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Budget-Feasible Market Design for Biodiversity
Conservation: Considering Incentives and Spatial

Coordination
Research Paper

Eleni Batziou1 and Martin Bichler1

School of Computation, Information and Technology, Technical University of Munich, Germany
{batziou,bichler}@cit.tum.de

Abstract. How to best incentivize farmers to conserve biodiversity on private
land is an important policy question. Conservation auctions provide a mechanism
to elicit farmers’ opportunity costs, but their design is challenging and often suffer
from low participation due to strategic complexity. Conservation auctions should
ideally be incentive-compatible, address spatial synergies that maximize biodiver-
sity gains, and respect the predefined budget of the government. Recent advances
in mechanism design suggest budget-feasible auctions, but little is known about
average-case efficiency. Based on this line of research, we introduce an incentive-
compatible conservation auction mechanism that considers the bid taker’s spatial
synergies and respects budget. The results are compared against the celebrated
Vickrey-Clarke-Groves mechanism. Our numerical results estimate the efficiency
loss that can be expected for different assumptions on the synergistic values of the
government. They provide evidence that budget-feasible mechanisms provide a
new tool for policymakers in this domain.
Keywords: Conservation auction, incentive compatibility, budget feasibility, mech-
anism design

1 Introduction

Wildlife populations have declined by more than two-thirds in less than 50 years accord-
ing to the World Wildlife Foundation.1 As in many studies, it is shown that biodiversity
is being destroyed at a rate unprecedented in history. Given the prominent role of private
land use in achieving improvements to biodiversity, changing the behavior of those who
manage private land in a manner that benefits biodiversity is a key objective (Armsworth
et al. 2012). Incentive-based agri-environmental schemes (AES) that encourage landown-
ers to undertake costly ecosystem services or conservation activities for biodiversity
have been globally growing in popularity. AES combine information systems and market
design to coordinate relevant stakeholders (Gholami et al. 2016). So far, incentives
have largely been offered as simple posted-price schemes. In most of these schemes,
landholders are paid a fixed price for a service, such as price per hectare for a land
piece converted from agricultural use to grassland by a farmer. Prices can be too high

1 https://www.bbc.com/news/science-environment-54091048
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leading to over-provisioning or too low such that they do not provide enough incentive
to participate. Information asymmetries between farmers render the implementation of
biodiversity goals in an efficient way challenging (Gómez-Limón et al. 2019), or create
an adverse selection problem (Lundberg et al. 2018).

Conservation auctions have been promoted as an alternative to such posted-price
schemes. These auctions are a specific type of payment for ecosystem service mecha-
nisms where a single buyer (government or regulatory body) elicits bids from private
producers to enter into contracts regulating how land is to be managed. Through com-
petition between farmers, the government hopes to reduce the information rents which
farmers earn, and thus improve the cost-effectiveness of the budget spent on biodiversity
measures. Conservation Reserve Program in the US is arguably the world’s largest
payments-for-ecosystem services program. It has been in operation since 1985 and uses
pay-as-bid auctions (Cramton et al. 2021). The benefits of a switch to conservation
auctions have been estimated within range of 24% to 33% for Australian conservation
programs (Windle & Rolfe 2008). Rousseau & Moons (2007) argue that the adoption of
an auction mechanism can increase social welfare by 22% compared to the fixed-price
scheme being employed under the afforestation program in Belgium.

Running an auction is not common in the EU even though it is permitted (Article
49.3 of Regulation (EU) No 1305/2013) (Grohe, 2009; Allen et al. (2014); Latacz-
Lohmann & Breustedt (2019)). One reason is the difficulty in designing appropriate
market mechanisms (Schilizzi 2017). Some questions are similar to those in other market
design problems. For example, one needs to decide the product being auctioned, i.e.,
whether payments are based on the performance or actions of bidders. The payment rule
matters, and so do the bid selection criteria, and the bidding format (single-round or
multiple-round). However, a few aspects of conservation auctions are specific:

(1) To be environmentally effective for biodiversity conservation, there is a need
for an auction design that encourages spatial coordination of conservation actions,
since the successful realization of many biodiversity objectives depends on conservation
actions occurring on neighboring sites or along wildlife corridors. A wildlife corridor is
a habitat area connecting wildlife populations separated by human activities or structures.
The absence of spatial coordination of conservation efforts leads to far from optimal
results. This problem constitutes a major source of AES ineffectiveness (Nguyen et al.
2022). In the past, conservation auctions did not promote landscape-level coordination
of conservation efforts across landholders but focused on outcomes on a farm level
(Nguyen et al. (2022), Hanley et al. (2022), Iftekhar & Latacz-Lohmann (2017a), Lamb
et al. (2016)). The conservation of several patches of land that are adjacent might lead to
a wildlife corridor and be preferable to the conservation of two non-adjacent patches of
the same size. The switch from a farm-scale and fragmented conservation approach to a
landscape-scale approach has been argued to be an important change for AES to meet
their environmental goals more effectively (Westerink et al. 2017). In summary, spatial
and temporal dependencies among ecosystem services need to be considered (Wätzold
et al. 2016), requiring non-standard auction formats to get to optimal land-use patterns.

