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Abstract
Bayesian nonparametric mixture models are widely used to cluster observations. 
However, one major drawback of the approach is that the estimated partition often 
presents unbalanced clusters’ frequencies with only a few dominating clusters and 
a large number of sparsely-populated ones. This feature translates into results that 
are often uninterpretable unless we accept to ignore a relevant number of observa-
tions and clusters. Interpreting the posterior distribution as penalized likelihood, we 
show how the unbalance can be explained as a direct consequence of the cost func-
tions involved in estimating the partition. In light of our findings, we propose a novel 
Bayesian estimator of the clustering configuration. The proposed estimator is equiv-
alent to a post-processing procedure that reduces the number of sparsely-populated 
clusters and enhances interpretability. The procedure takes the form of entropy-reg-
ularization of the Bayesian estimate. While being computationally convenient with 
respect to alternative strategies, it is also theoretically justified as a correction to the 
Bayesian loss function used for point estimation and, as such, can be applied to any 
posterior distribution of clusters, regardless of the specific model used.

Keywords Dirichlet process · Loss functions · Mixture models · Unbalanced 
clusters · Random partition

1 Introduction

Clustering methods are used to detect patterns by partitioning observations into dif-
ferent groups. What are desirable characteristics of clusters depends on the specific 
applied problem at hand (see e.g., Hennig 2015). Nonetheless, clustering methods 
are typically motivated by the idea that observations are more similar within the same 
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cluster than across clusters (accordingly to a certain definition of similarity). Clustering 
has been proven useful in a large variety of fields including but not limited to image 
processing, bio-medicine, marketing, and natural language processing. Clustering 
methods are used not only to detect sub-groups of subjects, but also for dimensionality 
reduction (Blei et al. 2003; Petrone et al. 2009), outlier-detection (Shotwell and Slate 
2011; Ngan et al. 2015; Franzolini et al. 2023), testing for distributional homogeneity 
(Rodríguez et al. 2008; Camerlenghi et al. 2019; Denti et al. 2023; Beraha et al. 2021; 
Balocchi et al. 2023; Lijoi et al. 2023), and data pre-processing (Zhang et al. 2006).

Among clustering techniques, we can distinguish two main classes: model-based 
and non-model-based. The former methods are built on some assumptions about the 
sampling mechanism generating the observations. The latter are algorithmic proce-
dures computing clusters’ allocations without using distributional assumptions and 
they typically maximize a certain dissimilarity between clusters (or a measure of 
similarity of the points clustered together). Contrary to algorithmic clustering tech-
niques, such as k-means or hierarchical clustering, model-based methods allow us 
to perform inference via rigorous probabilistic assessments, providing a natural 
way of quantifying uncertainty. Importantly, when the assumption about the data 
generating mechanism is coherently extendable to future data (for example, in infi-
nite exchangeable models, such as the Dirichlet process mixture Ferguson 1983; 
Lo 1984), model-based clustering produces coherent predictions for any number 
of future observations, based on the available past observations. More precisely, by 
coherently extendable we mean preserving Kolmogorov consistency, sometimes also 
called marginal invariance (Dahl et al. 2017) or projectivity (Betancourt et al. 2022; 
Rebaudo and Müller 2023), meaning that the marginal distribution of a sample of 
size n, obtained by marginalizing out the clustering configuration, is equal to the 
restriction of the distribution of larger samples of size N > n . Thus, their statistical 
power is not limited to providing a summary of the observed data, as it happens with 
algorithmic non-model-based techniques.

Typically, model-based clustering frameworks are equivalent to the assumption 
that the observations y1,… yn are extracted from an infinite population following a 
mixture

where the mixture components k(⋅;�h) are probability kernels to be interpreted as 
distributions of distinct clusters in the infinite population, (wh, �h)

K
h=1

 are unknown 
parameters that determine the relative proportion and the shape of such population 
clusters, and K is the total number of clusters in the infinite population. K can be 
either a fixed value or an unknown parameter. In the following, we focus on those 
models under which either K is unknown or K = +∞ . Assuming a fixed finite value 
for K is often restrictive because it limits the flexibility of the assumption in (1), 
and should be avoided unless we have strong information/preference about an upper 
bound in the number of clusters. Indeed, an important and typically unknown param-
eter is the number of clusters Kn in the observed sample, i.e., the number of occu-
pied components in the mixture in (1). Obviously, Kn ≤ min(K, n) . For this reason, 

(1)yi
iid
∼

K∑

h=1

wh k(⋅;�h) for i = 1,… , n, n + 1,… ,
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in a framework in which n is let to vary, K is typically either fixed to +∞ (e.g., 
in Dirichlet process mixtures, Ferguson 1983; Lo 1984) or it is estimated from the 
data (e.g., mixtures of finite mixtures, see Nobile 1994; Miller and Harrison 2018; 
Argiento and De Iorio 2022).

One limitation typically encountered in model-based clustering is that the cluster-
ing point estimate presents highly unbalanced cluster frequencies. Especially when 
the number of mixture components is not arbitrarily fixed to a finite small number, 
the estimated partition tends to include only a few dominating clusters and a large 
number of sparsely-populated ones. This problem is well-known in Bayesian dis-
crete mixtures such as Dirichlet process mixtures, Pitman-Yor process mixtures, and 
mixture of finite mixtures. This feature is undesirable and poses important prob-
lems in terms of interpretability. High unbalance in the cluster frequencies typically 
forces us to disregard all observations assigned to small clusters and just interpret 
the more-populated ones, for which enough observations are available. However, 
the number of small clusters is often not negligible, so the total number of ignored 
observations in the interpretation of the cluster is not negligible as well. Disregard-
ing observations assigned to small clusters when it comes to model-based cluster-
ing is not justified, especially in light of the fact that the unbalance in clusters’ fre-
quencies ultimately appears as a feature of the method and not of the specific data 
analyzed.

