
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

Wirtschaftsinformatik 2023 Proceedings Wirtschaftsinformatik

10-9-2023

How Best to Hunt a Mammoth - Toward Automated Knowledge How Best to Hunt a Mammoth - Toward Automated Knowledge

Extraction From Graphical Research Models Extraction From Graphical Research Models

Sebastian Huettemann
Berlin School of Economics and Law, Germany, sebastian.huettemann@hwr-berlin.de

Roland M. Mueller
Berlin School of Economics and Law, Germany, roland.mueller@hwr-berlin.de

Kai R. Larsen
University of Colorado, Boulder, USA, kai.larsen@colorado.edu

Barbara Dinter
Chemnitz University of Technology, Chemnitz, Germany, barbara.dinter@wirtschaft.tu-chemnitz.de

Joshua Campos Chiny
Berlin School of Economics and Law, Germany, chiny.jc@gmail.com

Follow this and additional works at: https://aisel.aisnet.org/wi2023

Recommended Citation Recommended Citation
Huettemann, Sebastian; Mueller, Roland M.; Larsen, Kai R.; Dinter, Barbara; and Campos Chiny, Joshua,
"How Best to Hunt a Mammoth - Toward Automated Knowledge Extraction From Graphical Research
Models" (2023). Wirtschaftsinformatik 2023 Proceedings. 87.
https://aisel.aisnet.org/wi2023/87

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted
for inclusion in Wirtschaftsinformatik 2023 Proceedings by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2023
https://aisel.aisnet.org/wi
https://aisel.aisnet.org/wi2023?utm_source=aisel.aisnet.org%2Fwi2023%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2023/87?utm_source=aisel.aisnet.org%2Fwi2023%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

18th International Conference on Wirtschaftsinformatik,
September 2023, Paderborn, Germany

How Best to Hunt a Mammoth - Toward Automated
Knowledge Extraction from Graphical Research Models

Research Paper

Sebastian Huettemann1, Roland M. Mueller1, Kai R. Larsen2, Barbara Dinter3,
and Joshua Campos Chiny1

1 Berlin School of Economics and Law, Berlin, Germany
{sebastian.huettemann,roland.mueller}@hwr-berlin.de, chiny.jc@gmail.com

2 University of Colorado, Boulder, USA
kai.larsen@colorado.edu

3 Chemnitz University of Technology, Chemnitz, Germany
barbara.dinter@wirtschaft.tu-chemnitz.de

Abstract. In the Information Systems (IS) discipline, central contributions of
research projects are often represented in graphical research models, clearly
illustrating constructs and their relationships. Although thousands of such
representations exist, methods for extracting this source of knowledge are still in
an early stage. We present a method for (1) extracting graphical research models
from articles, (2) generating synthetic training data for (3) performing object
detection with a neural network, and (4) a graph reconstruction algorithm to (5)
storing results into a designated research model format. We trained YOLOv7 on
20,000 generated diagrams and evaluated its performance on 100 manually
reconstructed diagrams from the Senior Scholars' Basket. The results for
extracting graphical research models show a F1-score of 0.82 for nodes, 0.72 for
links, and an accuracy of 0.72 for labels, indicating the applicability for
supporting the population of knowledge repositories contributing to knowledge
synthesis.

Keywords: Knowledge Extraction, Graphical Research Models, Object
Detection, Theory Repositories, Knowledge Synthesis

1 Introduction

Long before humans started to write letters, they painted pictures. Research suggests
that some of the paintings in one of the most outstanding testaments of early human
culture – the Lascaux Cave – depict hunting strategies that were used for education
purposes and thereby knowledge sharing (Groeneveld, 2016; Maier et al., 2021). Such
hunting strategies could be seen as early forms of theories depicting relationships
between causes and effects: ten hunters, six spears, four axes, and setting a proper trap
lead to a first surprised, then angry, and eventually dead mammoth.

Long after humans started to write letters, they still paint pictures. In a way,
performing research in IS today is similar to hunting a mammoth ten thousand years

ago – with slight differences regarding the research focus. Instead of trying to identify
theories about relationships between deadly instruments and hunting success, today's
researchers try to identify theories about relationships between Information Technology
and human behavior.

However, even after hundreds of thousands of years, we still share a central
challenge with our ancestors: synthesizing our knowledge. For early humans, the only
way to extend their knowledge might have been by exchanging information with
hunters from different tribes, most likely by inspecting their neighbors' cave paintings.
Fortunately, today's theories are no longer carved in stone but into paper and digital
media. Unfortunately, the amount of available articles has grown to an immense body
of knowledge that expands continuously and fast (Bornmann et al., 2021). This can lead
to a range of unwanted side effects, such as information overload and knowledge
fragmentation where conventional approaches to literature reviews tend to miss
relevant articles (Larsen et al., 2019).

