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Abstract. In the Information Systems (IS) discipline, central contributions of 
research projects are often represented in graphical research models, clearly 
illustrating constructs and their relationships. Although thousands of such 
representations exist, methods for extracting this source of knowledge are still in 
an early stage. We present a method for (1) extracting graphical research models 
from articles, (2) generating synthetic training data for (3) performing object 
detection with a neural network, and (4) a graph reconstruction algorithm to (5) 
storing results into a designated research model format. We trained YOLOv7 on 
20,000 generated diagrams and evaluated its performance on 100 manually 
reconstructed diagrams from the Senior Scholars' Basket. The results for 
extracting graphical research models show a F1-score of 0.82 for nodes, 0.72 for 
links, and an accuracy of 0.72 for labels, indicating the applicability for 
supporting the population of knowledge repositories contributing to knowledge 
synthesis. 

Keywords: Knowledge Extraction, Graphical Research Models, Object 
Detection, Theory Repositories, Knowledge Synthesis 

1 Introduction 

Long before humans started to write letters, they painted pictures. Research suggests 
that some of the paintings in one of the most outstanding testaments of early human 
culture – the Lascaux Cave – depict hunting strategies that were used for education 
purposes and thereby knowledge sharing (Groeneveld, 2016; Maier et al., 2021). Such 
hunting strategies could be seen as early forms of theories depicting relationships 
between causes and effects: ten hunters, six spears, four axes, and setting a proper trap 
lead to a first surprised, then angry, and eventually dead mammoth.  

Long after humans started to write letters, they still paint pictures. In a way, 
performing research in IS today is similar to hunting a mammoth ten thousand years 



 

ago – with slight differences regarding the research focus. Instead of trying to identify 
theories about relationships between deadly instruments and hunting success, today's 
researchers try to identify theories about relationships between Information Technology 
and human behavior.  

However, even after hundreds of thousands of years, we still share a central 
challenge with our ancestors: synthesizing our knowledge. For early humans, the only 
way to extend their knowledge might have been by exchanging information with 
hunters from different tribes, most likely by inspecting their neighbors' cave paintings. 
Fortunately, today's theories are no longer carved in stone but into paper and digital 
media. Unfortunately, the amount of available articles has grown to an immense body 
of knowledge that expands continuously and fast (Bornmann et al., 2021). This can lead 
to a range of unwanted side effects, such as information overload and knowledge 
fragmentation where conventional approaches to literature reviews tend to miss 
relevant articles (Larsen et al., 2019). 

There have been attempts to create theory repositories in the form of databases to 
support researchers in synthesizing information from constructs, their definitions, and 
semantic relations (Mueller, 2015; Dann et al., 2019; Li et al., 2020). However, 
populating such databases is a major undertaking as automated methods for knowledge 
extraction are still in an early phase (Scharfenberger et al., 2021). Most existing 
approaches (Li & Larsen, 2011; Mueller & Huettemann, 2018; Mueller & Abdullaev, 
2019) use natural language processing (NLP) for exclusively analyzing the text of 
papers. In addition to text, illustrating and reporting research findings in the form of 
diagrams evolved into well-accepted practice and is at the core of many successful 
research articles. In the IS discipline, graphical research models are widely used, 
providing an overview of factors or theoretical constructs in empirical settings, 
experiments, and surveys (Palvia et al., 2006; Recker, 2013; Kiessling et al., 2020). 

Technical progress in the development of object detection algorithms based on deep 
learning technologies made it possible to extract information from graphical research 
models. A stream of research contributes to the population and maintenance of theory 
repositories in IS by aiming to automatically detect constructs, path coefficients, and 
items from research diagrams and structural equation models (Auer et al., 2013; 
Scharfenberger et al., 2021; Schoelch et al., 2022).  

Some of the current limitations however include low variation in training data which 
might impede generalizability and challenges in inferring the relationships between 
individual elements in diagrams. We aim to contribute towards developing methods for 
knowledge extraction from graphical research models, and ask the following research 
question: How can we improve the extraction of knowledge from graphical research 
models in scientific articles to support the population of theory repositories? 

