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Context-Aware Marketing Attribution Based on Survival
Analysis

Research Paper

Kilian Züllig, Stefan Napirata, and Steffen Zimmermann

Ulm University, Institute of Business Analytics, Ulm, Germany
{kilian.züllig,stefan.napirata,steffen.zimmermann}@uni-ulm.de

Abstract. Companies increasingly invest in digital marketing channels to promote
their products and services. While the expenditures for each marketing channel
are known, the contribution of marketing channels to a successful conversion, and
therefore the value they generate, is unknown, but highly relevant for strategic
decision-making. In this paper, we develop a novel, context-aware additive hazard
marketing attribution (CAHMA) model based on survival analysis to address this
problem. In addition to channel-specific, time-decaying effects of marketing on
the users’ conversion rate, we control for the effects of contextual features, such as
the device or country from which users interact with marketing channels. Based
on a prototypical implementation, we demonstrate the model’s applicability and
evaluate it on real-world data from the industry. We find that CAHMA outperforms
other models in terms of accuracy while offering unique interpretability of the
results and hence, providing deep insights for practitioners into the effects of
marketing.
Keywords: Marketing Attribution, Online Advertising, Survival Analysis, Con-
version Prediction

1 Introduction

Over the past decade, digital marketing has become the most important way for compa-
nies to reach potential new and existing customers to promote their products or services.
Spending on digital marketing has more than doubled in the last 5 years and is ex-
pected to keep increasing in future (Statista, 2022b). Thereby, Big Data analytics enables
businesses to provide customers with more targeted and personalized advertisements
to motivate them to move along the purchase funnel toward the action desired by the
advertising company, i.e., conversion (Kannan et al., 2016). Along their customer journey
towards conversion, users typically have multiple interactions, i.e., touchpoints, with
different marketing channels such as search engine advertising (SEA), display or social
media advertising. While companies can easily quantify the exact amount spent for
each marketing channel, their contribution to a successful conversion, and therefore the
value generated from specific channels, is unknown. Marketing attribution is a strategy
for determining the individual contribution of marketing channels to conversions and
allocating the generated value accordingly. In order to measure and manage the efficiency
of marketing and to improve its return on investment, marketing attribution has been
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recognized as a central task in digital marketing (Kannan et al., 2016), underlining the
importance of accurate marketing attribution models. Yet, determining the accuracy
of marketing attribution is not trivial, because there is no ground truth for the value
generated by channels. Most likely, not even customers are aware of the exact influence
that different marketing channels had on their own purchase decisions. In this vein,
marketing attribution is a two-folded problem. First, an attribution strategy is necessary
to allocate the value of conversions to marketing channels and second, a measurement of
how well this allocation reflects reality is required. For the latter, it has become standard
to assume that good marketing attribution models should also be good at predicting
whether a customer journey leads to a conversion or not (Shao & Li, 2011). Aiming
for the highest predictive accuracy, data-driven marketing attribution models tend to
increase in complexity (e.g., Kumar et al., 2020). While predictive accuracy is indeed
an important criterion for convincing managers of a model’s credibility (Lodish, 2001),
managers must understand how the results are generated in order to rely on them for
strategic decisions (Little, 2004).

Existing literature proposes a variety of data-driven approaches (see e.g., Zaremba
(2020) for an overview), with a recent trend towards neural-network-based models (e.g.,
Yang et al., 2020; Kumar et al., 2020; Yao et al., 2022). While these models may be best
at predicting conversions, they strongly sacrifice on interpretability, especially regarding
their black-box model structure. Consequently, practitioners are unlikely to rely on
them for strategic decision-making, which is the ultimate purpose of attribution models
(Romero Leguina et al., 2020).

On the other hand, there are advanced, data-driven models that also find application
in the industry. Among these, Markov chains provide a comprehensible model structure
and solid predictive accuracy (Anderl et al., 2013). While this seems promising, there are
relevant aspects that cannot be modeled with Markov chains (Anderl et al., 2016). For
example, the effect of a user’s touchpoint with a marketing channel on the conversion
probability obviously decreases over time, which cannot be accounted for by Markov
chains. Models based on additive survival analysis (e.g., Zhang et al., 2014; Ji & Wang,
2017) also have a very intuitive and comprehensible model structure and, in addition,
allow to incorporate such time-decaying effects. Even more, beyond time-dependencies,
the environment and circumstances under which users interact with marketing channels
(e.g., season or country) or, if available, user characteristics (e.g., users’ demographics or
preferences), might also have an impact on their conversion probabilities. This additional
information can also be included in additive survival analysis models, using contextual
features. Zhang et al. (2014), however, do not account for such contextual features. Ji
& Wang (2017) significantly increase the complexity of their model when including
contextual features, such that it loses interpretability, besides having some unresolved
mathematical issues.1

