
31ST INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2023 LISBON, PORTUGAL)

Ontology-based dialogue system for domain-specific knowledge
acquisition

Vasile Ionut Iga
Business Informatics Research Center Babes-Bolyai University
Cluj-Napoca, Romania vasile.iga@stud.ubbcluj.ro

Gheorghe Cosmin Silaghi
Business Informatics Research Center Babes-Bolyai University
Cluj-Napoca, Romania gheorghe.silaghi@ubbcluj.ro

Abstract

Building task-oriented dialogue systems for solving specific tasks within companies represents
a challenging research objective especially when the specific expertise of the company is not
yet machine-readable formalized. Aiming to collect the specific knowledge in a company-scope
knowledge graph, we design the architecture of a dialog system integrating the natural language
processing modules with the specific concepts described in the domain ontology and the com-
pany’s graph of instances. The described system helps growing the knowledge graph with the
specific company data, while also providing the NLP building blocks for a future dialog system
specifically tuned for the requirements of the target company processes.
Keywords: task-oriented dialogue system, ontology, knowledge acquisition, knowledge graphs

1. Introduction
Nowadays we face an unprecedented growth of chatbots and task-oriented dialogue systems
(TOD), all culminating with the tremendously popular ChatGPT1, as the latest expression of
the Artificial Intelligence advances. Chatbots are designed to pursue unstructured conversations
on general topics, like human chats [8], being learned on massive open datasets from multiple
domains. TOD systems are built to help users solve specific tasks of their interest [6, 9].

While companies from various domains seek to use automated systems for solving repetitive
tasks or for helping their employees to better achieve their duties and many of them are reluctant
to submit internal expertise to external general chatbots like ChatGPT, there is a high need for
TOD systems built on the specific knowledge and expertise of those companies. Before becom-
ing productive within the company, those TOD systems need to ingest the specific knowledge
regarding the target tasks.

Semantic Web technologies help organizations to structure their knowledge in a machine-
readable format for future usage. Knowledge graphs (KG) became popular as a mean of storing
both the conceptual and individual data, delivering advanced reasoning capabilities, in compar-
ison with classical relational databases. Thus, we identify a need for a TOD system to be able
to capture the specific expertise in a global KG at the organizational level. Such a KG could
be further aligned with open KGs like Dbpedia2, unlocking the potential of general and specific
expertise for building effective TOD systems for organization-specific tasks.

The typical architecture of a dialogue system consists of four modules [8, 16]: Natural Lan-
guage Understanding (NLU), Dialogue State Tracking (DST), Dialog Policy (POL) and Natural
Language Generation (NLG), each of them being responsible for some parts of the processing
pipeline. Implementing them could be done in a classical way, with frames and rules or in a

1https://openai.com/blog/chatgpt
2https://www.dbpedia.org/

https://openai.com/blog/chatgpt
https://www.dbpedia.org/


IGA & SILAGHI ONTOLOGY-BASED DIALOGUE SYSTEM . . .

modern fashion, where components of the processing pipeline leverage deep learning models.
Recent approaches [1, 13, 15] abandon the pipeline processing approach and propose end-to-
end systems, where the response is generated by integrated DL models, properly trained. DL
models training could happen from scratch, or could leverage pretrained language models [17]
like BERT [7] or GPT3 [3]. Regardless of the selected architecture, if DL models are employed,
they should be trained or at least fine-tuned on annotated data. If the TOD system is supposed to
help users in fulfilling domain-specific tasks, a way to incorporate domain-specific knowledge
into the models should exist. This could be done either by preparing big annotated datasets, or
by leveraging already existing knowledge repositories.

Having in mind the final goal of building a TOD system for solving specific tasks within
a business organization, in our paper we describe the architecture of a system that, in the end,
will accomplish the needs of the company. Our system fulfills two main objectives: (i) to help
the company create its global KG with the specific knowledge within the company and (ii) to
provide annotated data for future training of deep learning models needed for the production of
an effective TOD system. Furthermore, we design the skeleton of the future TOD system and,
from the scientific point of view, we leverage the reasoning capabilities of knowledge graphs for
enhancing the effectiveness and naturalness of the TOD system.

