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Abstract
We study the Cauchy problem for the linear double dispersion equation

utt − �utt + �2u − �u − �ut = 0, t ≥ 0, x ∈ R
n

andwe derive long time decay estimates for the solution in L p spaces and in real Hardy
spaces. We employ the obtained results to study the equation with nonlinearity� f (u)

and nonsmooth f .

Keywords Double dispersion equation · Cauchy problem · Fourier multiplier
estimates · Real Hardy spaces · Decay estimates · Global small data solutions
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1 Introduction

In this paper, we study the Cauchy problem for the generalized double dispersion
equation

{
utt − �utt + �2u − �u − �ut = � f (u), t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x),
(1.1)

where f is a Lipschitz-continuous function verifying

| f (u)| ≤ C |u|1+σ , | f (u) − f (v)| ≤ C |u − v|(|u|σ + |v|σ ), (1.2)

for some σ > 0 and C > 0. For instance, f (u) = |u|1+σ .
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The structure of the equation in (1.1) may be better understood by writing it as a
wave equation with a Bessel potential and a Laplace operator applied to a damping
term and a nonlinearity

utt − �u = (1 − �)−1�
(
ut + f (u)

)
.

As a consequence, problem (1.1) shares some properties of the Cauchy problem for
the damped wave equation

{
utt − �u + ut = f (u), t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x),
(1.3)

but the action of the operator (1−�)−1� to the damping term and to the nonlinearity
produces completely new effects. Problem (1.3) has been deeply investigated in recent
years, in particular, global small data solutions to (1.3) exist if σ > 2/n (see [36], see
also [19,22]). On the other hand, problem (1.1) shares some properties of the Cauchy
problem for the strongly damped wave equation with nonlinearity � f (u):

{
utt − �u − �ut = � f (u), t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x).
(1.4)

The asymptotic profile of the solution to the corresponding linear model, i.e. (1.4)
with f = 0, has been recently investigated (see, in particular, [18]). Partial results
for the problem with power nonlinearity f (u) instead of � f (u) in (1.4), have been
obtained in [14].

In this paper, we exploit the special structure of (1.1) to study the influence of
assuming initial data u0, u1 in real Hardy spaces Hp(Rn) on the existence of global
small data solutions to (1.1) (the definition and someproperties of realHardy spaces are
collected in Sect. 6). In order to do that, we deriveHq−Hp estimates, 0 < q ≤ p ≤ 2,
for the solution to the linear homogeneous problem

{
utt − �utt + �2u − �u − �ut = 0, t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x).
(1.5)

If p > 1, thenHp = L p. On the other hand,H1 ↪→ L1, with a proper inclusion. As a
consequence, our estimates are also Lq − L p estimates when 1 < q ≤ p ≤ 2. In this
paper, we use the notation Hp instead of the classical notation H p to avoid possible
confusion with the Sobolev space W p,2.

Assuming initial data in real Hardy spaces Hq , q ∈ (0, 1], or in Lq spaces, q ∈
[1, 2], and in the energy space, one may easily derive the following long time decay
estimates for the solution and its derivatives, on L2 basis.

Theorem 1.1 Let n ≥ 1, q0, q1 ∈ (0, 2], and j ∈ N. Assume that u0 ∈ Hq0 ∩ W j+1,2

and u1 ∈ Hq1 ∩ W j,2. Then the solution u ∈ C([0,∞),W j+1,2) ∩ C1([0,∞),W j,2)

to (1.5) verifies the decay estimate
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‖∂kt ∂α
x u(t, ·)‖L2 ≤ C(1 + t)

− 1
2

(
n
(

1
q0

− 1
2

)
+k+|α|

)
‖u0‖Hq0

+ C(1 + t)
− 1

2

(
n
(

1
q1

− 1
2

)
−1+k+|α|

)
‖u1‖Hq1

+ Ce−ct(‖u0‖Wk+|α|,2 + ‖u1‖Wk+|α|−1,2

)
,

(1.6)

for any k ∈ N and α ∈ N
n, with 1 ≤ k + |α| ≤ j + 1 and t ≥ 0, for some C, c > 0,

independent of the initial data. Decay estimate (1.6) is also valid for k = |α| = 0,
provided that

n
( 1

q1
− 1

2

)
≥ 1.

Moreover, if q j = 1, we may replaceH1 by L1 in (1.6), provided that n ≥ 3, if q1 = 1
and k = |α| = 0.

In particular, setting k+|α| = 1, 2 in Theorem 1.1, we find that the energy for (1.5)
given by

E(t) = ‖ut (t, ·)‖2L2 + ‖∇ut (t, ·)‖2L2 + ‖∇u(t, ·)‖2L2 + ‖�u(t, ·)‖2L2 ,

verifies the decay estimate

E(t) ≤ C(1 + t)
−min

{
n
(

1
q1

− 1
2

)
,n

(
1
q0

− 1
2

)
+1

}(
E(0) + ‖u0‖2Hq0 + ‖u1‖2Hq1

)
.

By using a Mikhlin–Hörmander type multiplier theorem, which provides Hp bound-
edness of parameter-dependent operators, we are also able to estimate the solution in
real Hardy spaces Hp with p < 2 (we recall that Hp = L p for p > 1). However,
in this case the oscillations coming from the wave part of the equation produces two
issues: a loss of regularity which is known from the theory of damped wave equa-
tions when one works in L p spaces with p ∈ [1, 2) and in real Hardy spaces Hp

with p ∈ (0, 1] (see [26]), and a loss of decay rate, which is known from the theory
of strongly damped wave equations.

The reason behind the fact that the oscillations produce both bad effects related to
two class of damped waves is that the profile of the solution to the double dispersion
equation contains oscillations both at low and high frequencies. On the one hand, in
classical damped wave equations as in (1.3) with f = 0, oscillations only appear at
high frequencies, so that they do not influence the decay rate of the solution, but only
its regularity (see, in particular, [25,29,30]). On the other hand, in strongly damped
wave equations as {

utt − �u − �ut = 0, t ≥ 0, x ∈ R
n,

u(0, x) = u0(x), ut (0, x) = u1(x),
(1.7)

oscillations only appear at low frequencies, so that they do not influence the regularity
of the solution, but only its decay rate. This loss of regularity and of decay is determined
by the distance of Hp from L2, in particular, by the quantity
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θ = θ(n, p) = n

(
1

p
− 1

2

)
. (1.8)

This phenomenon of a behavior related to a partial influence of oscillations at low
or high frequencies also appear in wave equations with so-called structural damp-
ing (−�)θut , θ ∈ [0, 1], as in

{
utt − �u + (−�)θut = 0, t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x).
(1.9)

or more general damped evolution equations, see [1–4,6,8,9,11,31]. A classification
of models with time-dependent coefficients for which oscillations influence either the
decay rate of the solution or its regularity is given in [10].

