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Abstract. Explainable AI (XAI) holds great potential to reveal the patterns in 

black-box AI models and to support data-driven decision-making. We apply four 

post-hoc explanatory methods to demonstrate the explanatory capabilities of 

these methods for data-driven decision-making using the illustrative example of 

unwanted job turnover and human resource management (HRM) support. We 

show that XAI can be a useful aid in data-driven decision-making, but also high-

light potential drawbacks and limitations of which users in research and practice 

should be aware. 

Keywords: Explainable AI, Machine Learning, Data-Driven Decision-Making. 

1 Introduction 

Data-driven decision-making is becoming increasingly important in information sys-

tems (IS) research and in practice. Artificial intelligence (AI) uses data and predictive 

models to make decisions (Fernández-Loría et al., 2022) that will, for example, increase 

efficiency in organizations. Machine learning (ML) is a subdivision of AI which uses 

algorithms to discover patterns in complex datasets to make predictions based on the 

learned patterns (Hong et al., 2007; Jordan & Mitchell, 2015; Brynjolfsson & Mitchell, 

2017; Sturm et al., 2021; Yang et al., 2022). For example, ML is used to predict cancer 

in patients based on x-ray scans (Kourou et al., 2015), to assess user engagement on 

social media (Shin et al., 2020), or to predict employee performance or turnover for 

human resource management (HRM) in an organizational context (Yuan, et al., 2021). 

One category of ML algorithms on which we want to focus is supervised ML algo-

rithms (as opposed to unsupervised ML and reinforcement learning, Benbya et al., 

2021). In supervised ML algorithms the available data consists of labeled examples 

(i.e., each data point contains features and an associated class – a label). The goal of 

supervised learning algorithms is for them to learn a function that maps feature vectors 

(inputs) to labels (outputs) as accurately as possible (Hastie et al., 2009). Using various 
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features, ML models can learn and generalize patterns in the data to predict the label 

without knowing other correlations in this context. With knowledge of the labels, ML 

models can monitor their learning and reduce prediction error. In doing so, an AI sys-

tem can use the ML model to make decisions based on the model’s prediction. The 

trade-off for the high predictive accuracy of the models is limited interpretability. 

Therefore, a more complex model can lead to higher predictive accuracy, but also re-

duce interpretability (Shrestha et al., 2021). This particularly applies to black-box ML 

models. From a theoretical and practical perspective, these models are superior in min-

imizing prediction error (Goldstein et al., 2015), but the more complex the model, the 

less interpretable it is. For example, simple ML models such as decision trees provide 

a high degree of transparency; human users can understand every decision because they 

can directly visualize and understand decision trees. A random forest, however, which 

can basically consist of up to ten thousand decision trees, cannot be visualized or rep-

resented in such a way that human users can interpret it (Stoffels et al., 2022).  

Since AI systems are integrated into all types of decision-making processes, an ever 

more urgent debate is taking place in academia about the extent to which people who 

develop AI or are affected by an AI-enabled decision can understand how the resulting 

decision mechanism works and why it arrives at a particular decision (Yang et al., 

2022). Consequently, we need more interpretable approaches (Mitchell et al., 2001; 

Avrahami et al., 2022), referred to as explainable AI (XAI) methods (Guidotti et al., 

2018; Barredo Arrieta et al., 2020; Hamm et al., 2021). Importantly, these methods not 

only aim to explain one particular decision (Fernández-Loría et al., 2022); they also 

attempt to derive actions. 

XAI has become increasingly important in IS research, having already been used 

methodologically (Choudhury et al., 2021; Fernández-Loría et al., 2022) and empiri-

cally (Senoner et al., 2022). However, current IS research does not address the various 

capabilities of different XAI methods for data-driven decision-making. To address this 

gap, we trained seven ML models and, building on these models, we compare four 

different XAI methods, local model-agnostic methods, global model-agnostic methods, 

and counterfactual explanations. In doing so, we examine the following research ques-

tions: 

Which methods are applicable to which type of decision-making? Are the explanations 

between the methods explicit, or can different explanations emerge? 

To demonstrate the different capabilities of XAI for data-driven decision-making in 

an understandable way, we illustratively use organizational data to predict and explain 

unwanted job turnover and analyze how XAI can benefit data-driven decision-making 

in human resource management (HRM). 