(2) Participation in conservation auctions has long been a concern (Rolfe et al.
2018). Participants in such auctions are laymen and simplicity and transparency are
key. The complexity of auctions was raised as a central reason for low participation in



conservation auctions (Palm-Forster et al. 2015). To address this concern, a version of
the Vickrey-Clarke-Groves (VCG) mechanism was proposed to implement a welfare-
maximizing outcome (Polasky et al. 2014). Maximizing welfare implies minimizing
costs for governments in conservation auctions. The VCG mechanism is the unique
strategyproof mechanism (i.e., dominant strategy incentive-compatible) for general valu-
ations that achieves this goal, a significant advantage over alternative auctions. However,
the underlying assumption is that buyers and sellers have no financial constraints.

(3) Instead of cost-minimization governments typically want to maximize the level
of conservation of endangered species and habitats at a given budget. In other words,
the government wants to minimize cost subject to a hard budget constraint. Incentive
compatibility and budget feasibility are incompatible in general, which follows from
the fact that the VCG mechanism is unique. As a result, the VCG mechanism does not
provide a viable option to governments.

Conservation auctions used today violate one or more of these properties (Nguyen
et al. 2022). While incentive compatibility and budget feasibility clash for general
valuations, one can hope for auction designs that address these properties for restricted
valuations. Indeed, progress is made on this front in the mechanism design literature.

This work adds to the literature on procurement auctions. While industrial procure-
ment auctions focus on cost minimization (Dasgupta & Spulber 1989, Bichler et al.
2006, Anton & Yao 1992, Kokott et al. 2019), the main difference of conservation
auctions is the presence of budget constraints. A small theoretical literature exists on
such budget-feasible auctions, but applications in the field have not yet been explored.

A number of authors proposed strategyproof budget-feasible procurement auctions
for single-minded bidders, i.e. bidders who are only interested in selling a particular set of
goods or services and not multiple combinations. In conservation auctions, this is usually
satisfied. Farmers own land parcels that they can either develop and profit or conserve
for agri-environmental purposes such as wildlife protection. However, until recently the
proposed mechanisms were randomized sealed-bid mechanisms (Singer 2010). Balkanski
et al. (2022) proposed a deterministic clock auction that respects budgets. Budget-feasible
auction mechanisms have not yet been explored for conservation auctions.

Collusion can be a particular challenge in mechanism design, since it can lead to
lower income for the principal. The VCG algorithm is prone to collusion, which may
lead to arbitrarily low auctioneer revenue, as argued in Polasky et al. (2014). On the
contrary, BFA satisfies weak group-strategyproofness, namely no coalition of sellers
can misreport such that they all profit. This property guarantees collusion-resistance.
This argument strengthens our claim that the BFA poses as an attractive alternative for
policymakers, as it eliminates the risk of spatial synergies.

The price to be paid for such strong incentive properties and budget feasibility is effi-
ciency. The clock auction by Balkanski et al. (2022) but also the sealed-bid predecessors
are approximation mechanisms and do not implement the welfare-maximizing outcome.
For monotone submodular valuations, the worst-case approximation ratio of BFA is 4.75.
Thus, welfare could be almost five times worse than the maximum welfare solution. For
non-monotone submodular valuations, the worst-case ratio is 64. For submodular and
subadditive valuations, the auction matches the bounds of the best randomized budget-
feasible auctions. While such bounds are interesting from an algorithmic perspective,



the worst-case might be too pessimistic. A recent stream of work in theoretical computer
science seeks insights beyond a purely worst-case analysis (Roughgarden 2019).

In this paper, we study the average-case efficiency of incentive-compatible and
budget-feasible conservation auctions, in particular, the clock auction by Balkanski
et al. (2022), which provides the most recent realization and is deterministic and group-
strategyproof. For these reasons, we focus on this auction among the set of budget-
feasible auctions. The strong incentive properties of this auction allow us to focus on
numerical experiments as we can expect bidders to follow their dominant strategy.

In standard combinatorial auctions, synergies are on the bidders’ side and are typ-
ically unknown to the auctioneer. In conservation auctions, the synergistic valuations
are on the bid taker’s side and thus known in advance to the auctioneer. Based on our
analysis and knowledge about complementarities, a government can decide whether the
expected efficiency loss due to budget-feasible auctions is acceptable for a particular
application. This sheds light on the question of whether budget-feasible auctions can
provide a practical policy tool to implement agri-environmental services.