There have been attempts to create theory repositories in the form of databases to
support researchers in synthesizing information from constructs, their definitions, and
semantic relations (Mueller, 2015; Dann et al., 2019; Li et al., 2020). However,
populating such databases is a major undertaking as automated methods for knowledge
extraction are still in an early phase (Scharfenberger et al., 2021). Most existing
approaches (Li & Larsen, 2011; Mueller & Huettemann, 2018; Mueller & Abdullaev,
2019) use natural language processing (NLP) for exclusively analyzing the text of
papers. In addition to text, illustrating and reporting research findings in the form of
diagrams evolved into well-accepted practice and is at the core of many successful
research articles. In the IS discipline, graphical research models are widely used,
providing an overview of factors or theoretical constructs in empirical settings,
experiments, and surveys (Palvia et al., 2006; Recker, 2013; Kiessling et al., 2020).

Technical progress in the development of object detection algorithms based on deep
learning technologies made it possible to extract information from graphical research
models. A stream of research contributes to the population and maintenance of theory
repositories in IS by aiming to automatically detect constructs, path coefficients, and
items from research diagrams and structural equation models (Auer et al., 2013;
Scharfenberger et al., 2021; Schoelch et al., 2022).

Some of the current limitations however include low variation in training data which
might impede generalizability and challenges in inferring the relationships between
individual elements in diagrams. We aim to contribute towards developing methods for
knowledge extraction from graphical research models, and ask the following research
question: How can we improve the extraction of knowledge from graphical research
models in scientific articles to support the population of theory repositories?

In this article, we propose a method for (1) classifying and extracting graphical
research models from scientific articles, (2) creating synthetic training data, (3)
performing object classification, (4) re-constructing detected graph structures, and (5)
persisting findings into a meta-model. We focus on the analysis of graphical research
models (Palvia et al., 2006; Recker, 2013; Kiessling et al., 2020) whereas other types
of diagrams, e.g., process models, reference frameworks, or organigrammes, have their
own characteristics where for instance the shape of objects indicates special meaning.
The proposed method could inform future work in other areas but would need to be
modified towards interpreting the specific semantics of other types of diagrams.

2 Theoretical Background

2.1 Knowledge Extraction and Analysis from Text

Text mining and other NLP techniques have been the predominant means to extract and
analyze knowledge from scientific articles. Li & Larsen (2011) presented a system for
extracting constructs from IS papers. Larsen and Bong (2016) proposed a method for
construct detection that surpassed latent semantic analysis. Li et al. (2020) presented a
framework for extracting constructs and relationships from text. Mueller and
Huettemann (2018) presented the tool CauseMiner to extract constructs and their
interrelations from hypotheses and propositions in research articles. Mueller and
Abdullaev (2019) presented DeepCause which extends CauseMiner by using a deep
learning architecture for causal extraction.

However, these approaches share the challenge of locating, identifying, and
extracting relevant information bits in the form of constructs and their interrelations
from full-text scientific articles which can lead to ambiguous results.

2.2 Knowledge Extraction and Analysis from Diagrams

A number of studies aimed to extract figures from research articles. Clark and Divvala
(2016) presented the algorithm PDFFigures 2.0 for extracting figures and tables. Their
algorithm locates figures by reasoning about empty regions in text and identifying
captions. Siegel et al. (2018) developed a deep neural model for detecting figures in
PDF documents called DeepFigures. They approached the task of image classification
and object detection by applying an OverFeat detection architecture to image
embeddings. Their model detects bounding boxes for figures in PDF documents and
was deployed in the academic search engine Semantic Scholar to extract figures from
articles. Genz and Funk (2020) used convolutional neural networks (CNN) for the
detection of structural equation models by converting pages of scientific papers to
images.

Auer et al. (2013) presented an optical graph recognition approach attempting to
perform the task of interpreting extracted figures. Their method was based on
traditional image processing techniques, recognizing edges and their attachments to
vertices. Attempts to detect objects and their interrelations in offline hand-drawn
diagrams (Schaefer & Stuckenschmidt, 2019; Fang et al., 2022) utilized more
sophisticated technologies, such as Recurrent-CNNs.

Closely related to this article, Scharffenerger et al. (2021) focussed on identifying
and extracting knowledge from structural equation models in research articles. They
identified and extracted figures from PDF articles via Recurrent-CNNs to detect
constructs, path coefficients, and items via YOLOv4 (Bochkovskiy et al., 2020), a
neural network for object detection. They used a rather small training dataset with 534
images and achieved good results.