Our system is built in a classical manner, following the pipeline architecture with four mod-
ules. Rather than employing deep learning models as we are missing company-specific anno-
tated datasets, we use the rule-based approach with templates for providing user support with
the essential Create-Retrieve-Update-Delete (CRUD) procedures for knowledge management.
We integrate an existing knowledge base with the selected classical pipeline architecture of the
system. At a higher level, when the knowledge base will include sufficient domain-specific in-
formation, we will leverage the constructed datasets for fine-tuning particular NLP models to
enhance the performance of the TOD system.

The paper evolves as following. In section 2 we describe related work for building TOD
systems with the help of ontologies. Section 3 describes the architecture of our system. Section 4
discusses the pro and cons of our architecture and presents some incipient results. Section 5
concludes the paper.

2. Related Work
The literature models a conversation as successive turns, each turn being a pair of speech acts
emitted by the human user and the dialogue system. In our approach we restrict the speech acts
only to textual ones. Responding to the user speech acts, the system should be able to detect the
start and the end of a conversation. As we intend to make the conversation look as natural as
possible, we permit each conversation to have multiple discussion threads, on multiple topics.
The general objective of a dialogue system is to generate a response for each user entry. Its
specific objective is to help users in accomplishing some requested business procedures.

Similar to us, Nazir et al. [10] build a chatbot for constructing a knowledge base regarding
the fashion industry. Using tools like Protege for ontology engineering, SPARQL for querying
and Jena for reasoning, they build much more of a query-answering system only able to respond
user information retrieval queries. Tuan et al. [14] integrate KB reasoning in a dialogue system,
such that, based on the dialogue history, to extend the response given by a transformer model
with the help of semantic reasoning. Rather than using the KB inside the dialogue system, they
produce the specialized response with the help of the KB. This represents one of the reference
results for our approach. Yang et al. [18] use a knowledge graph within the architecture of an
end-to-end TOD system. They encode in a KG the information transmitted by the user during
the conversation and use this knowledge to generate the response with the help of a GRU DL
model. A somehow similar idea is presented by Caudhuri et al.[5] as their objective is to learn
the semantic relations required to respond to the user utterances and for that they build a local



ISD2023 LISBON, PORTUGAL

conversation graph. They work with BERT-encoded tokens and the KG is used to generate the
system response. Andreas et al. [1] assign a local graph of actions to each utterance produced
by the user and solve this local graph similar to a classical expression evaluation in order to
decide about the action the system needs to take. To learn the DL model, they use a dataset with
conversations and associated graphs for each utterances in the conversation. Their graphs look
rather like parsing trees than knowledge graphs, and the specific knowledge is implicitly learned
with the help of the DL from the input dataset. Bordes et al. [2] develop a rule-based system
to construct datasets for learning end-to-end models for TOD systems. Their knowledge base
is given and could be interrogated using a specific API. As opposed to us, they do not intend to
grow the KB, but rather only to generate relevant dialogues for training various DL models.

Research investigated above mainly use the KGs to enrich the natural language response of
the system with previously existing information. Departing from them, we employ the KG to
map the context of the dialogue, somehow similar with [1], which map the conversation into a
graph that is converted into a program, therefore, not a standard KG. Our pipeline architecture
presented in section 3 is complemented by both the local conversation-scope KG and the global
organization-scope KG, where we persist validated information acquired from the users. There-
fore, we aim to prepare the architecture for our future TOD system, to grow the organizational
KB and to acquire the requested datasets for DL models training.

3. System architecture
In this section we describe the architecture of our system. The system is written in Python 3.9.
The ontology is described in RDF with the help of the Turtle notation. The local KG maintained
during each conversation and the global KG are managed with the RDFLib3 library. The global
KG is persisted in an external file at the end of each running experience. The queries towards
the local and the global KG are written in SPARQL. We plan to migrate the global KG to a KG
server like GraphDB.

3.1. Overview

Without losing the generality, the purpose of the system is to collect information regarding
specific instances described with the help of a general domain ontology. The ontology contains
concepts and relationships. Each concept is defined by basic properties which could not be
expanded anymore or by complex properties which are other concepts. Figure 1 presents a
simple domain ontology used through this section to help the understanding of our system.

Fig. 1. Domain ontology example

Each relationship in the ontology could be compulsory or not. The system needs to collect
all compulsory properties of an instance to consider it well-described. In the domain ontology

3https://rdflib.readthedocs.io

https://rdflib.readthedocs.io


IGA & SILAGHI ONTOLOGY-BASED DIALOGUE SYSTEM . . .

example of fig. 1, the Project concept has 5 relationships, two of them being complex ones
(hasStatus and hasManager) and one of them (hasManager) not being compulsory.