We show that efficiency loss due to BFA in the case of submodular values is at around
25% on average. For additive or superadditive valuations, the efficiency loss is between
36% and 51% with very high levels of superadditivity. Domain-specific value models
for wildlife corridors achieve similar relative welfare gains, but the budget violation
with VCG is even worse. We argue that with or without hard budget constraints, such
variations in the payment will be unacceptable for most policymakers.

Auction mechanisms used in some countries are neither incentive-compatible nor
consider landscape-level complementarities for the government. The complexity of
conservation auction mechanisms is the key reason behind low participation rates of
farmers. Indeed, a major shortcoming of sealed-bid auctions is the lack of transparency,
as participants must trust the auctioneer to correctly implement the auction algorithm and
not mishandle their private information. By design, clock auctions, and as such the BFA,
are simple, meaning that participants only see the price offered to them and need not
understand the intrinsic details of the mechanism implemented. Against this background,
we argue that BFA provides a powerful new tool for policymakers in this field.

2 Related Work

There is extensive literature on conservation auctions to incentivize biodiversity measures
(Nguyen et al. 2022). One line of research concerns combinatorial auctions. Such
auctions play a role when farmers have significant synergies across services ((Nemes et al.
2008, Saïd & Thoyer 2007, Iftekhar et al. 2009)). We focus on farmland conservation,
where individual landowners can decide to develop or conserve a patch of land. Synergies
may arise on the side of the government and on a landscape level across multiple land
patches. The goals of such auctions include enhancing the population of farmland birds,
protecting native vegetation, or restoring wetlands on farms. On a landscape level, it
can be useful to conserve adjacent patches of land (e.g., wildlife corridors) or other
combinations across the landscape, which all promise different biodiversity gains to the
government. Polasky et al. (2014) focused on this widespread scenario and proposed
a VCG mechanism. The VCG mechanism is strategyproof if the regulator aims for a



particular conservation target and does not have budget constraints. We refer to such
auctions as target-constrained auctions.

Typically, governments do not decide on a biodiversity target, but on a budget
devoted to biodiversity (Hellerstein 2017). In the US Conservation Reserve Program,
each potential supplier can make a bid detailing how much they will accept for agreeing
to the contract terms. The buyer then orders the bids in terms of either bid price alone, or
bid price weighted by some environmental metric, and selects the most cost-effective bids
until budget is exhausted, some quantitative program target is achieved (e.g., cumulative
hectares enrolled), or a reserve price is reached for bids (Hellerstein 2017). However,
such auction formats neither consider spatial coordination nor are incentive-compatible.

Nguyen et al. (2022) provide a thorough review of economic mechanisms built
with the purpose of generating incentives for spatial coordination. In traditional AES,
landowners usually operate in isolation, which leads to suboptimal outcomes when it
comes to ecosystem preservation, given the scattered nature of preserved parcels, or even
failure to meet preservation targets. Hence, spatial coordination arises as a significant
property, exceeding the capabilities of conventional design models. The existing auction
formats to address the problem determine a bonus added on top of individual payments
in case of coordination.

Budget-feasible but incentive-compatible mechanisms have been developed in the
literature on algorithmic mechanism design but received little attention outside. In
particular, they have not been explored in the context of conservation auctions, even
though they address central design desiderata as discussed earlier. A few sealed-bid
(randomized), incentive-compatible and budget-constrained auctions were proposed for
restricted types (e.g., additive or submodular) of buyer preferences (e.g., Singer (2010)
or Gravin et al. (2020)). However, randomized mechanisms, while elegant algorithmi-
cally, are rarely used in practice. In recent work, Balkanski et al. (2022) introduced
deterministic auctions that are also budget-feasible and incentive-compatible and match
or even improve on the best-known randomized approximation ratio. These auctions
are run as clock auctions and match the best-known worst-case approximation bounds
by any other polynomial-time strategyproof auctions for restricted types of valuations
such as submodular and subadditive. These worst-case approximation ratios might not
be appealing to decision-makers, but also not appropriate for decision-making. In this
article, we aim to understand the average-case efficiency of budget-feasible auctions and
whether they provide a viable option for policymakers.