In this paper, we propose a novel context-aware additive hazard marketing attribution
model (CAHMA) based on survival analysis. The model assumes an intuitive, additive
relationship between the effects of marketing channels and accounts for the influence of
contextual features. Unlike Ji & Wang’s (2017) model, we directly control for channel-

1 For a more detailed discussion of the related literature see: https://github.com/CAH
MAchameleon/CAHMA.

https://github.com/CAHMAchameleon/CAHMA
https://github.com/CAHMAchameleon/CAHMA


independent but context-dependent effects, similar to how control variables are used in
regression models. This allows to better separate context-specific effects and identify
the “true” channel-specific effect of marketing. Based on a prototypical implementation,
we demonstrate the applicability of CAHMA and evaluate it on a real-world dataset
from GetYourGuide, a leading international booking platform for travel products. The
data was provided by the platform in search of a new marketing attribution model with
high predictive accuracy under the condition of strong interpretability of both the model
structure and results. We find that CAHMA outperforms other interpretable data-driven
marketing attribution models. Considering highly skewed data for marketing attribution,
CAHMA is particularly accurate in detecting the relevant minority class, i.e., converting
customer journeys. At the same time, CAHMA provides unique insights into the channel-
independent effects of contextual features in addition to the channel-specific influence
strength and time-decaying effect of marketing.

2 Context-Aware Additive Hazard Marketing Attribution Model

Before we present our model and its evaluation, we introduce the concepts of survival
analysis which is commonly used to build models for censored time-to-event data (Law-
less, 2011). Let T be a non-negative random variable describing the waiting time until
the occurrence of an event (here, conversion of a user). The main goal of our model is to
estimate the probability distribution of T , which is the basis for our marketing attribu-
tion and conversion prediction. Using standard notations from probability theory, F (t)
denotes the cumulative distribution function and f(t) the probability density function
of T . The survival function S(t) is the counter probability that the conversion does not
occur until time t. The hazard rate λ(t) is defined as the probability of conversion within
the next, infinitesimally small moment after time t, given that the user has not converted
until t. Applying basic calculus (see e.g., Lawless, 2011), one can derive the following
two identities

(i) S(t) = e−
∫ t
0
λ(s) ds, (ii) f(t) = S(t)λ(t).

As S(t) and consequently f(t) depend only on the hazard rate, the random variable T ,
and therefore the entire model, is completely defined by the hazard rate λ(t). We detail
later, how modeling the hazard rate is sufficient to determine the marketing attribution
and conversion prediction.

2.1 CAHMA Model

Based on survival analysis, we introduce our novel CAHMA model for context-aware
marketing attribution. We denote users (i.e., potential customers) by u ∈ {1, . . . , U} and
marketing channels by k ∈ {1, . . . ,K}. A touchpoint corresponds to an interaction of a
user u with a marketing channel k and is denoted by a tuple (aul , t

u
l ), where aul denotes

the marketing channel of the l-th interaction of user u and tul denotes the timestamp
of this interaction. The customer journey of a user u, consisting of lu touchpoints, is
defined as Ju = {(aul , tul )

lu
i=1, Y

u, Tu, Xu}. At the end of a customer journey either a
conversion or no conversion is observed, which is denoted by Y u ∈ {0, 1}. Furthermore,



every customer journey has a latest timestamp Tu, marking the end of the journey. If the
customer journey leads to a conversion, i.e., Y u = 1, then Tu is the time of conversion.
If the customer journey does not lead to a conversion, i.e., Y u = 0, then Tu corresponds
to the end of the observation window. Additionally, we include available contextual
features, e.g., the season or country in which the touchpoint was recorded. The vector
Xu contains the contextual features observed during the customer journey of user u.

Similar to Zhang et al. (2014), we assume an additive effect between the channel-
specific and time-dependent effect κau

l
(t) of each touchpoint. Extending the model of

Zhang et al. (2014), we further account for the influence of contextual features in a
time-independent baseline hazard b(X). Therefore, the hazard rate for customer journey
Ju at time t is given by

λu (t|Ju) =

{
b(Xu) +

∑
tul <t κau

l
(t), for t ≥ tu1

0, for t < tu1 .