In this article, we propose a method for (1) classifying and extracting graphical 
research models from scientific articles, (2) creating synthetic training data, (3) 
performing object classification, (4) re-constructing detected graph structures, and (5) 
persisting findings into a meta-model. We focus on the analysis of graphical research 
models (Palvia et al., 2006; Recker, 2013; Kiessling et al., 2020) whereas other types 
of diagrams, e.g., process models, reference frameworks, or organigrammes, have their 
own characteristics where for instance the shape of objects indicates special meaning. 
The proposed method could inform future work in other areas but would need to be 
modified towards interpreting the specific semantics of other types of diagrams. 



 

2 Theoretical Background 

2.1 Knowledge Extraction and Analysis from Text 

Text mining and other NLP techniques have been the predominant means to extract and 
analyze knowledge from scientific articles. Li & Larsen (2011) presented a system for 
extracting constructs from IS papers. Larsen and Bong (2016) proposed a method for 
construct detection that surpassed latent semantic analysis. Li et al. (2020) presented a 
framework for extracting constructs and relationships from text. Mueller and 
Huettemann (2018) presented the tool CauseMiner to extract constructs and their 
interrelations from hypotheses and propositions in research articles. Mueller and 
Abdullaev (2019) presented DeepCause which extends CauseMiner by using a deep 
learning architecture for causal extraction.  

However, these approaches share the challenge of locating, identifying, and 
extracting relevant information bits in the form of constructs and their interrelations 
from full-text scientific articles which can lead to ambiguous results.  

2.2 Knowledge Extraction and Analysis from Diagrams 

A number of studies aimed to extract figures from research articles. Clark and Divvala 
(2016) presented the algorithm PDFFigures 2.0 for extracting figures and tables. Their 
algorithm locates figures by reasoning about empty regions in text and identifying 
captions. Siegel et al. (2018) developed a deep neural model for detecting figures in 
PDF documents called DeepFigures. They approached the task of image classification 
and object detection by applying an OverFeat detection architecture to image 
embeddings. Their model detects bounding boxes for figures in PDF documents and 
was deployed in the academic search engine Semantic Scholar to extract figures from 
articles. Genz and Funk (2020) used convolutional neural networks (CNN) for the 
detection of structural equation models by converting pages of scientific papers to 
images. 

Auer et al. (2013) presented an optical graph recognition approach attempting to 
perform the task of interpreting extracted figures. Their method was based on 
traditional image processing techniques, recognizing edges and their attachments to 
vertices. Attempts to detect objects and their interrelations in offline hand-drawn 
diagrams (Schaefer & Stuckenschmidt, 2019; Fang et al., 2022) utilized more 
sophisticated technologies, such as Recurrent-CNNs. 

Closely related to this article, Scharffenerger et al. (2021) focussed on identifying 
and extracting knowledge from structural equation models in research articles. They 
identified and extracted figures from PDF articles via Recurrent-CNNs to detect 
constructs, path coefficients, and items via YOLOv4 (Bochkovskiy et al., 2020), a 
neural network for object detection. They used a rather small training dataset with 534 
images and achieved good results.  

Schoelch et al. (2022) developed an approach that included the automated re-
creation of graphs, preserving information about the interrelations between objects. 
They created a synthetic dataset consisting of 12,000 diagrams to train YOLOv5 
(Jocher et al., 2022). They performed object detection, text recognition per EasyOCR 



 

(EasyOCR, 2023), and graph reconstruction by applying a set of heuristics to analyze 
the predicted bounding box information. For evaluating the performance on real 
diagrams, they manually labeled 24 diagrams from DISKNET (Dann et al., 2019). Their 
results indicate an accurate detection of nodes, but a less accurate detection of edges 
with a direction. 