The unbalance of the cluster frequencies can easily be explained as the result of 
the interaction of the rich that get richer property and the unbounded number of 
clusters in Bayesian mixture models. See Lee et al. (2022) for a recent detailed dis-
cussion on the topic. The Bayesian learning mechanism of the rich that get richer, as 
the number of observations increases, increases the probability of observing mem-
bers of clusters that have already been observed. At the same time, both in infinite 
mixture models and in mixture of finite mixtures with a prior on the number of com-
ponents that assigns positive probability on an infinite set, the probability of observ-
ing a new cluster is always positive for any n number of observations already allo-
cated. Thus, when new observations are collected the induced learning mechanism 
tends to both repopulate large existing clusters (due to the rich that get richer prop-
erty) and to create new small clusters (due to the fact that the probability of observ-
ing new clusters is positive). The interactions between these two properties naturally 
reduce into unbalanced clusters. However, correcting unbalance intervening on one 
of these two properties is not optimal. It requires either fixing a small upper bound 
for the number of clusters (i.e., K) or breaking probabilistic properties of the model 
as Kolmogorov consistency of the law of the observable variables (see, for instance, 
Wallach et al. 2010; Lee et al. 2022).

Here we propose a correction of the clusters’ unbalance that affects neither 
the Bayesian learning mechanism nor the attractive probabilistic properties of 
model-based clustering. Our proposal is theoretically justified as a correction to 
the loss function used for the Bayesian estimate that explicitly reflects the loss in 
which the analyst incurs when the point estimate of the clustering configuration is 
uninterpretable.

The content of the paper is organized as follows. Section 2 presents the study of 
the cost functions involved in BNP clustering models and explains the presence of 
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noisy and sparsely populated clusters typically observed in the posterior estimates 
of these models. Then, in light of this study, our computationally convenient and 
theoretically justified solution to reduce the number of sparsely populated clusters 
is presented in Sect.  3 and showcased on simulated and real data, respectively in 
Sects. 4 and 5. The code to reproduce all results in the paper is available at https:// 
github. com/ Giova nniRe baudo/ ERC.

2  Implied costs functions in Bayesian nonparametric clustering

The main goal of clustering techniques is to estimate a partition of the observed 
sample, more than the distribution of the whole ideal population in (1). The parti-
tion that one wants to estimate can be encoded using a sequence of subject-specific 
labels (c1,… , cn) taking value in the set of natural numbers such that ci = cj = c if 
and only if yi and yj belong to the same cluster and follow the same mixture com-
ponent k(⋅;�c) , i.e. yi ∣ ci

ind
∼ k(⋅;�ci ) for i = 1,… , n . The indicators (c1,… , cn) , as 

just defined, are affected by the label switching problem (see, for instance, Stephens 
2000; McLachlan et al. 2019; Gil-Leyva et al. 2020). In the following, we assume 
them to be encoded in order of appearance. This means that c1 = 1 , i.e. the first 
observation y1 always belongs to the first cluster. Then either c2 = c1 = 1 , if the sec-
ond observation y2 is clustered together with y1 , or c2 = 2 , otherwise, and so on and 
so forth. Note that, thanks to exchangeability, we can focus on an arbitrary order 
of the observations without affecting the joint law of the sample and thus poste-
rior inference of the clustering configuration. The likelihood for c = (c1,… , cn) and 
� = (�1,… , �Kn

) is

When Kn is unknown, the clustering labels in (2) cannot be estimated with a stand-
ard frequentist approach. In fact, when the maximum likelihood estimator (MLE) for 
(2) exists, it coincides with the vector of MLEs (�̂�1,… , �̂�n) , where each �̂�i is obtained 
considering one observation at a time and the independent models yi ∼ k(yi ∣ �i) , for 
i = 1,… , n . This result is an immediate consequence of

and when there are no joint constraints among the parameters in � the equality holds.
Moreover, note that under typical mixture model assumptions for clustering, we 

have that �̂�1 ≠ … ≠ �̂�n . For instance, when k is a multivariate Gaussian density and 
� is the pair of mean vector and variance matrix of the Gaussian component, such 
the MLE entails a number of clusters equal to the number of distinct observed val-
ues, that by model’s assumptions equals n with probability 1. Thus, no information 
on clusters can ever be gained through MLE and overfitting is unavoidable unless 

(2)L(c,�;y) =

Kn∏

c=1

∏

i∶ci=c

k(yi;�c).

max
(�,c)

n∑

i=1

log k(yi;�ci ) ≤

n∑

i=1

max
�i

log k(yi;�i)

https://github.com/GiovanniRebaudo/ERC
https://github.com/GiovanniRebaudo/ERC
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one relies on strong restrictions of the parameter space (cfr. also with Theorem 1 
and 2 in Casella et al. 2014, where the use of a uniform prior over all possible parti-
tions is considered). In this regard, note that maximizing (2) is not the same as com-
puting the nonparametric maximum likelihood estimator (Lindsay 1995; Polyanskiy 
and Wu 2020; Saha and Guntuboyina 2020) for the mixture model in (1).