2 Research Background 

Data-driven Decision-making. One of the most popular application areas for AI in 

organizations is in decision-making where it offers many potential benefits on a strate-

gic level (e.g., product quality improvement, improved understanding of customer 



needs, or more accurate organizational resources planning, Borges et al., 2021). 

Through their ability to learn from additional datapoints over time, AI systems can cre-

ate knowledge that assists humans in their decision-making or they could even be ap-

plied to automate tasks and act autonomously (Shrestha et al., 2021; van den Broek et 

al., 2021; Shollo et al., 2022). These capabilities have been advocated as an important 

addition to IS theorizing (Berente et al., 2019; Miranda et al., 2022). Further, AI pro-

ponents have argued that how AI is used in practice to create working theories could 

be an important future avenue for creating grand theories in IS (Tremblay et al., 2021). 

A particular obstacle to human interaction with AI, in practice as well as in theoriz-

ing, is the opacity of certain ML algorithms (Müller et al., 2016; Faraj et al., 2018; 

Berente et al., 2021). It can be difficult for professionals to make use of the knowledge 

created by AI systems if they cannot follow the logic that was applied to arrive at a 

certain result (e.g., Lebovitz et al., 2022). Various approaches, such as envelopment 

(Asatiani et al., 2021), have been presented to circumvent this issue. XAI could be a 

more direct approach to deal with the opacity of algorithmic decision-making (Gunning 

et al., 2019). 

A promising application for XAI and data-driven decision-making could be in HRM 

and employee retention, given the scarcity of high-skilled employees in these contexts 

(Oswald et al., 2020). Unwanted employee turnover affects organizations on multiple 

levels, as it is expensive, ties up resources, and causes low business performance 

(Chowdhury et al., 2022). Hence, practitioners and scholars are trying to predict and 

understand unwanted employee turnover as accurately as possible (Farrell & Rusbult, 

1981; Zhao et al., 2018; Oswald et al., 2020; Choudhury et al., 2021; Wang & Zhi, 

2021; Yuan et al., 2021; Avrahami et al., 2022). ML and XAI have great potential to 

predict and reveal the reasons for unwanted job turnover in organizations and promise 

powerful support for data-driven decision-making in HRM to keep valued employees 

in the organization (Oswald et al., 2020; Chowdhury et al., 2022). 

Explainable AI (XAI) and black box models. Previous research has shown that 

XAI can promote trust among users of black-box AI systems (Barredo Arrieta et al., 

2020; Hamm et al., 2021). Black-box AI refers to the comprehensibility of AI models 

and systems. As the underlying models become more complex, AI systems seem to be 

a black-box (Meske et al., 2022). Thus, with growing complexity, a trade-off between 

explainability and model performance emerges, which significantly influences individ-

uals and organizations (Alt, 2018). Therefore, to promote the adoption of AI systems, 

Hamm et al. (2021) assume that XAI methods should be a part of AI implementations. 

In addition, they emphasize the importance of XAI for organizations and developers to 

meet regulatory requirements that improve the AI system. 

Overview of XAI Methods. There are multiple XAI methods which can provide 

powerful support in explaining AI systems’ decisions, and which enable us to grasp the 

underlying patterns (Molnar, 2020). So-called model-agnostic XAI methods have the 

advantage that they can be used independently on the ML model and, therefore, count 

as the counterpart of model-specific XAI methods. Consequently, these methods have 

attracted a great deal of interest in the IS literature (Choudhury et al., 2021; Chowdhury 

et al., 2022; Fernández-Loría et al., 2022; Senoner et al., 2022). XAI methods can also 

be categorized based on the range of cases they aim to explain, into local (i.e., single 



case) and global (i.e., all cases in a dataset) methods (Barredo Arrieta et al., 2020). 

Local methods can provide explanations for single predictions (i.e., for a specific em-

ployee) (Molnar, 2020). In cases of employee retention, these methods show the char-

acteristics, such as salary, which have the greatest influence on the model decision (i.e., 

they indicate the main characteristics that determine employees’ resignation). Yet, this 

only gives the reasons for the turnover of individual employees, which can vary greatly. 