Previous approaches mentioned several limitations that might be addressed by future 
work. Scharffenberger et al. (2021) neither mapped text to bounding boxes nor path 
coefficients to edges. We also found that they omitted the detection of edges. Schoelch 
et al. (2022) mentioned problems in the detection and analysis of edges as well. In 
addition, they were not able to detect arrowheads and reported limitations in generating 
synthetic training data, such as low variation in nodes, arrow- and edge-types, and 
layouts that are often more randomly organized than human-structured diagrams. These 
aspects might decrease the generalizability of models trained on such input data. 

With our approach, we aim to build on these limitations and suggestions for future 
work. We explore the usage of Graphviz to add more variety and structure to synthetic 
training data, and show that current versions of object detection algorithms are able to 
detect different types of nodes, arrows, and edges in synthetic as well as real-world 
diagrams. We further illustrate how to reconstruct a detected graph from bounding box 
information to infer relationships between nodes, and we compare and incorporate OCR 
technology to evaluate the extraction of text from nodes and edges. 

3 Knowledge Extraction from Graphical Research Models 

We aim to build on related work, applying state-of-the-art technologies to cover a 
complete workflow: from a corpus of research articles with diagrams to the extraction 
of constructs and their interrelations in a knowledge base. More than a case of 
incremental improvements in each task, this is about evaluating the potential of a whole 
pipeline of challenges. In such a setup, every error propagates through the pipeline 
rendering the final result as interpretable and useful, or not. Our proposed method 
consists of five steps. The complete flow from research articles to reconstructed 
diagrams is illustrated in Figure 1. We describe each step in the following subsections. 

 
Figure 1. Knowledge extraction from graphical research models 



 

3.1 Step 1: Image Detection and Classification from Research Articles 

We analyzed 700 research articles published in the AIS Basket of eight (AIS, 2021) in 
2018 and 2019 and extracted all figures from these articles by using the tool 
PDFFigures 2 (Clark & Divvala, 2016) resulting in a total of 922 images. We manually 
classified the images into two categories; those showing either graphical research 
models or the empirical results of a research model vs. all remaining figures.  

We compared the performance of Naive Bayes, SVM, Random Forest, BERT, and 
SciBert by training them with only the captions and a combination of captions plus the 
text that was extracted from the figures themselves. We also implemented an Xception-
model that was pre-trained on ImageNet and fine-tuned with the annotated images. In 
addition, we trained an ensemble classifier with the best-performing Naive Bayes, 
SVM, Random Forest, SciBERT, and Xception models. Eventually, we used the 
probabilities of the best-performing models to train a stacking classifier meta-model 
that outperformed all previous models. This classifier yielded an accuracy of 0.94 and 
a macro F1-score of 0.92.  

All models that used text data performed better when the image text was also 
included in the dataset. We first did some general preprocessing on the data, including 
removing numbers, punctuation, multiple whitespaces, stop words, and short words, 
converting the text to lowercase, and applying lemmatization. We have also created a 
dummy classifier as a baseline which predicted the most frequent label for all the data. 
Table 1 shows detailed metrics of the top 5 best-performing models by macro F1-score. 

Table 1. Image classification results of top 5 models by macro F1-scores 
 

Model Data Precision Recall Macro-F1 
Stacking Classifier Fig + Cap + Text 0.93 0.91 0.92 
SciBERT Cap + Text 0.90 0.88 0.89 
Ensemble Classifier Fig + Cap + Text 0.92 0.85 0.88 
SVM Cap + Text 0.90 0.85 0.87 
Xception Fig 0.86 0.86 0.86 
Dummy N.A. 0.37 0.50 0.43 

For the evaluation, we used standard measures in NLP where precision is calculated as 
true positives / (true positives + false positives), recall is calculated as true positives / 
(true positives + false negatives), and F1-score is calculated as 2 * (precision * recall) 
/ (precision + recall). Macro F1-scores provide an unweighted average of F1-scores for 
the individual classes (SciKit Learn, 2023b; SciKit Learn, 2023a).  