3 Preliminaries

3.1 Notation

Our analysis is inspired by Polasky et al. (2014), who consider a grid of land parcels
each belonging to one farmer N = {1, 2, . . . , n}. An auctioneer (buyer or government)
seeks to acquire land parcels, in the form of bundles of parcels, and we thus define a
set of combinations or packages of parcels as S ⊆ N . The landowner of each parcel
i ∈ N (seller or farmer) has two possible courses of action: conserve, translated to no
income for the owner but positive effect on biodiversity, or develop, leading to little or



no ecosystem value but profit for the individual. The action is represented as a binary
variable yi, where yi = 0 denotes the case where the items in bundle S are developed
(and thus bring no benefit to the auctioneer), and yi = 1 in case of preservation.

For each individual land parcel i, the corresponding owner has an opportunity cost
(ci) for developing the parcel, which remains private information. She would only accept
to preserve parcel i if price pi ≥ ci. The price or payment vector p = (p1, p2, . . . , pn) is
determined by an auction mechanism. The auctioneer is subject to a hard budget limit
of B, and thus the sum of individual payments should not exceed this constraint. In
addition, the auctioneer has a publicly known value function v : S → R≥0 for each
combination of parcels. We examine three different families of valuation functions:
additive, submodular, and superadditive to cover a broad range of possible valuations.
These are the types of set functions that are widely analyzed in the algorithmic literature:

– Additive: ∀S, T ⊆ {N} : v(S) + v(T ) = v(S ∪ T )− v(S ∩ T )
– Superadditive: ∀S, T ⊆ {N} : v(S) + v(T ) ≤ v(S ∪ T )
– Submodular: ∀S, T ⊆ {N} : v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T )

3.2 Optimal Allocation

We introduce a model to compute the optimal allocation (OPT), which serves as a
baseline to compare against incentive-compatible auction mechanisms. This integer
program does not generate prices but guarantees that at least the total cost of the farmers
is within budget. This does not mean that the result of an auction mechanism where prices
might be higher than costs will still be within budget. However, this constrained welfare
maximization provides a useful baseline to compare outcomes of auction mechanisms.

max
∑

S⊆N v(S)x(S)−
∑

i∈N ciyi
s.t.

∑
S⊆N x(S) ≤ 1∑
S:i∈S x(S) ≤ yi ∀i ∈ N∑
i∈N ciyi ≤ B

x(S) ∈ {0, 1} ∀S ⊆ N
yi ∈ {0, 1} ∀i ∈ N

(OPT)

The objective function maximizes gains from trade. The first constraint makes sure
that only one package of the government is selected, and the second enforces that a
package that is bought also has farmers selling their corresponding pieces of land. The
third constraint guarantees that the final allocation respects budget. The last constraints
enforce the integrality of the solution. V B(X) is defined as the objective function value of
OPT for a feasible allocation X = {x(S)}S⊆N , and V (X) the objective function value
of OPT for a feasible allocation X without the budget constraint. The welfare maximizing
allocation, ignoring the budget constraint, is then given by X∗ = argmaxX [V (X)].

3.3 The VCG Mechanism

Based on the above notation, it is straightforward to define the VCG mechanism. In this
sealed-bid mechanism, sellers i report their costs ci to the auctioneer. The auctioneer
then computes the maximum welfare V (X∗). In order to determine the payments for



each winning seller i, the auctioneer computes the optimal allocation X∗
−i without the

winning seller i. The difference ∆Vi = Vi(X
∗
i )−Vi(X

∗
−i) defines the VCG payment pi

for a winning farmer i. In single-sided (conservation) auctions, these payments are such
that the auctioneer does not make a loss. However, if the auctioneer has an additional
exogenous and binding budget B, they might make a loss with respect to this budget.

4 Budget-Feasible Auctions

The core of the algorithm by Balkanski et al. (2022) is a backward greedy technique
designed for submodular function maximization. In this auction, the auctioneer with
budget B proposes a price pi,t to each seller (or landowner) i in phase t, that is non-
increasing such that pi,t ≤ pi,t−1, and is computed using the available public information.
The sellers have the option to either reject the price and permanently exit the auction,
or continue by accepting this lower price. In the latter case, they are included in the set
At of active sellers at round t. Since in every iteration, we expect more sellers to reject,
naturally it holds that At ⊆ At−1 ⊆ · · · ⊆ A1 ⊆ N . At phase t̂, the auction terminates,
a subset of At̂ is chosen as the winning set W , and each seller receives a price equal to
the last accepted offer. The auction is budget-feasible if

∑
i∈W pi,t̂ ≤ B.

The auction outcome is compared against the resulting welfare of OPT , which
produces the optimal allocation for the case when all private costs are known, with a
price pi = ci paid to each seller. The approximation ratio is measured as the factor
ρ = OPT

BFA , where BFA describes the welfare achieved with the BFA algorithm. The
theoretical guarantee provided in this work is that, for monotone submodular value
functions, the approximation ratio for BFA is 4.75.