In comparison, global methods show the influence of the characteristics in general (i.e., 

which affect many or all employees) (Molnar, 2020; Stoffels et al., 2022). Some XAI 

methods also show how a single feature influences the model outcome, so that research-

ers achieve fine-grained insight into the interactive pattern between the specific feature 

and the model outcome (Goldstein et al., 2015; Choudhury et al., 2021). While these 

XAI methods only show a trend of the pattern between the features and the actual pre-

diction, counterfactual explanations can provide a quantitative explanation (Fernández-

Loría et al., 2022). 

Counterfactual explanations provide a practical extension to local and global meth-

ods, as they offer a means for deciding on a course of action that will change an outcome 

variable’s value. While local and global methods commonly provide us with an over-

view of the importance of given features in a prediction, counterfactuals offer us a com-

bination of features and the extent of change that needs to be implemented for the out-

come to change. This can be important in practice, as high feature importance for a 

prediction does not necessarily affect the model’s decision (Fernández-Loría et al., 

2022). 

Implementations of XAI methods. Current IS research mainly uses post-hoc XAI 

methods, such as shapley additive explanation values (SHAP) (Fernández-Loría et al., 

2022; Senoner et al., 2022), local interpretable model-agnostic explanations (LIME) 

(Chowdhury et al., 2022), partial dependence plots (PDP) (Mehdiyev & Fettke, 2020; 

Choudhury et al., 2021), or counterfactual explanations (Fernández-Loría et al., 2022) 

implemented using e.g., diverse counterfactual explanations (DiCE) (Mothilal et al., 

2020). 

SHAP is technically a local model-agnostic method based on a game-theoretic ap-

proach (Lundberg & Lee, 2017), but it can also provide global explanations (Molnar, 

2020). Senoner et al. (2022) use SHAP to reveal learned patterns between complex 

manufacturing process data and achieved quality. In contrast, Fernández-Loría et al. 

(2022) are very critical of this use of SHAP. They show that SHAP has limited informa-

tive value and also that features with high feature importance according to SHAP can 

actually have no influence on the models’ decisions. Thereby, they emphasize the use 

of counterfactual explanations. Counterfactual explanations offer the advantage of not 

showing features‘ relative influence on the prediction; instead, they show how much a 

feature value must vary to change the model's actual prediction (Mothilal et al., 2020).  

Another XAI method is partial dependence plots (PDP), which can show the impact 

a feature has on the model output (Mehdiyev & Fettke, 2020; Kamath & Liu, 2021). 

For example, the PDP shows how a single feature (e.g., employee salary) is related to 

the impact of termination. Thus, PDP is one of the global model-agnostic methods 

(Molnar, 2020). Choudhury et al. (2021) emphasize the value of PDP in gaining deep 

insight into models. They use it in a methodological context to explain the difference 



in predictive accuracy between a simpler model (decision tree) and a more complex 

model (random forest). In this context, PDP show that the complex model learned more 

fine-grained patterns than the simpler model. 

In contrast, LIME (Ribeiro et al., 2016) can show the influence of each feature on a 

single prediction, for example a single employee. Chowdhury et al. (2022) use this local 

model-agnostic method to show the potential of XAI in the context of turnover. They 

imply the use of XAI to gain HRM users' trust in AI systems and to improve data-driven 

decision-making. In contrast, John-Mathews (2021) views these types of post-hoc ex-

planations more critically. Using LIME illustratively, he concludes that post-hoc ex-

planations lead to misleading or partial information about the learned pattern. In addi-

tion, Stoffels et al. (2022) reveal empirically, that different patterns can arise using 

models of the same quality. 

DiCe are an implementation that give counterfactual explanations, which answer the 

“what if” questions. Thus, DiCe can provide examples that are impactful enough to 

change the model’s prediction (Mothilal et al., 2020). Besides DiCe there is a range of 

other implementations that can generate counterfactual explanations (Guidotti, 2022). 

Mothilal et al. (2021) show that the explanations of DiCe do not match those of SHAP 

and LIME. Further, Fernández-Loría et al. (2022) found that counterfactual explana-

tions provide more appropriate explanations than the other methods, although the po-

tential disadvantage of the Rashomon effect is stated. 