3.2 Step 2: Generation of Synthetic Training Data  

For generating diagrams including their bounding boxes, we used Graphviz (Ellson et 
al., 2004; Graphviz, 2022) and developed a Python API. Our goal was to generate 
diagrams as training data that resemble graphical research models in research articles 
and contain as many variations in layouts and objects as possible. 

The structure of the generated diagrams is based on a three-level hierarchical design. 
In a top-to-bottom diagram this would result in three levels: top, center, and bottom 
whereas, in a left-to-right diagram, the three levels are left, center, and right, 



 

respectively. Each level can contain a random number of nodes and the distance 
between nodes and levels can be randomized as well. Connections between nodes are 
randomly defined. Nodes can only be connected to the next level, i.e., there are no 
connections between nodes from level one to level three.  

 
Figure 2. Generated training data example with bounding boxes  

We defined four classes for training: nodes, edges, arrowheads, and edge labels. Figure 
2 shows an example of a simple generated diagram where the respective bounding 
boxes for training are marked in orange. We defined bounding boxes for all classes as 
rectangles. We further applied extensive randomization across generated diagrams. To 
illustrate the variety in synthetic training data, Table 2 contains selected examples of 
randomization options. 

Table 2. Diagram randomization examples 
 

Attribute Randomization Options 
Node-shape rectangle, ellipse, circle, only_text, rectangle_rounded_corners 
Fonts Arial, Helvetica, Times, Courier (normal, bold, italic) 
Fontsize 8, 10, 12  
Node-width In inches: 1.3, 1.6, 2, 2.5 
Node-height In inches: 0.6, 0.8, 1, 1.3, 0.2 
Graph-style right-left, left-right, top-bottom, bottom-top 
Edge-type straight, curved, orthogonal 
Edge-style solid, dashed, dotted, bold 

3.3 Step 3: Model Development 

YOLO stands for "You Only Look Once" and denotes a series of object detection 
algorithms. Previous work used YOLOv4 (Scharfenberger et al., 2021) and YOLOv5 
(Schoelch et al., 2022). In YOLOv6, improvements for detecting small objects were 
added (Olorunshola et al., 2023). YOLOv7 contained additional improvements 
regarding speed and accuracy and demonstrated a 13.7% increase in average precision 
compared to YOLOv6 (Wang et al., 2022).  

We experimented with a pre-trained version of YOLOv7 (Wang et al., 2022) and 
performed fine-tuning by training the model with training sets of different sizes: 10,000, 
20,000, 50,000, and 100,000. For each training set, we split the data into train, 
validation, and test sets with a ratio of 70/20/10. We did not find noticeable 
improvements in precision, recall, and mean average precision values when training a 
model with more than 20,000 images. One reason could be that the model internalized 
most of the possible layout structures given the selected randomization options. 

We followed the guidelines for model development from the YOLOv5 
documentation (Ultralytics, 2022) and additionally included 1,400 background images 



 

without any labels to the training and 300 background images to the validation set. 
Setting the confidence threshold to 0.5 provided the best results. 

Figure 3 shows selected evaluation results from the final model, trained on 20,000 
synthetically generated diagrams. Training the model for 300 epochs, resulted in a 
precision of 0.99, a recall of 0.98, a mean average precision for a confidence threshold 
of 0.5 (mAP@0.5) of 0.99, and a mean average precision averaged over different 
confidence thresholds from 0.5 to 0.9 (mAP@0.5:0.95) of 0.86.  

 
Figure 3. Selected metrics from YOLOv7 results 

3.4 Step 4: Reconstruction of Detected Graph Structures 

We created an algorithm to reconstruct the interconnections between nodes from the 
detected bounding box coordinates. Figure 4 illustrates an example of a simple 
extracted diagram. Each element is detected as a bounding box including a designated 
label, e.g., node, arrowhead, edge, or edge label. We iterate through all edge objects 
and check for overlaps with nodes and arrowheads. Whenever we find an arrowhead, 
we check for a connection with another node. We analyze the position of an arrowhead 
on an edge to get the direction of the arrow. For detecting labels, we take the label that 
is closest to the center of an edge. If an edge is diagonal, we can use the position of the 
arrowhead to infer the position of the other end of the edge. 