From a fresh startup, running the system multiple times results in creating a persistent
knowledge graph (KG) containing instances belonging to the input ontology. For the actual
iteration described in this paper, the system implements the following procedures: create (or in-
sert), retrieve (or select), update and delete, well-known under the acronym CRUD. The system
interacts with two such knowledge graphs: a general one, which initially provides the domain
ontology and a local graph which is grown from zero during each conversation (i.e. system run).
The system moves items from the local graph to the general one each time when it identifies the
success of a given procedure. Fig. 2 describes the state of the system at the start of a conversa-
tion. The local graph maps the context of the conversation, holding all important aspects of it.
It has an additional role of an intermediary layer between the user and the general KB, as the
TOD system validates the data before persisting it in the general KB.

Fig. 2. The state of the system at the start of a conversation

The user starts a conversation with the system. Each conversation is divided in a number of
turns, each turn consisting of a pair of user utterance vs. system response. Based on the general
KB, the system directs the conversation towards achieving one of the procedures enumerated
above. The conversation ends either successfully or by any interruption. During the conversa-
tion, each validated procedure is persisted from the local graph to the general KB. Fig. 3 depicts
a user-system conversation.

Fig. 3. The conversation flow

Fig. 4 depicts the pipeline architecture of the system, and the main processings done within
each module.



ISD2023 LISBON, PORTUGAL

Fig. 4. The pipeline architecture of the system

3.2. The Natural Language Understanding (NLU) module

NLU module performs the steps described below:

1. detection of the user intent. The following 12 user intents are implemented: hello, good-
bye, thank, insert, select, delete, update, agree, disagree, remove, cancel, switchEntity
and default. Some are mapped with the CRUD procedures mentioned above (insert, se-
lect, delete, update), others help the system starting / ending a conversation (hello, good-
bye), confirming or not a given response (agree, disagree), removing unwanted parameters
supplied in the active procedure (remove) or signaling the success or abandon of a given
procedure (thank, cancel). The default intent is used if neither of the above-mentioned
intents is discovered in the user utterance. Special attention is given to the switchEntity
intent which allows to system to navigate through multiple discussion threads. We will
discuss this feature in a distinct paragraph, as it represents one essential feature of our
system. The 12 user intents were chosen based on two goals: (i) to maintain the natural
flow of a conversation and (ii) to enable the CRUD operations on the KB. Therefore, hello,
goodbye, and thank fulfill the first objective, by giving the system the capacity to naturally
engage in a dialogue. Next, insert, select, update, and delete map the four available pro-
cedures on the KB, the standard CRUD operations. Agree, disagree, remove, cancel, and
switchEntity provide continuity of execution for the discussed procedure. They enable ba-
sic actions for the user, in order to drive the conversation’s flow in the desired direction. A
user can agree or disagree with the system’s behavior, may remove information from the
dialogue state, such as filters or values to be inserted, can cancel the ongoing process if
something is considered wrong, or might switch the thread of discussion, if other threads
are available.

2. retrieve information from ontology. The system queries the general KB with respect to
the identified intent and returns either existing information about the items in the general
KB or schema information from the domain ontology. Specifically, if the detected intent
is insert, the query over the KB returns the parameters of the specified entity, mapped as
properties, their range and their minimum cardinality (which determines if a parameter is
mandatory or optional).

3. slot filling: based on the parameters returned in the previous step, the system detects the
slot values from the user utterance.



IGA & SILAGHI ONTOLOGY-BASED DIALOGUE SYSTEM . . .

4. insert acquired information in the local KB. The system updates the local graph with the
acquired knowledge, under the following form:

User :detected_intent [anonymous node].

The [] node inserts the current turn together with all its slots and their specific values.
If the user selected to start a novel procedure, the system generates the unique ID of this

procedure and inserts the corresponding affected instance in the local graph. Thus, if noticing
that the requested intent affects a novel instance and not the currently processed one, the system
saves the active instance in a LIFO list and moves the discussion to a novel thread for managing
this novel procedure request.