With respect to the study carried on in these works, the novelty of the equation
in (1.1) is that the oscillations influence the whole extended phase space, not only
its low frequency or high frequency region. At the opposite of this scenario, we find
the wave equation with double dissipation, for which the influence of oscillations is
neglected at both low and high frequencies, see [7,20], and the damped Klein–Gordon
equation, for which the influence of oscillations at low frequencies may be ignored
[13].

We are now ready to state the analogous of Theorem 1.1, for solutions in L p orHp

spaces, in which the loss θ(n, p), both of regularity and decay rate, due to the special
structure of the oscillations for the equation in (1.1), comes into play.

Theorem 1.2 Let n ≥ 1, p ∈ (0, 2], q0, q1 ∈ (0, p], k ∈ N and α ∈ N
n. Let θ(n, p)

be as in (1.8). Assume that u0 ∈ Hq0 with (1 − �)
θ+k+|α|

2 u0 ∈ Hp, and u1 ∈ Hq1

with (1 − �)
θ+k+|α|−1

2 u1 ∈ Hp. Moreover, assume that

n
( 1

q1
− 1

p

)
≥ 1,

if k = |α| = 0. Then the solution to (1.5) verifies the estimate

‖∂kt ∂α
x u(t, ·)‖Hp ≤ C(1 + t)

− 1
2

(
n
(

1
q0

− 1
p

)
−θ+k+|α|

)
‖u0‖Hq0

+ C(1 + t)
− 1

2

(
n
(

1
q1

− 1
p

)
−θ−1+k+|α|

)
‖u1‖Hq1

+ Ce−ct‖(1 − �)
θ+k+|α|

2 u0‖Hp

+ Ce−ct‖(1 − �)
θ+k+|α|−1

2 u1‖Hp ,

(1.10)

for any t ≥ 0 and for some C, c > 0, independent of the initial data.

Taking p = 2 in (1.10), we find estimate (1.6) in Theorem 1.1, except for the special
case of u0, u1 ∈ L1.
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Remark 1.3 We don’t expect the optimality of estimates (1.10), in general. The pos-
sible improvement of the decay estimates in Theorem 1.2 will be object of future
investigations.

The decay estimates provided in Theorem 1.1 are useful to study the global existence
of small data solutions to (1.1).

Assuming initial data in the (weak) energy space W 1,2 × L2, it is easy to show
that local (weak) energy solutions u ∈ C([0, T ),W 1,2) ∩ C1([0, T ), L2) to (1.1) exist
in space dimension n = 1, 2, for any σ > 0, and in space dimension n ≥ 3, for
any σ ∈ (0, 2/(n − 2)]. The upper bound is due to the embedding W 1,2 ↪→ L2(1+σ).

Assuming small initial data in a suitable space, global existence of small data
solutions to (1.1) have been proved in [23, Theorem 4.2] for smooth f , in particular,
with f (u) = u2. Our aim is to prove global existence of small data (weak) energy
solutions for nonsmooth f , assuming σ > σ̄ (n) in (1.2), where σ̄ is the positive
solution to

nσ 2 + (n + 2)σ − 2 = 0,

and σ ≤ 2/(n − 2) if n ≥ 3. Explicitly, we have

σ̄ (n) =
√

(n + 2)2 + 8n − (n + 2)

2n
, (1.11)

so that

2

n + 4
< σ̄(n) <

2

n + 2
, σ̄ (n) = 2

n + 4
+ O(n−3), as n → ∞.

In particular, σ̄ (n) < 1, for any n ∈ N, that is, we may deal with nonsmooth nonlin-
earities in any space dimension n ≥ 1. We also notice that σ̄ (n) is smaller than Fujita
exponent 2/n, the critical exponent for global small data solutions to (1.3).

Theorem 1.4 Let n ≥ 1 and assume that σ > σ̄ in (1.2), where σ̄ (n) is as in (1.11).
Moreover, let σ ≤ 2/(n − 2) if n ≥ 3. We fix m = 1 if σ ≥ 1 or m = 2/(1 + σ)

otherwise, and we define

m∗ = mn

n + m
, m∗∗ = mn

n + 2m
.

Then there exists ε > 0 such that for any initial data

(u0, u1) ∈ A, with ‖(u0, u1)‖A ≤ ε,

where

A = (Hm∗ ∩ W 1,2) × (Hm∗∗ ∩ L2),
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there exists a unique solution u ∈ C([0,∞),W 1,2) ∩ C1([0,∞), L2) to (1.1). More-
over, the solution verifies the decay estimate

‖∂kt ∂α
x u(t, ·)‖L2 ≤ C(1 + t)

− n
2

(
1
m − 1

2

)
− 1+k+|α|

2 ‖(u0, u1)‖A, (1.12)

for k + |α| = 0, 1, and for some C > 0, independent of the initial data.

Remark 1.5 Decay estimate (1.12) corresponds to take q0 = m∗ and q1 = m∗∗ in
Theorem 1.1. In particular, q1 < 1 in space dimension n ≤ 4, for any σ > σ̄ , that is,
assuming initial data in real Hardy spaces may bring real benefits to study (1.1). On
the other hand, q0 > q1 > 1 in space dimension n ≥ 7, for any σ ≤ 2/(n − 2), that
is, it is sufficient to assume small initial data in L p spaces.

In general, the best decay rate obtained for the solution to (1.3), with f as in (1.2)
and σ > 2/n, corresponds to take initial data in L1 and in the energy spaceW 1,2 × L2

(unless special assumption are taken on f ). The extra decay rate produced for the
solution to (1.1) in low space dimension, is due to the special structure of the equation
[see later, the property of the operator G	 in (2.6)], which allows to derive benefit
assuming initial data in real Hardy spaces.

Indeed, linear estimates with initial data in real Hardy spaces for some damped
evolution equations [which generalize (1.3)] have been previously considered in [12],
but they could not be effectively applied to study nonlinear problems, due to the lack
of the special structure of the nonlinearity, as in (1.1) (see Sect. 2).

1.1 Discussion about the critical exponent �̄(n)

An alternative strategy to derive an existence result for the semilinear problem (1.1)
for nonsmooth f (σ ∈ (0, 1)) could be the use of L1 − L1+σ estimates, instead

of L
2

1+σ −L2 estimates, at low frequencies. This strategy has been effectively employed
in the study of semilinear damped wave Eq. (1.3) by Narazaki [29]. However, the
presenceof oscillations imposes a upper boundon thehighest possible spacedimension
that can be considered, i.e. n ≤ 5. This bound on the space dimension can be relaxed
for wave equations with effective, structural, damping, when θ ∈ (0, 1/2) in (1.9),
with power nonlinearity |u|p, as shown in [9,11]. The upper bound disappears in the
special case θ = 1/2 (see [6]).