 
Figure 4. Detected bounding boxes and classes 

We performed several tests with optical character recognition technologies, such as 
EasyOCR (EasyOCR, 2023) and Tesseract (Tesseract, 2023). EasyOCR provided 
better performance than Tesseract but was still not able to capture all texts correctly. 
The detection of edge labels, such as "H1", "0,39", and "+", worked only in a small 
fraction of cases. We therefore decided to use PaddleOCR (Du et al., 2020) which 
outperformed the other technologies. PaddleOCR outputs bounding box information of 
detected texts from images. We mapped the detected texts from PaddleOCR with the 
positions of nodes, edges, and edge labels in the reconstructed diagram to infer semantic 
connections between constructs. 



 

3.5 Step 5: Persist Findings in Meta-Model 

We propose a meta-model for graphical research models building up on the meta-model 
of Mueller for analyzing inter-theory relationships (Mueller, 2015). Figure 5 illustrates 
the meta model and its components. 

 
Figure 5. A meta-model for graphical research models  

Diagrams can be coded into a research model. Such a structure is able to capture objects 
and their interrelations from research diagrams. In our implementation, we assume that 
every node in a diagram contains a construct. A construct can alternatively act as a 
moderator or be part of a subset where multiple constructs are grouped. The extraction 
of moderating relationships and grouped nodes is however not yet supported. We 
interpret two connected nodes in a diagram as two connected constructs where their 
connection implies a causal direction. Such connections between constructs form a 
hypothesis where the source construct represents a cause and the target construct an 
effect. Based on coding research diagrams according to our meta-model, we store 
extracted information from diagrams in a structured YAML format allowing for 
querying information for subsequent analysis steps.  

4 Evaluation 

4.1 Evaluation on Synthetic Diagrams 

Our goal is to find out how well the proposed method is able to capture semantic 
relationships from research diagrams. We therefore generated 1,000 diagrams with 
randomized layouts as illustrated in Table 2. For each diagram, we generated a YAML 
file containing a research model description that represents constructs and their 
interrelations serving as ground truth. We performed object detection on the generated 
diagrams and used our algorithm for graph reconstruction to infer relationships between 
detected constructs. This resulted in a second YAML file containing the detection result 
for each diagram. 

We developed a routine to compare the ground truth against the detection results and 
adjusted common machine learning metrics (precision, recall, F1) to evaluate the graph 
reconstruction task. We define precision as the fraction of correctly extracted objects 
(which can be nodes or links) among all extracted objects. We define recall as the 
fraction of correctly extracted objects among all true objects. A link is correct if it 



 

connects the right two nodes with the correct direction. A node is only correctly 
identified, if the node text is correctly extracted. By allowing for a Levenshtein distance 
of three, we compensated for minor spelling mistakes due to OCR limitations where 
for instance whitespace is not detected correctly, e.g., perceived easeof use. We 
compared the number of nodes in each diagram by checking if a node with the same 
text was correctly detected. We also compared if the links between nodes were correctly 
set and whether related labels were identified. For correctly identified links, the label 
accuracy is 0.52. Table 3 shows the results of the evaluation for synthetic diagrams. 

Table 3. Evaluation on synthetic diagrams 
Metric Nodes Links 
Absolute count in ground truth 8,949 7,969 
Absolute count in detection results 8,949 7,832 
Precision 0.99 0.98 
Recall 0.99 0.96 
F1 0.99 0.97 

4.2 Evaluation on Real Diagrams 

We extracted 573 graphical research models by performing image detection and 
classification (step 1) on research articles of the AIS Basket (AIS, 2021). We manually 
classified the extracted models into suitable (n=384) and not suitable (n=189) for 
automated extraction. Not suitable models utilized layouts that contained elements such 
as crossing edges that we did not include in our prototype. Although nodes in such 
models get detected correctly, the detection of correct links between nodes is not yet 
supported. From the 384 suitable models, we sampled 100 diagrams for manual 
evaluation. Figure 6 shows examples of supported and not supported layouts. 