Differently, Bayesian models, and in particular Bayesian nonparametric (BNP) 
models, are largely used for model-based clustering, since priors act as penalties, 
shrinking the number of distinct clusters. The vast majority of Bayesian models for 
clustering rely on a prior for c and Kn defined through an exchangeable partition 
probability function (EPPF) (see, Pitman 1996) and, independently, a prior P is used 
for the unique values (�1,… , �Kn

) . Recall that an EPPF characterizes the distribu-
tion of an exchangeable partition, with EPPF(n1,… , nKn

) being the probability of 
observing a particular (unordered) partition of n observations into Kn subsets of car-
dinalities {n1,… , nKn

}.
Therefore, the corresponding posterior distribution is

which can be equivalently represented as the cost function − log(p(Kn, c,� ∣ y)) , i.e.

which is the sum of three terms, that in the following are named respectively likeli-
hood cost, partition cost, and base cost.

As already mentioned, the minimum likelihood cost

typically corresponds to Kn equal to the number of distinct observed values. The 
remaining two costs are those defined by the prior of the model and their marginal 
behavior is described here below. Clearly, any inference result has to be derived 
based on the whole posterior distribution in (3), which is the result of the joint, and 
not marginal, effects of all three costs. Nonetheless considering one cost at a time 
allows us to gain insights regarding the estimation procedure and the frequentist 
penalties induced by the prior.

2.1  Base cost

A lot of attention in the literature has been devoted to the choice of the EPPF and 
many alternatives are available (see, for example, Antoniak 1974; Green and Rich-
ardson 2001; Lijoi et al. 2007; Lijoi and Prünster 2010; De Blasi et al. 2015; Camer-
lenghi et al. 2018; Miller and Harrison 2018; Greve et al. 2022), while, except for 
few cases, mainly within repulsive mixtures (Petralia et  al. 2012; Xu et  al. 2016; 

(3)p(Kn, c,� ∣ y) ∝

Kn∏

c=1

∏

i∶ci=c

k(yi;�c) × EPPF(n1,… , nKn
) × P(d�),

C(Kn, c,�;y) = Clik(Kn, c,�;y) + Cpart(Kn, c;�) + Cbase(Kn,�),

Clik(Kn, c,�;y) = −

Kn∑

c=1

n∑

i∶ci=c

log k(yi;�c)
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Bianchini et al. 2020; Xie and Xu 2020; Beraha et al. 2022), the role of the base cost 
appears partially overlooked within the Bayesian methodology literature.

However, when BNP clustering methods are applied in practice, the choice of an 
appropriate base distribution is known to be crucial. The most common choice is to 
use an independent prior on the unique values so that �c

iid
∼ P0 and

where the variance of the distribution P0 is known to play an important role in the 
estimation process and, typically, the higher the variance of P0 the lower the number 
of clusters identified by the posterior (cfr., e.g. Gelman et  al. 2013,  p. 535). This 
phenomenon can be explained by looking at the joint distribution induced by P0 on 
the unique value. Higher values of the variance correspond to a joint distribution 
with a smaller mass around the main diagonal and, therefore, a higher base cost for 
those vectors (�1,… , �Kn

) whose components are similar, thus ultimately favoring 
the variability of the unique values and penalizing many overlapping clusters. Con-
sider for instance the case of P0 set to a univariate normal distribution centered in � 
and with variance �2 , we have

When the variance is increased from �2 to �2 , the base cost increases closer to the 
Kn-dimensional vector (�,… ,�) . More formally, defining the Kn-sphere � ∈ ℝ

Kn 
such that 

∑Kn

c=1
(�c − �)2 = Kn

log(�2∕�2)�2�2

�2−�2
 , we have that the cost increases for vectors 

(�1,… , �Kn
) corresponding to points inside the sphere and decreases for those vec-

tors corresponding to points outside the sphere. This causes also a reduction in the 
relative cost of those vectors located far from the main diagonal compared to the cost 
of the vectors closer to the main diagonal. To clarify this point, Fig. 1 shows the cost 
function shift caused by an increase in variance from 1 to 3 in the case of Kn = 2 
and P0 univariate normal centered in 0. In Fig.  1, the number of cluster is fixed 
to Kn = 2 and the cost associated to different clusters’ locations (�1, �2) ∈ [−3, 3]2 
is considered. Figure  1a, b show the base cost in the whole plane [−3, 3]2 , while 
Figs. 1c, d show how the base cost changes based on the distance between �1 and �2 , 
i.e, |�1 − �2| . Figures 1c, d are obtained considering a grid of equally spaced points 
in the plane [−3, 3]2 . Comparing the two scenarios of variance equal 1 and 3, it is 
evident as the increase in variance results in a smaller penalization of the distance 
between cluster locations. In practice, P0 is usually set to be a continuous scale mix-
ture, where the mixed density is conjugate to the kernel k for computational con-
venience, while the mixing density is used to increase appropriately the marginal 
scale of the mixture P0.

Cbase(Kn,�) = −

Kn∑

c=1

logP0(d�c),

Cbase(Kn,�) =
Kn

2
log(2�) +

Kn

2
log �2 +

1

2

Kn∑

c=1

(�c − �)2

�2
.
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2.2  Partition cost

Finally, let us comment on the partition cost Cpart . Its behavior is less straightforward 
and we consider here only two important and widely used cases: Dirichlet process mix-
tures (DPM) and Pitman-Yor process (Pitman and Yor 1997) mixtures (PYPM). With a 
DPM model, up to an additive constant, we have

where � is the concentration parameter of the Dirichlet Process. The DPM partition 
cost tends to favor parsimonious values of Kn (with respect to the likelihood cost that 
in general tends to favor Kn = n ). However, contrary to the base cost, it depends also 
on clusters’ frequencies.