For problem (1.1) a similar upper bound would appear (whereas we can deal with
any space dimension n ≥ 1 in Theorem 1.4), due to the presence of high frequencies
oscillations. The bound is expected to be σ ≥ (n−2)/(n+2), obtained by the solution
to θ(n, 1 + σ) ≤ 1, which corresponds to the H1+σ -boundedness of the solution
operator G and of the operator G	, as well (see later, estimate (4.1) in Lemma 4.1).
As one may easily checks, the critical exponent σ̄ given by (1.11) is greater than (n −
2)/(n + 2) in any space dimension n ≥ 4. As a consequence, this strategy may be
effective to lower the critical exponent σ̄ only in space dimension n ≤ 3.

However, the presence of oscillations in (1.1) also at low-frequencies, caused a loss
of decay rate in Theorems 1.2 and 2.2. This loss makes the decay rate of L1 − L1+σ

estimates (1.10) worse than the decay rate of the L
2

1+σ − L2 estimates. Indeed,
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n

(
1 − 1

1 + σ

)
− θ(n, 1 + σ) = n

(
3

2
− 2

1 + σ

)
< n

(
2

1 + σ
− 1

2

)
.

For the above reasons, the estimates in Theorems 1.1 and 2.1 appear better than
the estimates in Theorems 1.2 and 2.2, to study the semilinear problem (1.1). As
a consequence, we cannot improve our global existence result (namely obtaining
existence for some power σ ≤ σ̄ (n)), only by relying on the L1 − L1+σ estimates
derived in Theorem 2.2, as one may do in the case of classical damped waves.

It remains open the possibility that other strategies may bring an improvement
on the exponent σ̄ (n). In particular, the possible improvement of the estimates in
Theorems 1.2 and 2.2, and the use of the new estimates to lower the critical exponent
in space dimension n = 1, 2, 3, will be object of future investigations.

1.2 Initial data in weighted L1 spaces

The assumption of initial data in real Hardy spaces, allows us to produce additional
decay rate in Theorem 1.1, with respect to the assumption of data in L1. This additional
decay rate is essential to prove Theorem 1.4. However, instead of assuming initial data
in real Hardy spaces, it is possible to assume initial data inweighted L1 spaces, namely,
in

L1,γ = {u ∈ L1 : |x |γ u ∈ L1},

and assume that they verify a suitable moment condition. In particular, if

∫
Rn

u0(x) dx =
∫
Rn

u1(x) dx,

then the spaces Hq0 and Hq1 may be replaced by the space L1,γ in Theorem 1.1,
provided that

n

(
1

q j
− 1

)
≤ γ ≤ 1.

The proof relies on the pointwise estimate for the Fourier transform of a function f ∈
L1,γ , with γ ∈ (0, 1], employed in [17]:

| f̂ (ξ)| ≤ |ξ |γ ‖ f ‖L1,γ + |P|, P =
∫
Rn

f (x) dx .

Combining the previous estimate with Plancherel’s theorem, it is possible to prove
Theorem 1.1 assuming initial data in weighted spaces, verifying the moment condi-
tions. Analogous estimates may be derived for functions in L1,γ , with γ > 1, which
involve higher order moments. The corresponding pointwise estimate for the Fourier
transform of a function in real Hardy spaceHq , q ∈ (0, 1], is (see Chapter III, Corol-
lary 7.21 in [16]):
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| f̂ (ξ)| � |ξ |n
(
1
q −1

)
‖ f ‖Hq .

In view of this alternative for initial data in Theorem 1.1, the smallness assumption of
initial data in real Hardy spaces in Theorem 1.4, may be replaced by the assumption of
small initial data in suitable weighted L1 spaces, verifying the moment conditions.We
address the interested reader to [4,18,20,21], and the reference therein, for a series of
results in which the assumption of initial data in weighted L1 spaces is used to derive
linear estimates for dissipative evolution equations and to determinate the asymptotic
profile of the solution.

However, the assumption of initial data in real Hardy spaces, and not inweighted L p

spaces, has the advantage that it allows to deriveHp−Hq estimates, relying on Fourier
multiplier theorems (in particular, we will use Theorems 6.3 and 6.4 in Sect. 6).

1.3 Physical derivation of the problem

The main interest of this paper is in the study of new qualitative properties of prob-
lem (1.1) from a mathematical point of view. However, even if problem (1.1) is
interesting by itself from a theoretical mathematical point of view, it is originated
by a real world physical problem.

A presentation of the model is provided in [38]: in some problems of nonlinear
wave propagation in waveguides, in case of energy exchange between the surface
of nonlinear elastic rod in material (e.g., the Murnaghan material) and an external
medium, the following double dispersion equation (DDE)

utt − �u = 1

4
(6�u2 + a�utt − b�2u) (1.13)

and the general cubic DDE (CDDE)

utt − �u = 1

4
(c�u3 + 6�u2 + a�utt − b�2u + d�ut ) (1.14)

can be derived from Hamilton Principle. Here u(t, x) is proportional to strain ∂U
∂x ,

where U (t, x) is the longitudinal displacement, a > 0, b > 0, and d �= 0 are some
constants dependingon theYoungmodulus, the shearmodulusμ, density ofwaveguide
ρ and the Poisson coefficient ν. Equations (1.13) and (1.14) were studied in literature,
the travelling wave solutions, depending upon the phase variable z = x ± ct were
studied by Samsonov [33,34], the strain solutions of Eqs. (1.13) and (1.14) were
observed in [24,35].

Setting a = b = d = 4 for simplicity, Eq. (1.14) with c = 0 is a special case
of (1.1) with f (u) = 3u2/2, so that σ = 1 in (1.2).

The double dispersion equation has been well investigated in recent times, in par-
ticular see [5,32,38,39].
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Notation

In this paper, we use the following.

Notation We denote byF the Fourier transform with respect to the space variable x ,

Fϕ(ξ) =
∫
Rn

ϕ(x)e−i xξ dx,

and we write ϕ̂(ξ) = F f (ξ), and ϕ̂(t, ξ) = (Fϕ(t, ·))(ξ).

Notation In this paper differential operators are denoted by ∂α
x = ∂

α1
x1 · · · ∂αn

xn , where
α = (α1, . . . , αn) ∈ N

n and |α| = α1 + · · · + αn is the length of α.
With the symbol � we denote the Laplace operator as � = ∑n

i=1 ∂2xi . Fractional
powers s > 0 of −� and 1 − � are intended as defined by their action

(−�)sϕ = F−1(|ξ |2s ϕ̂), (1 − �)sϕ = F−1(〈ξ 〉2s ϕ̂),

where

〈ξ 〉 = (1 + |ξ |2) 1
2 .

Similarly, we define the Riesz and Bessel potentials (see also Sect. 6) for s > 0:

Isϕ = F−1(|ξ |−s ϕ̂), (1 − �)−sϕ = F−1(〈ξ 〉−2s ϕ̂).

By Wm,p, p ∈ [1,∞], we denote the usual Sobolev space of L p functions with
derivatives up to the order m in L p, recalling that Wm,p = (1 − �)−m

2 L p if p > 1.

Notation Let f , g : � → R be two functions. We use the notation f ≈ g if there
exist two constants C1,C2 > 0 such that C1g(y) ≤ f (y) ≤ C2g(y) for all y ∈ �.
If the inequality is one-sided, namely, if f (y) ≤ Cg(y) (resp. f (y) ≥ Cg(y)) for all
y ∈ �, then we write f � g (resp. f � g).