If the user agrees with the action proposed by the system (which could be to insert, remove,
or update some instances in the general KG), together with updating the general KG within the
POL module, the system will propose the user to continue one of the already started procedures,
which are saved in the LIFO list. If the user agrees, the NLU will detect the switchEntity intent
which will be processed as described in subsection 3.6.

In this way, with the help of the information stored in the local KG and the LIFO list we
succeeded to manage multiple discussion threads, as opposed to the standard approach in the
literature that usually assumes that each conversation is just a single discussion thread.

3.3. The Dialogue State Tracking (DST) module

DST module only manages the state of the instance being discussed, as opposed to the standard
behavior of a DST in the literature [8, 16], where it usually stores the state of the whole system.
DST becomes relevant only if an insert procedure is on-going, as it retrieves from the local
KG the structure of the instance with the active ID. In our architecture the local graph helps
managing the state of the dialog, by storing and managing many threads of discussion in a single
conversation, as opposed to the standard approach of pipeline-based TOD systems, where DST
is managing only one discussion thread.

3.4. The Policy management (POL) module

POL module decides how the system reacts to the user intent. Here we implemented the majority
of the data processing including:

• query the local and general KGs in order to retrieve important necessary information from
the dialogue context

• manipulate both graphs if needed. The system might insert, update, delete information
from the local or general KGs

• decides about the response action of the system and inserts this information into the local
graph, under the form of

:System :action [anonymous node].

In the [] node, the current turn is inserted, together with all collected information about the
parameters.

System actions could be one of the following: hello, goodbye, welcome, wrongFormatSe-
lect, wrongSelect, showSelect, confirmDelete, wrongDelete, dependencyDelete, confirmUpdate,
wrongUpdate, dependencyUpdate, showUpdate, confirm, wrongLiteralDataFormat, cancelPro-
cedure, askStep, reject, chooseReject, removeParams, requireParams, confirmParams, preEx-
istingEntityCancel, chooseEntity, wrongEntity, switchEntity, default. They were designed to
properly respond to all 12 possible user detected intents.



ISD2023 LISBON, PORTUGAL

3.5. The Natural Language Generation (NLG) module

NLG module transforms the selected action into natural language. It has pre-built templates for
all the above-mentioned actions. In each template, the system can dynamically insert generated
information by replacing placeholders from utterances’ templates.

Within the NLG module, the utterances of the turn are saved in a local file, together with
the corresponding labeling requested in the specific datasets for various NLP tasks of interest in
training TOD modules like NER, Intent detection and slot filling, DST, POL and NLG.

The processing steps mentioned in fig. 4 and described below take place at every turn, for
producing the system response. Every time that a procedure is validated as being finished, within
the POL module the system persists the novel acquired information in the global KB. Therefore
the global KB grows, incorporating acquired knowledge from the specific target organization.

3.6. Dealing with multiple discussion threads

The domain ontology is a recursive structure, each concept might be in a relationship with other
complex concepts. Thus, to be able to insert or update a given instance, the user needs to
transmit specific information also about the other instances being in relationships. Therefore,
the system should permit the user that, in the middle of a conversation for solving a procedure
related to a given instance, to stop and move along the conceptual graph and starts a novel
procedure regarding another instance in relationship with the first one. To solve this request,
a new discussion thread is instantiated and a novel node is inserted in the local KG as part of
step 4 of NLU. The ID of the active instance is inserted in a LIFO-style list and this new node
becomes the one active. In future turns, when the system ends the procedure started regarding
the new active node, it discards it in the general KG and it proposes the user to resume one of
the procedures found on the LIFO list. The user could select any of the procedures in that list
and the selected procedure, together with its instance ID becomes active. If such a selection is
done by the user, the system will detect within NLU the special intent called switchEntity and
continue processing one of the procedures started before the one that is currently finishing.

4. Discussion
In this section, with a running example, we discuss and argue the rationale for our design deci-
sions. To better understand the functioning of the modules presented in section 3, an example
conversation is depicted in table 1.

At the very beginning the user says "insert a project...", the project concept will be discov-
ered on the general KG and the system will perform the steps provided in the NLU module.
Specifically it will perform the following steps: (i) determine the insert intent, (ii) obtain the
specific parameters of the discovered concept from the ontology, (iii) detect the slot values (the
parameters) from the utterance and (iv) generate a node in the local KG with an ID for this
project instance. This indicates that the system starts an insert procedure on the current thread
and next, it will decide about a proper action to continue the conversation towards collecting all
the requested information for the project.