While the use of ML models to leverage XAI is already increasingly common in IS 

research, and thus in the data-driven decision-making literature (Bertsimas & Kallus, 

2020; de Bruijn et al., 2022; Elgendy et al., 2022), the learned models remain under-

investigated, thus requiring a deeper investigation. Also, there are no studies that com-

prehensively consider and critically reflect on the use of different XAI methods and 

their implications for data-driven decision-making in the context of unwanted job turn-

over and HRM support. 

3 Data and Methods 

We base our illustration of XAI in HRM on the publicly available dataset “IBM HR 

Analytics Employee Attrition & Performance” (Subhash, 2017), a synthetic dataset cre-

ated by IBM that contains 35 metric and nominal features with administrative data, 

performance data, job satisfaction data, and data on individual characteristics (e.g., age 

and gender) of 1470 fictitious employees (Subhash, 2017). Our goal in illustratively 

using different XAI methods has been to predict turnover (0 = no turnover, 1 = turno-

ver) based on these characteristics and to make the prediction interpretable to define 

measures for HRM. In the chosen dataset, 16% of the employees had resigned. The 

width of the features’ skewness ranged from -0.55 ("YearsSinceLastPromotion") to 

1.98 ("WorkLifeBalance"). We translated the ordinal variable "education" into years of 

education ("YearsEducation"). As this was a synthetic data set, there were no data qual-

ity issues or missing values.  



Since it was not clear a priori which ML model would provide the best performance, 

a sample of models had to be selected (Choudhury et al., 2021). We applied seven dif-

ferent ML models: linear regression (LR) (Hosmer et al., 2013), k-nearest neighbors 

(KNN) (Cover & Hart, 1967), random forest (Breiman, 2001a), c-support vector clas-

sification (SVM) (Cortes & Vapnik, 1995), decision tree (DT) (Breiman et al., 1984), 

gradient boosting classifier (GB) (Friedman, 2002), and adaboost classifier (AdaBoost) 

(Freund & Schapire, 1997). Notably, we also included ML models that are not consid-

ered black-boxes (e.g., LR, DT and KNN), to showcase their performance in compari-

son to black-box models. For all models we used the default hyperparameters, which 

are set in the “scikit-learn” library (scikit-learn, 2023). 

We used min-max scaling for numeric features to ensure the same range of values 

(Nayak et al., 2014). In addition, we used one-hot coding for nominal features (Hancock 

& Khoshgoftaar, 2020). To evaluate performance, we used a training-test split of 80/20, 

thus we used 80% as training data and 20% as test data (Hastie et al., 2009; Berrar, 

2018) and the F1 score. The F1 score is the harmonic mean of precision (how many of 

the positive predictions are actually positive) and recall (the ratio of all positive cases 

that the model was able to identify correctly) (Choudhury et al., 2021). The F1 score’s 

advantage over accuracy is that unbalanced classes are considered. Usually more em-

ployees stay in the organization than leave it, so the dataset is unbalanced. Accuracy 

only takes into account how many predictions are correct. Thus, if we assume that 99% 

of employees do not quit and only 1% of employees resign, assigning all employees to 

stay in the organization would already yield a prediction accuracy of 99%, even though 

the model learned nothing (Choudhury et al., 2021). Therefore, we chose the ML model 

with the highest F1 score for the further analysis with XAI. If other models had a non-

significantly worse F1 score, we included these models due to their comparable predic-

tive ability. 

We applied LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), PDP 

(Kamath & Liu, 2021), and DiCE (Mothilal et al. 2020) to analyze the learned pattern 

of the best performing ML model. For SHAP we used the Kernel Explainer, because it 

is usable for all ML models. The more accurate Tree Explainer is only usable for tree 

models (Lundberg et al., 2020). Additionally, for the global explanations, we created a 

subsample containing only instances with employees who had resigned. Further, we 

checked whether the results had been influenced from seen to unseen instances. If mul-

tiple ML models achieved a comparable F1 score, we analyzed all models using these 

XAI methods to determine whether the different models had learned the same patterns 

(Breiman, 2001b; Stoffels et al., 2022).  