The definition of real Hardy spaces Hp and some of their properties are collected
in Sect. 6.

2 Fundamental solution and decay estimates

We consider the linear problem

{
utt − �utt + �2u − �u − �ut = � f (t, x), t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x),
(2.1)

which corresponds to (1.1), by replacing the nonlinearity f (u) with a inhomogeneous
term f (t, x).
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We introduce the t-dependent Fourier multiplier Ĝ(t, ξ) given by

Ĝ(t, ξ) = e−ηt sin(ωt)

ω
, (2.2)

η = η(ξ) = |ξ |2
2〈ξ 〉2 , (2.3)

ω = ω(ξ) = |ξ |
√
1 − |ξ |2

4〈ξ 〉4 , (2.4)

recalling that 〈ξ 〉2 = 1 + |ξ |2. The solution to (2.1) may be written as

u(t, x) = (H(t, ·) ∗ u0)(x) + (G(t, ·) ∗ u1)(x)

+
∫ t

0

(
G	(t − s, ·) ∗ f (s, ·))(x) ds, (2.5)

where the fundamental solution is G(t, x) = F−1Ĝ(t, ξ) and

G	(t, x) = (1 − �)−1�G(t, x), (2.6)

H(t, x) = (
∂t − (1 − �)−1�

)
G(t, x) = Gt (t, x) − G	(t, x). (2.7)

Indeed,

Ĥ(t, ξ) = e−ηt
(
cos(ωt) + η

sin(ωt)

ω

)
= (∂t + 2η)

(
e−ηt sin(ωt)

ω

)
,

and 2η = |ξ |2〈ξ 〉−2. From the point of view of regularity, the kernels G(t, x)
and G	(t, x) behave in the same way. In particular, G(t, x)∗(x) and G	(t, x)∗(x) are
L p-bounded operators if n|1/p − 1/2| ≤ 1 when n ≥ 3. On the other hand, G(t, x)
has the following asymptotic expression (see Remark 4.3 in [37])

G(t, x) ∼ G(t, x) ∗(x) E(t, x), “in some sense”,

where G(t, x) and E(t, x) are the fundamental solution to the heat equation and the
wave equation:

(∂t − �)G = 0, G(0, ·) = δ,

(∂t t − �)E = 0, E(0, ·) = 0, Et (0, ·) = δ.

As a consequence, in space dimension n ≥ 3, we have the asymptotic profile [37]

‖∂kt ∂α
x G(t, ·) ∗ ϕ‖L2 ∼ t−

n
4− |α|+k−1

2
(‖ϕ‖L1 + ‖ϕ‖Wk+|α|−1,2

)
, (2.8)

‖∂kt ∂α
x G

	(t, ·) ∗ ϕ‖L2 ∼ t−
n
4− 1+|α|+k

2
(‖ϕ‖L1 + ‖ϕ‖Wk+|α|−1,2

)
, (2.9)
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provided that we assume n ≥ 3 if k = |α| = 0 in the first one. As a consequence,

‖∂kt ∂α
x H(t, ·) ∗ ϕ‖L2 ∼ t−

n
4− |α|+k

2
(‖ϕ‖L1 + ‖ϕ‖Wk+|α|−1,2

)
, (2.10)

provided that ∫
Rn

ϕ(x) dx �= 0. (2.11)

On the other hand, estimates (2.8), (2.9) and (2.10) may be improved if ϕ verifies the
moment condition, i.e. ∫

Rn
ϕ(x) dx = 0. (2.12)

Indeed, if one is interested in the asymptotic profile of ‖G(t, ·) ∗ϕ‖L2 and ‖G	(t, ·) ∗
ϕ‖L2 as t → ∞, the oscillations coming from the wave part of the fundamental
solutionhaveno influence, so that, byPlancherel theorem, onemay, in general, estimate
| sin(ωt)|/ω by 1/ω ≈ |ξ |−1 in (2.2), obtaining

‖∂kt ∂α
x G(t, ·) ∗ ϕ‖L2 � ‖∂kt ∂α

x G(t, ·) ∗ I1ϕ‖L2 , (2.13)

where I1 denotes the Riesz potential.

The presence of the Riesz potential leads to the loss of t− 1
2 in the profile in (2.8),

with respect to the corresponding profile of

‖∂kt ∂α
x G(t, ·) ∗ ϕ‖L2 ∼ t−

n
4− |α|+k

2 ‖ϕ‖L1 ,

valid under the assumption (2.11).
In [37], it has been proved global existence of small data solutions to (1.1) with f =

O(|u|1+σ ), for any σ ≥ 1 in space dimension n ≥ 3.
By assuming u1 ∈ Ẇ−1,1, that is, I1u1 ∈ L1, global existence of small data

solutions has been proved in [23, Theorem 4.2] for f (u) ∼ um , with m ∈ N, m ≥
2, in space dimension n ≥ 1. We emphasize that I1u1 ∈ L1 implies the moment
condition (2.12) for u1, that is,

∫
Rn

u1(x) dx = 0,

due to |ξ |−1û1(ξ) ∈ C by Riemann–Lebesgue theorem, so that û1(0) = 0. Indeed,
assuming the moment condition for u1 invalidates the asymptotic profile given in (2.8)
and it may improve the corresponding decay estimates for the solution to (1.1).

In particular, moment condition (2.12) is a necessary condition for measurable
functions ϕ to be in real Hardy spacesHp, with p ∈ (0, 1]. Real Hardy spaces may be
defined in several ways (see Sect. 6) andHp = L p, for p ∈ (1,∞], whereasH1 ⊂ L1

with a proper inclusion. The Riesz potential has the following mapping property in
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real Hardy spaces (see Theorem 6.5 in Sect. 6):

Is : Hp → Hp∗
,

1

p
= 1

p∗ + s

n
,

for any s > 0 and p, p∗ ∈ (0,∞). In particular, as a consequence, Hp ↪→ Ẇ−s,1,
for p = n/(n + s), due to

‖ϕ‖Ẇ−s,1 = ‖Isϕ‖L1 � ‖Isϕ‖H1 � ‖ϕ‖Hp .

Having this in mind, in view of (2.13) it appears natural to study problem (1.1) with
initial data in Hp.

In order to prove our results, we shall study the decay and mapping properties of
the operators G(t, x)∗(x) and G	(t, x)∗(x), and their derivatives.

