Datasets used during our experiments

- post-

. original - . .

Dataset instances processed  sensitive attribute target variable
features
features

ADULT 48 842 14 107 sex income
BANK 45 211 17 61 previous campaign subscription
CARD 30 000 23 23 education default
COMPAS 6127 53 18 ethnicity criminal recidivism

into the main architecture. Specifically, we invert the gradient from £, when updating the
parameters in our encoder Fy_.

In summary, the proposed network (FairSwiRL) is a fairness focused extension of the semi-
supervised autoencoder. One core property of FairSwiRL is that it leverages representation
learning to obtain feature vectors which are both useful and fair. The obtained representations
may then be used for further downstream tasks with no restriction on the employed model,
allowing a practitioner to use the model that best fits the domain knowledge on the task or any
business requirements. We show the flexibility of our approach in Section 4.1, where we report
experimental results for different classifiers trained on FairSwiRL’s representations.

4. Experiments

Our experiments are aimed at evaluating the representations learned by FairSwiRL. To this
purpose, we experiment on four real-world datasets that have been extensively employed for
fair classification and fair representation learning [8, 10] (see Table 1 for summary statistics).

4.1. FairSwiRL in combination with different supervised classifiers

Here, we compare different classifiers in combination with FairSwiRL, namely: random forest
(FairswiRL+RF), k-nearest neighbors (FairswiRL+KNN), logistic regression (FairSwiRL+LR),
support vector machines (FairSwiRL+SVC) and neural network (FairSwiRL+NN).

We now define the data splits and the evaluation metric we will employ in this section and in
the rest of the paper. Let n;, ny, n,, and ny be the number of labeled, unlabeled, validation and
test examples. We start with the following configuration: n; = 100, n,, = 10000, n,, = 100,
ny = 10000 (in case of the COMPAS dataset n; = 100, n,, = 1900, n,, = 100, n; = 1900). We
use the validation examples to find a good configuration of the hyperparameters and then, by
using the same hyperparameters, we increase the number of labeled instances n; from 100 to
2000. For each combination of (n;, n,, 1y, n¢) we repeat the experiments ten times by sampling
different datasets from the original data, and compute the average performance metrics. We
stress that the number of available examples for a given experimental run is computed in absolute
terms, not relative. This lets us compare the performance of the methodologies across the same
number of test examples, no matter how many labeled examples are available. To measure
the fairness level we employ 1-SAD (see Equation 1) while for the predictive performance we
compute the Matthews Correlation Coefficient (MCC [16, 17]).
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Figure 1: Performances of FairSwiRL for increasing number of labeled instances and in combination
with different classifiers: R, KNN, LR, , . Lines represent the mean of the given metric over 10
repetitions, shaded area correspond to & one standard deviation. The x-axis represents the number of
labeled instances used during the training process. Best viewed in color.

In Figure 1, we report only the results for ADULT , but the behaviors of different combinations
of FairswiRL+classifier are similar across the datasets. We note that the trends of the different
classifiers are the same in predicting the target variable and in being fair. These results show
that the latent representations induced by FairSwiRL can be used by different classifiers and,
as the number of labeled examples increases, the performances on the target variable tend to
increase. While the 1-SAD value (higher is better) slightly suffers from the bias introduced by the
additional examples, we note that it remains very close to optimal values (> 0.9) nonetheless.

In the next section, we will compare FairSwiRL with competing approaches. In order to
enable a fair comparison, we choose the worst combination (FairsSwiRL+RF, according to the
previous experiment) and keep it fixed in all the experiments presented in this work.

4.2. FairSwiRL+RF compared to competitors

In this experiment, we test the effectiveness of FairSwiRL on different datasets and against
different competitors. The experiment setting is the same as in Section 4.1, but we choose only
the worst performing combination (FairSwiRL+RF) as our candidate combination. In addition
to FairswiRL+RF, we include the following competitors: FESF, an implementation of Fairness-
Enhanced Sampling Framework [4]; FairSSL, an implementation of the algorithm presented by
Chakraborty et al. [5] with Label Spreading [18] as the pseudo-labeling algorithm; VFAE an
implementation of the Variational Fair Autoencoder [10] used to get the latent representation
on which a random forest is then trained for the classification task, as in FairSwiRL+RF.