Figure 2 showcases the partition cost of DPM for different values of what we refer 
henceforth to as the entropy of the frequencies (n1,… , nKn

) , i.e.

Cpart(Kn, c;�) = −Kn log � −

Kn∑

c=1

logΓ(nc),

Fig. 1  K
n
= 2 , bivariate normals with �2

= 1 and �2
= 3
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Overall the EPPF acts favoring frequencies (n1,… , nKn
) with low entropy and thus, 

roughly speaking, higher sample variance of the frequencies. However, this feature 
ultimately results in two distinct effects: one acting on the total number of occu-
pied clusters Kn and another acting on the variance of the clusters’ frequencies 
(n1,… , nKn

) . Even though these two features both favor a reduced entropy, they 
entail very different scenarios in terms of estimated clustering structure, especially 
from an applied and practical point of view. Penalizing large numbers of clusters is 
typically desirable in applications because an elevated number of clusters may be 
difficult to interpret. However, a partition with few dominating clusters and many 
sparsely populated clusters is often highly undesirable because it is hard to inter-
pret unless one decides to ignore all the information contained in the small clusters 
and focus only on the dominating ones. See also Green and Richardson (2001) for 
a study of the posterior entropy in the Dirichlet process mixture and Greve et  al. 
(2022) for more details on entropy in mixtures of finite mixture models. In the case 
of a PYPM the partition cost, up to an additive constant, equals

Despite that the EPPFs are different, Figs. 2 and 3 show in both processes a closely 
similar behavior in terms of entropy penalization. This tendency is coherent with the 
fact that the posterior unbalance of cluster frequencies is typically observed in prac-
tice under both models, although they are built on different EPPFs.

Note that Figs.  2 and 3 provide us with insights into the behavior of the 
EPPFs evaluated (analytically from the aforementioned expressions) in corre-
spondence of different vectors of clusters’ frequencies (n1,… , nKn

) , i.e., the 
probability of a specific clustering configuration with unordered frequencies 

S(n1,… , nKn
) = −

Kn∑

c=1

nc

n
logKn

nc

n
.

Cpart(Kn, c;�, �) = −

Kn∑

c=1

log(� + �(c − 1)) −

Kn∑

c=1

logΓ(nc − �) + Kn logΓ(1 − �).

Fig. 2  Average partition cost as a function of entropy of the partition in a DPM model with � = 1 for 
n = 100 observations clustered into 2, 3, and 4 clusters. Plotted values are obtained analytically: for each 
possible partition, the value of the entropy and the cost are computed and, then, the cost is averaged 
across partitions with the same entropy, keeping the number of clusters  Kn fixed
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{n1,… , nKn
} . In particular, they show how the EPPF associates different levels of 

penalty with different values of entropy. In this regard is important to stress that 
the vectors (n1,… , nKn

) are not in a one-to-one correspondence with the parti-
tions, and the number of partitions corresponding to certain frequencies varies 

across vectors. For instance, when n = 100 , there exist 
(

100

50, 50

)
≈ 1.01e + 29 

distinct partitions corresponding to the vector of frequencies (50,  50) and (
100

25, 25, 25, 25

)
≈ 1.61e + 57 distinct partitions corresponding to the vector of 

frequencies (25,  25,  25,  25). The number of partitions per different vectors of 
frequencies, which is not depicted in Figs. 2 and 3, does affect both estimates of 
marginal quantities, such as the number of clusters Kn , as well as point estimates 
of the clustering configuration that are different from the MAP (maximum a 
posteriori).

If we are interested in estimating the number of clusters Kn , we should note 
that the number of possible partitions rapidly changes with Kn accordingly to 
Stirling numbers of the second kind. More precisely, the Stirling number of the 
second kind counts the number of different partitions of n objects into Kn non-
empty unordered subsets and can be computed as

This information must be combined with the partition cost, as represented in Figs. 2 
and 3, if we are interested in fully understanding the impact of the EPPF on the mar-
ginal prior and posterior distributions of Kn . Combining the two features (i.e., the 
partition cost per each vector of frequencies and the number of partitions per each 
vector of frequencies) the typical partition cost strongly penalized too many clusters 
suggested by the likelihood costs, i.e. Kn = n , but still favors a small (higher than 

1

Kn!

Kn∑

i=0

(−1)Kn−i

(
Kn

i

)
in.

Fig. 3  Average partition cost as a function of entropy of the partition in a PYPM model with � = 1 and 
� = 0.5 for n = 100 observations clustered into 2, 3, and 4 clusters. Plotted values are obtained analyti-
cally: for each possible partition, the value of the entropy and the cost are computed and, then, the cost is 
averaged across partitions with the same entropy, keeping the number of clusters  Kn fixed
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1) number of clusters that adaptively increases with the sample size n (see e.g., De 
Blasi et al. 2015).

3  Regularized‑entropy estimator

Once the posterior distribution ℙ(c ∣ y1∶n) over the space of partitions is obtained, 
typically thanks to a Markov Chain Monte Carlo algorithm, a point estimate ĉ of the 
partition can be obtained accordingly to the decision-theoretic approach of Bayes-
ian analysis. More precisely, ĉ is obtained by minimizing the Bayesian risk, i.e, the 
expected value of a loss function L(c, ĉ) with respect to the posterior

where L(c, ĉ) is the loss in which we incur using ĉ as estimates when the partition 
takes the value c . How to interpret and elicit the loss in practice can change accord-
ing to the philosophical point of view. See, for instance, Robert (2007). Often in 
parameter estimation, the loss is interpreted as the cost of choosing ĉ instead of the 
ideally optimal parameter value c (sometimes interpreted as the truth). In a more 
subjective Bayesian framework, it can be interpreted, together with the model and 
prior, in terms of the preferences implied on the possible parameter values c via the 
Bayesian risk (Savage 1972). Finally, also in a more frequentist framework, the loss 
can be chosen in terms of the implied properties of the estimator ĉ of the unknown 
true parameter.