In line with Zhang et al. (2014) and Ji & Wang (2017), we assume a positive influence of
each touchpoint on the hazard rate, which fades over time. Hence, we model the channel-
specific effect of each touchpoint on the instantaneous conversion probability of user
u at time t by the kernel function κau

l
(t) = βau

l
ωau

l
e
−ωau

l
(t−tul ). For each interaction

with channel k, i.e., if aul = k, βk represents the channel-specific influence strength of
the touchpoint on the hazard rate and ωk is the corresponding speed of decay over time.
(t− tul ) denotes the elapsed time since the l-th interaction. All βk’s must be non-negative,
as otherwise, the hazard rate could be negative, which is impossible by the definition of a
probability and the assumptions of survival analysis. We further constrain all ωk’s to be
non-negative as well, to maintain the assumption of time-decaying effects of marketing.

The time-independent baseline hazard, introduced in the proposed method, allows
controlling for channel-independent effects on the conversion probability that are instead
driven by contextual features of user u. The baseline hazard is given by b(Xu) =

eα0+
∑I

i=1 αiX
u
i , where each Xu

i represents one out of I different contextual feature
from the feature vector Xu. The parameters αi ∈ {1, . . . , I} estimate the effects of
contextual features and are not restricted in their domain. The coefficient α0 is a constant.
While different functional forms of the baseline are possible, we use an exponential
function, ensuring that the baseline is always greater than zero. Moreover, the differences
in the effects of two features can be easily analyzed and interpreted. By modeling a
positive, time-independent baseline hazard we establish a mathematically correct survival
analysis model and estimate a true probability distribution of the time to conversion.

Figure 1 illustrates an exemplary hazard rate for one customer journey over time, as
assumed in our model. The horizontal line represents the context-dependent baseline haz-
ard which is constant for one customer journey. Each kernel function κk(t) corresponds
to one peak that fades over time. When the user interacts with one of the marketing
channels, the hazard rate increases (c.f. vertical increase). The influence strength βk

of a channel corresponds to the area between the curve and the dotted line below and
the time-decaying effect ωk defines the slope of the curve. The concept of the baseline,
the influence strength, and the time-decaying effect allow for a very descriptive and
understandable model structure with interpretable model parameters and results. For the
sake of interpretability, we calculate the half-life of a channel, which is the time until



Figure 1. Hazard Rate.

the effect of a channel on the conversion rate is half its quantity. Using an exponential
function, the half-life is constant over time, which facilitates interpretation.

The central objective of marketing attribution is to take a retrospective view on
customer journeys to assign value to individual touchpoints or channels. However, there
is no ground truth for the assigned values making it impossible to directly evaluate the
quality or accuracy of the attribution. Thus, an alternative measure for the quality of mar-
keting attribution models is required. It is widely assumed that a marketing attribution
model, that accurately captures the effects of marketing, should also perform well in
the task of conversion prediction. Consequently, predictive accuracy is commonly used
to evaluate the performance of the models instead of directly evaluating the marketing
attribution. In the following, we first derive the marketing attribution strategy based on
CAHMA before explaining how the method can predict conversions.

Marketing Attribution Strategy. Through its additive structure, the proposed model
allows calculating the contribution of each touchpoint (aul , t

u
l ) to the instantaneous

conversion probability, i.e., the hazard rate, at any given time t from the value of the
channel-specific kernel function κk(t). In the case of a conversion, the contribution of
a marketing channel is given by the relative contribution at conversion time Tu of all
touchpoints in the customer journey that belong to that channel. Similar to previous
models based on additive survival analysis (Zhang et al., 2014; Ji & Wang, 2017), that is

attruk =

∑
tul <Tu,au

l =k κk(T
u)∑

tul <Tu κk(Tu)
.

The baseline hazard b(Xu) models the context-dependent but channel-independent effect
of marketing, which is collectively triggered by all touchpoints in the customer journey.
Thus, we ignore the contribution of the baseline in the attribution. This is equivalent to
distributing the effect of the baseline over all channels in the customer journey according
to their relative contribution to the channel-specific effects.