The results are reported in Figure 2. The plots report on the x-axis the performance metric
(MCC) and on the y-axis the fairness metric (1-SAD). We vary the number of labeled examples
and run the experiments ten times for each configuration. Each point in the plot represents
one experiment, shapes vary according to the algorithm used and colors vary according to the
number of labeled examples in the dataset. The best possible point in each plot is at coordinates
(1,1), but this is usually unattainable. The gray dashed line has slope -1 and, as such, points
on that line have the same trade-off between accuracy and fairness. The lines showed in each
plot pass through the point closest to (1,1) under the L; metric. These points are, thus, the
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Figure 2: A comparison of FairSwiRL+RF to the other competitors. The plots report on the x-axis the
performance metric MCC and on the y-axis the fairness metric 1-SAD (higher is better for both). Each
point is the average of 10 repeated runs with the same configuration but different samples. The colors
represent the number of labeled instances. Best viewed in color.

best performers under the assumption that fairness and accuracy are equally important. We
can see that, with the exception of the plot concerning the COMPAS dataset, the points (¥)
representing FairSwiRL+RF are always in the upper half of the plots. Higher values of 1-SAD
mean that the debiasing component of FairSwiRL is working as expected.

The comparisons with FairSSL (@), FESF (@) and VFAE (») are also favorable. Except for the
CARD dataset, FairSwiRL lies on the optimal tradeoff line. In CARD, where the best results are
attained by FESF, FairSwiRL has a better fairness, but the lower MCC leads the FESF model to
prevail in terms of the linear trade-off we are assuming here. This is a typical case of accuracy-
fairness dilemma: higher 1-SAD implies also lower predictive power when the sensitive attribute
and target variable are correlated. On the COMPAS dataset we have a mixed situation, while
the best points are attained by FairSwiRL, we can see that for some experiments (specifically,
those with fewer labeled examples) it attains worse performances than the competitors. Overall,
we would not judge this experiment as a clear win for FairSwiRL, but we still maintain that it
is a competitive approach also in this case.

As far as more general trends are concerned, we observe that more labeled instances (warmer
colors in Figure 2) lead all methodologies to more accurate, but less fair results. This result, in
our view, justifies further future employment of semi-supervised techniques in fair classification:
a small amount of labeled data does not impact fairness negatively.

Beyond the linear tradeoff discussed above, we also experiment in an hypothetical context in
which fairness is paramount and performance may be pursued only when fairness is already
guaranteed. To model this situation, we repeated the experiments recording the discounted
MCC metric: DisMCC = MCC,, - e~ P where MCC, is the MCC computed on the target
variable. It is worth noting that, in this metric, the fairness performances, as measured by the
SAD statistic, are weighted exponentially. Figure 3 plots the average rankings of the competing
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Figure 3: Performances of FairSwiRL and competitors for increasing number (100-2000) of labeled
instances: , FairSSL, , VFAE. Lines represent the average rank (on the top) and the
average DisMCC (on the bottom) over 10 repetitions. Best viewed in color.

approaches for increasing number of labeled examples. Rankings are evaluated according to
the value of DisMCC with a = 30. We note that lower rankings, which are better, are displayed
higher in the picture. The actual values of DisMCC obtained in the corresponding experiment
are displayed in the right column (higher values are better). In SYNTHETIC the PD+RF method
dominates, as expected, because it represents the theoretical upper-bound, unreachable in
a real setting since the data generation process is usually unknown. However, the second
best candidate is FairSwiRL+RF. In CARD FairSwiRL+RF reaches the best performance only
sometimes but if compared to VFAE and FairSSL it has a more stable trajectory when the number
of labeled instances changes. FairSwiRL is overall the strongest performer on both ADULT and
BANK. In COMPAS we observe worse performances than the competitors, while the other fair
representation learning strategy we tested (VFAE) is the strongest performer. Overall, even in a
context where the fairness is exponentially weighted, FairSwiRL+RF performs well on average.

5. Conclusion

We have proposed a neural network for representation learning that addresses two challenging
issues simultaneously: the lack of sufficient labeled examples in the training data, and the
presence of sensitive attributes potentially leading to unfair decisions. We have shown that
unlabeled examples help the learning algorithm to cope with both problems, leading to fair and
accurate semi-supervised classification of unseen examples. The experiments have shown the
effectiveness of our approach, even in comparison with state-of-the-art fair semi-supervised
methods which employ preprocessing strategies. We have also performed a full comparison
with another fair representation learning strategy (VFAE) [10] which had so far never been
tested in the SSL setting. Our experiments show that fair representation learning approaches
are able to outperform feature preprocessing strategies in the semi-supervised setting and such
a result transfers across different tradeoffs for fairness vs. accuracy.
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