The clock auction is described as a two-stage process. During the first stage, for
each phase t, an estimate of the value of the optimal solution, ˜OPT , is updated. ˜OPT is
initiated with a pessimistic estimation, equal to the maximum value single item. In each
phase, we seek to determine a set of sellers St, such that the total value of their union
exceeds ˜OPT . The seller with the highest marginal contribution v({i}|St) to set St is
considered in each iteration and is offered a price equal to pi,t = min{pi,t, v({i}|St) ·

B
OPT }. This price pi,t corresponds to the marginal contribution of i to St scaled to reach
˜OPT within budget B. If the price is accepted by i, the auctioneer adds i to set St, or i

is removed from A otherwise. When v(St) ≥ ˜OPT or there are no active sellers left to
be offered a price, phase t comes to an end.

As a new phase t > 1 begins, the estimate is updated to ˜OPT t = 2 · ˜OPT t−1, and
set St−1 represents the selected sellers of the previous phase. If the union St−1 ∪ St

contains all active sellers at the end of phase t, the mechanism terminates.
At the second stage of the process, once the clock auction has terminated, sets St−1

and St are fed to a routine for submodular function maximization: a bidder is removed
from the set of phase t− 1 and added to phase t, to maintain budget feasibility. Finally,
the maximum value budget-feasible set is selected, as a combination of the elements
belonging to sets St−1 and St. A detailed pseudo-code is provided in the appendix.



5 Research Design

In our numerical experiments, we compare OPT with the VCG and BFA mechanisms.
Farmers grow a range of crops and employ different production technology, hence
we assume a standard private-value model, where valuations are drawn from a certain
distribution. The treatment variables of our numerical experiments include the value
model, budget constraint, and grid size. The opportunity costs ci of the landowners are
drawn i.i.d from a uniform distribution in the range [0, 50]. Results are reported on a 3x3
grid. We conduct experiments with larger grid sizes, up to sizes 7x7, but the impact of
grid size on the results was negligible.

The auctioneer’s value function, v(S), for packages of parcels S ⊆ N is divided
into several classes of set functions: additive, submodular, superadditive valuations, and
domain-specific functions. This is a central treatment variable in our experiments. The
first three classes are typical in the auction design literature, while the latter is motivated
by the domain of conservation auctions. Note that additive ⊂ submodular functions.

First, we report purely additive functions, adopting Polasky et al. (2014). Each item
is assigned a value vi drawn i.i.d. from the uniform distribution within range [0, 100].
Here, the value of a set of parcels is the sum of their individual values to the auctioneer.

Superadditive value functions capture general complementarities that result from
aggregating pieces of land. If the auctioneer can gather multiple parcels, the added value
is more beneficial to ecosystem preservation. For the case of superadditive functions, for
each package, the sum of values is incremented by a multiplier in the range (1, 2].

We generate all packages or combinations of items S ⊆ N , regardless of their
position on the grid, and assign a value for each subset by adding the individual values
vi in a bottom-up manner and multiplying with the multiplier.

Submodular functions are generated following the rule: v(S ∪ T ) ≤ v(S) + v(T )−
v(S ∩ T ). For the generation of submodular valuations, we define the maximum value
resulting from adding any two subsets S, T and subtracting the value of their intersection.
This value provides an upper bound on the value that S ∪ T is allowed to take. The
minimum allowed value for S ∪ T is the maximum value of S, T . Additive, submodular,
and superadditive set functions are widely used in discrete mathematics and algorithm
design, but do not always adequately capture the specifics of conservation auctions.

Iftekhar & Tisdell (2014) emphasize wildlife corridors as a landscape pattern with
significant biodiversity benefits. Such corridors can be seen as rows on a grid (see Figure
1). Once a wildlife corridors is achieved, the value of conserving parcels in this row
becomes superadditive. However, the value of preserving multiple corridors satisfies
submodularity, thus although beneficial to conserve a corridor, as more are added, the
marginal contribution of each new one to the conservation pattern diminishes. All other
combinations of parcels have additive values. Landowners need to coordinate their
bids to form valid corridors and compete with other valid corridors to be successful
(Iftekhar & Latacz-Lohmann 2017a). Other conservation targets aim at reducing soil
erosion or water pollution, where the auctioneer has preferences for specific patterns
as well. We focus on the goal of wildlife corridors as a particularly illustrative and
widespread conservation target that has received significant attention (Iftekhar & Tisdell



2014, Iftekhar & Latacz-Lohmann 2017b, Dijk et al. 2017). An interesting application is
the auction program to create habitat corridors in Australia (Nguyen et al. 2022).

