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Abstract. Due to the advent of digital learning environments and the freedom they
offer for learners, new challenges arise for students’ self-regulated learning. To
overcome these challenges, the provision of feedback has led to excellent results,
such as less procrastination and improved academic performance. Yet, current
feedback artifacts neglect learners’ heterogeneity when it comes to prescriptive
feedback that should meet personal characteristics and self-regulated learning
skills. In this paper, we derive requirements from self-regulated learning theory
for a feedback artifact that takes learners’ heterogeneity into account. Based on
these requirements, we design, instantiate, and evaluate an Explainable AI-based
approach. The results demonstrate that our artifact is able to detect promising
patterns in data on learners’ behaviors and characteristics. Moreover, our eval-
uation suggests that learners perceive our feedback as valuable. Ultimately, our
study informs Information Systems research in the design of future Explainable
AI-based feedback artifacts that seek to address learners’ heterogeneity.

Keywords: Digital Learning, Higher Education, Feedback, Explainable Artificial
Intelligence, Counterfactual Explanations.

1 Introduction

Many institutions in higher education have responded to the growing popularity of
Massive Open Online Courses (MOOCs) by either complementary or fully adapting
face-to-face courses to digital learning environments. While the shift towards digital
learning environments provides several advantages to instructors and learners (e.g.,
flexibility in scheduling teaching and learning sessions), this freedom also comes along
with challenges for learners. More specifically, there is evidence that students with
poor self-regulated skills suffer especially from this shift, potentially resulting in lower
academic performance, whereas those with strong skills can cope well with a more
digital setting (Kizilcec et al. 2017).

To support learners in digital learning environments, a plethora of artifacts came
into existence that harnesses the potential of digital data traces recording their learning
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activities (Ifenthaler & Yau 2020). Recent examples in Information Systems (IS) research
include learner support in the form of gamification elements (Benner et al. 2022, Leung
et al. 2022), digital companions (Kruse et al. 2023), chatbots (Gupta & Chen 2022),
and peer information (Li et al. 2021). Feedback (i.e., the provision of prescriptive
information) thereby resembles an inherent way to support learners and represents a
core mechanism for many of such IS artifacts. In general, feedback studies document
intriguing behavioral effects on reducing procrastination or improving learning outcomes
(see, e.g., Günther 2021, Theobald & Bellhäuser 2022).

Yet, due to their design, many of the feedback artifacts only support a specific type of
learner (i.e., regarding self-regulated skills and prior knowledge of a topic). For instance,
feedback in the mid of the semester designed to increase learning engagement might
produce behavior change for students with low structuring skills (i.e., metacognition),
while being less helpful for students with higher skills. This conjecture might also explain
why studies often find mixed effects among different types of learners (see, e.g., Li
et al. 2021, Leung et al. 2022). What is currently missing in IS research are approaches
for feedback provision that directly address different types of learners regarding their
heterogeneity and provide personalized instructions of a prescriptive nature.

We argue that technological advances in Machine Learning (ML) and Explainable
Artificial Intelligence (XAI) can empower students by addressing learners’ heterogeneity
regarding their personal characteristics and Self-regulated Learning (SRL) skills through
personalized instructions. ML has the capability to capture promising patterns in learning
activities, learners’ characteristics, and the interplay of both (i.e., activities and charac-
teristics) that may resemble successful factors for individual academic success (Arnold
& Pistilli 2012, Nguyen et al. 2020). Recent ML algorithms are able to model real-world
relationships but usually hide the patterns detected in data from their users. XAI aims to
overcome this issue by translating these patterns into a human-interpretable form (Meske
et al. 2020). A potentially suitable XAI approach that allows to derive instructions of
prescriptive nature from ML models is Counterfactual Explanations (CEs) (Fernández-
Loría et al. 2022, Molnar 2019). CEs are motivated by the phenomenon that humans tend
to judge events by the potential reasons why a desired event did not occur (Miller 2019),
e.g., “Why did I get a poor grade in the exam instead of an excellent one?”. To provide
answers to such questions from the perspective of a ML model, CEs derive explanations
in the form of required changes for a desired model outcome (Mothilal et al. 2020). Such
explanations might also hold for real-world problems, e.g., “If I had spent more time in
the learning platform, I wouldn’t have had a poor grade in the exam”. Hence, CEs have
the potential to guide students’ learning in digital environments through context-specific
instructions that build on the learned patterns of the respective ML model. Therefore,
this paper seeks to answer the following Research Question (RQ):
RQ: How should an XAI-based artifact be developed that guides learning in digital
environments through feedback provision while addressing learners’ heterogeneity (e.g.,
regarding their characteristics and SRL skills)?

