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ABSTRACT
An alternative method for sharing knowledge while complying

with strict data access regulations, such as the European General

Data Protection Regulation (GDPR), is the emergence of synthetic

tabular data. Mainstream table synthesizers utilize methodologies

derived from Generative Adversarial Networks (GAN). Although

several state-of-the-art (SOTA) tabular GAN algorithms inherit

Convolutional Neural Network (CNN)-based architectures, which

have proven effective for images, they tend to overlook two critical

properties of tabular data: (i) the global correlation across columns,

and (ii) the semantic invariance to the column order. Permuting

columns in a table does not alter the semantic meaning of the data,

but features extracted by CNNs can change significantly due to

their limited convolution filter kernel size. To address the above

problems, we propose FCT-GAN – the first conditional tabular

GAN to adopt Fourier networks into table synthesis. FCT-GAN

enhances permutation invariant GAN training by strengthening

the learning of global correlations via Fourier layers. Extensive

evaluation on benchmarks and real-world datasets show that FCT-

GAN can synthesize tabular data with better (up to 27.8%) machine

learning utility (i.e. a proxy of global correlations) and higher (up

to 26.5%) statistical similarity to real data. FCT-GAN also has the

least variation on synthetic data quality among 7 SOTA baselines

on 3 different training-data column orders.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
GAN, Fourier transform, Tabular data.

ACM Reference Format:
Zilong Zhao, Robert Birke, and Lydia Y. Chen. 2023. FCT-GAN: Enhancing

Global Correlation of Table Synthesis via Fourier Transform. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23), October 21–25, 2023, Birmingham, United King-
dom. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

∗
Currently working at TU Munich. Email: zilong.zhao@tum.de

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
While data sharing is crucial for knowledge development, privacy

concerns and strict regulations limit its full effectiveness. An emerg-

ing solution is to leverage synthetic data generated by machine

learning models. Starting from images [5], generative adversarial

networks (GAN) have powered data synthesis of various types, e.g.,

text [22] and audio [4]. Due to its ample application scenarios in

areas such as medicine [3] and finance [1], synthetic tabular data is

of primary interest. Compared to image data, tabular data differs

by two key properties. First, unlike pixel positions, the column

order has no impact on the semantics of a table row and column

correlations are independent from the distance between columns.

Second, tabular data is composed of different column types such as

continuous, categorical or mixed variables instead of only a con-

tinuous one, i.e., pixel. The former impacts the synthesis quality

of GANs designed for images on tabular data. The latter calls for

extra feature engineering for non-continuous variables.

Convolutional Neural Networks (CNN) brought a breakthrough

in image oriented machine learning due to their ability to extract

local spatial features well [10]. Similarly, prior studies [23, 24] show

that tabular GANs, which adopt CNNs as generator and discrimi-

nator, achieve better synthesis quality than using fully-connected

networks (FCN). Adopting CNNs however may overlook relations

between columns which happen to be too distant due to the size

of the convolution filter. Even though permuting training data

columns does not change its semantic meaning, the local feature

presentation extracted by convolution layers is distorted. Conse-

quently, the column order impacts the model performance and a

given original column order may not maximise the CNN effective-

ness. Feature encoding exacerbates this issue. While one-hot encod-

ing is shown to better recover the categorical variable distribution

for tabular GAN [21], it inevitably increases the data dimensions

(i.e., number of columns) making it increasingly challenging for

CNN-based tabular GANs to effectively capture global relations.

Hence the column order can be seen as yet another hyper parame-

ter to tune. To limit tuning efforts and training costs, it becomes

imperative to devise an algorithm which ensures stable and high

quality synthesis independent of the training column order.