The choice of landscape corridors as a specific type of value model is due to its
relevance to biodiversity and conservation auctions. The literature on biodiversity-based
value models on a landscape scale is scarce and differs from application to application
(e.g., protecting turtle doves is different from landscape level patterns that help bees).
Knowledge about beneficial patterns is currently emerging.

A motivating argument for studying submodular functions is the fact that BFA
achieves the highest efficiency for this family of functions, yielding a close approximation
of the optimal solution. Bordewich & Semple (2011) model phylogenetic diversity, a
measure of biodiversity of a species collection, under the assumption of submodularity.
Similar to additive and superadditive, which can be intuitively perceived as natural
candidate classes, submodularity is an interesting property to examine.

Figure 1. Corridors on the landscape grid allowing for wildlife movement between regions A and
B highlighted in different colors.

Budgets can be binding or non-binding. The case of non-binding budgets is trivial:
the OPT and VCG outcomes are equivalent, and all items can be purchased for a certain
price. For the more interesting case of binding budgets, we draw values at random in the
range from which costs are drawn, so that the auctioneer can only afford a strict subset
of items. In particular, since costs are drawn i.i.d. from a uniform distribution in [0,50],
we draw budget values i.i.d. from a uniform distribution in [50, 150]: in this way, the
auctioneer has the power to purchase at least one single land item.

To the best of our knowledge, conservation auction data is not made publicly avail-
able, as principal values and land owner opportunity costs are documented by government
bodies. We thus resort to synthetic data generation to support and confirm our claims.

6 Results

6.1 Relative Efficiency

We first compute the welfare of BFA relative to OPT (BFA/OPT) and then relative to
VCG (BFA/VCG). The welfare of the latter does not consider the budget constraint and
as such describes unconstrained (and higher) welfare. We report average values and
standard deviations for 50 auction instances with randomly generated valuations. In
Tables 1-6 we include the statistical measure of p-values. We define symbolic notations
that represent the significance level of each reported result. 2

2 P-value ranges symbolically: [10−60, 10−40] :∗∗∗, [10−40, 10−20] :∗∗, [10−20, 10−01] :∗



Result 1 The average efficiency of BFA relative to OPT is 0.64 or 0.76 respectively (see
table 1). With general superadditive valuations, the average efficiency (BFA/OPT) can
be as low as 0.491 for high levels of superadditivity (see table 2).

The worst-case theoretical approximation ratio for submodular valuations is 4.75,
which translates to a welfare of 0.21% in the maximization problem. Taking OPT as
a baseline, the group-strategyproof BFA achieves high levels of efficiency of 0.64 for
additive and 0.77 for submodular valuations (see table 1).

Table 1. Additive and submodular valuations: mean and standard deviation of relative efficiency.

additive submodular
BFA/VCG (mean) 0.454** 0.757*
BFA/ VCG (std) 0.106 0.149

BFA/OPT (mean) 0.640* 0.763*
BFA/ OPT (std) 0.129 0.130

We report superadditive valuations in detail since average efficiency depends heavily
on the level of superadditivity. Table 2 shows the average efficiency values for different
multipliers. A multiplier of 2 (rightmost column) means that the value of the package is
twice the value of the individual parcels, and indicates a high level of superadditivity.

Table 2. Superadditive valuations: mean and standard deviation of relative efficiency for varying
value of superadditivity multiplier.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
BFA/VCG (mean) 0.459** 0.430** 0.423*** 0.394*** 0.408*** 0.376*** 0.332***

BFA/VCG (std) 0.123 0.140 0.136 0.130 0.118 0.136 0.132
BFA/OPT (mean) 0.638* 0.610* 0.599* 0.569* 0.599* 0.542* 0.491*

BFA/OPT (std) 0.131 0.141 0.146 0.156 0.126 0.162 0.164

Result 2 The value model with superadditive corridors combines superadditive and
submodular valuations. The level of superadditivity within corridors determines the
overall auction efficiency. The values for BFA/OPT do not significantly differ from those
for superadditive valuations, while for BFA/VCG are significantly lower (see table 3).

The slightly lower efficiency values for BFA/VCG deserve some discussion. The
reason behind this discrepancy lies in the nature of the BFA algorithm. Starting from
the maximum single item value, the algorithm adds to a current set St the item with
the largest marginal contribution. This item can be anywhere on the grid, as the greedy
algorithm has no spatial understanding or knowledge that completing a corridor increases
value, while all other packages are additive. If the auctioneer has acquired one parcel in
every row, the algorithm simply selects the item with highest marginal contribution to
the current set welfare, which might lie in another corridor. With binding budgets, no
corridor might be established in cases where it would have been possible.