Theorem 2.1 Let n ≥ 1, q ∈ (0, 2], k ∈ N and α ∈ N
n. Assume that ϕ ∈ Hq ∩

Wk+|α|−1,2. Then we have the decay estimate

‖∂kt ∂α
x G

	(t, ·) ∗ ϕ‖L2 � (1 + t)−
1
2

(
n
(
1
q − 1

2

)
+1+k+|α|

)
‖ϕ‖Hq

+ e−ct‖ϕ‖Wk+|α|−1,2 ,
(2.14)

for any t ≥ 0 and for some c > 0. Moreover, if k + |α| ≥ 1, or

n
( 1
q

− 1

2

)
≥ 1, (2.15)

then we have the decay estimate

‖∂kt ∂α
x G(t, ·) ∗ ϕ‖L2 � (1 + t)−

1
2

(
n
(
1
q − 1

2

)
−1+k+|α|

)
‖ϕ‖Hq

+ e−ct‖ϕ‖Wk+|α|−1,2 ,
(2.16)

for any t ≥ 0 and for some c > 0. If q = 1, we may replace H1 by L1 in (2.14)
and (2.16), provided that n ≥ 3 in (2.16) if k = |α| = 0.

We recall that Hq = Lq if q ∈ (1, 2].
Theorem 2.2 Let n ≥ 1, p ∈ (0, 2), q ∈ (0, p], k ∈ N and α ∈ N

n. Let θ(n, p) be

as in (1.8). Assume that ϕ ∈ Hq with (1 − �)
θ+k+|α|−1

2 ϕ ∈ Hp. Then we have the
estimate

‖∂kt ∂α
x G

	(t, ·) ∗ ϕ‖Hp � (1 + t)−
1
2

(
n
(
1
q − 1

p

)
−θ+1+k+|α|

)
‖ϕ‖Hq

+ e−ct‖(1 − �)
θ+k+|α|−1

2 ϕ‖Hp ,

(2.17)

for any t ≥ 0 and for some c > 0. Moreover, if k + |α| ≥ 1, or

n
( 1
q

− 1

p

)
≥ 1, (2.18)
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then we have the estimate

‖∂kt ∂α
x G(t, ·) ∗ ϕ‖Hp �(1 + t)−

1
2

(
n
(
1
q − 1

p

)
−θ−1+k+|α|

)
‖ϕ‖Hq

+ e−ct‖(1 − �)
θ+k+|α|−1

2 ϕ‖Hp ,

(2.19)

for any t ≥ 0 and for some c > 0.

We recall that Hp = L p if p ∈ (1, 2], and Hq = Lq if q ∈ (1, 2]. Moreover, we
recall that H1 ↪→ L1 [that is, (2.19) is also valid replacing Hp by L p when p = 1].

In Theorem 2.2, the term θ(n, p) produces a loss of decay rate and of regularity,
which is due to the oscillations caused by the wave part of the fundamental solution.
For the wave equation, it is known that the corresponding loss is reduced to θ =
(n−1)(1/p−1/2) (see [26]). The possibility to reduce the loss of decay rate in (2.19)
will be object of future investigations.

It is clear that, setting p = 2, Theorem 2.2 reduces to Theorem 2.1, except for the
fact that we cannot replace H1 by L1 in Theorem 2.2, in general.

As a consequence of Theorems 2.1, 2.2 and (2.7), the proofs of Theorems 1.1
and 1.2 follow. In Sects. 3 and 4, we will prove Theorems 2.1 and 2.2.

3 Proof of Theorem 2.1

In order to prove Theorem 2.1, it is convenient to localize ϕ at low frequencies and at
high frequencies.

Proof of Theorem 2.1 We fix χ ∈ C∞
c , a (compactly supported) cut-off function,

with χ = 1 in a neighborhood of the origin. For a given function ϕ, we define

ϕ0 = F−1(χ ϕ̂), ϕ1 = 1 − ϕ0.

We first prove that

‖� j (1 − �)− j∂kt ∂α
x G(t, ·) ∗ ϕ1‖L2 � e−ct‖ϕ‖Wk+|α|−1,2 , (3.1)

for some c > 0 which depends on χ . By Plancherel theorem, we may estimate

‖� j (1 − �)− j∂kt ∂α
x G(t, ·) ∗ ϕ1‖L2

≈ ‖(1 − χ)(iξ)α|ξ |2 j 〈ξ 〉−2 j∂kt Ĝ(t, ·)ϕ̂‖L2

≤ ‖|1 − χ |〈ξ 〉1−k∂kt Ĝ(t, ·)‖L∞‖〈ξ 〉|α|+k−1ϕ̂‖L2 .

If χ = 1 for any |ξ | ≤ δ, then, recalling the definition of Ĝ in (2.2), it is sufficient to
notice that

sup
|ξ |≥δ

〈ξ 〉1−k |∂kt Ĝ(t, ·)| � sup
|ξ |≥δ

〈ξ 〉1−k 1

ω
(η + ω)ke−ηt � e−ct ,
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with c = δ/(2〈δ〉) > 0, for k ≥ 0, where we used η ≈ 1 and ω ≈ |ξ |.
In order to complete the proof of Theorem 2.1, it is sufficient to estimate

‖(1 − �)− j∂kt ∂α
x G(t, ·) ∗ ϕ0‖L2 � t−

1
2

(
n
(
1
q − 1

2

)
−1+k+|α|

)
‖ϕ‖Hq ,

for j = 0, 1, provided that n(1/q −1/2) ≥ 2 if k = |α| = 0. Let ε > 0 be such that χ
is compactly supported in B = {|ξ | ≤ ε}. For any |ξ | ≤ ε, we may estimate

|ξ |2
2(1 + ε)2

≤ η ≤ |ξ |2
2

,

whereas ω ≈ |ξ |. In particular, η+ω ≈ |ξ |, as well. Therefore, in B we may estimate

|χ〈ξ 〉−2 j |ξ ||α|∂kt Ĝ(t, ·)| � |χ | (η + ω)k

ω
e−ηt � |ξ ||α|+k−1 e−c|ξ |2t ,

with c = 1/(2(1 + ε)2).
If we define

β = n

(
1

q
− 1

2

)
, (3.2)

then, by Plancherel theorem and Riesz potential mapping properties (Theorem 6.5 in
Sect. 6), we get

‖|ξ |−βϕ̂‖L2 ≈ ‖Iβϕ‖L2 � ‖ϕ‖Hq .

Therefore, we may estimate

‖(1 − �)− j∂kt ∂α
x G(t, ·) ∗ ϕ0‖L2 � sup

|ξ |≤ε

|ξ ||α|+k−1+β e−c|ξ |2t ‖|ξ |−βϕ̂‖L2

� (1 + t)−
|α|+k−1+β

2 ‖ϕ‖Hq ,

provided that |α| + k − 1 + β ≥ 0, that is, k + |α| ≥ 1 or β ≥ 1.
To replace ‖ϕ‖H1 by ‖ϕ‖L1 we shall modify the proof, due to the fact that the Riesz

potential I2/n does not map L1 into L2. By Plancherel theorem, Hölder inequality, and
Riemann–Lebesgue theorem (‖ϕ̂‖L∞ ≤ ‖ϕ‖L1 ), we may estimate

‖(1 − �)− j∂kt ∂α
x G(t, ·) ∗ ϕ0‖L2 � ‖|χ ||ξ ||α|+k−1 e−c|ξ |2t‖L2 ‖ϕ‖L1 .