To address the above problems, we propose a Fourier conditional

tabular GAN - FCT-GAN leveraging a transformer-style architec-

ture using CNN, to capture local relations as tokens, and Fourier

Network Blocks (FNB), to model global dependencies. Our results

show that FCT-GAN outperforms state-of-the-art (SOTA) up to

27.8% in machine learning utility and 26.5% in statistical similarity

on 7 datasets. Thanks to Fourier blocks ability to capture global

relations, our results also show that among 3 different column or-

ders, FCT-GAN has the least variation in synthesis quality among

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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all comparisons. The main contributions of this study can be sum-

marized as follows: (1) We introduce the Fourier transform into

tabular GAN training and use it to design the generator and dis-

criminator architectures. (2) We adopt a CNN-based input tokenizer

feeding into FNB layers for discriminator. This novel architecture

can capture both local (i.e., by tokenizer) and global (i.e., by Fourier

layer) correlations of tabular data. (3) We leverage FNB layers in the

generator to better incorporate global relations during upscaling

leading to superior quality synthesised data. (4) We extensively

evaluate FCT-GAN on 7 datasets against 7 SOTA synthesizers in-

cluding models such as GAN, Variational AutoEncoder (VAE) and

Diffusion model.

2 RELATEDWORK
Deep Generative Models. Current state-of-the-art introduces
several deep generative models for tabular data synthesis. Table-

GAN [16] implements an auxiliary classification model along with

discriminator training to enhance column dependency in the syn-

thetic data. TVAE [21], CT-GAN [21] and CTAB-GAN [23] improve

data synthesis by introducing several preprocessing steps for cate-

gorical, continuous or mixed data types which encode data columns

into suitable form for GAN training. The conditional vector de-

signed by CT-GAN and later improved by CTAB-GAN also helps

the GAN training to reduce mode-collapse on minority categories.

CTAB-GAN+ [24], DTGAN [? ], and IT-GAN [11] generate tabular

data without risking privacy of original data by either adopting

differential privacy or controlling the negative log-density of real

records during the GANs training. [25] is the first paper to dis-

cuss the permutation invariant in table synthesis. It uses the same

framework as IT-GAN, which uses an autoencoder to transform

input table into latent vector. TabDDPM [9] is based on denoising

diffusion probabilistic models (DDPM) [7], it uses two different

diffusion models to synthesize categorical and continuous columns.

Fourier Networks. The Fourier transform has played an im-

portant role in image processing for decades [20]. Incorporating

Fourier transform into the neural network architecture design has

been studied in many vision works [2, 15, 19]. Recent work also

leverages the Fourier transform to design deep neural networks to

solve partial differential equations (PDE) [13] and natural language

processing tasks [12]. Our Fourier network block architecture de-

sign is inspired by the Global Filter Network (GFNet) [18]. We take

the design of the input tokenization and global filter layer from

GFNet and use it in our design of the generator and discriminator.

3 FCT-GAN
We start with the use of CNN and FNB then their role in FCT-GAN.

3.1 CNN-based Tokenization and Fourier
Network Blocks

Combining CNN tokenization process and FNB is originally ex-

plored for image classification [18] and used to compose the archi-

tecture illustrated in Fig. 1. The CNN tokenizes the input into local

relation embeddings and the FNB transforms these local embed-

dings into the frequency domain to extract global relations.

As shown in Fig. 1, each input data row is encoded as a square-

like image with pixels representing the column values. We define a

Figure 1: Input Tokenization and Fourier Network Block.

CNN layer with a 𝑘 × 𝑘 kernel and stride 𝑘 the same as the kernel

size. With this setting the CNN effectively acts as a tokenizer which

divides an image of size 𝑁 × 𝑁 into
𝑁
𝑘
× 𝑁

𝑘
tokens embedding the

local relations of a subpart of the original image.

Fourier Network Blocks consist of two parts: (1) Fourier layer and

(2) Feed Forward Network. The Fourier layer consists of three opera-

tions: (i) 2D discrete Fourier transform, (ii) element-wise multiplica-

tion between frequency-domain features and learnable weights and

(iii) 2D inverse discrete Fourier transform. The frequency-domain

features represent relations between the inputs and the learnable

weights allow to selectively filter them. We use real fast Fourier

transform (rFFT) for operation since our input is a real tensor with

no imaginary component [18].