Table 3. Submodular corridors: mean and standard deviation of relative efficiency for varying
values of superadditivity within a corridor.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
BFA/VCG (mean) 0.384*** 0.342*** 0.301*** 0.275*** 0.252*** 0.225*** 0.183***

BFA/VCG (std) 0.108 0.097 0.073 0.073 0.076 0.075 0.074
BFA/OPT (mean) 0.615* 0.63* 0.601* 0.588* 0.573* 0.545* 0.479*

BFA/OPT (std) 0.129 0.152 0.126 0.128 0.168 0.191 0.178

6.2 Payments

Next, we study how much the VCG mechanism exceeds the budget on average, and how
much budget is left over with BFA.

Result 3 The VCG payments for submodular valuations do not significantly exceed the
budgets constraint. However, with superadditive valuations, the payments are even 12.9
times higher than the budget with a superadditivity multiplier of 2 (see tables 4 and 5).
For submodular corridors, this ratio goes up to 68 for a multiplier of 2 (see table 6). In
contrast, the payments with the BFA algorithm are always significantly below budget.
For superadditive valuations, the payments are always more than 20% below budget.

Table 4. Relative payments for additive and submodular valuations compared to given budget
constraint.

additive submodular
VCG/ Budget (mean) 6.6*** 1.7*
VCG / Budget (std) 2.0 0.6

BFA/ Budget (mean) 0.8* 0.8*
BFA/ Budget (std) 0.1 0.1

Table 5. Relative payments for superadditive valuations compared to given budget constraints, for
varying value of superadditivity multiplier.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
VCG/ Budget (mean) 7.2*** 7.9*** 8.5*** 9.2*** 9.9*** 11.1*** 12.9***

VCG/ Budget (std) 2.2 2.4 2.8 3.0 3.3 3.5 3.9
BFA/ Budget (mean) 0.8* 0.8* 0.8* 0.8* 0.8* 0.8* 0.8*

BFA/Budget (std) 0.1 0.1 0.1 0.2 0.2 0.2 0.2

Budget violation in submodular corridors is significantly higher than in superadditive
valuations (see table 6). This is due to the structure of the VCG payment rule and the
value model specifics. Once a corridor is achieved, the marginal welfare contribution of
a single item is very high, since this addition leads to a high value corridor in the welfare.
As the multiplier value increases, so do the gains from preserving a corridor. This high
marginal contribution of a single seller is reflected in the VCG payment. In the case of
superadditive valuations, many packages with high superadditive valuations exist and
the effect is much reduced. BFA payments are slightly higher but largely unaffected.



Table 6. Relative payments for submodular corridor dataset compared to given budget constraints,
for varying value of superadditivity multiplier.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
VCG/ Budget (mean) 29.7*** 36.0*** 41.8*** 44.3*** 49.2*** 55.9*** 68.4***

VCG/ Budget (std) 10.0 12.7 13.3 14.3 15.1 19.5 23.0
BFA/ Budget (mean) 0.8* 0.8* 0.8* 0.8* 0.8* 0.8* 0.8*

BFA/Budget (std) 0.1 0.1 0.1 0.1 0.1 0.1 0.1

7 Conclusions

Conservation auctions have received significant attention worldwide. Recent insights
from natural sciences show that agri-environmental services need to be coordinated on a
landscape level to maximize biodiversity gains. Conservation of wildlife corridors in a
landscape is a standard example with many applications. Policymakers aim at designing
auctions that are incentive-compatible, respect governments’ budget constraints, and
account for complementarities of agri-environmental services. Recent results in algorith-
mic mechanism design propose auction formats that satisfy these goals at the expense of
efficiency. The contribution by Balkanski et al. (2022) is remarkable as it is a transparent
clock auction that is robust against collusion and runs in polynomial time.

Worst-case bounds for specific and stylized value functions might not provide suf-
ficient guidance for policymakers when selecting a mechanism. We analyze standard
value models motivated by the application domain and compute the average-case ef-
ficiency loss a regulator can expect. Our experiments confirm that, primarily for the
case of submodular, but, to some degree, for additive functions, the BFA achieves high
efficiency, verifying that, in practice, the approximation observed is much closer than
the theoretical worst-case bound. We show that, with modest levels of superadditivity in
conservation auctions, the welfare loss is still reasonable. At the same time, the auction
guarantees budget feasibility, accommodates the value function of the government, and
is strategyproof even with respect to coalitions of farmers. In contrast, payments by
the government render the VCG mechanism unsuitable for most applications in this
domain where the government has budget restrictions. Therefore, even though the BFA
is designed as a submodular maximization algorithm, one could argue that, since it
maintains important properties and stays within budget, it can be considered as a promis-
ing alternative for policymakers, when budget and truthfulness are strict constraints. In
future research, laboratory experiments would be useful to understand the difference to
non-truthful auction formats.
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A Appendix