4 Results 

As usual in ML approaches, we first attempted to find an accurate predictive model for 

our dataset. We analyzed the F1 score the selected ML models reached, as summarized 

in Table 1. AdaBoost performed slightly better than GB and RF in reaching an F1 score 

of 85.2%. In contrast, the other models (i.e., LR, KNN, SVM, DT) performed signifi-

cantly worse. SVM achieved an F1 score of only 59.8%. Subsequently, we chose the 



models with the highest F1 scores to analyze the models more deeply using the selected 

XAI methods. Since the GB (84.8%) and RF (83.4%) scores were comparable to Ada-

Boost’s, we also checked these models using the XAI methods. 

Table 1. Average F1 scores of the trained ML models 

Model LR KNN RF SVM DT GB Ada-

Boost 

F1 74.4% 66.7% 83.4% 59.8% 75.4% 84.8% 85.2% 

In the following two sections, we highlight contributions that can be derived for data-

driven decision-making from the use of XAI - based on the example of HRM. 

4.1 Individualized Decision-Making (local methods) 

Local model-agnostic methods can explain a single prediction, in this context the 

model’s prediction of an individual employee’s turnover. As Chowdhury et al. (2022) 

mentioned, this method can be used in different ways, including consideration of trust 

and understanding of the model, diagnosing the model and its performance, and deter-

mining why certain employees are likely to leave the organization. In particular, these 

methods can be used to define countermeasures for the individual employee. We chose 

three employees and analyzed their possible reasons for leaving the organization using 

SHAP. 

 

Figure 1. SHAP force plots of single instances (i.e., employees) 

Figure 1 shows the SHAP force plots of three employees. The features colored red 

indicate that they contribute to the model’s prediction of turnover, while the blue fea-

tures contribute to the model’s prediction of no turnover. If the model predicts turnover 

(model output = 1), the red colored features have a greater impact on the model predic-

tion and lead to the final model decision for turnover. Therefore, HRM can use this 

information to determine which features and with which relative feature values lead to 

turnover. 



While for all three employees the lack of stock options (StockOptionLevel) was a 

reason to leave the organization, the other reasons for each differed considerably. For 

example, for the second and third employee, overtime (OverTime_1) was the main rea-

son, while for the first employee it was the short time in the current role (YearsInCur-

rentRole = 0).  

4.2 Global Decision-Making (global methods) 

In contrast to local model-agnostic methods, global model-agnostic methods can indi-

cate multiple predictions or, alternatively, the particular influence of single features on 

the models’ predictions (Molnar, 2020). In Figure 2, the SHAP summary plot ranks the 

influence of the features of all employees, as well as of all employees who resigned, for 

the Adaboost model.  

 

Figure 2. SHAP summary plot of all employees (left) and only employees who had resigned 

(right) 

The features that had the greatest influence on the model decision are shown in de-

scending order. We see that in some cases the important features are different compared 

to those Figure 1 shows for single instances. Still, we retain a high level of information, 

as we are provided with not only a ranking of features or an overall effect score, but 

also with an overview of the effects for each included instance, summarized in a distri-

bution plot (Lundberg et al., 2020). The main influencing factor is found to be the em-

ployee’s education (EducationField_1, EducationField_3), while the already discussed 

features of OverTime_1 and StockOptionLevel are also amongst the most important 

features. Besides, SHAP shows that the most important features (up to the 6th) have 

not changed in the subgroup of resigned employees. Colors are used to indicate the 

current value of the feature. Thus, high feature values are shown with red, while low 



feature values are shown with blue. For example, a high monthly income (Month-

lyIncome) in comparison to other employees is red, while a low income is marked in 

blue. This can be used by HRM to identify the main reasons for unwanted turnover in 

the organization and could serve as a basis for defining data-driven global HRM strat-

egies. Thus, in our example a rise in the stock options and measures to reduce overtime 

should be in focus, as these are identified among the most important characteristics. 

