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Abstract

Architectures are critical to the Information System (IS) domain because they represent funda-
mental structures and interactions of systems. Since analysing architecture similarities is chal-
lenging and time-consuming even in one domain, IS architecture classifications are paramount
to understanding architectural complexity. However, classification approaches used in existing
research commonly rely on manual interventions, and thus architectural classification reliability
is hampered. We propose a novel methodology based on component modelling and applica-
tion of a statistical converging technique, which ensures reliable IS architectural classification
and minimises subjective interventions. We demonstrate the methodology by classifying data
warehouse architectures.

1. Introduction
Information Systems (IS) architectures are important to organising complex systems [4], and
understanding architectures not only assists with systematically organising systems with com-
plicated structures and diversified components [17], IS architectures also support software de-
sign and development [6] and facilitate information-sharing for businesses [37]. Many disparate
types of architectures in IS exist, and they can be interpreted, for example, from software, hard-
ware, or business perspectives. To analyse their characteristics, classifying the architectures is
valuable [11, 36].

Although some studies classify IS architectures such as [26] and [32], related research re-
mains limited with providing reliable architectural classifications. A primary reason for lack of
reliability is manual interventions, and clarity is also lacking regarding the number of architec-
tures and variations required to establish a consistent and reliable classification [20]. Insufficient
information might be used to describe architectures, and disparate architectures can be described
in various ways using third-party or self-defined modelling languages. Such drawbacks further
limit architecture classifications. Therefore, the research question of this paper is how to sys-
tematically classify IS architectures in a reliable way.

This study therefore proposes a systematic architectural classification methodology that al-
lows replications and achieves reliable results. The methodology contains detailed steps required
to classify architectures by analysing modelled architectural components in IS. To achieve re-
liability, we apply a statistical converging technique to classify IS architectures with controlled
manual intervention. We propose to apply this methodology to classify architectures in one do-
main in IS such as smart city architectures or data warehouse architectures, rather than a cross
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domain usage. The methodology is validated and demonstrated by classifying data warehouse
architectures.

The paper is orgnised as follows. The next section reviews existing research on architec-
ture classifications. Section three describes the steps required to use the proposed architecture
classification methodology. The fourth section illustrates how the methodology applies to clas-
sifying data warehouse architectures, and the fifth discusses and evaluates the application. The
last section summarises contributions of this article and suggests directions for future research.

2. Related Work
We analysed research related to IS architectures and its classification, identifying a common
understanding of classification approaches in IS. According to [28, 33], several types of IS
architecture exist, including enterprise architecture (EA), software architecture (SA), and com-
puter architecture (CA). EA relates to the business architecture of an enterprise, and it includes
aspects of information and technical architecture. EA combines business processes, information
systems, and technology to achieve a common goal by focusing on information flows that an
organization requires [15]. It also relates to business operations and execution, analysing an en-
terprise’s design, planning, and implementation for development and execution of strategy from
an enterprise-wide perspective. It navigates an organisation’s business, information, processes,
and technology to execute strategies by using architecture principles and practices [14]. SA
relates to the detailed structure of a software system, using principles to develop and document
its structure. It combines both software elements and their relationships with specifications for
configuration of each element [8]. SA represents a combination of a structured system com-
prised of architectural characteristics, architecture decisions, and principles for design [29]. CA
concerns demonstration of physical components and their interrelationships in a system, which
benefits engineers when designing and developing technical systems [27]. This type of archi-
tecture emphasises the structure of computers, including their hardware components [23]. It
sets regulations to explain computer systems regarding their functionality, organisation, and im-
plementation to describe the abilities and program model of a computer without details of its
implementation [7].