Despite the different philosophical justifications, rarely, in applied Bayesian clus-
tering analysis, a 0–1 loss function and the resulting MAP estimator are employed 
due to the large support of the posterior and the fact that the 0–1 loss function does 
not reflect different levels of distance between two non-coinciding partitions. Widely 
used alternatives in applications are Binder loss (Binder 1978) or variation of infor-
mation (VI) loss (see, Meilă 2007; Wade and Ghahramani 2018; Dahl et al. 2022b).

c
∗ = argmin

ĉ

𝔼[L(c, ĉ) ∣ y1∶n] = argmin
ĉ

∑

c

L(c, ĉ)ℙ(c ∣ y1∶n),
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We have already stressed how a large presence of noisy clusters is typically unde-
sirable in practice and we claim that this aspect should be reflected in the loss func-
tion used for point estimation so that the loss of each partition is proportional to its 
entropy. To do so, consider any possible loss function L(c, ĉ) one would like to use 
to derive the estimate, we can define a new loss function, that we named entropy-
regularized, as

where, with a little abuse of notation w.r.t. the previous section, S(c) is the entropy of 
the partition identified by c and � ∈ ℝ . Recall that the base of the logarithm involved 
in the computation of S(c) changes with the argument c and it is equal to the number 
of unique values in c so that S(c) = 1 can be obtained for any number of non-empty 
clusters Kn ≥ 2 (provided that n∕Kn ∈ ℕ ). Clearly, when � is positive, for any can-
didate estimate ĉ , the loss function is inflated in correspondence of partitions c with 
high entropy, as desired.

Minimizing the expected entropy-regularized loss function L̄(c, ĉ) with respect 
to the posterior is equivalent to minimizing the original loss function L(c, ĉ) with 
respect to an entropy-regularized version ℙ̄[c ∣ y1∶n] of the posterior distribution, i.e.

This result, while immediate to prove, is highly desirable, because it allows imple-
mentation of the entropy-correction in a very straightforward and computationally 
feasible way which is described in Algorithm 1. Before computing summaries of the 
posterior, a resampling step is applied.

More precisely, each sample from the posterior is resampled with probability pro-
portional to exp{� S(c)} so that an entropy-regularized version of the whole poste-
rior distribution is obtained, thanks to a sampling importance resampling step. Then, 
in the last step of the algorithm the original loss function L(c, ĉ) is minimized with 
respect to the entropy-regularized version of the posterior. Note that to solve such 
an optimization step we can rely on any of the effective algorithms available in the 
literature for the optimization of non-entropy regularized losses. See e.g. Rastelli 
and Friel (2018); Dahl et  al. (2022a). In particular, we use the greedy algorithm 
described in Dahl et al. (2022b) as implemented in the R library salso (Dahl et al. 
2022a) to perform the analysis presented in this work.

Thanks to the properties of the importance sampling procedure, the point esti-
mate obtained minimizing 

∑M

m=1
L(c̃m, ĉ) is asymptotically equivalent to the solution 

of the minimization problem 
∑M

m=1
L̄(cm, ĉ) . However, there is a potential drawback 

of Algorithm  1, which stems from the finite dimension M of the original sample 
from the posterior, cm,m = 1,… ,M . Although Algorithm 1 is easy to implement, 
it may significantly reduce the number of MCMC iterations considered in the mini-
mization problem. To overcome this issue, one possible solution may be to monitor 
the effective sample size (ESS) of the importance sampling step of Algorithm 1 (see 
e.g., Liu 1996) that can be approximated as

L̄(c, ĉ) = exp{𝜆S(c)}L(c, ĉ),

ℙ̄[c ∣ y1∶n] ∝ exp{𝜆 S(c)}ℙ[c ∣ y1∶n].
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where wm are defined in Algorithm 1 and M is the number of initial draws for the 
posterior. When the ESS is below a certain threshold, it can be increased by increas-
ing the number of initial draws M from the posterior. It is important to note that this 
use of the ESS indicator deviates from the conventional practice. The ESS is typi-
cally employed to measure the mixing performance of sampling algorithms, having 
as optimal value for the relative effective sample size ESS∕M the value of 1. In this 
standard use, the ESS can be interpreted as the approximate number of independ-
ent draws obtained from a target distribution. However, this is not the case in our 
context. In fact, we should always expect a relative sample size ESS∕M lower than 1 
to ensure that the entropy regularization has the desired effect on the estimates, the 
lower ESS/M the higher the effect of the regularization. Moreover, here there is no 
target distribution we are referring to while computing the ESS. Roughly speaking, 
the entropy regularization shifts the importance (i.e., the posterior density) towards 
specific areas in the support of the posterior and the ESS in (4) may serve only as 
a practical indicator of how well those areas have been previously explored by the 
original chain.

Finally, note that the choice of � plays an important role in defining the cluster-
ing estimator (as well as the choice of the not-regularized loss and the probabilistic 
clustering model assumptions). The hyperparameter � can be elicited jointly with 
the rest of the prior settings, (e.g., prior, likelihood, and loss) in a Bayesian deci-
sion framework according to the preference on the point estimate of the clustering. 
In particular, we recommend choosing � large if we want a stronger regularization. 
How large depends on the specific analysis and the other model and prior choices. 
In practice, if the goal is to use clustering just as a data summary can be easy and 
meaningful to try different values of � on a grid and see what produces more inter-
pretable results in a cross-validation spirit.