To address this research question, we design, implement, and evaluate a user-centered
feedback artifact that intends to leverage recent advances in ML and XAI to recognize
learners’ activities and characteristics and their interplay to derive meaningful feedback
and therefore effective guidance during online learning. The overall goal of this study is



to map the knowledge generated in SRL theory to an XAI-based artifact, which will con-
tribute to the debate on providing effective learner support in digital environments (Gupta
& Bostrom 2009). While our artifact opens a window to further research opportunities,
we focus within this paper on the feasibility of such an approach.

Our paper is structured as follows: In the subsequent section, we outline the founda-
tions of SRL theory to understand students’ learning activities and introduce ML and
XAI as concepts for learner guidance. Building on this background, we derive issues
from phenomena documented in the literature that emerge for the design of such an
artifact addressing learner heterogeneity. Relying on these issues, we synthesize require-
ments for the design of our artifact and use them to test our implementation. We finally
highlight and discuss principles for future IS that implement XAI-based feedback to
address subject heterogeneity in digital learning environments.

2 Background

2.1 Self-regulated Learning (SRL) Theory

Higher education poses many challenges to the learning processes of students. In contrast
to secondary education, individuals have to rely more on their own self-regulated learning
capabilities (i.e., the skill to plan, monitor and evaluate one’s work and to control one’s
motivation and emotion) (Vosniadou 2020). Indeed, there is a stream of research under
the notion of SRL that tries to understand which antecedents shape individuals’ learning
processes (see, e.g., Credé & Phillips 2011, Pintrich 2004, Wild & Schiefele 1994).
Within the SRL framework, individuals differ with respect to cognitive, metacognitive,
and resource management skills (Panadero 2017), which are fundamentally related to
their context-specific choice of self-learning strategies. For instance, students with a
higher level of time management skills tend to plan their learning better (e.g., by making
and executing plans), while weaker skills could be related to self-regulation issues (e.g.,
procrastination). Therefore, to effectively guide students’ SRL implies acknowledging
these differences in students and also keeping students’ motivation for learning high, as
motivation is seen as a fundamental basis for SRL to take place (Pintrich 1999).

It is important to note that literature also provides a process-oriented view of how
learners engage in SRL. More specifically, literature commonly distinguishes between
several cyclical phases of SRL. For instance, Zimmerman & Moylan (2009) classify
SRL activities into three consecutive phases: the forethought phase, the performance
phase, and the self-reflection phase. In the forethought phase, learners plan tasks and
set their learning goals, which also involves analyzing the value of the tasks at hand as
well as assessing self-motivation beliefs (e.g., regarding their self-efficacy or outcome
expectation in addressing a specific task) (Zimmerman & Moylan 2009). Subsequently, in
the performance phase, learners execute different learning strategies (e.g., elaborate and
repeat contents), as well as observe themselves to stay cognitively engaged and motivated
(Panadero 2017). Finally, in the self-reflection phase, learners judge the progress towards
their goals and make, based on the progress, attributions to their selves. For instance,
in meeting or not meeting the learning goals of the forethought phase, learners might
evaluate the suitability of the chosen learning strategies or reflect on themselves (e.g.,



eliciting positive or negative emotions associated with learning) (Zimmerman & Moylan
2009).

2.2 ML and XAI for Learner Guidance

Recent advances in the field of ML—one of the core technologies of Artificial Intel-
ligence (AI)—have opened up new avenues for addressing the challenges of higher
education learning in digital learning environments (Ouyang et al. 2022). Given that
ML algorithms are capable of capturing complex patterns in large amounts of data (e.g.,
Berente et al. 2019), they could provide learners and instructors with additional insights.
Examples include the early detection of students at-risk of failing an exam (Baneres et al.
2019) or the recommendation of courses (Bousbahi & Chorfi 2015).

Although the high predictive power of modern ML approaches is beneficial for
application fields such as learning, models often come along with a lack of transparency
and thus hide the patterns they detect in data from their users, leaving their potential to
assist humans through the exposure of captured patterns untapped (Meske et al. 2020).
The field of research that aims to improve the transparency of complex ML models is
referred to as XAI (Barredo Arrieta et al. 2020).