SHAP, as well as other global model-agnostic methods such as PDP, can addition-

ally visualize a single feature’s influence on model output across (all) employees 

(Molnar, 2020; Choudhury et al., 2021). This is illustrated in Figure 3. As expected, the 

probability of leaving the organization decreases as work-life balance (WorkLife-

Balance) increases. The curve could help HRM to determine an optimal value for work-

life balance. As the plot shows, the impact on the model result decreases significantly 

if the WorkLifeBalance level, which is marked in red, is between 2 to 3. Thus, further 

increasing the WorkLifeBalance has little impact on the model decision, and probably 

a similar impact on the employee. With this help, HRM can identify on a more fine-

grained basis, the extent to which certain features (i.e., employee circumstances) should 

be changed to reduce turnover in the organization. We see this as an important comple-

ment to local explanations and simple feature importance rankings (Choudhury et al., 

2021), since the progression can highlight broader relationships. 

 

Figure 3. Influence of WorkLifeBalance on the model output (i.e., across all employees) 

4.3 Counterfactual Explanations 

SHAP and LIME both indicate only the features that have the greatest impact on the 

model outcome, but they do not explain how to change the features so that they will 

actually change the model’s or employee’s decision. For example, these methods do 

not show how much more the salary should increase to change the employee’s decision 

about leaving the organization (Fernández-Loría et al., 2022). Further, PDP only show 

the average influence of a single feature on the model outcome, but the method does 

not provide an answer to whether an increase in a detected threshold is sufficient to 

change the prediction as well. 

Therefore, the use of counterfactual explanations is suggested (Fernández-Loría et 

al., 2022), which we adopt in using DiCE (Mothilal et al., 2020). We use the function-

ality of the DiCE implementation to consider only characteristics that HRM can change 

directly or indirectly, such as raising the salary (MonthlyIncome) or addressing the dis-

tance from home issue (DistanceFromHome) (e.g., by providing a second home). 



In the first row, Figure 4 shows each characteristic’s values for the selected em-

ployee who left the organization. We then determined five different counterfactual ex-

planations that actually changed the model decision to remain in the organization. We 

added the change in the feature value for each explanation in the next five rows. DiCE 

gives HRM five different options for changing the model’s decision, and probably also 

that of the employee in question. For example, a change in JobLevel (e.g., level 1 to 2) 

would not change the decision in this the model (i.e., of the employee) from turnover 

to no turnover. With the exception of the fourth explanation, a significant increase in 

salary (between 848 to 2317) would be required to change the decision. 

We see several advantages of using counterfactual explanations: First, HRM can 

decide which characteristics they can easily target to avoid unwanted turnover. Second, 

counterfactual explanations provide different courses of action as there is (in most 

cases) not just one way of changing the prediction. Finally, the model gives a precise 

value of the characteristics required to change the prediction, thus directing HRM to-

ward a very specific action. Compared to the other presented XAI methods, no further 

interpretation is required to define actions, because SHAP and LIME give only the rel-

ative importance of each characteristic. Hence, a further HRM analysis is necessary to 

define a specific action such as offering a concrete salary increase. If, however, the 

focus is not on the formulation of measures but on the analysis of the reasons for turn-

over, counterfactual explanations require more investigation, as they do not directly 

provide a visualization of the most important influencing characteristics. 

 
Figure 4. Counterfactual explanations for a single instance (i.e., an employee) 

5 Discussion 

We have demonstrated the use of different XAI methods to analyze organizational data 

and to develop explanations of turnover and related actions for HRM. Thereby, we 

show that data-driven actions require different XAI methods for different objectives. 

Global model-agnostic methods provide a global view of the model decision and the 

overall main influencing factors of the model. This insight can provide important data-

driven support for general strategies in an organization. Local model-agnostic methods 

are useful for creating actions suited to individual instances, such as single employees. 

Nevertheless, we must address the limitations of these methods, thereby also offering 

potential for future research.  



Different XAI Methods, Different Explanations. Global and local model-agnostic 

methods do not explain the model’s prediction in the same way, or put differently, they 

provide significantly different explanations. Therefore, the patterns disclosed by the 

different methods are not robust and lead to different explanations and interpretations. 

This leads to a major problem with the post-hoc explanations presented. While the 

ML model’s performance can be evaluated using, for example, the F1 score for deci-

sions on whether the model is sufficient to use, there is no actual test or metric for 

evaluating XAI methods. Therefore, we cannot accurately measure the error or evaluate 

which method would provide the correct explanations. If different methods provide 

different explanations and ultimately suggest different actions, this, of course, poses a 

significant problem for HRM or data-driven decision-making. 