Conversion Prediction. The proposed model allows to directly derive the conversion
probability of users from the hazard rate by integrating over the time after their last
interaction tulu . Hence, the conversion probability within a time window t̃ is given by



P (T ≤ tulu + t̃|Ju) = 1− e
−t̃b(Xu|Ju)−

∑lu
l=1 βau

l
(e

ωau
l

t̃
−1)e

−ωau
l
(tulu+t̃−tulu)

.

It follows from this equation that for an infinitely large time window, i.e., t̃ → ∞, the
baseline hazard will drive the survival function to zero and the probability of eventual
conversion to 1. This property of survival analysis models ensures that the time to con-
version T is a true random variable. In our practical context of marketing attribution, it
can be argued that not every user will convert. However, our model only assumes that
every user would theoretically convert within an infinite time window. The predicted
conversion time may be too large to be observed if it exceeds the time during which a
customer journey is trackable, or even the remaining lifetime of the user.

Parameter Estimation. We use maximum likelihood estimation to fit all parameters
Θ = {α0, . . . , αI , β1, . . . , βK , ω1, . . . , ωK} to the data. The objective log-likelihood
function is given by

logL(Θ) =
∑

u∈U,Y u=0

log (S(Tu|Ju)) +
∑

u∈U,Y u=1

log (S(Tu|Ju)λ(Tu|Ju)) .

As there is an analytic solution for the gradients of our log-likelihood function, the
optimization problem can be solved using any gradient optimization algorithm that
allows for box constraints.2

2.2 Demonstration and Evaluation

Prototypical Implementation The prototype of CAHMA is implemented in the pro-
gramming language R. Calculating the log-likelihood function and its gradients requires
operations on a very large number of grouped subsets of the data (i.e., single customer
journeys). Using the open source package “data.table” from R, our prototype can handle
substantial marketing attribution datasets even on a local computer. However, for a
productive analytics environment, nowadays many companies rely on modern cloud
computing platforms (Statista, 2022a) such as Microsoft Azure or Amazon AWS that
allow for efficient distributed computing over large clusters with analytics engines like
Apache Spark or Hadoop. To be able to leverage the advantages of such platforms, we
apply the MapReduce programming model, which is the foundation for Spark or Hadoop.
MapReduce allows distributing big datasets over large clusters to perform computations
efficiently in parallel (Dean & Ghemawat, 2008). Due to the additive structure of the
log-likelihood function and its gradients, their calculation can be decomposed into many
smaller subproblems. Following MapReduce, these subproblems are then distributed
over a cluster of worker processes for parallel computation (map) before aggregating
the results in one global solution (reduce). While MapReduce together with data.table
already enables efficient computations in R, the developed prototype can be transferred

2 For more details on the log-likelihood, its gradients and the optimization problem see https:
//github.com/CAHMAchameleon/CAHMA.

https://github.com/CAHMAchameleon/CAHMA
https://github.com/CAHMAchameleon/CAHMA


to Apache Spark to run even more efficiently on modern cloud computing platforms,
further improving the practical applicability of CAHMA.

Dataset. To evaluate the prototype of CAHMA, we were provided with a real-world
dataset by GetYourGuide. The dataset was provided in anonymized form. GetYourGuide
invests heavily in its digital marketing campaigns to generate new and reattract previous
customers. The dataset contains information on the interactions of potential customers
with various marketing channels used by GetYourGuide over a nine-month time window
from June through February.3 In total, the dataset contains almost 33 Mio. touchpoints
of 14.8 Mio. unique users4 and 11 distinct channels. Each record of the dataset repre-
sents one touchpoint. Additionally, the dataset contains the exact transaction time and
contextual features such as the device which was used for an interaction or the country
in which it was recorded.