A.1 BFA Algorithm Details

We provide the detailed pseudo-code of the two-stage BFA algorithm, adopting the
notation of Balkanski et al. (2022). Starting from Mechanism 1, the set of active sellers
A initially contains the entire set N , and whoever rejects the offered price is removed in
each iteration, leading to a gradually shrinking active set. The OPT estimate is initiated
with the value maximizing item to the auctioneer and is refined as the auction proceeds.
Set St of currently considered sellers in phase t initially contains the index of the value
maximizing seller. Given St, we update an index i that contains the seller whose value,
when aggregated with the set St, offers the maximum marginal contribution. To this
seller i, a price offering equal to the minimum between the previous price and marginal
contribution scaled by a factor B

˜OPT
that guarantees budget feasibility is made. If this

offer pi is accepted by the seller, set St is updated to include i, otherwise i is removed
from A and permanently exits the auction. While the value of set St is smaller than
the current estimate ˜OPT and the set of remaining sellers that can be considered is
not empty, the algorithm proceeds in considering the next best addition to St, until the
condition on the value of St is met. If the value of St exceeds this estimate, a new phase
begins: ˜OPT is doubled, and St is initialized as an empty set for the new phase. When
the set of remaining sellers, that are active but do not belong to either St or St−1 - the
two sets of accepted sellers of the last two phases, is empty, the auction terminates.
We examine sets St−1 and St, now denoted as W1 and W̄2. Starting from W1, if the
sum of prices of all sellers belonging to W1 exceeds the given budget B, then the last
added seller is removed from W1, and is instead offered a price equal to the marginal
contribution to the set St. In this way, the algorithm aims at moving the seller from one
set, where the budget is exceeded for the current price, to another set, with the hope of
achieving a budget-feasible payment scheme. If the updated price is accepted by the
seller, the set St, denoted as W̄2 is updated to include this seller. If the sum of prices
of sellers in W1 is within budget, the swap of the last added seller does not take place
and the algorithm proceeds to the final stage: invoking a routine for value maximization
subject to a knapsack constraint (the budget).

Algorithm 2 examines the two sets, W1 and W̄2. As a first step, the longest budget-
feasible sequence of agents is picked from W̄2, since the sets are built in a manner that
supports retrieval of the order of insertion, and is denoted as W2. The two sets W1 and
W2 are now both within budget: a final set W3 is defined as the union between W2

and the longest sequence of sellers from W1 such that budget-feasibility of the union is
maintained. The algorithm chooses the set among W1 and W3 that yields the highest
value, which corresponds to the final set of sellers that are chosen in the allocation.



MECHANISM 1: ITERATIVE-PRUNING, a deterministic budget-feasible
clock auction for monotone submodular valuation functions

Input :Budget B, valuation function v : 2N → R
1 initialize A← N , S0 ← ∅, S1 ←

{
argmaxi∈N v({i})

}
, ˜OPT← v(S1), t← 1,

pi ← B for all i ∈ N
2 while A \ (St−1 ∪ St) ̸= ∅ do
3 update t← t+ 1, ˜OPT← 2 ˜OPT and initialize St ← ∅ ; // start a

new phase

4 while v(St) < ˜OPT and A \ (St−1 ∪ St) ̸= ∅ do
5 let i← argmaxi∈A\(St−1∪St)

v({i} | St) ;
6 update pi ← min

{
pi, v({i} | St) · B

˜OPT

}
7 if seller i accepts price pi then
8 update St ← St ∪ {i} ; // add seller i to current

solution

9 else
10 update A← A \ {i} ; // permanently eliminate

seller i

11 Let W1 ← St−1 and W 2 ← St

12 if
∑

i∈W1
pi > B then // enforce budget feasibility of W1

13 let j∗ ← the last seller added to St−1

14 update pj∗ ← min{pj∗ , v({j∗} | St) · B
˜OPTt
}

15 update W1 ←W1 \ {j∗}
16 if seller j∗ accepts price pj∗ then
17 update W 2 ←W 2 ∪ {j∗} ; // move the last seller j∗ to

W 2

18 return MAXIMIZE-VALUE(W1,W 2, p)

MECHANISM 2: MAXIMIZE-VALUE, an algorithm for maximizing value
subject to knapsack constraint

Input :W1, W 2 and the prices pi for all i ∈W1 ∪W 2

1 let W2 ← the longest budget-feasible prefix of W 2

2 let W3 ←W2 ∪ T , where T is the longest prefix of W1 such that W2 ∪ T is
budget-feasible

3 Let W ∈ {W1,W3} be the set with the largest value v(W )

4 return W and the corresponding prices
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