A recent approach in XAI are CE methods that provide data-driven explanations
on “what-if” questions (i.e., if a learner did a specific set of quizzes and videos, a
model would estimate a better grade) (Fernández-Loría et al. 2022, Molnar 2019). CEs
methods search for causal changes in features to shift a prediction to a desired output
(Mothilal et al. 2020), thus allowing—on the premise that the model reflects real-world
relationships (Štrumbelj et al. 2009)—for guidance involving the derivation of personal-
ized instructions. Hence, CEs may be beneficial for higher education learning in three
ways: First, by using CEs to demonstrate individually how to achieve a desired learning
outcome (i.e., achieve more exam points). Second, as ML uses data on past learning
behavior that has led to high and low learning success, the approach could suggest
weaker students learning strategies from strong students. Exposing the behaviors of
strong learners to potentially struggling learners has already been found to be effective in
prior SRL studies (Davis et al. 2017). Third, by providing guidance on an individual level
that is to some degree automated, it does not require much involvement of instructors.

3 Research Approach and Artifact Requirements

The research approach of our study is inspired by the principles of design science re-
search (Hevner et al. 2004, Peffers et al. 2007). We thereby strive to tackle the challenge
that current digital learning feedback artifacts do not account sufficiently for learners’
heterogeneity (i.e., our problem specification). Following a nomothetic genre of design
science inquiry (Baskerville et al. 2015), we identify issues from established knowl-
edge (i.e., SRL and XAI literature) resulting from natural challenges in digital learning
environments for the design of an XAI-based feedback artifact addressing learners’ het-
erogeneity. Relying on these issues, we derive Meta-Requirements (MRs), implement the
artifact, and evaluate it against measurable criteria. We finally outline design knowledge
from artifact development and evaluation in the form of Design Principles (DPs) to



address the general problem class at hand (i.e., effectively guide learners within the
scope of digital learning environments). Given the limited scope of this paper, we briefly
summarize the issues and related MRs below and outline the derived DPs inspired by
Gregor et al. (2020) in Section 6.

Figure 1. Issues (I1-I7) from SRL and XAI literature and MRs of the feedback artifact

We divide the MRs into functional (i.e., what the artifact must be able to do) and
non-functional (i.e., properties of the artifact that need to be measurable) requirements
according to Sommerville (2011), where we inherently consider the functional require-
ments for development and evaluate the non-functional ones against the artifact (Figure
1). In summary, we identified seven issues from literature. I1 to I6—derived from the
cyclical phase model of self-regulatory feedback by Zimmerman & Moylan (2009)—aim
to account for potential sources of heterogeneity in SRL. From these six issues, we
derived four MRs. The first requirement (MR1), the provision of personalized feedback,
should support students in specifying learning outcomes by informing them about the
potential benefits of responding to feedback and allowing students to set specific task
goals (I1) in accordance with their time management (I3). Moreover, the feedback should
help them to metacognitively monitor their learning processes (I4), as well as to compare
their progress to an evaluative standard (e.g., self-goals) (I5). Second, the artifact should
meet the MR2, namely the provision of feedback in the form of actionable instructions
to learners. Such instructions should stimulate goal setting (I1) and associated time
management processes (I3), as well as lead to feelings of self-efficacy in case the tasks
are perceived as manageable (I2). As the third requirement (MR3), the feedback of the ar-
tifact shall be embedded into a course overview page to enable learners’ progress control.
With the help of such progress control, learners who have deficits in time management
(I3) and metacognitive monitoring (I4) can be supported, as the feedback might enable
them to track their learning processes. Fourth, the artifact should provide feedback that
learners find valuable for their individual learning (MR4), consequently be perceived
as useful and be accepted by the learner (Strijbos et al. 2010). Valuable feedback is
important for learners’ self-satisfaction (I6), as learners prefer learning activities that pre-
viously led to satisfaction (compared to Bandura 2001). We evaluate this non-functional



requirement within a user-based evaluation. The fifth requirement (MR5) stems from
the XAI literature and refers to the precision of the instructions provided by the artifact
(I7). More specifically, Štrumbelj et al. (2009) argue that the better the model recognizes
domain concepts, the higher the quality of a data-driven explanation, and vice versa.
The recognition of domain concepts, approximated through predictive performance, is
therefore a prerequisite for the meaningful reflection of relationships in real-world data,
and thus an essential non-functional system requirement for instruction quality.