The function |χ ||ξ ||α|+k−1 e−c|ξ |2t is in L2 for any t ≥ 0, provided that |α| + k ≥ 1
or n ≥ 3. Then we immediately get

‖|χ ||ξ ||α|+k−1 e−c|ξ |2t‖L2 � (1 + t)−
n
4− |α|+k−1

2 .

This concludes the proof. ��
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4 Proof of Theorem 2.2

We will separately prove Theorem 2.2 at low and high frequencies. We fix χ ∈ C∞
c a

(compactly supported) cut-off function, with χ = 1 in a neighborhood of the origin,
as in the proof of Theorem 2.1. For a given function ϕ, we define

ϕ0 = F−1(χ ϕ̂), ϕ1 = 1 − ϕ0.

Then we will prove the following two results which, together, lead to the statement in
Theorem 2.2.

Lemma 4.1 Let n ≥ 1, p ∈ (0, 2), k ∈ N, α ∈ N
n, and θ as in (1.8). Assume

that (1 − �)
θ+k+|α|−1

2 ϕ ∈ Hp. Then we have the estimate

‖� j (1 − �)− j∂kt ∂α
x G(t, ·) ∗ ϕ1‖Hp � e−ct‖(1 − �)

θ+k+|α|−1
2 ϕ‖Hp , (4.1)

for any t ≥ 0 and for some c > 0, with j = 0, 1.

Lemma 4.2 Let n ≥ 1, p ∈ (0, 2), q ∈ (0, p], k ∈ N and α ∈ N
n. Assume that ϕ ∈

Hq .Moreover, assume that k+|α| ≥ 1, or that (2.18) holds. Thenwe have the estimate

‖(1 − �)− j∂kt ∂α
x G(t, ·) ∗ ϕ0‖Hp � (1 + t)−

1
2

(
n
(
1
q − 1

p

)
−θ−1+k+|α|

)
‖ϕ‖Hq . (4.2)

for any t ≥ 0 and for some c > 0, with j = 0, 1 and θ as in (1.8).

In order to prove Hp estimates with p ∈ (0, 2), the derivatives of Ĝ(t, ξ) come
into play. We notice that we may estimate

|∂γ
ξ η(ξ)| � |ξ |2−|γ |〈ξ 〉−2, (4.3)

|∂γ
ξ ω(ξ)| � |ξ |1−|γ |. (4.4)

To prove Lemma 4.1, we rely on Theorem 6.3 in Sect. 6.

Proof of Lemma 4.1 We consider the Fourier multiplier (see Definition 6.2)

m(t, ξ) = (1 − χ)|ξ |2 j 〈ξ 〉−2 j−θ−k−|α|+1(iξ)α∂kt Ĝ(t, ξ),

and we prove that the operator Tm isHp-bounded, with

‖m(t, ·)‖M(Hp) � e−ct , (4.5)

for some c > 0. Due to the fact that |ξ | ≥ ε, for some ε > 0 (since 1−χ vanishes in a
neighborhood of the origin), it holds 〈ξ 〉 ≈ |ξ |. Taking into account of (4.3) and (4.4),
together with
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∂ξ j e
−ηt = te−ηt∂ξ j η,

∂ξ j sin(ωt) = t cos(ωt)∂ξ j ω,

∂ξ j cos(ωt) = − t sin(ωt)∂ξ j ω,

we may estimate

|∂γ
ξ ∂kt Ĝ(t, ξ)| � |ξ |k−|γ |−1(1 + t + t |ξ |)|γ |e− |ξ |2

2〈ξ〉2 t

� |ξ |k−1(1 + t)|γ |e− ε2

2(1+ε2)
t
.

In the last estimate, we used that |ξ | ≥ ε to control |ξ |−1(1 + t + t |ξ |) � 1 + t .
Therefore,

|∂γ
ξ m(t, ξ)| � |ξ |−θ (1 + t)|γ |e− ε2

2(1+ε2)
t
.

By applying Theorem 6.3 in Sect. 6, with a = 1 and A = 1 + t , we obtain

‖m(t, ·)‖M(Hp) � (1 + t)θ e
− ε2

2(1+ε2)
t
.

Therefore, it is sufficient to take c < ε2/(2(1 + ε2)) to obtain (4.5) and conclude the
proof. ��
To prove Lemma 4.2, we rely on Theorem 6.4 in Sect. 6.

Proof of Lemma 4.2 We define

β = n

(
1

q
− 1

p

)
,

[setting p = 2 we find the definition in (3.2)], we consider the Fourier multiplier (see
Definition 6.2)

m(t, ξ) = χ |ξ |β〈ξ 〉−2 j (iξ)α∂kt Ĝ(t, ξ),

and we prove that the operator Tm isHp-bounded, with

‖m(t, ·)‖M(Hp) � (1 + t)−
1
2

(
n
(
1
q − 1

p

)
−θ−1+k+|α|

)
. (4.6)

By Theorem 6.5 in Sect. 6, we have that

‖Iβϕ‖Hp ≤ ‖ϕ‖Hq ,

so the proof of Lemma 4.2 follows from (4.6).
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Due to the fact that |ξ | ≤ δ for some δ > 0 (since χ is compactly supported), it
holds 〈ξ 〉 ≈ 1. Thanks to (4.3) and (4.4), we may estimate

|∂γ
ξ ∂kt Ĝ(t, ξ)| � |ξ |k−|γ |−1(1 + t |ξ |2 + t |ξ |)|γ |e− |ξ |2

2〈ξ〉2 t

� |ξ |k−|γ |−1(1 + (t |ξ |)|γ |)e− |ξ |2
2(1+δ2)

t

In the last estimate, we used that |ξ | ≤ δ to control 1 + t |ξ |2 + t |ξ | � 1 + t |ξ |.
Therefore,

|∂γ
ξ m(t, ξ)| � |ξ |k+|α|+β−|γ |−1(1 + (t |ξ |)|γ |)e− |ξ |2

2(1+δ2)
t
.

Due to k + |α| + β − 1 ≥ 0 and |ξ | ≤ δ, we may estimate

|ξ |k+|α|+β−1e
− |ξ |2

2(1+δ2)
t � (1 + t)−

k+|α|+β−1
2 ,

|ξ |k+|α|+β−1(t |ξ |)|γ |e− |ξ |2
2(1+δ2)

t � (1 + t)−
k+|α|+β−1

2 t
|γ |
2 .

Estimating 1 + t
|γ |
2 � (1 + t)

|γ |
2 , we obtain

|∂γ
ξ m(t, ξ)| � (1 + t)−

k+|α|+β−1
2 (

√
1 + t |ξ |−1)|γ |.