If the user refers an unknown entity (which does not exist from the perspective of the general
KG) the system defaults. We notice that in the same utterance, the user mentions values for some
parameters. The parameters are identified within the NLU module by keyword detection within
the slot filling: (here code: 123, class: Python, name: TaskHelper, status: unfinished, manager:
John). NLU succeeds to identify the parameters as there is an active procedure running, with an
active instance ID. If there was no active instance ID, the system would default.

At turn 3, the user changes her mind and decided to remove a parameter by mentioning
its value (here, remove John). The system supports two types of removal: by the name of a



IGA & SILAGHI ONTOLOGY-BASED DIALOGUE SYSTEM . . .

Table 1. Conversation example with multiple discussion threads

Thread Turn User utterance Intent System utterance Action
1 1 Hello hello Hello hello

1 2

Insert a project where
code is 123, class is
Python, project name
is TaskHelper, status is
unfinished and manager is
John

insert

The project will be inserted with the following
parameters: code: 123, class: Python, name:
TaskHelper, status: unfinished, manager: John.
Is is correct?

confirmParams

1 3
Actually, I don’t know yet
if John could do it, please
remove John

remove The following parameters were removed: man-
ager removeParams

2 4 Please insert a new one insert
I cannot insert the project unless you give me the
necessary parameters: class, code, status, name;
there are optional parameters too: manager

requireParams

2 5

code is 123, class
is Python, name is
TaskHelper, status is
unfinished and manager is
Marc

insert

The project will be inserted with the follow-
ing parameters: code: 123, class: Python,
name: TaskHelper, status: unfinished, manager
is Marc. Is it correct?

confirmParams

2 6 yes agree

You want to put a new project, but some param-
eters (manager) require pre-existing instances in
the graph. Please insert the corresponding in-
stances (Employee) and then proceed with the
project

reject

3 7 then insert an employee
with the name Marc insert The employee will be inserted with the follow-

ing parameters: name: Marc. Is it correct? confirmParams

3 8 yes agree

I did insert the employee. I switched to the en-
tity Project20230428121923835. The parame-
ters for it are: code: 123, class: Python, name:
TaskHelper, status: unfinished. If you want,
you can switch to another entity from the list:
Project2023028121914048

confirm

1 9 switch to
Project2023028121914048 switchEntity

The swithc to Project2023028121914048 was
done successfully. The parameters for it
are: code: 123, class: python, name:
TaskHelper, status: unfinished. If you want,
you could switch to another entity from the list:
Project20230428121923835

SwitchEntity

1 10

Insert a project with code
123, class is Python, name
is TaskHelper, status is un-
finished, and manager is
John

insert

The project will be inserted with the following
parameters: code: 123, class: Python, name:
TaskHelper, status: unfinished, manager: John.
Is it correct?

confirmParams

1 11 Manager is Marc insert

The project will be inserted with the follow-
ing parameters: code: 123, class: Python,
name: TaskHelper, status: unfinished, manager:
Marc. Is it correct?

confirmParams

1 12 true agree

It seems that some values you requested have
matching entities in my knowledge base: :has-
Manager: { ID:Employee20230428122003618;
hasName:Marc;}; hasStatus:{ID:Status2; has-
Name: unfinished;};

reject

1 13
manager is Em-
ployee20230428122003618
and status is Status2

insert

I need you to confirm that you want to
insert a project with the following param-
eters: code: 123, class: Python, name:
TaskHelper, status: Status2, manager: Em-
ployee20230428122003618

confirmParams

1 14 yes agree

the project was inserted succesfully. The switch
to Project20230428121923835 was done suc-
cessfully. The parameters for it are: code: 123,
class: Python, name: TaskHelper, status: unfin-
ished

confirm

2 15 cancel it cancel The ongoing procedure was stopped cancelProcedure
2 16 thanks thanks for nothing welcome
2 17 bye goodbye have a nice day! reject



ISD2023 LISBON, PORTUGAL

parameter or by its value. If the user mentions a wrong name or value, the system defaults.
At turn 4, the user decides to initiate a new procedure by saying “Please insert a new one”.