Schoelch et al. (2022) developed an approach that included the automated re-
creation of graphs, preserving information about the interrelations between objects.
They created a synthetic dataset consisting of 12,000 diagrams to train YOLOv5
(Jocher et al., 2022). They performed object detection, text recognition per EasyOCR

(EasyOCR, 2023), and graph reconstruction by applying a set of heuristics to analyze
the predicted bounding box information. For evaluating the performance on real
diagrams, they manually labeled 24 diagrams from DISKNET (Dann et al., 2019). Their
results indicate an accurate detection of nodes, but a less accurate detection of edges
with a direction.

Previous approaches mentioned several limitations that might be addressed by future
work. Scharffenberger et al. (2021) neither mapped text to bounding boxes nor path
coefficients to edges. We also found that they omitted the detection of edges. Schoelch
et al. (2022) mentioned problems in the detection and analysis of edges as well. In
addition, they were not able to detect arrowheads and reported limitations in generating
synthetic training data, such as low variation in nodes, arrow- and edge-types, and
layouts that are often more randomly organized than human-structured diagrams. These
aspects might decrease the generalizability of models trained on such input data.

With our approach, we aim to build on these limitations and suggestions for future
work. We explore the usage of Graphviz to add more variety and structure to synthetic
training data, and show that current versions of object detection algorithms are able to
detect different types of nodes, arrows, and edges in synthetic as well as real-world
diagrams. We further illustrate how to reconstruct a detected graph from bounding box
information to infer relationships between nodes, and we compare and incorporate OCR
technology to evaluate the extraction of text from nodes and edges.

3 Knowledge Extraction from Graphical Research Models

We aim to build on related work, applying state-of-the-art technologies to cover a
complete workflow: from a corpus of research articles with diagrams to the extraction
of constructs and their interrelations in a knowledge base. More than a case of
incremental improvements in each task, this is about evaluating the potential of a whole
pipeline of challenges. In such a setup, every error propagates through the pipeline
rendering the final result as interpretable and useful, or not. Our proposed method
consists of five steps. The complete flow from research articles to reconstructed
diagrams is illustrated in Figure 1. We describe each step in the following subsections.

Figure 1. Knowledge extraction from graphical research models

3.1 Step 1: Image Detection and Classification from Research Articles

We analyzed 700 research articles published in the AIS Basket of eight (AIS, 2021) in
2018 and 2019 and extracted all figures from these articles by using the tool
PDFFigures 2 (Clark & Divvala, 2016) resulting in a total of 922 images. We manually
classified the images into two categories; those showing either graphical research
models or the empirical results of a research model vs. all remaining figures.

We compared the performance of Naive Bayes, SVM, Random Forest, BERT, and
SciBert by training them with only the captions and a combination of captions plus the
text that was extracted from the figures themselves. We also implemented an Xception-
model that was pre-trained on ImageNet and fine-tuned with the annotated images. In
addition, we trained an ensemble classifier with the best-performing Naive Bayes,
SVM, Random Forest, SciBERT, and Xception models. Eventually, we used the
probabilities of the best-performing models to train a stacking classifier meta-model
that outperformed all previous models. This classifier yielded an accuracy of 0.94 and
a macro F1-score of 0.92.

All models that used text data performed better when the image text was also
included in the dataset. We first did some general preprocessing on the data, including
removing numbers, punctuation, multiple whitespaces, stop words, and short words,
converting the text to lowercase, and applying lemmatization. We have also created a
dummy classifier as a baseline which predicted the most frequent label for all the data.
Table 1 shows detailed metrics of the top 5 best-performing models by macro F1-score.

Table 1. Image classification results of top 5 models by macro F1-scores

Model Data Precision Recall Macro-F1
Stacking Classifier Fig + Cap + Text 0.93 0.91 0.92
SciBERT Cap + Text 0.90 0.88 0.89
Ensemble Classifier Fig + Cap + Text 0.92 0.85 0.88
SVM Cap + Text 0.90 0.85 0.87
Xception Fig 0.86 0.86 0.86
Dummy N.A. 0.37 0.50 0.43

For the evaluation, we used standard measures in NLP where precision is calculated as
true positives / (true positives + false positives), recall is calculated as true positives /
(true positives + false negatives), and F1-score is calculated as 2 * (precision * recall)
/ (precision + recall). Macro F1-scores provide an unweighted average of F1-scores for
the individual classes (SciKit Learn, 2023b; SciKit Learn, 2023a).