Given the importance of the term architecture in IS and the range of various IS architectures
such as [4] and [36], it is difficult to compare such architectures. Architectures can have sub-
types across domains, making understanding them challenging, and thus solid classification is
required as a fundamental concept of structuring knowledge [34]. To classify the large variety
of IS architectures, we consider the types of architectures and classifications described above,
with selected studies in these domains discussed below. [35] classify enterprise service-oriented
architectures (ESOAs) to design better systems, satisfy business requirements, and reduce en-
terprise IT complexity and cost. They classify ESOAs into six sub-styles based on a domain
model. [2] use exploratory empirical analysis to classify three enterprise architecture scenarios
using the hierarchical clustering algorithm. [17] and [32] propose a system and framework,
respectively, to analyse and classify enterprise architectures based on dimensions, which allow
managers to make decisions easier when choosing EAs. [26] generate a typology to specify
and exemplify responsibilities at each layer of SAs from various perspectives, which offers an
overview of responsibility types and allocations in business information systems software and
enhances a system’s analysability, reusability, and portability. [9] propose a unified taxonomy
of Infrastructure as a Service (IaaS) based on fundamental components to analyse and classify
them into ordered layers, and they apply the taxonomy to design an IaaS architectural frame-
work. [39] create a hybrid algorithm based on a weighted and directed class as a fundamen-
tal entity of clustering, which is primarily for object-oriented software architecture recovery.
Recent methodologies are tailored to contexts or sub-domains to classify architectures. Such
methodologies require significant manual or empirical interventions to generate classifications,
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in which investigators produce disparate classifications. The current study proposes a method-
ology that generates reliable classifications with less human intervention to reduce bias.

3. IS Architecture Classification Methodology
The classification methodology proposed in this paper uses statistical converging during an it-
erative approach to determine saturation results. It ensures classification reliability based on
measuring variations between iterations, consisting of the five phases shown in figure 1. The
first phase gathers information of selected architectures as inputs, and the second models these
architectures using a modelling language. This ensures that all architectures are comparable,
since architectures can be described using various modelling languages. The third phase ex-
tracts components from the modelled architectures, which are used as inputs in the classification
algorithm during the fourth phase. The classification is then evaluated during phase five. The
process continues with phase one until a variation threshold is reached by statistical converging.

Fig. 1. The phases of the architecture classification methodology

3.1. Phase I: Data Collection

The first phase selects architectures and gathers the data required for modelling. Data might
be in various forms, such as text, documents, or architectural models and diagrams, and thus
various methods are used to collect the data. Selection of suitable architectures is essential
because they represent a range of possibilities and the set of selected architectures determines
the scope of final classification. Ideally, data are collected from multiple sources to reduce
classification bias. The architectures can be described using disparate modelling languages to
demonstrate their structures and components, and thus they are presented using various tools
or approaches (e.g., self-defined, process flow, and modelling languages), which complicate the
classification. Data are cleaned and transformed into a standardised form for each architecture,
manual transformation usually achieves higher quality. Although this offers the opportunity of
interpreting architectures, subjective input should be avoided during this stage, which should
only be a transformation process of data into standardised form.

3.2. Phase II: Architecture Modelling

Although, modelling IS architectures is challenging and inherently interpretive, automatic mod-
elling tools support and reduce bias during the process, and they increase the reliability of
results. Automatic modelling is not further discussed in present research, but it provides an
opportunity to boost the modelling process of this methodology in the future. Using a stan-
dard modelling language such as ArchiMate is critical to comparing architectures by describing
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components and relationships. Once a modelling language is selected, it is used to model all ar-
chitectures selected during phase one, a step crucial to providing cleansed data in a standardised
model for the next phase of extracting IS architectural components.

3.3. Phase III: Component Extraction

After modelling the architectures, we converted them into a machine-readable format to con-
duct the classification. The output of this phase is a component matrix, which contains a set of
components. The matrix is generated by adding components extracted from the modelled archi-
tectures. If an architecture has new components, they are added to the matrix, and if an architec-
ture has components that already exist in this matrix, no new components are added. However,
in both situations, the architecture is added to the matrix and related component columns are
labelled if they contain these components. Although the component matrix may not fully repre-
sent an architecture, it offers an applicable method to convert architectures to clustering inputs.
The component level must be considered when generating the matrix, since a component might
include sub-components, and even sub-components might have sub-components. For example,
if two levels of components are used to generate a matrix, only main and sub-components are ex-
tracted from each architecture. This decision is made based on requirements; if the architectures
are insufficient, the extracted level can be set deeper to enrich the component matrix.