Assuming that reconversions of users can be influenced by their marketing touch-
points, which occurred before their previous transactions, we do not restart customer
journeys after conversions. Instead, all previous touchpoints of users are added to their
subsequent customer journeys which extend beyond the users’ previous transactions. By
this approach, we aim to avoid underestimating the contribution of early touchpoints for
repeated conversions. Overall, we obtain 14,950,959 distinct customer journeys, of which
significantly less than 5% ended in conversions. This highlights the strong imbalance of
the data. We randomly split the dataset into disjoint training and evaluation sets, each
containing 50% of the customer journeys. This allows us to assess out-of-sample perfor-
mance on unseen data, which is unbiased by overfitting. To enrich customer journeys
with contextual features, we use dummy-coded variables of the devices on which, the
countries in which, and the seasons during which the customer journeys were tracked.
The dataset contains more than 200 different countries, with some of them having even
less than 10 occurrences. Hence, we code the ten most relevant countries in terms of their
frequency and conversion rate individually and segment the remaining countries into
nine geographic regions to limit the number of required dummy variables. This coding
is solely based on information from the training data to avoid any data leakage to the
evaluation dataset. The seasons are defined as the three-month time windows of summer
(June - August), fall (September - November), and winter (December - February). Spring
is omitted because our data contains no records for this time frame. For the devices, we
distinguish between Android, iOS, other mobile devices, and desktop computers. Beyond
the described data preparation steps and basic data cleaning, including the removal of
duplicates and incomplete records, we do not further manipulate the dataset, e.g., to
reduce the imbalance. This way we ensure to evaluate CAHMA on a realistic dataset
available in practice.

Competing Models. Because of their practical relevance, we compare our proposed
model to existing additive survival analysis models, which are based on the same

3 For confidentiality reasons, we cannot provide details on commercially highly sensitive infor-
mation such as the exact conversion rate or channel specifics.

4 The dataset is limited to information associated with website visitors that have consented to the
specific data collection according to data protection legislation.



assumptions and the standard Markov chain model by Anderl et al. (2013). All models
are trained and evaluated on the same datasets. The competing models are

– AdditiveHazard (Zhang et al., 2014): This model based on survival analysis pro-
vides the basis for our proposed model, using an additive hazard rate but without
considering contextual features.

– AMTA (Ji & Wang, 2017): This model is also based on survival analysis and pro-
vides an alternative approach that allows the inclusion of contextual features. The
model considers contextual features by the users’ intrinsic, time-independent con-
version rate as an additional influence on conversion. The authors attempt to model
the overall conversion probability as a joint distribution of the time-independent
conversion probability and the marketing-induced conversion probability.

– MarkovChain (Anderl et al., 2013): This model is the current standard at GetY-
ourGuide and, as already discussed, represents a popular choice for data-driven
marketing attribution models among practitioners. As suggested by Anderl et al.
(2013), we apply third-order Markov chains as it optimizes the general trade-off
between predictive accuracy and model complexity which hinders interpretability.

Marketing Attribution. Figure 2 shows the contribution of the different channels based
on the attribution generated by the four models. For comparison, the figure further
includes the relative frequency with which the channels occur in the dataset. All models
provide similar attributions, which appear to be correlated with the frequency of the
channels. This supports the general plausibility of the results. The most remarkable
differences between the overall frequency of channels and the attributed values can be
observed for Channel 5, Channel 7, and Channel 9. All four models estimate Channel 5
to be significantly more relevant than suggested by its frequency. In all survival analysis
models, the attribution of Channel 9 strongly deviates from the one in MarkovChain and
the frequency of the channel, which suggests that Channel 9 is estimated to be much less
influential. While the other survival analysis models assign significantly more value to
Channel 7, CAHMA attributes only slightly more value to it than MarkovChain.

Figure 2. Results of the attribution for the different models.

Predictive Accuracy. To access predictive accuracy, the Receiver-Operator-Characteristic
(ROC) curve and the area under the ROC curve (AUC) is a standard metric for the per-
formance of probabilistic classifiers. However, the dataset at hand is highly skewed



with a conversion rate of significantly less than 5%. For such highly skewed data, AUC
tends to be overly optimistic in the measurement of an algorithm’s performance (Branco
et al., 2016). In these cases, Precision-Recall (PR) curves are more informative (Davis
& Goadrich, 2006; Saito & Rehmsmeier, 2015). Furthermore, marketing attribution
models can only attribute value for customer journeys which actually lead to a con-
version. Consequently, it is primarily important for these models to accurately detect
and map converting customer journeys. Moreover, marketing data is right censored as
it is unknown whether non-converting customer journeys terminated because the user
actually did not convert or simply for technical reasons, such as the deletion of the
tracked cookie. This induces noise in the negative majority class. As PR curves are
more sensitive to improvements in the positive minority class (Davis & Goadrich, 2006;
Loezer et al., 2020; Saito & Rehmsmeier, 2015), they are particularly suitable to evaluate
marketing attribution models. Thus, we include the area under the PR curve (PR-AUC)
as the primary, central metric to measure the predictive accuracy. Additionally, we report
the ROC curve and AUC as a supplementary metric. Panel A in Figure 3 depicts the