4 Artifact Description

Our artifact is embedded into a digital learning environment and displays instructional
feedback in the form of a component. The development builds on the aforementioned
requirements and is designed to address learners’ heterogeneity. Figure 2 illustrates an
exemplary output of the component, displaying feedback to learners. The component
consists of three elements and addresses MR1-MR3 (i.e., functional requirements): First,
the introductory text, which refers to MR1 by pointing to the personalization of feedback
and its tailoring to one’s past online learning behavior. In doing so, the component
explains that the additional implementation of instructions can lead to increased exam
performance. Second, the three actionable instructions addressing MR2. We limit the in-
structions to three items because we argue that more instructions might lead to reactance
in learners due to the considerable increase in additional workload. Third, check boxes
learners can mark as “Done” to enable progress control, which addresses MR3.

Figure 2. Exemplary component output for learners generated by the artifact

The quantitative modeling of our artifact to obtain feedback comprises four steps
(Figure 3). These steps serve, on the one hand, for initially instantiating pre-trained ML
models, and on the other, for generating feedback for an ongoing course. The paragraphs
below describe each step in detail.

Data Acquisition. For data acquisition, our artifact collects behavioral data from an
Open edX1 online learning platform hosted by our university. On Open edX, students
can access instructional videos, slides, and quizzes. The artifact considers extensive
data on students’ behavior and characteristics through built-in plugins in three ways.
First, through the integration of the JavaScript library TimeMe.js2 into the learning

1 https://openedx.org/de/
2 https://github.com/jasonzissman/TimeMe.js/



Figure 3. Quantitative modeling of the artifact

environment to more precisely record the students’ learning time and save these data
in an operational database. Second, by logging text files that record students’ platform
activities and characteristics in the form of user events on the edX environment (e.g.,
file downloads and videos watched etc.) and answers obtained from a built-in survey.
Third, through the consideration of previous course data of prior semesters on students’
learning time, platform activities, characteristics, and achieved exam points (i.e., the
target variable) for a supervised training of the ML models.

Data Modeling. The functionality of our artifact initially performs data harmoniza-
tion by merging the student learning time data and the log data containing the students’
platform activities. Following the typical steps for model instantiation (Kühl et al. 2021),
the resulting data set passes two successive preparation steps: Feature extraction (a) to
obtain processable and meaningful features (i.e., predictor variables) that the artifact can
feed into the ML algorithms. We list all features the artifact considers and mark features
of type purely “predictive” with a “P” and all “actionable” features that we consider as
part of our feedback artifact with “A” (Table 1). The rationale behind predictive-only
features is that some may be misleading (e.g., video pauses) for feedback or hardly
alterable but seem common for academic performance prediction (e.g., gender) due to
their impact on students’ learning (Hellas et al. 2018, Schoemer et al. 2021, Yukselturk
& Bulut 2009). Finally, the artifact organizes the data set in an expanding window to
ensure time-related predictive models and to consider only content and learner behavior
that is relevant up to a certain point in time (e.g., for weekly granularity and feedback
updates: Starting in the first semester week and gradually expanding the data set up
to the final week). Moreover, we applied automatic feature selection (b) to capture the
most important features and eliminate irrelevant ones. In doing so, our artifact includes a
mutual information regression module (Kraskov et al. 2004, Ross 2014) that can cope
with numerical and categorical features while maintaining interpretability.

Predictive Modeling. For the provision of feedback, we instantiate ML models to
learn the relationship between learner behavior and characteristics, and course success.
Our artifact predicts exam points achieved instead of the grade to avoid unnecessary
dependent variable transformations and excludes exam retakers, and students with zero
exam points from the target variable not to bias the ML models. We embed four well-
recognized ML algorithms for predicting students’ exam points that stem from different



Table 1. Variables used for prediction and actionable feedback

Group Variable Description Data
type1

Type2

Video VideoViews.Total Total number of video views Int A
ViewsTotal.Complete Total number of completely viewed videos Int A
ViewsPerVideo{ID} Indicates (unique) whether a specific video has already been watched Int A
ViewsPerVideo{ID}.Com-
plete