 
Figure 6. Examples for supported (left) and not supported layouts (right).  

Left: Kim and Song (2004); right: Ivanov and Sharman (2018) 
One of the authors and a master student in IS each translated 45 of the sampled diagrams 
into the proposed meta-model format (step 5) by manually creating YAML files. For 
calculating interrater reliability, both annotators annotated 10 diagrams and compared 
the results. We used the F1 score for measuring interrater reliability, due to the structure 
of the annotation task that does not allow us to use standard inter-annotator measures 
like Cohen's Kappa. The F1 score with a Levenshtein distance of three for nodes, links, 
moderations, and subsets, was 0.97, 0.92, 1.0, and 1.0, respectively. The resulting 100 
manually recreated research diagrams form the gold standard. 



 

We performed automated object detection and graph reconstruction on the extracted 
100 diagrams resulting in the respective YAML files containing research models 
according to our meta-model. To compare the gold standard against the automatically 
detected research models, we used the same routine as for the evaluation of generated 
diagrams, including allowing for a Levenshtein distance of three to account for OCR 
limitations. The average accuracy of detected link labels is 0.72. Table 4 shows the 
results. 

Table 4. Evaluation against manually annotated real diagrams 
Metric Nodes Links 
Absolute count in ground truth 664 581 
Absolute count in detection results 583 526 
Precision 0.88 0.76 
Recall 0.8 0.7 
F1 0.82 0.72 

5 Discussion 

We proposed and evaluated a method for extracting graphical research models from 
scientific articles in IS. By using state-of-the-art technologies for object detection and 
OCR, we described how knowledge depicted in research model diagrams can be 
extracted and stored in a format that supports the organization and discovery of 
constructs and their relationships to support populating knowledge repositories (Dann 
et al., 2019; Li et al., 2020) for the IS community. 

With this approach, we have built up on the related works of Scharfenberger et al. 
(2021) and Schoelch et al. (2022) who developed similar approaches. In addition to the 
work of Scharfenberger et al. (2021), our method detects links between constructs and 
includes a graph reconstruction algorithm for the interpretation of detected bounding 
boxes. Thereby, we can associate constructs with each other and labels to edges 
enabling inference of causal directions. We further implemented OCR technology for 
text extraction to persist findings according to the proposed meta-model. In contrast to 
Schoelch et al. (2022), we integrated an object detection approach into a complete 
workflow proving its applicability in a scientific domain. We also advanced their 
approach by detecting the positions of arrowheads and training a neural network for 
object detection with a higher variety in node- and edge design. We further tested and 
implemented current technologies and introduced an algorithm for graph 
reconstruction, demonstrating that this approach works in a real-world scenario. 

The results from the evaluation against 1,000 synthetic diagrams indicate a very 
accurate performance in detecting constructs (F1=0.99) and links (F1=0.97) with 
limitations in assigning the correct labels (accuracy=0.52) to links between nodes. The 
results from the evaluation against 100 manually reconstructed diagrams from scientific 
articles in IS show slightly lower results for the detection of constructs (F1=0.82), links 
(F1=0.72), and label assignments (accuracy=0.72).  

We reviewed the annotated images of the model to identify potential reasons for the 
differences between manual and synthetic evaluation results. Some of the differences 
most likely resulted from lower image resolution of real-world diagrams which led to 



 

incorrect OCR, bigger font size for labels which led to an increased accuracy score, and 
some not yet supported features such as grouped nodes and the detection of moderating 
relationships. We initially trained the model with diagrams that only included 
connections to nodes on adjacent levels as described in section 3.2. We found that the 
model was capable of generalizing well to the real-world dataset as it correctly 
identified edges connecting nodes on various levels. 