3.4. Phase IV: Architecture Classification

This phase represents the key phase of the process that identifies similarities and differences
among architectures by analysing the component matrix. It is designed to retrieve a portion of
data to build an initial classification model that is subsequently refined across iterations. We use
the criterion of no further additions made during the last two consecutive iterations as a threshold
for convergence; if a classification is found (i.e., no changes in comparison to previous results),
an additional iteration is used to test statistical convergence. If a classification does not change
in two consecutive iterations, classification is complete.

Producing an architecture classification required 10 steps, shown in Figure 2. In step 1, the
component matrix provides input into the procedure. In step 2, theoretical expected iterations,
E(x), are set to 6, the number of segments is set to N, the threshold for confirmations (T) is set to
2, which means classification should be stable within two consecutive iterations, and the number
of segments for testing is set to E. The architectures then needed to be distributed randomly into
N segments. During step 4, M segments are chosen to further create an initial classification,
and thus an initial classification is generated in step 5 using unsupervised learning algorithms
(e.g., hierarchical clustering, K-Means, etc.), since the architectures are unlabelled across some
classes. Step 6 assesses whether there exists an unused segment for testing. If there are unused
data, several additional steps are followed, but if no data are left for testing, the process jumps to
step 10 to output the architecture classification and terminate. During steps 7 and 8, the process
loops to test and update the classification using an unused segment at each iteration. During step
9, the updated classification is compared with the previous one, and if the current classification
meets the condition of two continuous confirmations, the process moves to step 10 to output the
classification and terminate the process. If the classification does not meet the condition, the
process returns to step 6.

3.5. Phase V: Classification Evaluation

This phase verifies the quality of results from phase IV, during which an architecture classifica-
tion is generated. Several approaches can be applied to conduct the evaluation. For our method,
we evaluated similarities based on [1], and this intra-cluster similarities should be as high as
possible and inter-cluster similarities should be as low as possible. However, finding thresholds
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Fig. 2. The process flow in Phase IV: Architecture Classification

of similarities is laborious with this method, and it is difficult to verify whether the similarities
are sufficiently high or low. According to [5] and [21], several approaches can be used to eval-
uate clustering, such as purity, entropy, accuracy, normalised mutual information (NMI), and
adjusted rand index (ARI), which require labelled architectures to compare both clustered and
labelled results. Therefore, it is efficient to label part of the architectures instead of all of them
to test the classification.

After phase V, two scenarios are possible. The first is that the flow returns to phase I if the
classification generated does not match requirements. For example, the classification might not
fulfil the criterion of two continuous confirmed tests. More architectures are then collected from
other resources and the phases are re-executed. The second is the entire process terminating
because requirements are met, no test data remained, or no more data were found.

4. Application with Classifying Data Warehouse Architectures
This section discusses validating the classification methodology and demonstrating it based on
Figure 1. Data warehouse architectures (DWHAs) are selected as a case study to validate the
reliability of a generated classification, with selection based on four criteria: (1) The DWHA
domain contains a large variety of architectures proposed to serve disparate contexts, and we
thus have sufficient architectural samples for analysis; (2) Although existing research attempts
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to classify DWHAs using significant manual interventions, it lacks evidence of classification
reliability, and thus it is valuable to classify DWHAs automatically by considering reliability
and convergence; (3) In many applications, DWHA is paramount to building systems, and thus
it is important to understand how they are built from their classification; (4) Since the DWHA
domain has a number of architectures comparable to other domains, such as Big Data and smart
cities, we argue that if this methodology can be validated in the DWHA domain, it can be
generalised to classify other architectures.

4.1. Phase I: Data Warehouse Architecture Collection

To collect DWHAs, a meta-analysis literature review was conducted to search for them. The
literature review was organised into the 5 steps recommended by [30]: (1) identify a problem
by observing phenomena, (2) identify search terms to retrieve related publications from the
literature, (3) search at least two electronic databases using the terms identified in step 2, (4)
screen titles and abstracts to determine eligibility for inclusion, (5) analyse the full text of related
articles. In our case, the topic was determining how to generate a reliable classification. Related
online resources (i.e., Google Scholar, ACM, dblp, IEEE, and Scopus) were searched using the
keywords data warehouse architecture. Publications involving data lake architecture and big
data warehouse architecture were searched as supplementary materials. Although many papers
were identified during the search, many were also inaccessible. Originally, 158 papers were
collected, but after selection and analysis, 116 were used for further analysis. The collected
architectures are not instances an architecture.