3.2 Step 2: Generation of Synthetic Training Data

For generating diagrams including their bounding boxes, we used Graphviz (Ellson et
al., 2004; Graphviz, 2022) and developed a Python API. Our goal was to generate
diagrams as training data that resemble graphical research models in research articles
and contain as many variations in layouts and objects as possible.

The structure of the generated diagrams is based on a three-level hierarchical design.
In a top-to-bottom diagram this would result in three levels: top, center, and bottom
whereas, in a left-to-right diagram, the three levels are left, center, and right,

respectively. Each level can contain a random number of nodes and the distance
between nodes and levels can be randomized as well. Connections between nodes are
randomly defined. Nodes can only be connected to the next level, i.e., there are no
connections between nodes from level one to level three.

Figure 2. Generated training data example with bounding boxes

We defined four classes for training: nodes, edges, arrowheads, and edge labels. Figure
2 shows an example of a simple generated diagram where the respective bounding
boxes for training are marked in orange. We defined bounding boxes for all classes as
rectangles. We further applied extensive randomization across generated diagrams. To
illustrate the variety in synthetic training data, Table 2 contains selected examples of
randomization options.

Table 2. Diagram randomization examples

Attribute Randomization Options
Node-shape rectangle, ellipse, circle, only_text, rectangle_rounded_corners
Fonts Arial, Helvetica, Times, Courier (normal, bold, italic)
Fontsize 8, 10, 12
Node-width In inches: 1.3, 1.6, 2, 2.5
Node-height In inches: 0.6, 0.8, 1, 1.3, 0.2
Graph-style right-left, left-right, top-bottom, bottom-top
Edge-type straight, curved, orthogonal
Edge-style solid, dashed, dotted, bold

3.3 Step 3: Model Development

YOLO stands for "You Only Look Once" and denotes a series of object detection
algorithms. Previous work used YOLOv4 (Scharfenberger et al., 2021) and YOLOv5
(Schoelch et al., 2022). In YOLOv6, improvements for detecting small objects were
added (Olorunshola et al., 2023). YOLOv7 contained additional improvements
regarding speed and accuracy and demonstrated a 13.7% increase in average precision
compared to YOLOv6 (Wang et al., 2022).

We experimented with a pre-trained version of YOLOv7 (Wang et al., 2022) and
performed fine-tuning by training the model with training sets of different sizes: 10,000,
20,000, 50,000, and 100,000. For each training set, we split the data into train,
validation, and test sets with a ratio of 70/20/10. We did not find noticeable
improvements in precision, recall, and mean average precision values when training a
model with more than 20,000 images. One reason could be that the model internalized
most of the possible layout structures given the selected randomization options.

We followed the guidelines for model development from the YOLOv5
documentation (Ultralytics, 2022) and additionally included 1,400 background images

without any labels to the training and 300 background images to the validation set.
Setting the confidence threshold to 0.5 provided the best results.

Figure 3 shows selected evaluation results from the final model, trained on 20,000
synthetically generated diagrams. Training the model for 300 epochs, resulted in a
precision of 0.99, a recall of 0.98, a mean average precision for a confidence threshold
of 0.5 (mAP@0.5) of 0.99, and a mean average precision averaged over different
confidence thresholds from 0.5 to 0.9 (mAP@0.5:0.95) of 0.86.

Figure 3. Selected metrics from YOLOv7 results

3.4 Step 4: Reconstruction of Detected Graph Structures

We created an algorithm to reconstruct the interconnections between nodes from the
detected bounding box coordinates. Figure 4 illustrates an example of a simple
extracted diagram. Each element is detected as a bounding box including a designated
label, e.g., node, arrowhead, edge, or edge label. We iterate through all edge objects
and check for overlaps with nodes and arrowheads. Whenever we find an arrowhead,
we check for a connection with another node. We analyze the position of an arrowhead
on an edge to get the direction of the arrow. For detecting labels, we take the label that
is closest to the center of an edge. If an edge is diagonal, we can use the position of the
arrowhead to infer the position of the other end of the edge.

Figure 4. Detected bounding boxes and classes

We performed several tests with optical character recognition technologies, such as
EasyOCR (EasyOCR, 2023) and Tesseract (Tesseract, 2023). EasyOCR provided
better performance than Tesseract but was still not able to capture all texts correctly.
The detection of edge labels, such as "H1", "0,39", and "+", worked only in a small
fraction of cases. We therefore decided to use PaddleOCR (Du et al., 2020) which
outperformed the other technologies. PaddleOCR outputs bounding box information of
detected texts from images. We mapped the detected texts from PaddleOCR with the
positions of nodes, edges, and edge labels in the reconstructed diagram to infer semantic
connections between constructs.