5.1 Limitations 

There are different sources of errors relating to object detection accuracy, OCR 
accuracy, and graph reconstruction accuracy. We found that horizontal lines pose a 
challenge to our trained object detection model. Missing such objects leads to follow-
up errors as a connection between objects can not be inferred during graph 
reconstruction, resulting in missing links between constructs in our database. In 
addition, the detection of single-character edge labels, such as "+" or "-" poses a 
challenge for OCR. Both issues indicate problems in detecting objects with a low pixel 
density in very thin shapes. More extensive image preprocessing might help mitigate 
this shortcoming. 

Our algorithm for graph reconstruction relies on interpreting labels and coordinates 
of bounding boxes. The main challenge is to infer the path of edges as diagonal edges 
are represented as rectangles. For our implementation, we based our inference on the 
pragmatic decision that every edge is interpreted as a straight edge. Based on this 
assumption, we can infer the path of an edge by analyzing the position of a connected 
arrowhead and thereby assign source and target nodes of a connection. Figure 7 
illustrates this approach and also shows an example where a cornered edge is still 
interpreted correctly. 

 
Figure 7. From real diagram to object detection results to bounding box inference 

Although the approach works well in the majority of cases, it is not able to accurately 
detect paths of curved or cornered edges. This also impedes the accurate allocation of 
labels to edges. Using instance segmentation where instead of a bounding box the 
precise shape of an object is used for training a model could increase accuracy. 
However, it would also lead to additional complexity as these shapes contain much 
more detailed coordinates, leading to challenges in creating training data and in 
automatically reconstructing graphs to detect connections between objects. 

5.2 Future Work 

In order to accurately support the population of theory repositories allowing for 
analyzing constructs and their interrelations on a large scale, some challenges must be 
addressed to further improve the performance of this method. Our approach could be 



 

enhanced by extending the graph reconstruction algorithm to add detection capabilities 
for moderating relationships and grouped nodes. However, we think that the hardest 
challenge is the correct detection of edges in diagrams. Using instance segmentation to 
get the exact shape of an arrow might be a way towards more overall accuracy. Such 
an approach would also enable the correct assignment of labels to edges, but it comes 
at the expense of higher effort in generating training data and fine-tuning a graph 
reconstruction algorithm for interpreting more complicated bounding box shapes. 

6 Conclusion 

In this article we presented a method for automated knowledge extraction from 
graphical research models covering a workflow from research articles to persisting 
findings in a designated data format. We (1) classified and extracted research diagrams 
from scientific articles, (2) created synthetic training data of high variance, (3) 
performed object classification with state-of-the-art technologies, (4) reconstructed 
detected graph structures and (5) stored our findings into a meta-model for graphical 
research models. The performance in correctly extracting, interpreting, and 
reconstructing real-world diagrams shows good results for the detection and 
interpretation of constructs (F1=0.82), links (F1=0.72), and labels (0.72). Future 
developments could incorporate instance segmentation techniques to overcome 
limitations in edge interpretation and label assignment. 

As an introductory note, we boldly claimed that performing research in IS today - 
where researchers need to manually analyze hundreds of articles to get an overview of 
the state of the art - is not too different from the prehistoric approaches of our early 
ancestors to research better hunting strategies by comparing and assessing cave 
paintings across their friendly neighbors' caves. 

Naturally, we do not know if our ancestors eventually managed to find the best 
theory to hunt a mammoth but we presented a method that can support researchers today 
in collecting data from thousands of articles reducing the amount of necessary manual 
labor. We hope that in the not-too-distant future, the work from months and sometimes 
even years can be reduced to minutes enabling new kinds of analyses tapping into the 
collective knowledge of researchers in IS. Similar to cave paintings that informed 
ancient hunters, the semi-automated extraction and synthesis of research diagrams 
could support researchers in setting out to hunt their next big scientific discovery. 
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