By applying Theorem 6.4 in Sect. 6, with a = 0 and A = √
1 + t , we obtain

‖m(t, ·)‖M(Hp) � (1 + t)−
k+|α|+β+θ−1

2 ,

that is, we obtain (4.6) and this concludes the proof. ��

5 Proof of Theorem 1.4

Thanks to Theorems 1.1 and 2.1, we may prove Theorem 1.4.

Proof of Theorem 1.4 We define the solution space

X = C([0,∞),W 1,2) ∩ C1([0,∞), L2) (5.1)

equipped with norm given by

‖u‖X = sup
t∈[0,∞)

(1 + t)
n
2

(
1
m − 1

2

)
+ 1

2
{
‖u(t, ·)‖L2 + (1 + t)

1
2 ‖(ut ,∇u)(t, ·)‖L2

}
.
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Then a function u ∈ X is a solution to (1.1) if, and only if, it verifies in X the integral
equality

u(t, x) = ψ(t, x) + Fu(t, x). (5.2)

where ψ is the solution to the linear problem (1.5), that is,

ψ(t, x) = H(t, x) ∗(x) u0(x) + G(t, x) ∗(x) u1(x),

and F : u �→ Fu is the integral operator defined by

Fu(t, x) =
∫ t

0
G	(t − s, x) ∗(x) f (u(s, x)) dx .

Thanks to Theorem 1.1, the function ψ verifies the estimate

‖ψ‖X ≤ C ‖(u0, u1)‖A.

Indeed, setting q0 = m∗ and q1 = m∗∗, we obtain

‖∂kt ∂α
x ψ(t, ·)‖L2 ≤ C (1 + t)

− n
2

(
1
m − 1

2

)
− 1+k+|α|

2 ‖(u0, u1)‖A,

for k + |α| = 0, 1. We now want to prove the estimates

‖Fu‖X ≤ C‖u‖1+σ
X , (5.3)

‖Fu − Fv‖X ≤ C‖u − v‖X
(‖u‖σ

X + ‖v‖σ
X

)
. (5.4)

By standard arguments, from (5.3) it follows that F + ψ : u �→ ψ + Fu maps balls
of X into balls of X , for small data in A, and that estimates (5.3), (5.4) lead to the
existence of a unique solution u ∈ X to (5.2). Moreover,

‖u‖X ≤ C ‖(u0, u1)‖A,

that is, the solution to (1.1) verifies estimate (1.12). We simultaneously gain a local
and a global existence result. Therefore, we prove (5.3) and (5.4).

We preliminary notice that a function u ∈ X verifies the following decay estimates:

‖∂kt ∂α
x u(t, ·)‖L2 ≤ C(1 + t)

− n
2

(
1
m − 1

2

)
− 1+k+|α|

2 ‖u‖X , (5.5)

for k + |α| = 0, 1. As a consequence of (5.5) and Gagliardo–Nirenberg inequality, a
function u ∈ X also verifies the estimates

‖u(t, ·)‖Lr ≤ C(1 + t)
− n

2

(
1
m − 1

r

)
− 1

2 ‖u‖X , (5.6)

for any r ∈ [2,∞) if n = 1, 2, and for any r ∈ [2, 2n/(n − 2)] if n ≥ 3.
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We now plan to estimate

‖∂kt ∂α
x Fu(t, ·)‖L2 ≤

∫ t

0
‖G	(t − s, ·) ∗ f (u(s, ·))‖L2ds.

We split the integral into [0, t/2] and [t/2, t]. In [0, t/2], we set q = m in esti-
mate (2.14) in Theorem 2.1, and in [t/2, t], we set q = 2 in estimate (2.14) in
Theorem 2.1. Therefore, we get

‖∂kt ∂α
x Fu(t, ·)‖L2

�
∫ t/2

0
(1 + t − s)

− n
2

(
1
m − 1

2

)
− 1+k+|α|

2
(‖ f (u(s, ·))‖Lm + ‖ f (u(s, ·))‖L2

)
ds

+
∫ t

t/2
(1 + t − s)−

1+k+|α|
2 ‖ f (u(s, ·))‖L2 ds.

Due to the fact that u ∈ X , thanks to (5.6), we may estimate

‖ f (u(s, ·))‖Lm ≤ ‖u(s, ·)‖1+σ

Lm(1+σ)

≤ C‖u‖1+σ
X (1 + s)−

n
2m σ− 1+σ

2 , (5.7)

‖ f (u(s, ·))‖L2 ≤ ‖u(s, ·)‖1+σ

L2(1+σ)

≤ C‖u‖1+σ
X (1 + s)

− n
2

(
1+σ
m − 1

2

)
− 1+σ

2

= C‖u‖1+σ
X (1 + s)

− n
2m σ− 1+σ

2 − n
2

(
1
m − 1

2

)
. (5.8)

We used that m(1 + σ) ≥ 2 and that 2(1 + σ) ≤ 2n/(n − 2), that is, σ ≤ 2/(n − 2),
in space dimension n ≥ 3, to apply Gagliardo–Nirenberg inequality.

We now claim that

κ = n

2m
σ + 1 + σ

2
> 1. (5.9)

If σ ≥ 1, so that m = 1, (5.9) trivially holds. Now let σ < 1, so that m = 2/(1 + σ).
Then

n

2m
σ + 1 + σ

2
= n

4
σ(1 + σ) + 1 + σ

2
= n

4
σ 2 + n + 2

4
σ + 1

2
,

so that (5.9) holds if, and only if, σ > σ̄ , where σ̄ is as in (1.11).
Therefore, using that 1 + t − s ≈ 1 + t for s ∈ [0, t/2] and 1 + s ≈ 1 + t

for s ∈ [t/2, t], thanks to (5.7), (5.8), (5.9), we derive

‖∂kt ∂α
x Fu(t, ·)‖L2 � ‖u‖1+σ

X (1 + t)
− n

2

(
1
m − 1

2

)
− 1+k+|α|

2

∫ t/2

0
(1 + s)−κ ds

+ ‖u‖1+σ
X (1 + s)

−κ− n
2

(
1
m − 1

2

) ∫ t

t/2
(1 + t − s)−

1+k+|α|
2 ds
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� (1 + t)
− n

2

(
1
m − 1

2

)
− 1+k+|α|

2 ‖u‖1+σ
X ,

that is, we proved (5.3). By (1.2) and Hölder inequality, due to the fact that u ∈ X ,
thanks to (5.6), we may estimate

‖ f (u(s, ·)) − f (v(s, ·))‖Lm

≤ ‖(u − v)(|u|σ + |v|σ )(s, ·)‖Lm

≤ ‖(u − v)(s, ·)‖Lm(1+σ)‖(|u|σ + |v|σ )(s, ·)‖
L
m

(
1+ 1

σ

)

≤ C‖(u − v)(s, ·)‖Lm(1+σ)

(‖u(s, ·)‖σ
Lm(1+σ) + ‖v(s, ·)‖σ

Lm(1+σ)

)
≤ C‖u − v‖X

(‖u‖σ
X + ‖v‖σ

X

)
(1 + s)−

n
2m σ− 1+σ

2 ,

and, similarly,

‖ f (u(s, ·)) − f (v(s, ·))‖L2

≤ C(1 + s)−
n
4 ‖u − v‖X

(‖u‖σ
X + ‖v‖σ

X

)
(1 + s)

− n
2m σ− 1+σ

2 − n
2

(
1
m − 1

2

)
.