3.2 Design of FCT-GAN
Wefirst introduce the the architectures of the generator and discrim-

inator. Then, we discuss the training procedure and loss functions.

3.2.1 Generator. The objective of the generator is to capture the

joint probability distribution of all columns to synthesize high

fidelity data. In FCT-GAN, we leverage the FNB to achieve the

above goal. We opt for a design which iteratively upscales the

resolution at different stages using FNB to incorporate the relations.

Hence our generator gradually increases the input sizes and reduces

the embedding dimension at each stage. Fig. 2 depicts on the left a

generator designwhere the target resolution is 32×32 as an example.

The latent noise and conditional vector are fed into an embedding

layer (i.e., a Multi-Layer Perceptron having input dimension the

same as the latent noise plus the conditional vector and the output

dimension 𝑁 = 𝐻0 ×𝑊0 ×𝐶0) to convert them to a 𝐻0 ×𝑊0 ×𝐶0

(by default we use 𝐻0=𝑊0=4, 𝐶0=256) vector. The vector is then

reshaped into a 𝐻0 ×𝑊0 resolution feature map with each point

being a 𝐶0-dimensional embedding. The result is fed into the first

FNB. After each FNB, we insert an upsampling module. There are

several choices to achieve resolution-upscaling, such as bicubic

interpolation [8] or transpose convolutional operation. To mitigate

memory usage and computation, we use the pixelshuffle function.

This upscales the resolution of feature maps by a factor of 2 while

reducing embedding dimension to a quarter. We repeat the FNB and

UpScale stages until we reach the target resolution. The final linear

flatten layer is used to project the embedding into 1-dimension.

3.2.2 Discriminator. Fig. 2 shows on the right our discriminator

architecture. The objective of the discriminator is to distinguish

real and fake data. We leverage transformer style architecture with

repeated layers of FNBs from Fig. 1 acting as attention layers. Since

FCT-GAN adopts the training structure of Wasserstein GAN plus

gradient penalty (WGAN+GP) [6], our discriminator just outputs a
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Figure 2: Structure of FCT-GAN. Target generation dimension and discriminator input dimension are setting to 32×32 and
36×36 as an example.

scalar score. The generated data from the generator and the con-

ditional vector are concatenated, wrapped as an image (padding

missing values with zeros), and fed to the patch embedding layer

of the discriminator. Within patch embedding, there is a CNN filter

with a 𝑘 × 𝑘 kernel (𝑘 = 9 by default), 𝐶1 (𝐶1 = 256 by default)

output channels, and stride same as the kernel size. Different from

the generator, the inputs and outputs of the FNBs have constant

dimensions, which shares the same setting as in [18] to construct

image classifier. After 4 successive FNBs, the extracted features are

flattened and downscaled to one single value.

3.2.3 GAN training loss. To improve the stability of GAN training,

FCT-GAN adopts WGAN+GP [6] loss. Moreover, to elevate the

synthesizing performance, we add three extra training losses for

the generator: (1) information loss, (2) generator loss and (3) classi-

fier/regressor loss. The information loss matches the first-order (i.e.,

mean) and second-order (i.e., standard deviation) statistics of syn-

thesized and real records. This leads to synthetic records with the

same statistical characteristics as real records. The generator loss

measures the difference between the given condition and the output

class of the generator. This loss helps the generator learn to produce

the exact same class as the given conditions. FCT-GAN incorporates

an auxiliary classifier/regressor as suggested in [16, 23, 24]. For each

synthesized data item the classifier/regressor outputs a predicted

value using the synthesized features. The classifier/regressor loss

quantifies the discrepancy between the synthesized and predicted

value, helps to increase the semantic integrity of synthetic records.