4  Simulation studies

4.1  Univariate Gaussian mixtures

We provide here a simulation study, where n = 1000 observations are sampled from 
3 distinct and well-separated univariate Gaussian distributions centered in −4 , 0, and 
4 and with unitary variance. Here we refer to “ground true” clustering as the one 
implied by the membership indicators of the Gaussian kernels under the data-gener-
ating truth. We employ a Normal-Normal DPM, with the base distribution centered 
at 0 and variance equal to 1. We compare the posterior estimates obtained by mini-
mizing the Binder loss function and the entropy-regularized Binder loss function. 
We set the concentration parameter � = 1 , perform 20 000 MCMC simulations, and 
use the first 5000 as burn-in. See Sect. 2 for the results in the exact same setting but 
with a Gamma hyperprior for the concentration parameter.

(4)ESS =
1

∑M

m=1
w2
m
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Defining as sparsely populated clusters those clusters containing 10% or less of 
observations, we found that in almost a third (4755 out 15 000) of the MCMC itera-
tions, 10% or more of the observations are allocated into sparsely populated clusters, 
while in almost two thirds (9306 out of 15 000) of MCMC iterations, 5% or more of 
the observations are allocated into sparsely populated clusters, see Fig. 4a. The same 
counts after entropy-regularization of the posterior (as described in the previous sec-
tion) are, with � = 10 , 4088 and 7888 out 15 000, see Fig. 4b, and, with � = 20 , 1375 
and 3290 out 15 000, see Fig. 4c. Notice that coherently with the interpretation of 
the regularization in terms of the loss function, the regularized posterior should be 
intended only as a computational tool to provide summaries of the posterior distribu-
tion (e.g., point estimates and credible balls) and not as a posterior distribution itself.

Finally, Fig. 5 shows the ground truth and the estimated clusters with and without 
entropy regularization. They highlight how the regularization allocates observations 
from noisy clusters into dominating ones.

The main purpose of regularization is to provide a more interpretable and pos-
sibly more parsimonious representation of the dataset at hand without disregarding 
observations. Therefore, in general, the procedure prioritizes interpretability over 

Fig. 4  Gaussian simulation study. Percentage of observations in sparsely-populated clusters before and 
after entropy-regularization. Sparsely populated clusters are here defined as clusters containing 10% or 
less of observations. The horizontal axis denotes the percentage of observations (out of 1000) that are 
assigned to those clusters. The y-axis represents the number of MCMC samples (out of 15 000)

Fig. 5  Gaussian simulation study. Estimated clustering for the simulation study darker squares denote 
couples of observations clustered together. Panel (a) shows the ground true clustering. Panel (b) shows 
the clustering minimizing the Binder loss. Panel (c) shows the clustering minimizing the entropy-regular-
ized Binder loss for � = 10 and panel (d) for � = 20
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the recovery of a frequentist truth. Note also that even in the ideal frequentist situ-
ation of knowing the true data simulation density the misclassification rate will be 
typically low, but not zero, if the mixture kernels have overlapping supports as in the 
Gaussian scenario. However, monitoring misclassification errors in simulation stud-
ies can still be useful as it provides insights into how entropy regularization redis-
tributes observations to achieve more balanced cluster frequencies. In this study, the 
application of regularization results in a reduction in misclassification errors, which 
is consistent with the fact that the highly unbalanced clusters are induced by the 
learning mechanism of BNP mixtures rather than the data itself. In particular, the 
number of observations misclassified (with respect to the simulation truth) with the 
Binder loss point estimate ( � = 0 ) is 61, with the regularization with � = 10 is 54 
and with � = 20 is 30.

Figure 6 shows the cluster frequencies for the three point-estimates. Note that in 
this simple univariate Gaussian kernel simulation scenario we can obtain the correct 
number of occupied components (i.e., clusters) and thus avoid sparsely populated 
clusters in the point estimate also using the VI loss (with the default parameter a = 1 
as implemented in salso) instead of considering the Binder loss (with the default 
parameter a = 1 ). However, without entropy regularization, both the VI loss and the 
Binder loss entail sparsely populated clusters in more complex scenarios, such as the 
multivariate simulation study presented in the next Sect. 4.2 and real-world dataset 
considered in the Sect. 5, respectively.

4.2  Multivariate Bernoulli mixtures and latent class analysis

In this section, we discuss the results of a synthetic numerical experiment involving 
multivariate Bernoulli data. Results are obtained employing a DPM with independ-
ent Bernoulli kernels, such that the likelihood is

where the hth component has weight wh and it is characterized by the vector of prob-
abilities (p1,h,… , pJ,h) . The model allows for the estimation of latent classes, which 

yi ∣ (wh)h≥1, (p1,h,… , pJ,h)h≥1
iid
∼

∞∑

h=1

wh

(
J∏

j=1

p
yi
j,h
(1 − pj,h)

1−yi

)

Fig. 6  Gaussian simulation study. Estimated number of clusters and clusters’ frequencies
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are commonly used in latent class analysis (LCA) to analyze multivariate discrete 
outcomes, often binary in nature.