The system does its routine check and discovers that no new known concept was mentioned,
which triggers the creation of a procedure with the old mentioned type (which is stored locally).
The active ID is placed in the LIFO list and a new instance ID is generated and set as active,
which starts the second thread. The old procedure is stored at the top of the LIFO list.

In turns 5-6, the conversation continues towards solving the active procedure (inserting a
project instance). At turn 6, the system warns the user that she referred to an Employee instance
which does not exist in the graph (she wanted to assign Marc as the manager, but there is no
Marc in the graph). Therefore, the user needs to insert an employee called Marc, and only after
then proceed with the project insertion.

In turn 7, the user complies with the system request and initiates a third procedure. Even-
tually, the third thread is created, where the system will place the current active ID in the pre-
decessor list and generate a new procedure according to the new type given by the user (here,
Employee). As the user supplied all the mandatory parameters (here, only the name), the system
directly asks for confirmation of insertion.

In turn 8 the user confirms the correctness of the Employee instance and the system success-
fully inserts it in the general KB, which also ends the third thread. In the same time, it checks
for instances in the predecessor list. If there is any, the system pops the last one inserted (LIFO
approach) and gets the stored state of it from the local graph, in order to show it to the user.
This switches the conversation to the second thread. Also, it prompts that the user can switch to
another active instance, if there is any.

In turn 9, the user decides to make the switch to the first inserted instance (first thread). The
system places the current active ID back in the predecessor list and sets the mentioned ID as
active. It similarly loads its state as in turn 8.

After a few turns where the current instance is discussed, in turn 12 the system prompts
the user that it found instances matching her filters in the general KG and it requests her to
choose the correct IDs for each parameter. When a parameter needs to be linked to a pre-
existing instance in the general KG, the system always checks its existence in two ways: by
ID or by parameter value. By ID means that the user specifies an ID for the parameter and
the system can directly verify its existence. Since this is not an often case, it allows checking
that some instances already exists in the graph by searching for parameters’ values. To do so,
the system gets the mentioned value (here, Marc and unfinished) and checks each parameter of
every instance of the appropriate type. If values are found, they are prompt to the user.

Turns 13-14 construct the final form of the project instance. After successfully inserting the
instance in the general KG, the system switches to the last active instance from the predecessor
list. This sets the second thread active again. In turn 15, the user cancels it, which triggers the
removal of all associated information from the local graph. If there are no instances remaining
in the predecessor list, the system does not show the switch option.

Turn 15-17 conclude the conversation. The system successfully managed three active threads,
with two insertions and a canceled procedure.

We emphasize the usage of the LIFO-like list when processing the utterances of the user in
turns 4 and 7, which determine the system to create novel discussion threads. In the response
of turn 8, together with confirming the insertion of the employee in the general KG, the system
proposes the user to continue with the previously procedure on a previously active instance.
This represents a natural way to move along the discussion threads, without imposing the user
some pre-established processing order.

The ontology is a blueprint to bootstrap the knowledge of the system. It has several concepts
and relationships, while cardinality defines their compulsoriness. A larger ontology may fit the
system if it respects its current rules; each relationship that emulates a parameter needs to follow



IGA & SILAGHI ONTOLOGY-BASED DIALOGUE SYSTEM . . .

the template ‘hasAttribute’ for its name. Future work will improve the compatibility with larger
ontologies, but only after we succeed integrating a DL component into the NLU module, to
replace rule-based intent detection with neural network models. This leads to the possibility of
removing built-in rules for both the ontology and the system, to increase compatibility. Also, we
plan on migrating to a KG server like GraphDB4, to enable advanced and scalable reasoning.

The current version of the system does not allow concept learning (i.e. to store novel con-
cepts in the global KG, rather than instances), but ideas were drawn in this direction, as KGs
provide plenty of opportunities. One idea is to integrate a module that enables the user to de-
scribe a desired concept that is to be added to the ontology. In this way, the system can naturally
grow its knowledge through direct conversations with a user. One drawback is raised by the
architecture of the ontology. If it is too complex, the user might not understand what to do,
leading to more fined-tuned rules for the system to deal with such situations. Another idea is to
introduce Reinforcement Learning models in the system’s architecture. Far more powerful than
simple rules, such models can learn paths and behaviors that were not thought of by the sys-
tem’s architect. The disadvantage is the lack of training data and the complexity of the learning
process of such models.