Figure 3. Results of the conversion prediction using AUC and PR-AUC.

achieved ROC curves and corresponding AUC values for CAHMA and the competing
models based on the out-of-sample performance on the evaluation set. CAHMA achieves
a higher AUC value than AdditiveHazard and AMTA, as related models based on sur-
vival analysis. MarkovChain achieves a slightly higher AUC than CAHMA, however,
the ROC curve of MarkovChain does not strictly dominate the curve of CAHMA. For
low false positive rates, CAHMA’s ROC curve increases much steeper and thus lies
above MarkovChain’s ROC curve in this region, indicating a faster initial increase in
the true positive rate at a lower cost of false positives. Thus, CAHMA outperforms
MarkovChain in predicting the important minority class. This outperformance becomes
more evident when comparing the more informative PR curves of all models (c.f. Panel B
in Figure 3). Considering the PR-AUC, CAHMA significantly outperforms all competing
models. Although significantly worse than CAHMA, both alternative survival analysis
models also achieve a higher PR-AUC than MarkovChain. Overall, the results indicate
that CAHMA is considerably better than the competing models at detecting converting
customer journeys. The low PR-AUC of MarkovChain is driven by the sharp decline in
its PR curve for low recall values. Hence, MarkovChain is more likely to miss converting
customers, which is undesirable considering the highly skewed, right censored data and



the objective to generate insights into why customers ultimately convert.

Interpretability. The general structure of MarkovChain is easy to understand and
provides a transparent strategy for deriving the attribution. However, the ability to
interpret the results is limited as MarkovChain cannot account for contextual features.

In contrast, additive survival analysis models in general have a significantly stronger
interpretability of the results due to their model parameters. The model parameters of
CAHMA give additional explanations for the observed differences between the frequency
and the attribution of the channels and provide deeper insights into how the attribution
was derived. Beyond the previous work by Zhang et al. (2014) and Ji & Wang (2017),
we normalize the influence strength βk to the interval from 0% to 100% and calculate
the half-life of a channel’s effect from its time-decaying property ωk. This allows us to
easily compare the parameters and analyze how different channels exert their influence.
Figure 4 shows the transformed values of the parameters βk and ωk. Channel 1 has a
relatively small influence strength and a very low half-life, indicating that each time a
user interacts with this channel, it only exerts a small influence that decays very quickly
with time. However, due to its high frequency (c.f. Figure 2) in the dataset, Channel 1
adds a small effect very often and is thus still attributed the highest value. On the other
hand, touchpoints with, e.g., Channel 5 or Channel 7 are very scarce but exert a much
higher and/or longer-lasting influence and are thus still attributed a considerable value
above their relative frequency. In general, differences among the influence strengths and

Figure 4. Overview of model parameters

half-lives of marketing channels are very plausible. For example, each individual click
on a search result when looking for tickets to attractions is likely to have less impact and
to be forgotten more quickly than when a user is individually targeted by a personalized
email or receives a link shared by a friend or idol. This interpretability of influence and
persistency of channels over time is a key strength of additive survival analysis models.

In addition to the channel-specific influence strength of marketing and its half-life,
CAHMA allows for determining the channel-independent effect of marketing. The
average contribution of the baseline hazard at conversion time is 4.72%. As elaborated
in Section 2.1, we distribute this contribution over all channels in the customer journeys
to derive the marketing attribution. However, controlling for the influence of contextual
features provides additional insights. Contextual features that are correlated with a



high conversion probability will increase the baseline hazard rate and vice versa. As
the baseline hazard is modeled by an exponential form, we can directly compare the
influence on the baseline hazard of two contextual features with parameters α1 and α2.
For example, the estimated parameters for the devices iOS and Android are 3.10 and
2.43, respectively. The resulting ratio e3.10−2.43 = 1.95 suggests, that, ceteris paribus,
the channel-independent baseline hazard for iOS users is about 95% higher than for
Android users. Consequently, with an identical customer journey, iOS users would be
more likely to convert. Overall, our model suggests that iOS users have the highest and
users of other mobile devices have the lowest baseline hazard. Fall and winter have
a substantially lower impact on a user’s hazard rate compared to summer. In general,
interactions from European countries have greater influence compared to other regions.