4 EVALUATION
In this section, we evaluate the effectiveness of synthetic data gen-

erated by FCT-GAN in maintaining the global correlation and sta-

tistical similarity to the original data. We also investigate FCT-GAN

ability to counter the influence of column permutation.

4.1 Experiment Setup
Datasets. All algorithms are tested on 8 machine learning datasets.

Intrusion, Adult and Covertype are from the UCI machine learn-

ing repository
1
. Credit and Loan are from Kaggle

2
. These five

tabular datasets are defined to have a categorical variable as the

target for conducting classification tasks. Insurance and King
from Kaggle are included as regression datasets.

Due to computing resource limitations, 50K rows of data are

sampled randomly in a stratified manner with respect to the target

variable for Covertype, Credit and Intrusion datasets. The Adult,

1
http://archive.ics.uci.edu/ml/datasets

2
https://www.kaggle.com/

Loan, Insurance and King datasets are taken in their entirety. We

assume that the data type of each variable is known before training.

For stability on column permutation analysis, three column orders

are considered: (i) Original: maintains the order as in the data

downloaded from dataset source. (ii) Order by data type: puts all the
continuous columns at the beginning and all categorical columns at

the end. (iii) Order by data correlation: first calculates the pair-wise
correlations between all columns. Then it sorts columns based on

the absolute correlation value with highly correlated pairs in front

and less correlated pairs later. Duplicate columns are skipped.

Baselines FCT-GAN is comparedwith 7 other SOTA tabular data

synthesizers: TabDDPM, IT-GAN, CTAB-GAN, CTAB-GAN+, Table-

GAN, CT-GAN and TVAE. To show the impact of newly designed

generator and discriminator, we test two variants of FCT-GAN:

FCT-GAN𝐺 and FCT-GAN𝐷 . FCT-GAN𝐺 /FCT-GAN𝐷 only keeps

the generator/discriminator of FCT-GAN using as counterpart the

CNN-based discriminator/generator from CTAB-GAN+.

Environment A machine with 32 GB memory, a GeForce RTX

2080 Ti GPU and a 10-core Intel i9 CPU under Ubuntu 20.04.

4.2 Evaluation Metrics
4.2.1 Machine learning (ML) utility. Classification and regression

datasets are quantified using different metrics, but they share the

same evaluation process. We first train each algorithm on the train-

ing data and use the trained model to generate synthetic data of the

same size as the training data. Then we use the training data and

synthetic data to train same set of ML algorithms. For classification

dataset, we choose decision tree classifier, linear support-vector-

machine (SVM), random forest classifier, multinomial logistic re-

gression and multilayer perceptron (MLP). For regression dataset,

we choose linear regression, ridge regression, lasso regression and

Bayesian ridge regression model. Finally, we use the same test set

to separately test the two sets of ML models trained on the original

and synthetic data. We use accuracy, F1-score and AUC as evalua-

tion metrics for classification, and mean absolute percentage error

(MAPE), explained variance score (EVS) and 𝑅2 score as the metrics

for regression. In the end, we calculate the difference between the

results of the two sets of ML models for each metric.

4.2.2 Statistical similarity (SS). Three metrics are used to quantify

the statistical similarity between real and synthetic data.

Average Jensen-Shannondivergence (Avg-JSD). The JSD [14]

provides a measure to quantify the difference between the probabil-

ity mass distributions of individual categorical variables belonging

to real and synthetic data. This metric is bounded between 0 and

1 and is symmetric allowing for an easy interpretation of results.

http://archive.ics.uci.edu/ml/datasets
https://www.kaggle.com/
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Table 1: ML Utility and SS result. R./C. represent the results
averaged on the regression/classification datasets. SS Dif-
ference averaged on all 7 datasets. Im. to 2nd Best shows
improvement of FCT-GAN vs. 2nd best baseline.