3.5 Step 5: Persist Findings in Meta-Model

We propose a meta-model for graphical research models building up on the meta-model
of Mueller for analyzing inter-theory relationships (Mueller, 2015). Figure 5 illustrates
the meta model and its components.

Figure 5. A meta-model for graphical research models

Diagrams can be coded into a research model. Such a structure is able to capture objects
and their interrelations from research diagrams. In our implementation, we assume that
every node in a diagram contains a construct. A construct can alternatively act as a
moderator or be part of a subset where multiple constructs are grouped. The extraction
of moderating relationships and grouped nodes is however not yet supported. We
interpret two connected nodes in a diagram as two connected constructs where their
connection implies a causal direction. Such connections between constructs form a
hypothesis where the source construct represents a cause and the target construct an
effect. Based on coding research diagrams according to our meta-model, we store
extracted information from diagrams in a structured YAML format allowing for
querying information for subsequent analysis steps.

4 Evaluation

4.1 Evaluation on Synthetic Diagrams

Our goal is to find out how well the proposed method is able to capture semantic
relationships from research diagrams. We therefore generated 1,000 diagrams with
randomized layouts as illustrated in Table 2. For each diagram, we generated a YAML
file containing a research model description that represents constructs and their
interrelations serving as ground truth. We performed object detection on the generated
diagrams and used our algorithm for graph reconstruction to infer relationships between
detected constructs. This resulted in a second YAML file containing the detection result
for each diagram.

We developed a routine to compare the ground truth against the detection results and
adjusted common machine learning metrics (precision, recall, F1) to evaluate the graph
reconstruction task. We define precision as the fraction of correctly extracted objects
(which can be nodes or links) among all extracted objects. We define recall as the
fraction of correctly extracted objects among all true objects. A link is correct if it

connects the right two nodes with the correct direction. A node is only correctly
identified, if the node text is correctly extracted. By allowing for a Levenshtein distance
of three, we compensated for minor spelling mistakes due to OCR limitations where
for instance whitespace is not detected correctly, e.g., perceived easeof use. We
compared the number of nodes in each diagram by checking if a node with the same
text was correctly detected. We also compared if the links between nodes were correctly
set and whether related labels were identified. For correctly identified links, the label
accuracy is 0.52. Table 3 shows the results of the evaluation for synthetic diagrams.

Table 3. Evaluation on synthetic diagrams
Metric Nodes Links
Absolute count in ground truth 8,949 7,969
Absolute count in detection results 8,949 7,832
Precision 0.99 0.98
Recall 0.99 0.96
F1 0.99 0.97

4.2 Evaluation on Real Diagrams

We extracted 573 graphical research models by performing image detection and
classification (step 1) on research articles of the AIS Basket (AIS, 2021). We manually
classified the extracted models into suitable (n=384) and not suitable (n=189) for
automated extraction. Not suitable models utilized layouts that contained elements such
as crossing edges that we did not include in our prototype. Although nodes in such
models get detected correctly, the detection of correct links between nodes is not yet
supported. From the 384 suitable models, we sampled 100 diagrams for manual
evaluation. Figure 6 shows examples of supported and not supported layouts.

Figure 6. Examples for supported (left) and not supported layouts (right).

Left: Kim and Song (2004); right: Ivanov and Sharman (2018)
One of the authors and a master student in IS each translated 45 of the sampled diagrams
into the proposed meta-model format (step 5) by manually creating YAML files. For
calculating interrater reliability, both annotators annotated 10 diagrams and compared
the results. We used the F1 score for measuring interrater reliability, due to the structure
of the annotation task that does not allow us to use standard inter-annotator measures
like Cohen's Kappa. The F1 score with a Levenshtein distance of three for nodes, links,
moderations, and subsets, was 0.97, 0.92, 1.0, and 1.0, respectively. The resulting 100
manually recreated research diagrams form the gold standard.

We performed automated object detection and graph reconstruction on the extracted
100 diagrams resulting in the respective YAML files containing research models
according to our meta-model. To compare the gold standard against the automatically
detected research models, we used the same routine as for the evaluation of generated
diagrams, including allowing for a Levenshtein distance of three to account for OCR
limitations. The average accuracy of detected link labels is 0.72. Table 4 shows the
results.