We have illustrated this issue by comparing the LIME and SHAP local model-ag-

nostic methods. We find that the local explanations of LIME and SHAP are signifi-

cantly different for the same employees. Table 2 illustrates two employees and the local 

explanations of LIME and SHAP. The two cases show significant differences in the 

effects the features have on the model decision. While we acknowledge that nominal 

features and one-hot coding can lead to confounding outcomes in XAI methods (as with 

EducationField features), other features, especially numeric features, should be closely 

ranked in their impact on model decision. 

Table 2. LIME and SHAP for local explanations of two instances (i.e., employees) 

Employee Top three features (LIME vs. SHAP) 

First illustrative employee EducationField_3  EducationField_1 

EducationField_1  YearsInCurrentRole 

EducationField_4  StockOptionLevel 

Second illustrative employee EducationField_3  OverTime_1  

EducationField_1  EducationField_1  

StockOptionLevel  StockOptionLevel  

Therefore, users of XAI methods in practice as well as in research should be aware 

that these methods provide only approximate explanations and can lead to different 

explanations and interpretations depending on the chosen method. We suggest using at 

least two different methods to assess the extent to which we can trust the results. Again, 

counterfactual explanations have the advantage that these explanations at least change 

the model’s actual decision (Fernández-Loría et al., 2022), which the other methods 

cannot achieve. 

Different ML Models, Different Explanations. Not only can different XAI meth-

ods lead to different explanations, but different models of comparable quality analyzed 

with the same XAI method can also yield different explanations. We illustrate this issue 

in Figure 5, which shows the top five features in the SHAP summary plots of AdaBoost, 

GB, as well as RF. While the features shown here are partly similar and show small 

shifts (e.g, StockOptionLevel), there are also cases were completely different features 

are among the most important ones, such as MaritalStatus_1 in the RF model. 



Therefore, we should be aware of the possible effects of the Rashomon Effect 

(Breiman, 2001b) and its implications for data-driven decision-making. We recom-

mend the following procedure as suggested in Stoffels et al. (2022): If several models 

have the same quality (e.g., F1 score), then all models should be examined with XAI 

methods. Thereafter, there are two possibilities: either there is no Rashomon Effect (i.e., 

the models have learned the same patterns), or the learned patterns significantly disa-

gree. The first case requires no further action, because the models have learned robust 

patterns and increased our confidence in those patterns. However, in the second case, 

we should critically reflect on these models and the database. Thus, further analysis of 

the models to determine the possible cause of the discrepancy is required, as this would 

ensure meaningful decisions in the context of data-driven decision-making. 

 

Figure 5. Comparison of SHAP summary plots (all employees) 

Implications and Future Work. Given the two main shortcomings of local and 

global methods we have demonstrated, we see the high potential of counterfactual ex-

planations for data-driven decision-making in practice. They are not as inconsistent as 

the other methods because they ensure that the explanations actually change the mod-

els’ decisions. Thus, they provide not only a relative indication of which characteristics 

are important, but also a necessary quantitative change in those characteristics to re-

ceive a specific action toward data-driven decision-making. We have to acknowledge, 

however, that using counterfactual explanations requires a high degree of domain 

knowledge in order for them to be useful because they provide several alternatives that 

need to be carefully weighed against one another (Mithas et al., 2022). In addition, 

counterfactuals are subject to some of the drawbacks of ML and XAI, such as the 

Rashomon effect; therefore, those individuals choosing which specific decision alter-

natives to consider, need transparency and clear criteria (Artelt & Hammer, 2019).  

Besides the potential limitations of XAI methods we compared in this study, we also 

need to mention some research limitations, since they offer potential for further inves-

tigation. First, we used synthetic data. Yet, to reveal further strengths and weaknesses 

of XAI methods it could be worthwhile to repeat the comparison portrayed in this study 

using multiple sets of real data. Second, we used only a selected set of ML algorithms 

and XAI method implementations, which could feasibly be extended in future research 

using additional methods (see e.g., Barredo Arrieta et al., 2020). The algorithms and 

methods could also be supplemented by further methods that are becoming increasingly 

popular, such as supervised clustering used to identify characteristic groups of employ-

ees (Cooper et al., 2021). 
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