3 Discussion and Conclusion

Overall, as presented in Table 1, our proposed model meets the evaluation criteria very
well. CAHMA showed high predictive accuracy compared to the competing models. This
supports the validity of CAHMA’s attribution. The high predictive accuracy of CAHMA
does not come at the expense of interpretability. The structure of the proposed model
is very comprehensible and inherits the strong interpretability of the results of additive
survival analysis models. In addition, the baseline can be used to examine the extent
to which different contextual features influence the user’s probability to convert. This
allows to directly compare these influences as well as determining the value generated by
channel-independent marketing effects. The latter is not included in Ji & Wang’s (2017)
model. Therefore, our model enables a unique interpretation of the contextual features.

Table 1. Summary of the evaluation results.

Model
Predictive Accuracy Interpretability

PR-AUC of the model of the results
MarkovChain 14.0% +

AdditiveHazard 16.9% + +
AMTA 18.1% + +

CAHMA 26.1% + ++

We contribute to the literature on data-driven marketing attribution models in general
and to models based on survival analysis in particular. Adding a context-dependent
baseline hazard allows to control for channel-independent effects of marketing and, thus,
to better capture the “true” effect of marketing channels. Also, the baseline resolves the
mathematical issue of previous additive survival models, as it aligns CAHMA with the
assumptions of survival analysis and properties of probability theory.

With interpretability as an important criterion for marketing attribution models, our
research has additional practical contributions. Estimating an influence strength and a
half-life of the effect of each marketing channel generates further insights into “how”
marketing channels exert their influence and affect users. This interpretation has not
been the focus of researchers and is impossible to achieve for Markov chain models,



which are commonly used in the industry. Integrating contextual features in our model
in form of a baseline hazard enables flexible extension and adaption of the model to
specific use cases and provides further interesting insights, as the effects of different
contextual features on the user’s conversion probability can be compared (c.f. Section
2.2). While we model contextual features such as the season or country in which the
user interacted with the marketing channels, our model is not restricted to these kinds
of features. For example, campaign-level data could be used in the baseline hazard
as contextual features to further model the influence of campaign characteristics over
various channels on the conversion probabilities of users. This would then allow for
comparing the general, channel-independent effect of marketing campaigns in addition
to channel-level marketing attribution. Altogether, by implementing a prototype of
CAHMA as part of an applied research project with GetYourGuide, we demonstrate the
practical value of the model. Considering its interpretability and flexible extensibility, we
outline the valuable support that CAHMA can provide for strategic marketing decisions.

Our work has limitations that can serve as starting points for future research. First,
we evaluate our model on one dataset which only covers 9 months of data missing the
spring season. As spring is likely a busy season for the travel products, it would be
interesting to analyze additional data to estimate the impact of the spring season. In
general, it would be interesting to see, whether our results hold for other datasets from
various industries. Furthermore, our dataset only contains online channels such as SEA,
display or social media advertising and is solely click-based. However, impressions, i.e.,
touchpoints where a user sees an advertisement without clicking on it, and exposure to
offline marketing can have a relevant influence on users’ purchase decisions. Although
we expect the proposed model to successfully process impressions and offline channels
as well, this could be verified in future work. Third, the model could be evaluated using
additional criteria such as robustness and algorithmic efficiency (Anderl et al., 2013).
While our in- and out-of-sample predictive accuracy are stable and, as discussed, applying
MapReduce promises good scalability, a more formal assessment of these criteria could
be performed in future. Finally, future research could further analyze how CAHMA
performs compared to neural networks despite their lack of interpretability. This would
allow to quantify the trade-off between predictive accuracy and interpretability. Although
interpretability is crucial, some practitioners may consider black-box models if the gain
in predictive accuracy is sufficiently large.

Based on the proposed model, further extensions are possible and indicate promising
research opportunities. While we model an exponential form for the baseline hazard to
guarantee mathematical validity, other functional forms are possible. In the same vein,
the approach of additive survival analysis is not limited to the implemented exponential
kernel function for the channel-specific marketing effects. Alternative kernel functions to
allow for different time-dependent effects could be investigated in future work. Finally,
in line with the assumptions of survival models, our model assumes that every user
converts within an infinite timeframe. To account for the fact that not every user does
indeed convert, the proposed model could be extended by additionally considering the
probability that the waiting time until conversion exceeds the time a user can be observed
due to technical and lifetime restrictions. However, it must be ensured that the additional
complexity does not impair the interpretability and thus practical relevance of the model.
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