Table 4. Evaluation against manually annotated real diagrams
Metric Nodes Links
Absolute count in ground truth 664 581
Absolute count in detection results 583 526
Precision 0.88 0.76
Recall 0.8 0.7
F1 0.82 0.72

5 Discussion

We proposed and evaluated a method for extracting graphical research models from
scientific articles in IS. By using state-of-the-art technologies for object detection and
OCR, we described how knowledge depicted in research model diagrams can be
extracted and stored in a format that supports the organization and discovery of
constructs and their relationships to support populating knowledge repositories (Dann
et al., 2019; Li et al., 2020) for the IS community.

With this approach, we have built up on the related works of Scharfenberger et al.
(2021) and Schoelch et al. (2022) who developed similar approaches. In addition to the
work of Scharfenberger et al. (2021), our method detects links between constructs and
includes a graph reconstruction algorithm for the interpretation of detected bounding
boxes. Thereby, we can associate constructs with each other and labels to edges
enabling inference of causal directions. We further implemented OCR technology for
text extraction to persist findings according to the proposed meta-model. In contrast to
Schoelch et al. (2022), we integrated an object detection approach into a complete
workflow proving its applicability in a scientific domain. We also advanced their
approach by detecting the positions of arrowheads and training a neural network for
object detection with a higher variety in node- and edge design. We further tested and
implemented current technologies and introduced an algorithm for graph
reconstruction, demonstrating that this approach works in a real-world scenario.

The results from the evaluation against 1,000 synthetic diagrams indicate a very
accurate performance in detecting constructs (F1=0.99) and links (F1=0.97) with
limitations in assigning the correct labels (accuracy=0.52) to links between nodes. The
results from the evaluation against 100 manually reconstructed diagrams from scientific
articles in IS show slightly lower results for the detection of constructs (F1=0.82), links
(F1=0.72), and label assignments (accuracy=0.72).

We reviewed the annotated images of the model to identify potential reasons for the
differences between manual and synthetic evaluation results. Some of the differences
most likely resulted from lower image resolution of real-world diagrams which led to

incorrect OCR, bigger font size for labels which led to an increased accuracy score, and
some not yet supported features such as grouped nodes and the detection of moderating
relationships. We initially trained the model with diagrams that only included
connections to nodes on adjacent levels as described in section 3.2. We found that the
model was capable of generalizing well to the real-world dataset as it correctly
identified edges connecting nodes on various levels.

5.1 Limitations

There are different sources of errors relating to object detection accuracy, OCR
accuracy, and graph reconstruction accuracy. We found that horizontal lines pose a
challenge to our trained object detection model. Missing such objects leads to follow-
up errors as a connection between objects can not be inferred during graph
reconstruction, resulting in missing links between constructs in our database. In
addition, the detection of single-character edge labels, such as "+" or "-" poses a
challenge for OCR. Both issues indicate problems in detecting objects with a low pixel
density in very thin shapes. More extensive image preprocessing might help mitigate
this shortcoming.

Our algorithm for graph reconstruction relies on interpreting labels and coordinates
of bounding boxes. The main challenge is to infer the path of edges as diagonal edges
are represented as rectangles. For our implementation, we based our inference on the
pragmatic decision that every edge is interpreted as a straight edge. Based on this
assumption, we can infer the path of an edge by analyzing the position of a connected
arrowhead and thereby assign source and target nodes of a connection. Figure 7
illustrates this approach and also shows an example where a cornered edge is still
interpreted correctly.

Figure 7. From real diagram to object detection results to bounding box inference

Although the approach works well in the majority of cases, it is not able to accurately
detect paths of curved or cornered edges. This also impedes the accurate allocation of
labels to edges. Using instance segmentation where instead of a bounding box the
precise shape of an object is used for training a model could increase accuracy.
However, it would also lead to additional complexity as these shapes contain much
more detailed coordinates, leading to challenges in creating training data and in
automatically reconstructing graphs to detect connections between objects.

5.2 Future Work

In order to accurately support the population of theory repositories allowing for
analyzing constructs and their interrelations on a large scale, some challenges must be
addressed to further improve the performance of this method. Our approach could be

enhanced by extending the graph reconstruction algorithm to add detection capabilities
for moderating relationships and grouped nodes. However, we think that the hardest
challenge is the correct detection of edges in diagrams. Using instance segmentation to
get the exact shape of an arrow might be a way towards more overall accuracy. Such
an approach would also enable the correct assignment of labels to edges, but it comes
at the expense of higher effort in generating training data and fine-tuning a graph
reconstruction algorithm for interpreting more complicated bounding box shapes.