Indicates (unique) whether a video has already been watched completely Int A

VideoPauses.Total Total number of pauses while watching videos Int P
VideoPlaybackSpeed.Total Average speed with which the videos are played Dbl P
VideoTranscriptHidden.Total Total number of times a student hides the video transcript Int P

Quiz QuizzesTaken.Total Total number of quizzes taken Int A
QuizTakenPerQuiz.{ID} Indicates (unique) whether a specific quiz has already been taken Int A
CorrectPerQuiz.{ID} Total number of times a student achieved the maximum points of a specific quiz Int A
CorrectRatioPerQuiz.{ID} Ratio between the mean achieved points and the maximum points of a specific quiz Dbl P

File
download

AssetDownload.{ID} Indicates (unique) how often the slides of a specific tutorial/lecture have been downloaded Int A

Platform
activity

Time.Total Total time spent on the learning platform (incl. sum, SD, max) Dbl A
HoursDuringDay.Total Total time spent on the learning platform during the day (6:00 a.m. – 8:00 p.m.) Dbl P
HoursDuringNight.Total Total time spent on the platform during night Dbl P
TimePerSection.{ID} Total time spent per learning section Dbl A
Requests.Total Total number of HTTP request on the learning platform (incl. sum, SD, max) Int/Dbl P
RequestsPerSection.{ID} Total number of HTTP request per learning section Int P
Sessions.Total Total number of learning sessions (i.e., logins) on the learning platform (incl. sum, SD, max) Int/Dbl A
SessionsPerSection.{ID} Total number of learning sessions (i.e., logins) on the platform per learning section Int A
BonusExerciseDone.{ID} Indicates whether students have submitted a specific bonus assignment in the course to

achieve extra points in the exam
Cat P

Student
characteristics

StudyProgram Indicates the program (e.g., Information Systems) in which the student is enrolled Cat P
Gender Gender of the student (female, male, diverse) Cat P

1 Int = Integer; Dbl = Double; Cat = Categorical
2 A = Actionable; P = Predictive

categories of ML algorithms (e.g., Miguéis et al. 2018). We choose Extreme Gradient
Boosting (XGBoost), CatBoost, Random Forest, and Support Vector Regression as
estimators. The models are trained separately for each period within the expanding
window. To reduce sampling bias, the artifact applies a stratified 80/20 train-test split
according to students’ exam points. Building on the training data set, we integrate the
previously instantiated feature selection to build feature configurations using a percentage
proportion p of the total features with p ∈ {20, 40, 60, 80, 100} (i.e., p% of features
with the highest score). Our artifact then trains models for each feature configuration
and performs parameter tuning using a grid search applying a 5-fold cross-validation.
The artifact automatically picks the model with the lowest prediction error on the test set
according to the Root Mean Square Error (RMSE) to choose the best ML model for each
period in time. Finally, our artifact fits pre-trained models on the whole data set (i.e., the
entire previous course data, e.g., for a specific week) as the basis for generating CEs.

Explanation Modeling. To derive feedback for students, we rely on the XAI method
Diverse Counterfactual Explanations (DiCE) introduced by Mothilal et al. (2020). The
method seeks to propose diverse CEs (i.e., offer multiple explanations for behavioral
change to increase exam points), which is desirable for real-world scenarios (Kusner
et al. 2017). Given that our feedback is limited to three instructions, we employ the XAI
method Shapley Additive Explanations (SHAP) (Lundberg & Lee 2017, Lundberg et al.
2020) for changes that affect more than three features. The counterfactual model stores
the instructions for each student in an CEs database. Finally, the feedback component
(Figure 2) displays instructions to learners by accessing the CEs database through a web
service. We list the translation of CEs to actionable feedback in Appendix A.



5 Artifact Evaluation

Given the inherent fulfillment of functional requirements due to a corresponding de-
velopment, we focus on the non-functional requirements for evaluation. Thereby, we
follow the chronological order of the development process, starting with the evaluation
of MR5 regarding the reflection of meaningful relationships followed by the evaluation
of MR4. For artifact evaluation, we considered two distinct courses to obtain a more
holistic picture across course levels: First, we employed feedback in a bachelor’s IT
Project Management course in the summer semester of 2022, and second, in a master’s
course on Data Analytics in the winter semester 2022/2023 from course week 7 on,
respectively. As the artifact evolved between both iterations as part of the design cycle
process, we had not yet included a feature selection method in the bachelor’s course.
Thus, we focus exemplarily on the master’s course for MR5 and report the perceived
value of feedback for both courses within the evaluation of MR4, as the wording of the
feedback instructions remained consistent.