One of the main advantages of our system is that we can generate annotated datasets for
training various NLP tasks which are related to TOD systems. For example, within the NLU
module, we annotate data for NER (Named Entity Recognition) task by labeling each relevant
detected slot with an entity type in the IOB2[11] format. For intent and slots detection tasks, we
label each phrase with the detected intent and assign a key-value pair for each detected slot.

Furthermore, we can leverage the likes of MultiWOZ[4] or Schema [12] datasets, where
each conversation is labeled for all four modules (NLU, DST, POL, NLG). In fact, this is our
future goal: to train different Deep Learning modules using datasets generated with the current
version of the system and then integrate them with it. This enables the generation of more
natural dialogues, which leads to more robust DL models.

5. Conclusion
In this paper we present the architecture of a task-oriented dialog system built with two specific
purposes: to grow the knowledge base of a target company and to prepare future datasets with
annotated conversations regarding the business procedures taking place within the company.
Solving the above-mentioned objectives will allow us to advance towards the future purpose of
our TOD system. This is to help the employees within the company to accomplish their business
tasks, by leveraging expert knowledge existing within the company.

The architecture of our system is a classical one, composed of the four modules recom-
mended by the literature: Natural Language Understanding (NLU), Dialogue State Tracking
(DST), Policy management (POL) and Natural Language Generation (NLG). We use the stan-
dard approach with rules and conversation frames for understanding the user utterances and
producing the system response.

We cover the Create-Retrieve-Update-Delete (CRUD) procedures for acquiring and main-
taining relevant knowledge from the human user. The knowledge is persisted in a global knowl-
edge graph. As an architectural novelty, during the conversation we grow a local knowledge
graph where we acquire the knowledge temporarily learned from the user’s utterances, rather
than globally managing the conversation state within the DST module. Furthermore, it per-
mits the system to tackle multiple procedures inside just one conversation by managing multiple
discussion threads, as opposed to the majority of TOD systems in the literature, where each
conversation deals with a single thread or business procedure. With a running example, we
demonstrate the functioning of the system.

4https://graphdb.ontotext.com/

https://graphdb.ontotext.com/


ISD2023 LISBON, PORTUGAL

Future work will consists of empowering the system with a complex ontology suited for
some specific business processes within the organization. Based on the acquired dataset, we
will be capable of constructing advanced deep learning models for solving the NLP tasks which
are part of the four modules of the system. With them, our system will gain more flexibility and
naturalness, becoming a business assistant within the company.

Acknowledgement
The present work received financial support through the project: Integrated system for automat-
ing business processes using artificial intelligence, POC/163/1/3/121075 - a Project Co-financed
by the European Regional Development Fund (ERDF) through the Competitiveness Operational
Programme 2014-2020.

V.I. Iga thanks Babes-Bolyai University for granting him the special scholarship for scien-
tific activity during the academic year 2022-2023.

References
1. J. Andreas, J. Bufe, D. Burkett, C. Chen, J. Clausman, J. Crawford, K. Crim, J. De-

Loach, L. Dorner, J. Eisner, H. Fang, A. Guo, D. Hall, K. Hayes, K. Hill, D. Ho,
W. Iwaszuk, S. Jha, D. Klein, J. Krishnamurthy, T. Lanman, P. Liang, C. H. Lin, I. Lints-
bakh, A. McGovern, A. Nisnevich, A. Pauls, D. Petters, B. Read, D. Roth, S. Roy,
J. Rusak, B. Short, D. Slomin, B. Snyder, S. Striplin, Y. Su, Z. Tellman, S. Thomson,
A. Vorobev, I. Witoszko, J. A. Wolfe, A. Wray, Y. Zhang, and A. Zotov. Task-oriented
dialogue as dataflow synthesis. Trans. Assoc. Comput. Linguistics, 8:556–571, 2020.

2. A. Bordes, Y. Boureau, and J. Weston. Learning end-to-end goal-oriented dialog. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
2017. OpenReview.net, 2017.

3. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learners, 2020.

4. P. Budzianowski, T. Wen, B. Tseng, I. Casanueva, S. Ultes, O. Ramadan, and M. Gasic.
Multiwoz - A large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue
modelling. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, editors, Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, 2018, pages 5016–5026. Association for Computational Linguistics,
2018.