6 Conclusion

In this article we presented a method for automated knowledge extraction from
graphical research models covering a workflow from research articles to persisting
findings in a designated data format. We (1) classified and extracted research diagrams
from scientific articles, (2) created synthetic training data of high variance, (3)
performed object classification with state-of-the-art technologies, (4) reconstructed
detected graph structures and (5) stored our findings into a meta-model for graphical
research models. The performance in correctly extracting, interpreting, and
reconstructing real-world diagrams shows good results for the detection and
interpretation of constructs (F1=0.82), links (F1=0.72), and labels (0.72). Future
developments could incorporate instance segmentation techniques to overcome
limitations in edge interpretation and label assignment.

As an introductory note, we boldly claimed that performing research in IS today -
where researchers need to manually analyze hundreds of articles to get an overview of
the state of the art - is not too different from the prehistoric approaches of our early
ancestors to research better hunting strategies by comparing and assessing cave
paintings across their friendly neighbors' caves.

Naturally, we do not know if our ancestors eventually managed to find the best
theory to hunt a mammoth but we presented a method that can support researchers today
in collecting data from thousands of articles reducing the amount of necessary manual
labor. We hope that in the not-too-distant future, the work from months and sometimes
even years can be reduced to minutes enabling new kinds of analyses tapping into the
collective knowledge of researchers in IS. Similar to cave paintings that informed
ancient hunters, the semi-automated extraction and synthesis of research diagrams
could support researchers in setting out to hunt their next big scientific discovery.

References

AIS (2021), Senior Scholars’ Basket of Journals, https://aisnet.org/page/SeniorScholarBasket,
Accessed: 15.11.2021.

Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A. & Reislhuber, J. (2013), ‘Optical
Graph Recognition’, Journal of Graph Algorithms and Applications 17(4), pp. 541–565.

Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y.M. (2020), YOLOv4: Optimal Speed and
Accuracy of Object Detection, http://arxiv.org/abs/2004.10934, Accessed: 7.11.2022.

Bornmann, L., Haunschild, R. & Mutz, R. (2021), ‘Growth rates of modern science: a latent
piecewise growth curve approach to model publication numbers from established and new
literature databases’, Humanities and Social Sciences Communications 8(1), pp. 1–15.

Clark, C. & Divvala, S. (2016), PDFFigures 2.0: Mining Figures from Research Papers, in
‘Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries’ ACM,
pp. 143–152.

Dann, D., Maedche, A., Teubner, T., Mueller, B. & Meske, C. (2019), DISKNET – A Platform
for the Systematic Accumulation of Knowledge in IS Research, in ‘Proceedings of the 40th
International Conference on Information Systems (ICIS)’, p. 11.

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai, Y., Yu, Z., Yang, Y., Dang, Q. &
Wang, H. (2020), PP-OCR: A Practical Ultra Lightweight OCR System,
http://arxiv.org/abs/2009.09941, Accessed: 10.11.2022.

EasyOCR (2023), EasyOCR - Github Repository, https://github.com/JaidedAI/EasyOCR,
Accessed: 9.3.2023.

Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C. & Woodhull, G. (2004), Graphviz and
Dynagraph — Static and Dynamic Graph Drawing Tools, in Jünger, M. & Mutzel, P. (eds.)
‘Graph Drawing Software’ Mathematics and Visualization, Springer Berlin Heidelberg, pp.
127–148.

Fang, J., Feng, Z. & Cai, B. (2022), ‘DrawnNet: Offline Hand-Drawn Diagram Recognition
Based on Keypoint Prediction of Aggregating Geometric Characteristics’, Entropy 24(3), p.
425.

Genz, T. & Funk, B. (2020), Using CNNs to Detect Graphical Representations of Structural
Equation Models in IS Papers, in ‘WI2020 Zentrale Tracks’ GITO Verlag, pp. 115–120.

Graphviz (2022), Graphviz - An Open Source Graph Visualization Software,
https://graphviz.org/, Accessed: 7.11.2022.

Groeneveld, E. (2016), World History Encyclopedia - Lascaux Cave,
https://www.worldhistory.org/Lascaux_Cave/, Accessed: 22.9.2022.

Ivanov, A. & Sharman, R. (2018), ‘Impact of User-Generated Internet Content on Hospital
Reputational Dynamics’, Journal of Management Information Systems 35(4), pp. 1277–
1300.

Jocher, G. et al. (2022), YOLOv5 - Relase Version 6.2, https://zenodo.org/record/7002879,
Accessed: 7.11.2022.

Kiessling, S., Figl, K. & Miniukovich, A. (2020), Graphical Research Models in the
Information Systems Discipline, in ‘Proceedings of the 53rd Hawaii International
Conference on System Sciences’.

Kim, Y.J. & Song, J. (2004), Unveiling User Characteristics in Virtual Communities and the
Impact on E-Commerce, in ‘Proceedings of the International Conference on Information
Systems (ICIS)’, p. 15.