Method ML Utility Difference R. ML Utility Difference C. Statistical Similarity Difference
MAPE EVS 𝑅2 Acc.(%) F1-score AUC Avg-JSD Avg-WD Diff. Corr.

FCT-GAN 0.037 0.022 0.043 4.92 0.065 0.039 0.010 0.034 1.57
FCT-GAN𝐷 0.042 0.041 0.065 4.98 0.066 0.053 0.014 0.043 1.72

FCT-GAN𝐺 0.131 0.041 0.109 9.24 0.140 0.066 0.014 0.047 2.07

TabDDPM 0.066 0.030 0.047 7.91 0.113 0.143 0.018 0.114 3.41

IT-GAN 0.608 0.409 0.478 8.95 0.183 0.229 0.029 0.097 2.38

CTAB-GAN+ 0.037 0.025 0.043 5.23 0.090 0.041 0.011 0.043 1.65

CTAB-GAN 0.059 0.594 0.707 8.90 0.107 0.094 0.021 0.056 1.70

CT-GAN 0.871 0.594 0.709 21.51 0.274 0.253 0.037 0.090 2.96

TVAE 0.243 0.078 0.215 11.11 0.100 0.230 0.025 0.122 2.41

Table-GAN 0.338 0.434 0.479 11.40 0.130 0.169 0.028 0.231 3.23

Im. to 2nd Best 0% 13.6% 0% 6.3% 27.8% 5.1% 10% 26.5% 5.1%

Avg-JSD averages the JSDs computed for each categorical column

to obtain a compact comprehensible score.

Average Wasserstein distance (Avg-WD). The Wasserstein

distance [17] is used to measure distance between real and syn-

thetic continuous variable distributions. We use WD because JSD

is numerically unstable for evaluating the quality of continuous

variables, especially when there is no overlap between distributions.

Difference in pair-wise correlation (Diff. Corr.). To evaluate
the preservation of column dependency in synthetic data, we first

compute the pair-wise correlation matrix for the columns within

real and synthetic datasets individually. Pearson correlation coeffi-
cient is used between any two continuous variables. Similarly, the

uncertainty coefficient is used to measure the correlation between

any two categorical features. And the correlation ratio between

categorical and continuous variables is used. Note that the dython
3

library is used to compute. Finally, the difference between pair-wise

correlation matrices for real and synthetic datasets is computed.

To quantify the synthesis quality variation caused by column

permutations, we define a metricMaximal Absolute Variation
(MAV). For the values𝑉 𝑖

𝐷𝑀
of a metricM (e.g., Avg-JSD) on dataset

D, computed on the 𝑖𝑡ℎ column order out of 𝑁 , L = {𝑉 1

𝐷𝑀
, 𝑉 2

𝐷𝑀
...

𝑉𝑁
𝐷𝑀

}, MAV is computed as: MAV =𝑚𝑎𝑥 (L) −𝑚𝑖𝑛(L).

4.3 Result Analysis
4.3.1 Quality of synthetic data. Tab. 1 shows the ML utility and

statistical similarity results of 10 algorithms on 7 datasets. The table

is grouped into three sections: averaged ML Utility results across 2

regression datasets, averaged ML utility for 5 classification datasets

and averaged statistical similarity on all 7 datasets. Best results

are highlighted in bold. One can see that FCT-GAN outperforms

all the baselines on all the metrics. Excluding its own variants,

FCT-GAN also significantly outperforms the second best algorithm,

i.e., CTAB-GAN+, in most metrics. Note that in [9], it reports that

TabDDPMoutperforms CTAB-GAN+ inmost of their datasets. From

our experiments, except Intrusion dataset, results of TabDDPM

and CTAB-GAN+ are relatively similar. But for Intrusion, which
contains 20 classes in the target column, TabDDPM performs much

worse than most of the SOTAs. The results show that FCT-GAN

improves CTAB-GAN+ by 27.8% on F1-score, which confirms that

the new architecture can enhance the ability to capture global

column dependency. Among FCT-GAN and its variants, FCT-GAN𝐷

shows the performance relatively close to FCT-GAN. FCT-GAN𝐺 is

3
http://shakedzy.xyz/dython/modules/nominal/#compute_associations

Table 2: MAV of the difference of ML Utility and SS on three
type of column orders between original and synthetic data.