5. D. Chaudhuri, M. R. A. H. Rony, and J. Lehmann. Grounding dialogue systems
via knowledge graph aware decoding with pre-trained transformers. In R. Verborgh,
K. Hose, H. Paulheim, P. Champin, M. Maleshkova, Ó. Corcho, P. Ristoski, and
M. Alam, editors, The Semantic Web - 18th International Conference, ESWC 2021, Vir-
tual Event, 2021, Proceedings, volume 12731 of Lecture Notes in Computer Science,
pages 323–339. Springer, 2021.

6. H. Chen, X. Liu, D. Yin, and J. Tang. A survey on dialogue systems: Recent advances
and new frontiers. ACM SIGKDD Explorations Newsletter, 19(2):25–35, 2017.

7. J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio,
editors, Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, 2019, Volume 1 (Long and Short Papers), pages 4171–



IGA & SILAGHI ONTOLOGY-BASED DIALOGUE SYSTEM . . .

4186. Association for Computational Linguistics, 2019.
8. D. Jurafsky and J. Martin. Speech and Language Processing: an Introduction, 2nd ed.,

15th imp. Pearson, 2022.
9. Z. Li, H. Wang, A. Albalak, Y. Yang, J. Qian, S. Li, and X. Yan. Making something

out of nothing: Building robust task-oriented dialogue systems from scratch. In Alexa
Prize TaskBot Challenge Proceedings, 2022.

10. A. Nazir, M. Y. Khan, T. Ahmed, S. I. Jami, and S. Wasi. A novel approach for ontology-
driven information retrieving chatbot for fashion brands. International Journal of Ad-
vanced Computer Science and Applications, 10(9), 2019.

11. L. A. Ramshaw and M. Marcus. Text chunking using transformation-based learn-
ing. In D. Yarowsky and K. Church, editors, Third Workshop on Very Large Corpora,
VLC@ACL 1995, Cambridge, Massachusetts, USA, 1995, 1995.

12. A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan. Towards scalable multi-
domain conversational agents: The schema-guided dialogue dataset. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA,
2020, pages 8689–8696. AAAI Press, 2020.

13. Y. Su, L. Shu, E. Mansimov, A. Gupta, D. Cai, Y. Lai, and Y. Zhang. Multi-task pre-
training for plug-and-play task-oriented dialogue system. In S. Muresan, P. Nakov, and
A. Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 4661–4676. Association for Computational Linguistics, 2022.

14. Y. Tuan, S. Beygi, M. Fazel-Zarandi, Q. Gao, A. Cervone, and W. Y. Wang. Towards
large-scale interpretable knowledge graph reasoning for dialogue systems. In S. Mure-
san, P. Nakov, and A. Villavicencio, editors, Findings of the Association for Computa-
tional Linguistics: ACL 2022, Dublin, Ireland, 2022, pages 383–395. Association for
Computational Linguistics, 2022.

15. T. Wen, D. Vandyke, N. Mrksic, M. Gasic, L. M. Rojas-Barahona, P. Su, S. Ultes, and
S. J. Young. A network-based end-to-end trainable task-oriented dialogue system. In
M. Lapata, P. Blunsom, and A. Koller, editors, Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics, EACL 2017,
Valencia, Spain, 2017, Volume 1: Long Papers, pages 438–449. Association for Com-
putational Linguistics, 2017.

16. J. D. Williams, A. Raux, and M. Henderson. The dialog state tracking challenge series:
A review. Dialogue Discourse, 7(3):4–33, 2016.

17. C. Wu, S. C. H. Hoi, R. Socher, and C. Xiong. TOD-BERT: pre-trained natural lan-
guage understanding for task-oriented dialogue. In B. Webber, T. Cohn, Y. He, and
Y. Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2020, Online, 2020, pages 917–929. Association for
Computational Linguistics, 2020.

18. S. Yang, R. Zhang, and S. M. Erfani. Graphdialog: Integrating graph knowledge
into end-to-end task-oriented dialogue systems. In B. Webber, T. Cohn, Y. He, and
Y. Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, 2020, pages 1878–1888. Association for
Computational Linguistics, 2020.


	Introduction
	Related Work
	System architecture
	Overview
	The Natural Language Understanding (NLU) module
	The Dialogue State Tracking (DST) module
	The Policy management (POL) module
	The Natural Language Generation (NLG) module
	Dealing with multiple discussion threads

	Discussion
	Conclusion