4.2. Phase II: Data Warehouse Architecture Modelling

After the DWHAs were collected, they were restated by modelling them from a component
perspective to further conduct the classification. Various modelling languages can be used to
diagram architectures, such as unified modeling language (UML), business process modelling
and notation (BPMN), and ArchiMate [40]. We used ArchiMate to model the DWHAs with the
following reasons: Compared to ArchiMate, UML and BPMN are mostly focused on software
and business processes, On the other hand, ArchiMate is based on concepts from the IEEE 1471
standard [13] and is supported by various tool vendors and consulting firms [22], also it is an
open-source modelling toolkit for all levels of enterprise architects [3], and it can be combined
with TOGAF [16]. Since some of the DWHAs used in this study have already been modelled
using other or self-defined modelling languages, they should be re-modelled using ArchiMate
to unify them. Some DWHAs have been only briefly described and diagrammed, and thus it is
necessary to model their components explicitly. Nonetheless, some DWHAs, which were either
duplicates or whose architectures and components could not be interpreted, were discarded. As
a consequence, 68 DWHAs were modelled using ArchiMate, which were derived from 6 data
sources with a diversity of structures and components.

4.3. Phase III: Data Warehouse Architecture Component Extraction

This phase converted the DWHAs from a graphical to a digital format that represented a machine-
readable pattern. The first step included retrieving a modelled DWHA, extracting components,
and marking the related slot in the matrix if a component already existed in the matrix, or adding
a new column for a new component if it did not exist in the previous DWHAs. For example,
in table 1, the first column contains the ID of the modelled DWHAs. In the first row, the
DHWA contains structured data, and we thus placed a 1 into the related cell of the structured
data. If the column of the structured data was not included while the first DWHA included the
component, we added the component to the table. Before conducting these processes, the com-
ponent level should be predetermined since a component might contain sub-components and
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sub-components might contain sub-sub-components. The component level is determined based
on purposes and requirements, but after it is determined, it should be used to extract components
across all architectures. In our case, the component level was set to 2, which means components
and their sub-components were extracted and added to the matrix. However, if a component
had sub-components and its sub-components had sub-components, these sub-sub-components
at the third level were not considered. Therefore, each row in the matrix stood for a modelled
DWHAs, and if it had several components, related slots were assigned a 1. If a DWHA did
not have components but others did, related slots were assigned a 0. Samples of such modelled
DWHAs appear in Table 1.

Table 1. Samples of data warehouse architectures in the component matrix

DWHA ID Structured Data Unstructured Data E EL ETL ...
1 1 0 0 1 0 ...
2 1 0 0 0 1 ...
3 1 1 0 1 0 ...
4 0 1 0 0 0 ...
5 1 0 1 0 0 ...
... ... ... ... ... ... ...

4.4. Phase IV: Data Warehouse Architecture Classification

This phase automatically classifies architectures into classes based on the component matrix.
Since the number of classes was unknown and there was no label that indicated the classes of
these DWHAs, we thus use unsupervised learning for clustering. Different types of algorithms
can be applied, such as hierarchical clustering, DBSCAN, K-Means clustering, and fuzzy clus-
tering. In our case the algorithm hierarchical clustering was chosen because it allows easy
observation of relationships in the architectures at multiple levels. This clustering also does not
require presetting of the number of clusters or thresholds to classify DWHAs, thus requiring less
manual intervention, and it flexibly presents classification within a hierarchical or taxonomical
structure [31].