Larsen, K.R. & Bong, C.H. (2016), ‘A tool for addressing construct identity in literature
reviews and meta-analyses’, MIS Quarterly 40(3), pp. 1–23.

Larsen, K.R., Hovorka, D.S., Dennis, A.R. & West, J.D. (2019), ‘Understanding the Elephant:
The Discourse Approach to Boundary Identification and Corpus Construction for Theory
Review Articles’, Journal of the Association for Information Systems , pp. 887–927.

Li, J., Larsen, K. & Abbasi, A. (2020), ‘TheoryOn: A Design Framework and System for
Unlocking Behavioral Knowledge Through Ontology Learning’, MIS Quarterly 44(4), pp.
1733–1772.

Li, J. & Larsen, K.R. (2011), Establishing Nomological Networks for Behavioral Science: a
Natural Language Processing Based Approach, in ‘Proceedings of the International
Conference on Information Systems (ICIS)’.

Maier, G.J., Musholt, E.A. & Stava, L.J. (2021), ‘Lascaux Cave, Part Four: Evidence of
Hunting’, Journal of Transpersonal Psychology 53(1).

Mueller, R. & Abdullaev, S. (2019), DeepCause: Hypothesis Extraction from Information
Systems Papers with Deep Learning for Theory Ontology Learning, in ‘Hawaii International
Conference on System Sciences (HICSS)’.

Mueller, R.M. (2015), A Meta-Model for Inferring Inter-Theory Relationships of Causal

Theories, in ‘48th Hawaii International Conference on System Science (HICSS)’ IEEE, pp.
4908–4917.

Mueller, R.M. & Huettemann, S. (2018), Extracting Causal Claims from Information Systems
Papers with Natural Language Processing for Theory Ontology Learning, in ‘Proceedings of
the 51st Hawaii International Conference on System Sciences’.

Olorunshola, O.E., Irhebhude, M.E. & Evwiekpaefe, A.E. (2023), ‘A Comparative Study of
YOLOv5 and YOLOv7 Object Detection Algorithms’, Journal of Computing and Social
Informatics 2(1), pp. 1–12.

Palvia, P., Midha, V. & Pinjani, P. (2006), ‘Research Models in Information Systems’,
Communications of the Association for Information Systems 17.

Recker, J. (2013), Scientific Research in Information Systems. Springer.
Schaefer, B. & Stuckenschmidt, H. (2019), Arrow R-CNN for Flowchart Recognition, in ‘2019

International Conference on Document Analysis and Recognition Workshops (ICDARW)’
IEEE, pp. 7–13.

Scharfenberger, J., Funk, B. & Mueller, B. (2021), The Augmented Theorist - Toward
Automated Knowledge Extraction from Conceptual Models, in ‘International Conference on
Information Systems (ICIS)’.

Schoelch, L., Steinhauser, J., Beichter, M., Seibold, C., Yang, K., Knäble, M., Schwarz, T.,
Mädche, A. & Stiefelhagen, R. (2022), Towards Automatic Parsing of Structured Visual
Content through the Use of Synthetic Data, in ‘26th International Conference on Pattern
Recognition (ICPR)’.

SciKit Learn (2023a), Example of Precision-Recall metric to evaluate classifier output quality,
https://scikit-learn/stable/auto_examples/model_selection/plot_precision_recall.html,
Accessed: 10.3.2023.

SciKit Learn (2023b), SciKit Learn Metrics - sklearn.metrics.f1_score, https://scikit-
learn/stable/modules/generated/sklearn.metrics.f1_score.html, Accessed: 5.3.2023.

Siegel, N., Lourie, N., Power, R. & Ammar, W. (2018), Extracting Scientific Figures with
Distantly Supervised Neural Networks, in ‘Proceedings of the 18th ACM/IEEE on Joint
Conference on Digital Libraries’, pp. 223–232.

Tesseract (2023), Tesseract OCR - Github Repository, https://github.com/tesseract-
ocr/tesseract, Accessed: 9.3.2023.

Ultralytics (2022), YOLOv5 Documentation - Tips for Best Training Results,
https://docs.ultralytics.com/tutorials/training-tips-best-results/, Accessed: 9.11.2022.

Wang, C.-Y., Bochkovskiy, A. & Liao, H.-Y.M. (2022), YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors, http://arxiv.org/abs/2207.02696,
Accessed: 7.11.2022.

	How Best to Hunt a Mammoth - Toward Automated Knowledge Extraction From Graphical Research Models
	Recommended Citation

	WI2023 Diagram Detection Revision