MR5 Evaluation. To assess the artifact’s capability to reflect meaningful relation-
ships, we considered data from three prior runs of the data analytics course summing
up to N = 118 learners (Table 2). We combined the data from all three course runs and
configured the artifact to account for weekly periods for training and evaluation of the
ML models. Within the course, students can score 0–90 points in the exam.

Table 2. Overview of past data from three runs of the Data Analytics course

Winter 2019/2020 Winter 2020/2021 Winter 2021/2022

Students (all course weeks) 46 39 33
Exam points mean (SD) 44.67 (24.40) 54.92 (20.60) 57.00 (17.43)
Learning time events 14753 23196 15309
Platform activity events 284334 196037 159080

Following Štrumbelj et al. (2009), we use predictive performance as a proxy met-
ric and thereby leverage three well-established regression error measures: The Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and RMSE (see
Hastie et al. (2009) for details on the measures). Overall, we observe a decreasing error
with increasing weekly data for all ML estimators on the test sets from week 9, which
remains fairly constant for the following weeks (Figure 4). More specifically, we find
the following error metric means (SDs) across all weeks and models the artifact relies
up on: MAE = 9.38 (2.18), MAPE = 23.98 (6.09), and RMSE = 11.90 (2.64). To
justify the usefulness of the ML approach, we additionally compare the residuals of
the selected ML models with the naïve estimators (predicting with the respective Mean
and Median of the train set), indicating the best performance for the mid (week 9) and
end of the semester (week 17). To this end, we perform paired one-sided two-sample
t-tests on the residuals of the test set (CatBoost vs. Median). The test results reveal a
statistically significant decrease in the residuals of the ML models for the course week
9 (t(21) = −2.55, p = 0.009, d = 0.54) and 17 (t(23) = −3.28, p = 0.002, d = 0.67).
Thus, we conclude that the ML approach is reasonable and assume that the artifact has
the capability to model meaningful patterns of students’ learning in the data.

MR4 Evaluation. We conducted online surveys in both courses (i.e., IT Project
Management in summer 2022 and Data Analytics in winter 2022/2023) approximately



Figure 4. Predictive performance of the pre-trained ML models (MAE)

two weeks before the exam to assess the subjective value of our feedback artifact for
students’ learning after feedback had been exposed to a group of learners during the
semester. To increase participation in the surveys, we incentivized the students with the
opportunity to win an energy efficiency device worth approximately 60AC. In summary,
N = 36 learners responded to our surveys for which we used the sub-scales “usefulness”
and “acceptance” of the scale “perceived adequacy of feedback” (Strijbos et al. 2010).
Given that we have so far only exposed feedback to a subset of course participants, we
collected responses on the sub-scales from 15 students, where 8 took the IT Project
Management and 7 the Data Analytics course. Figure 5 displays the mean (SE) for both
courses and each item. The results of our evaluation demonstrate that feedback recipients
perceive the component similarly in both courses. On average, learners accept the
component, perceive it as useful and helpful, and hardly reject or dispute it. However, we
observe a high SE in the sub-scales due to the small sample size. We also find that 45.83%
of the students that received feedback and participated in the final exam interacted with
the component (i.e., through clicks on check boxes or instruction hyperlinks).

Based on our results, we assume that all artifact requirements (MR1-MR5) are
fulfilled. Despite the encouraging results, the small sample size calls for further runs to
refine the artifact as part of the design cycle process.

Figure 5. User-based evaluation results (items range from 1-fully disagree to 10-fully agree)

6 Discussion

To answer our RQ, we synthesize two DPs of the category “Design principles about
an artifact” (Gregor et al. 2020) for the design of future XAI-based feedback artifacts