In LCA, each latent class is represented by a mixture component, and the 
observations within each class are assumed to be independent. This assumption 
holds for LCA even though, typically, the observed variables are assumed to be 
statistically dependent. This is a crucial aspect of LCA: the classes are indeed 
used to represent the observed dependence (see, for instance, McCutcheon 1987). 
The rationale behind the approach is that estimating the dependence across J 
binary outcomes is often challenging, particularly when J is large, as a J-vari-
ate Bernoulli distribution requires J2 − 1 parameters to be estimated. The goal 
of LCA is to explain and approximate the observed dependence in the data by 
introducing latent classes. Thus, this model serves the purpose of approximat-
ing complex dependent J-variate binary distributions through the identification 
of patterns in the data that can explain the observed dependence in a more con-
cise and interpretable manner than estimating the entire set of J2 − 1 parameters. 
This method is also referred to as “the categorical data analog of factor analysis" 
(McCutcheon 1987). For more details on classical LCA we refer to Lazarsfeld 
(1955), McCutcheon (1987), and Andersen (1982), for Bayesian LDA to White 
and Murphy (2014) and Li et al. (2018), and for recent Bayesian nonparametric 
generalizations to Bartolucci et al. (2017), Koo and Kim (2020), Franzolini et al. 
(2023), and Qiu et al. (2023).

In this simulation, we generate data for n = 250 subjects and p = 50 posi-
tively correlated binary outcomes, with pairwise correlations ranging from 
0.0871 to 0.5014. We fit a multivariate Bernoulli DPM, with a J-variate product 
of Beta (0.2, 0.2) as base distribution and a Gamma (1, 1) prior on the concentra-
tion parameter � , perform 20 000 MCMC simulations, and use the first 5 000 as 
burn-in.

Defining, as in the previous section, as sparsely populated clusters those clus-
ters containing 10% or less of observations, we have that in 11 788 out 15 000 of 
the MCMC iterations, 10% or more of the observations are allocated into sparsely 
populated clusters, while in 13 815 out of 15 000 of MCMC iterations, 5% or more 
of the observations are allocated into sparsely populated clusters, see Fig. 7a. The 

Fig. 7  Multivariate Bernoulli simulation study. Percentage of observations in sparsely-populated clusters 
before and after entropy-regularization. Sparsely populated clusters are here defined as clusters contain-
ing 10% or less of observations. The horizontal axis denotes the percentage of observations (out of 1000) 
that are assigned to those clusters. The y-axis represents the number of MCMC samples (out of 15 000)
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same counts after entropy-regularization of the posterior are, with � = 10 , 8 203 
and 10 373 out 15 000 , see Fig. 7b, and, with � = 20 , 1 660 and 2 342 out 15 000 , 
see Fig. 7c. Figure 8 shows the cluster frequencies for the three point-estimates 
obtained with both Binder and VI losses, without and with regularization.

5  Results for the wine dataset

We test the performance of our method also on the wine dataset available on R, 
where data are the results of a chemical analysis of wines grown in the same 
region in Italy but derived from three different cultivars. The analysis determined 
the quantities of 13 constituents found in each of the three types of wines. Here 
we refer to the clustering identified by the three types of wines as “ground truth”.

We use the 13 constituents to estimate a Dirichlet process mixture model with 
a multivariate Gaussian kernel, and we try to recover the three groups of types 
of wine through the estimated clustering. The concentration parameter is set to 
0.1 to further favor a small number of clusters (see Sect. 1 for the results in the 
exact same setting but with a Gamma hyperprior for the concentration param-
eter). Data have been scaled before estimating the clustering configuration. After 
running the MCMC for 20 000 iterations and using the first 5000 as burnin, both 
the Binder loss and the VI functions identify a partition of five clusters, while our 
estimator for � = 50 correctly identifies three clusters. Note that both the point 
estimates obtained with regularizing (with � = 50 ) the Binder loss and the VI 

Fig. 8  Multivariate Bernoulli simulation study. Estimated number of clusters and clusters’ frequencies
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loss are identical in this analysis (contrary to their not regularized estimates). See 
Figs. 9 and 10.

Lastly, Fig. 11 compares the clustering based on three groups of types of wine 
with the three estimates. The number of wrongly allocated wines, which equals 9 
in the Binder loss point estimate and 8 in the VI point estimates, is reduced to 6 
in the entropy regularized point estimate.

Fig. 9  Estimated partitions for the wine dataset. Darker squares denote couples of observations clustered 
together, observations are ordered based on co-clustering

Fig. 10  Estimated number of clusters and clusters’ frequencies for the wine dataset

Fig. 11  Estimated clustering for the wine dataset. Darker squares denote couples of observations clus-
tered together, observations are ordered based on three groups of types of wine
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6  Conclusions

As highlighted in the recent literature, common posterior point estimates of the 
clustering obtained from Bayesian discrete mixture models suffer from unbalanced 
clusters’ frequencies with only a few dominating clusters and a large number of 
sparsely-populated ones. In contrast, we introduced a general entropy-regularization 
of the existing losses that reduces the number of sparsely-populated clusters and 
enhances the interpretability of the Bayesian point estimate. Importantly, our pro-
posal is theoretically justified and does not break the projectivity of the Bayesian 
model. We have further devised a simple and general computational scheme allow-
ing for efficient computation of such entropy-regularized clustering estimate. This 
work paves the way for future intriguing research directions that we plan to address 
in forthcoming works.