Fig. 3. An example to generate the clustering when the number of DWHAs is 60
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The initial component matrix of DWHAs had 47 dimensions. After further analysis, 25
dimensions were selected because eliminated dimensions, such as reporting tools and metadata
systems, were non-essential. The component matrix was pre-processed to 68 DWHAs with 25
dimensions and input into the program shown in figure 2. To adhere to the two continuous
tests and manage each segment easily, the 68 DWHAs were divided randomly into 14 segments;
each segment had 5 DWHAs, except the last, which had 3. For balance, 7 segments were used
to create an initial classification and the remaining 7 were used for testing, which is greater than
6, the expected number of iterations. The ending condition was achieved when classification
had not changed for two continuous tests, or all data were used. To illustrate how to generate a
set of classes, an example is given with 60 DWHAs in figure 3.

Relationships between distances and the number of clusters can be represented as [1, 2, 3,
4, 5, 6, 7] ⇒ [39, 21, 9, 5, 4, 2, 2], in which distance is a parameter that measures dissimilarity,
or deviation, between clusters. For example, if the distance is 1, the number of clusters, or
classes, is 39. To observe the pathway of how the number of clusters changed with distances
(e.g., distance 1, distance 2, etc.), each segment (e.g., 5, 10, 15, etc.) was measured and results
were tabulated, shown in table 2. After the initial input (35) when distances were 3, 4, 5, and
6, the architectures could be divided into at least two continuously confirmed stable clusters,
which generated 9, 5, 2, and 2 clusters when inputs were 50, 60, 45, and 55, respectively. When
distances were 1 and 2, the architectures could not be allocated into stable clusters using two
confirmations. When distances were 8 and 9, the clusters nearly fixed to 1, which did not classify
the architectures and provided less useful information during further analysis. Therefore, the
architectures were classified into 9, 5, or 2 clusters.

Table 2. Clusters with different numbers of DWHAs and distances

Distance 5 10 15 20 25 30 35 40 45 50 55 60 65 68
D 1 5 9 13 15 19 21 26 28 30 32 34 39 39 41
D 2 3 5 8 11 13 14 16 17 19 20 20 21 24 25
D 3 1 2 3 4 5 7 8 9 9 9 9 9 9 9
D 4 1 1 1 2 2 3 3 4 4 5 5 5 5 5
D 5 1 1 1 1 2 2 2 2 2 2 3 4 3 4
D 6 1 1 1 1 1 1 1 1 2 2 2 2 2 2
D 7 1 1 1 1 1 1 1 1 1 1 1 2 2 2
D 8 1 1 1 1 1 1 1 1 1 1 1 1 1 2
D 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4.5. Phase V: Evaluation for the Data Warehouse Architecture Classification

Results from phase IV suggested that the architectures could be clustered into 9, 5, or 2 clusters,
depending on the distances, but how to select better or more appropriate clusters remained un-
known even though they met the two continuous confirmation criterion. During this phase, the
clusters were evaluated to provide clearer results. To analyse the clusters from a trend perspec-
tive, changes were made to clusters regarding distance and different numbers of DWHAs were
used. The x-axis represents the number of DWHA inputs, with increments of 5, and the y-axis
represents the number of resulting clusters generated by the hierarchical clustering algorithm.
Each curve represents a trend of clusters with different data inputs and distances. From top to
bottom, the slopes of the lines are metamorphic, sharp to gentle inclines, which suggests that it
was more difficult to obtain a stable classification with lower distances because more clusters
affected stability more easily than less clusters did.

Based on the analysis above, a top-bottom rule was imposed to discover an appropriate clus-
ter under certain distances. We started with a distance of 1, finding that trend lines for distances
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Fig. 4. The hierarchical clustering for the data warehouse architecture classification

1 and 2 sharply and synchronously increased along with the number of DWHAs, which cannot
achieve a stable status. When the distance assigned was 3, 4, or 5, the trend and number of
clusters in these classifications underwent two stages, from increasing gradually, or fluctuating
finely, to nearly stable. The number of clusters in these classifications was manageable for fur-
ther analysis. If the distance was set to 6, 7, 8, or 9, the trend and number of clusters changed
slightly but would offer limited value during subsequent analyses. Therefore, according to the
continuous confirmation criterion and the top-bottom scheme, a distance of 3 was considered an
appropriate cluster distance, and thus the DWHAs were classified into 9 classes. After inputting
40 DWHAs, the output classification was stable, and thus the 9 classes were largely reliable.