to address learners’ heterogeneity. First, we find that it is a key DP to divide features
associated with learners into predictive and actionable features to assure that learners
can actually implement the displayed feedback instructions (DP1). While the ML models
consider every extracted feature to predict our dependent variable, the nature of our
XAI-based feedback required us to curate the associated CEs outputs. Specifically, we
divide the features into those that are predictive-only (i.e., hardly alterable characteristics
such as study program or features that may be inappropriate) and those that are also
actionable (i.e., from which the counterfactual method should obtain guiding instructions
to stimulate, e.g., the repetition of specific videos). The purely predictive features thereby
serve to represent learner heterogeneity properly by considering learners’ activities that
are potentially not suited for instructional feedback (e.g., “increase video playback speed”
as the output from CEs) and rather immutable characteristics of learners. Second, from
the artifact development and evaluation, we find that it is a key DP to model learner-
specific factors to assure that learners receive meaningful feedback instructions (DP2). In
contrast to a more technical application of ML for predictive analytics or XAI methods
explaining why a model generates a particular output (e.g., for model inspection),
XAI-based feedback that creates feedback addressing learners’ heterogeneity requires
embracing a socio-technical perspective. Thus, the design of such an artifact should not
fully rely on correlations in the data, but also consider insights from validated theoretical
models of human behavior. Our XAI-based feedback is inspired by SRL theory in
the form that many of our ML features should stimulate and guide cognitive learning
strategies (e.g., watch a specific video to repeat its content) and all phases of the SRL
process (e.g., progress control in the performance phase). This may also hold for XAI-
based feedback within other domains such as resource conservation (Wastensteiner et al.
2021), where theory from environmental psychology and human-computer interaction
can guide the design of such artifacts.

7 Conclusion and Future Work

In this paper, we presented a novel feedback artifact that addresses learners’ heterogeneity
using XAI and CEs. The first evaluation highlights the feasibility of such an artifact and
raises further questions on the effects of our feedback component. We anticipate that
our feedback will have a positive impact on learners’ online learning time, exam-taking
behavior, and exam performance. In addition, we aim to investigate in future studies
which type of learner benefits most from our feedback regarding academic success. In
doing so, we plan to overcome the limitations of the first artifact iterations (e.g., small
sample size). By shedding light on this form of feedback, our work will add to the
understanding of how to effectively support students in digital learning environments, an
area that has recently received much attention in the IS discipline.
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Appendix A Feedback Instructions

Table 3. Translation of actionable variables to feedback instructions

Actionable variable Feedback (initial instruction) Feedback (repeated instruction)

VideoViews.Total By watching lecture videos for the first
time, you are catching up on the learning
content.

By watching more lecture videos, you are
catching up on the learning content and
deepen your understanding.

ViewsTotal.Complete By watching lecture videos for the first
time completely, you are catching up on
the learning content.

By watching more lecture videos com-
pletely, you are catching up on the learning
content and deepen your understanding.

ViewsPerVideo{ID} By watching the following lecture video
for the first time, you are catching up on
the learning content: {Video Name}

You already know the learning content of
the following lecture video. Watch this lec-
ture video again to deepen your understand-
ing: {Video Name}

ViewsPerVideo{ID}
.Complete

You are still missing parts of a lecture
video. Watch the following lecture video
for catching up on the missing parts:
{Video Name}

You already know the learning content of
the following lecture video. Watch this lec-
ture video again completely to deepen your
understanding: {Video Name}

QuizzesTaken.Total By taking quizzes for the first time, you
are testing your knowledge on the learning
content.

By taking more quizzes, you are testing and
monitoring your knowledge on the learning
content.

QuizTakenPerQuiz.{ID} By taking the following quiz for the first
time, you are testing your knowledge:
{Quiz Name}

You have already tested your knowledge
with the following quiz. Try the quiz again
for monitoring your knowledge: {Quiz
Name}

CorrectPerQuiz.{ID} By collecting all points of the follow-
ing quiz, you are testing your knowledge
and deepening your understanding: {Quiz
Name}

You have already tested your knowledge
with the following quiz. Try to solve the
quiz again correctly for monitoring your
knowledge: {Quiz Name}

AssetDownload.{ID} By downloading and working through the
following slides, you are catching up on
the learning content: {File Name}

You have already downloaded these slides.
Open and work through them again to
deepen your understanding: {File Name}

Time.Total You have already spent valuable learning time on the edX platform. By further increas-
ing your online learning time, you are catching up on the learning content and deepen
your knowledge.

TimePerSection.{ID} You have already spent valuable learning time on the edX platform. By spending more
online learning time in the following learning section, you are catching up on the
learning content and deepen your knowledge: {Section Name}

Sessions.Total By learning more often within the edX platform, you are catching up on the learning
content and deepen your knowledge.

SessionsPerSection.{ID} By learning more often within the following online learning section, you are catching
up on the learning content and deepen your knowledge: {Section Name}
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