From a theoretical perspective, it is interesting to study the connection with a 
wise recent probabilistic clustering model that induces less unbalanced clusters via 
breaking Kolmogorov consistency (Lee et al. 2022). Indeed we note that the entropy 
penalization introduced in this work can be incorporated in the prior instead of 
being applied to the loss function, ultimately constituting a sparsity penalized ran-
dom partition model. However, such a random partition model breaks Kolmogorov 
consistency, contrary to our coherent loss-based approach discussed in Sect. 3. The 
decision to use a Kolmogorov consistent or inconsistent model ultimately depends 
on the specific applied problem. One of the strengths of our loss-based approach lies 
in the fact that, regardless of the choice made in this regard by the analyst, the Kol-
mogorov consistency of the model would not be affected by adopting our technique. 
Nonetheless, this duality of our proposal allows bridging connection with other 
recent interesting non-Kolmogorov consistent random partition models that are built 
by modifying existing EPPFs. See, e.g., Dahl et  al. (2017); Paganin et  al. (2021); 
Zanella et al. (2016).

From modeling and applied perspectives, it is natural to move beyond the 
exchangeable case and extend our regularized loss-based estimator to perform 
probabilistic clustering for dependent random partition models that allow consid-
ering covariates (see e.g., Teh et al. 2006; Müller et al. 2011; Page et al. 2022) or 
time-dependent random partition models such as those proposed, for example, in 
Page et al. (2022); Franzolini et al. (2023). Finally, the general loss-penalization that 
we have introduced and Algorithm 1 seem an appropriate tool for performing joint 
probabilistic clustering of different entities like in separate exchangeable partition 
models that allow performing bi-clustering in matrix data (Lee et al. 2013; Lin et al. 
2021) and nested random partition model that allows us to jointly cluster popula-
tions and observations such as in nested partial exchangeable partition models (Rod-
ríguez et al. 2008; Zuanetti et al. 2018) and recent extensions.
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Appendix: Prior on the concentration parameter

In Sect.  2 we report the partition cost associated with a DPM. It is clear that the 
choice of the concentration parameter � is relevant in controlling the number of clus-
ters. Thus, in order to have a more flexible distribution on the clustering of the data, 
in many implementations of the Dirichlet process mixture a prior for � is specified, 
leading to a mixing measure that is itself a mixture in the sense of Antoniak (1974). 
Ascolani et  al. (2023) also show that introducing such a prior can have a major 
impact on the asymptotic behavior of the number of clusters, as Dirichlet process 
mixtures can be consistent for the number of clusters. In these sections, we show the 
results obtained by repeating the analyses performed in the main paper where we 
use a Gamma prior (Escobar and West 1995) on the concentration parameter of the 
Dirichlet process. More precisely, we change the prior such that

and all the remaining prior specifications and MCMC settings (e.g., also the number 
of iterations) are set equal to the previous one. We show that also in such a case the 
proposed entropy-regularization is still crucial to enhance the interpretability of the 
clustering point estimate.

� ∼ Gamma(1, 1)

Fig. 12  Estimated ( � random) partitions for the wine dataset. Darker squares denote couples of observa-
tions clustered together, observations are ordered based on co-clustering

Fig. 13  Estimated ( � random) number of clusters and clusters’ frequencies for the wine dataset
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Wine dataset

We note that the point estimates obtained with regularizing (with � = 50 ) the Binder 
loss and the VI loss are different in this analysis (contrary to the not regularized 
estimates with fixed concentration parameter). See Figs. 12 and 13 for the estimated 
partitions and related frequencies, respectively. Figure  14 compares the cluster-
ing based on three groups of types of wine with the four estimates. The number of 
wrongly allocated wines is equal to 10 in the Binder loss point estimate and 8 in the 
VI point estimates, while 8 and 10 with their regularized versions. Moreover, the 
number of clusters in the point estimate of the partition is 7 with the Binder loss and 

Fig. 14  Estimated clustering for the wine dataset ( � random). Darker squares denote couples of observa-
tions clustered together, observations are ordered based on three groups of types of wine

Fig. 15  Gaussian simulation study ( � random). Percentage of observations in sparsely-populated clusters 
before and after entropy-regularization. Sparsely populated clusters are here defined as clusters contain-
ing 10% or less of observations

Fig. 16  Gaussian simulation study ( � random). Estimated clustering for the simulation study darker 
squares denote couples of observations clustered together
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5 with the VI loss, while 4 and 3 with their regularized versions (where the ground-
truth is 3).

Gaussian simulation scenario

Recalling that we defined as sparsely populated clusters those clusters containing 
10% or less of observations, we found that 6 040 out 15 000 ) of the MCMC itera-
tions, 10% or more of the observations are allocated into sparsely populated clusters, 
while in 9 908 out of 15 000 of MCMC iterations, 5% or more of the observations 
are allocated into sparsely populated clusters, see Fig. 15a. The same counts after 
entropy-regularization of the posterior are, with � = 10 , 2772 and 5269 out 15 000, 
see Fig. 15b, and, with � = 20 , 417 and 1302 out 15 000, see Fig. 15c. Figure 16 
shows the ground truth and the estimated clusters with and without entropy regu-
larization. The number of observations misclassified (with respect to the simulation 
truth) with the Binder loss point estimate ( � = 0 ) is 80, with the regularization with 
� = 10 is 37 and with � = 20 is 25, showing an improvement also due to regulari-
zation also with this model. Figure 17 shows the cluster frequencies for the three 
point-estimates. Finally, we note that also with � random in this simple univariate 
Gaussian kernel simulation scenario we can obtain the correct number of occupied 
components (i.e., clusters) and thus avoid sparsely populated clusters in the point 
estimate using the more parsimonious VI loss (with the default parameter a = 1 
as implemented in salso) instead of considering the Binder loss (with the default 
parameter a = 1).
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