Method ML Utility Difference R. ML Utility Difference C. Statistical Similarity Difference
MAPE EVS 𝑅2 Acc.(%) F1-score AUC Avg-JSD Avg-WD Diff. Corr.

FCT-GAN 0.04 0.02 0.03 1.12 0.01 0.01 3e-3 2e-3 0.11
FCT-GAN𝐷 0.11 0.03 0.2 1.81 0.03 0.02 7e-3 5e-3 0.2

FCT-GAN𝐺 0.08 0.11 0.08 3.27 0.05 0.03 9e-3 1e-3 0.2

TabDDPM 0.12 0.03 0.05 2.14 0.03 0.01 7e-3 0.01 0.21

IT-GAN 0.17 0.05 0.11 1.21 0.03 0.02 8e-3 0.01 0.15

CTAB-GAN+ 0.28 0.26 0.35 2.18 0.03 0.03 5e-3 4e-3 0.32

CTAB-GAN 0.05 0.56 0.67 6.88 0.17 0.12 6e-3 7e-3 0.3

CT-GAN 0.57 0.25 0.38 8.82 0.06 0.09 0.01 0.01 0.17

TVAE 0.15 0.03 0.05 3.64 0.05 0.05 2e-3 3e-3 0.15

Table-GAN 0.09 0.3 0.16 13.58 0.06 0.02 0.01 9e-3 0.28

still better than many SOTAs, but it degrades more from FCT-GAN

compared to FCT-GAN𝐷 . This shows the generator can not fully

demonstrate its ability without a well-designed discriminator, but

a stronger discriminator can level up the synthesizing ability of

the generator by better identifying fake data and hence forcing the

generator to improve the fidelity of the generated data.

4.3.2 Stability on column permutation. We show the MAV of each

metric on all algorithms among three column orders in Tab. 2. FCT-

GAN achieves the smallest MAV in seven out of nine metrics and

is the second best on the other two metrics. Specifically, the seven

metrics (i.e., ML utility metrics and Diff. Coff.) in which FCT-GAN

performs the best are the indicators designed tomeasure the column

correlations retained in the synthesized data, assessing its fidelity

to the original data. This means that no matter which column order

is used, FCT-GAN can always capture the global column depen-

dencies better than any other baseline. IT-GAN also performs well

in stability due to its usage of autoencoder for transforming input

into a latent vector. TabDDPM performs well in several metrics

due to its separate training of continuous and categorical columns.

TVAE and CT-GAN all use FCN for both generator and discrim-

inator, and TVAE shows better stability. That indicates the VAE

framework is more stable than GAN under column permutation for

table synthesis. Moreover one can note that changing training data

column order generally influences more ML utility than statistical

similarity. This means that for most of the tabular GAN algorithms,

it is more difficult to capture the column dependencies rather than

to model the distribution of every single variable.

5 CONCLUSION
In this paper, we present a novel tabular GAN algorithm– FCT-GAN.

FCT-GAN leverages the transformer-style tokenizer and Fourier

network blocks to design the generator and discriminator. For dis-

criminator, the tokenizer uses a CNN-based filter to extract local

spatial features from original input data and tokenizes them for

Fourier network blocks. This design takes both local and global

features into account. The generator imitates the design of CNN-

based GANs, which piles up Fourier network blocks and upscales

feature dimensions at each layer by 2× until reaching the target

size. The proposed method surpasses state-of-the-art performance.

It also shows brilliant stability to counter the impact of training

data column permutations on the synthetic data quality.
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