4.6. Classification Results for Data Warehouse Architectures

Results suggested that the DWHAs could be classified automatically into 9 clusters with a dis-
tance of 3. When inputting 40, 45, and 50 DWHAs into the clustering algorithm, the number of
clusters remained unchanged and the two continuous confirmation criterion was met, and thus
the entire process terminated. To further evaluate results, more DWHAs were input into the
algorithm to verify the methodology. The remainder of the 18 DWHAs were used as test data
to assess the clustering result, which comprised 26.47% of all DWHAs and conformed to the
test data size proposed by [10] and [18]. Hierarchical clustering with all DWHAs are shown in
figure 4. Since the architectures were split randomly into 14 segments, results generated at each
step might be slightly different were the process repeated.

To investigate the characteristics of the DWHAs, they were identified by their components.
From observing the DWHAs in each cluster, some had a type of DWHA while others had
mixed types due to inadequate information about some DWHAs, and some dimensions (e.g.,
data stage and operational data store) might have affected clustering. Subsequently, 9 typical
DWHAs were identified and generalised, including hub-and-spoke, data mart bus, centralised,
independent, federated, virtual, distributed, big, and data lake DWHA architectures, which are
explained by [38]. To evaluate results generated by the classification methodology, we con-
ducted a focus group, inviting 5 DWHA experts to review the 9 DWHAs in the 9 clusters. All of
the experts reported positive feedback and confirmed that the clusters are useful to identifying
typical DWHAs and investigating common components in a cluster. Therefore, the methodol-
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ogy could be extended to classify other IS architectures (e.g., enterprise architectures) if they
can be modelled. It can also be used to verify distances or similarities of architectures across
different numbers of clusters.

5. Discussions
In this paper we define the terminology of IS architecture in a broader scope. IS architectures
cover all the architectures that are related to technology, process and people. Thus we consider
architecture of data warehouse is a specific domain of IS architecture. Differing the scope of EA
and IS architecture is out of scope of this paper. We consider IS architecture as a general scope
that the proposed methodology can be applied in.

The proposed methodology brings three main contributions to the existing literature: (1) The
methodology allows us to increase the reliability of resulting classifications; (2) We are able
to indicate the number of architectures required and the degree of variation among them; (3)
Iterative evaluation, using statistical convergence, allows us to increase classification reliability.

Three guidelines were derived from this study’s results. First, we recommend modelling
architectures using ArchiMate because it has been used widely for that purpose [3], which ac-
commodate ArchiMate models and output classifications. Second, the hierarchical clustering
algorithm is recommended to derive architectural outputs. Third, a small number of architecture
inputs might not result in a converging trend. Therefore, the proposed converging methodology
performs better in domains with a large number of architectures, such as Big Data or smart city
architectures. Research results should be evaluated under their respective applications based on
requirements [24]. There exist many methods regarding evaluation of artefacts, each offering
its own advantages and disadvantages [12, 19, 24]. In the current study, a combined evaluation
method was applied to validate the proposed methodology, in which qualitative and quantita-
tive research methods (e.g., case study, interviews, and focus group) were used to evaluate the
methodology. Based on recommendations from [25], validity was chosen as the primary dimen-
sion measured during evaluation, which can be assessed by measuring an artefact’s reliability.

6. Conclusion
This paper proposes a methodology to derive reliable classifications automatically for IS archi-
tectures, such as enterprise or software architectures. The classification methodology uses five
phases, which are data collection, architecture modelling, component extraction, architecture
classification, and evaluation. Given the importance of the architecture classification phase, a
step-by-step process is described to guide using the proposed methodology. To validate the
methodology, an experiment is conducted to produce a reliable classification for data warehouse
architectures, which suggests that the methodology is effective at digitising architectures from
models to machine-readable patterns and automatic classification, assuring high reliability. The
methodology provides an iterative approach to detecting the number of architectures required to
generate a reliable classification that can used to cater the classification of new architecture. As
future works, we plan to evaluate the methodology in a broader enterprise architecture context.
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