Following the proof for ‖∂kt ∂α
x Fu(t, ·)‖L2 , we are then able to obtain

|∂kt ∂α
x (Fu − Fv)(t, ·)‖L2

�
∫ t/2

0
(1 + t − s)

− n
2

(
1
m − 1

2

)
− 1+k+|α|

2 ‖ f (u(s, ·)) − f (v(s, ·))‖Lm∩L2 ds

+
∫ t

t/2
(1 + t − s)−

1+k+|α|
2 ‖ f (u(s, ·)) − f (v(s, ·))‖L2 ds

� (1 + t)
− n

2

(
1
m − 1

2

)
− 1+k+|α|

2 ‖u − v‖X
(‖u‖σ

X + ‖v‖σ
X

)
.

This proves (5.4), and so we concluded the proof. ��

6 Some known results about Fourier multipliers in real Hardy spaces

We recall how the Hardy spaces Hp(Rn) are presented by Fefferman and Stein [15].
Weuse the notationHp instead of the classical notation H p to avoid possible confusion
with the Sobolev space W p,2.

Fix, once for all, a radial nonnegative function φ ∈ C∞
c (Rn) supported in the unit

ball with integral equal to 1. For u ∈ S ′(Rn) we define the maximal function Mφu by

Mφu(x) = sup
0<t<∞

|(u ∗ φt )(x)|,

where φt (x) = t−nφ(x/t).
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Definition 6.1 Let 0 < p < ∞. A tempered distribution u ∈ S ′(Rn) belongs to
Hp(Rn) if and only if Mφu ∈ L p(Rn), i.e.,

‖u‖Hp = ‖Mφu‖L p < ∞.

For p = ∞, we set H∞(Rn) = L∞(Rn).

The spaces Hp(Rn) are independent of the choice of φ ∈ C∞
c (Rn) with∫

Rn φ(x) dx �= 0. For p = 1, ‖u‖H1 is a norm and H1(Rn) is a normed space
densely contained in L1(Rn). For p > 1, ‖u‖Hp is a norm equivalent to the usual L p

norm and we denote Hp(Rn) = L p(Rn), by abusing notation. For 0 < p ≤ 1, the
space Hp(Rn) is a complete metric space with the distance

d(u, v) = ‖u − v‖p
Hp , u, v ∈ Hp(Rn).

AlthoughHp(Rn) is not locally convex for 0 < p < 1 and ‖u‖Hp is not truly a norm,
we will still refer to ‖u‖Hp as the “norm” of u, as it is customary.

Theproperty f ∈ Hp canbe characterized by appropriate singular integrals in away
that has some analogy with the earlier maximal characterization [28, Theorem C]: a
function f ∈ L2 belongs toHp when p ∈ (0, 1], if and only if f ∈ L p and Rα f ∈ L p,
for |α| ≤ k, where k = 1+[(n − 1)(1/p− 1)], and Rα f denotes the Riesz transform
of f , defined via the Fourier transform by

R̂α f (ξ) = (iξ |ξ |−1)α f̂ (ξ).

Moreover,

‖ f ‖Hp ≈
∑
|α|≤k

‖Rα f ‖L p .

A number similar to k also fixes the order of moment conditions which functions in
Hardy spaces shall verify. Indeed,∫

Rn
xα f (x) dx = 0, ∀ |α| ≤ [n(1/p − 1)]

for any function f ∈ Hp ∩ C∞
c .

In this paper, we use a variant of the celebrated Mikhlin–Hörmander multiplier
theorem for Hardy spaces (see [27]) to obtain the boundedness of operators acting on
Hp(Rn), in Theorem 2.2.

Definition 6.2 Letm be a bounded function onR
n and consider the operator Tm defined

by
Tm f = F−1(m(ξ) f̂ (ξ)

)
. (6.1)

We say that m is a Fourier multiplier for Hp if Tm f ∈ Hp for all f ∈ Hp and

‖Tm f ‖Hp ≤ C‖ f ‖Hp ; (6.2)



384 M. D’Abbicco, A. De Luca

in other words, if Tm can be extended to a bounded operator from Hp toHp.
In this context, M(Hp) denotes the set of all the Fourier multipliers for Hp. The

norm ‖m‖M(Hp) is defined to be the operator norm of Tm inHp, i.e.

‖m‖M(Hp) = sup
f ∈Hp, f �=0

‖Tm f ‖Hp

‖ f ‖Hp
. (6.3)

Theorem 6.3 Let p ∈ (0, 2), and θ = θ(n, p) = n(1/p−1/2), as in (1.8). Assume that
m ∈ Ck(Rn), withm(ξ) = 0 in a neighborhood of the origin, and k = max{[θ ], [ n2 ]}+
1. If

|∂γ
ξ m(ξ)| ≤ |ξ |−aθ (A|ξ |a−1)|γ |, |γ | ≤ k,

for some constant a ≥ 0 and A ≥ 1, then m ∈ M(Hp(Rn)) and

‖m‖M(Hp(Rn)) ≤ CAθ ,

where C > 0 is a constant independent of A.

Theorem 6.4 Let p ∈ (0, 2), and θ = θ(n, p) = n(1/p − 1/2), as in (1.8). Assume
that m ∈ Ck(Rn\{0}), with m(ξ) = 0 for |ξ | ≥ 1, and k = max{[θ ], [ n2 ]} + 1. If

|∂γ
ξ m(ξ)| ≤ |ξ |aθ (A|ξ |−a−1)|γ |, |γ | ≤ k,

for some constant a ≥ 0 and A ≥ 1, then m ∈ M(Hp(Rn)) and

‖m‖M(Hp(Rn)) ≤ CAθ ,

where C is a constant independent of A.

Let Ir be the Riesz potential with order r > 0, defined by means of Ir f =
F−1(|ξ |−r f̂ (ξ)). If r ∈ (0, n), the Riesz potential may be represented for sufficiently
smooth f by

Ir f (x) = cn,r

∫
Rn

f (y)

|x − y|n−r
dy,

for suitable cn,r . Real Hardy spaces have the property that the Hardy–Littlewood–
Sobolev theorem for Riesz potential, valid in L p spaces, with p > 1, extend to Hp,
with p ∈ (0,∞), see [28, Theorem F].

Theorem 6.5 Consider r > 0 and 0 < q < n/r . Then, there exists C = C(r , q) > 0
such that

‖Ir f ‖Hp(Rn) ≤ C‖ f ‖Hq (Rn),
1

q
= 1

p
+ r

n
.
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