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Abstract: 

In this tutorial, the issue of compatibility between a big data storage technology and an analytic workload is explored 
using a fictitious streaming company as an example. The tutorial offers an interactive approach to help students 
understand the importance of considering workload compatibility when adopting new technologies. We provide 
instructors with two Jupyter Notebooks that analyze the compatibility, a detailed instructor guide on how to execute 
these notebooks, lessons learned, and appendices containing solutions and explanations. This tutorial provides a 
valuable resource for instructors teaching courses in database systems, big data, and analytic concepts, helping 
students develop practical skills to navigate the complexities of big data technologies effectively. 
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1 Introduction 

The adoption of big data technologies is rapidly increasing among organizations (Watson, 2019). 
According to a recent report by Statistica (2022), the global big data market is expected to nearly double 
from $56 billion in 2020 to $103 billion in 2027. These technologies enable organizations to handle large 
volumes of data, generate value by capturing patterns, manage a variety of data formats, process and 
serve data at high velocity, and ensure data veracity (Anuradha, 2015). These are commonly known as 
the five V’s of big data technologies. Despite the anticipated benefits, the implementation of big data 
technologies can be fraught with challenges (Wang & He, 2016; Watson, 2019). One of the most common 
obstacles is that organizations may not be able to change their mindsets overnight, leading them to 
replace legacy systems with big data technologies without considering the compatibility between their 
current workloads and the big data technologies that will support them (Bean, 2020; Ramasamy, 2019).  
Therefore, organizations may not see any tangible results such as improved efficiency, increased 
revenue, or higher productivity despite making significant investments in big data technologies (Sharma, 
2022). This lack of return on investment can be frustrating, especially considering the substantial costs 
associated with implementing these technologies. Therefore, it is crucial for organizations to take the time 
to assess the compatibility of their current workloads with big data technologies to ensure smooth and 
successful digital transformations. 

In this tutorial, we explore this issue and examine the compatibility between an analytic workload and a 
big data technology using the example of a fictitious streaming company that provides online content to its 
subscribers. The company invests in a NoSQL (or non-relational) database, which is a technology often 
associated with big data, to manage its growing customer base and store more data. However, the data 
scientist of this company intends to use the same technology for an analytic workload that generates 
content recommendations for subscribers. As we demonstrate later, an incompatibility between the 
recommender system and the NoSQL database can lead to significant inefficiencies, jeopardizing the 
company's competitiveness in the industry. This scenario underscores the importance of considering 
workload compatibility when adopting big data technologies in an organization.  

This tutorial offers a valuable resource for instructors teaching courses in database systems, big data, and 
analytic concepts. The tutorial's interactive approach enables instructors to engage students in 
discussions of compatibility between workloads and technologies using hands-on materials. The hands-on 
materials comprise three document databases with varying designs, all of which are freely accessible on 
the cloud. Additionally, there are two Jupyter Notebooks1 available on GitHub. The interactive nature of 
the materials provides instructors with an opportunity to equip students with the knowledge and skills 
necessary to navigate the complexities of using big data technologies for analytic workloads.  

This tutorial is designed to help students achieve the following learning objectives: 1) contrast a relational 
database with a document database; 2) explain collaborative filtering-based recommender systems, which 
are among the most widely used recommender systems in online services; 3) contrast three types of 
designs that can be implemented in a document database; and 4) analyze the query speed of different 
document database designs when making collaborative filtering-based recommendations. To attain these 
objectives, students should possess the following prerequisite knowledge: intermediate-level knowledge of 
relational databases, introductory-level knowledge of document databases, and introductory-level 
knowledge of Jupyter Notebook and Python technologies. 

In the rest of this paper, we first delve into collaborative filtering-based recommender systems. Then, we 
explore document database concepts and discuss various designs that can be implemented in a 
document database, in contrast with a relational database. We then proceed to discuss the data used in 
this tutorial and present the issue faced by the fictitious company. After providing a detailed instructor 
guide on how to run the tutorial, we share the lessons learned from using this tutorial in multiple graduate-
level courses over a two-year period. Appendix A contains the solution to the compatibility issue raised in 
the tutorial. 

 
1 Italicized terms are defined in Appendix B Table B1. 
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2 Recommender Systems 

In our daily lives, we often rely on the recommendations of others because we may not have enough 
information about the alternatives from which we have to choose. In the digital age, this social process is 
performed seamlessly using recommender systems that match recommenders with those seeking 
recommendations (Resnick & Varian, 1997). Some widely used approaches, including the so-called 
collaborative filtering-based systems, rely on measuring similarity between individuals (Goldberg, Nichols, 
Oki, & Terry, 1992). It is important to note that these systems allow individuals to switch roles dynamically. 
One person can be a recommender in one instance and a seeker in another by virtue of algorithms that 
identify individuals with similar preferences. Therefore, a collaborative filtering-based system predicts the 
alternative (also known as an item) that an individual may prefer based on how similar this individual is to 
another. Once two individuals are matched based on their similarity, the system can recommend items 
preferred by one to the other.  

It is worth noting that recommender systems can match individuals with not only other individuals but also 
items. These types of recommenders are known as item-based systems because they make 
recommendations based on the attributes of the items. For example, if a user enjoys watching science-
fiction movies, an item-based system starts recommending other science-fiction movies because it 
establishes a match based on the genre attribute. While both item-based and collaborative filtering-based 
systems have their advantages and disadvantages, collaborative filtering-based systems have gained 
popularity in recent years due to their effectiveness. Streaming platforms, for instance, heavily rely on 
collaborative filtering-based systems because of their ability to enhance user engagement, reduce 
customer churn, and increase subscription-based revenues (Hinkle, 2021). Therefore, in this tutorial, we 
focus specifically on collaborative filtering-based recommender systems. 

A collaborative filtering-based system relies on a utility matrix that captures user-item preferences. In this 
matrix, users are represented by the rows while items are represented by the columns. Each user-item 
pair is assigned a metric such as a binary value indicating whether the user interacted with the item. 
However, this binary metric does not convey whether the user enjoyed the item. To provide more accurate 
recommendations, it is preferable to capture the user's rating of the item on a numerical scale, such as 
one to five stars. Table 1 presents an example utility matrix based on the movie ratings of four users for 
five movies using this numerical scale. Note that empty cells indicate that the user has not rated that 
movie. 

Table 1. Example Utility Matrix to Capture user Ratings for Movies 

 Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 

User 1 5 1   4 

User 2  3 2 2  

User 3 1  5 1  

User 4 5 1 5  5 

A typical utility matrix has many blank cells indicating missing user-item preference data. The aim of 
collaborative filtering is to predict these missing values based on the information that is already available 
in the matrix. To achieve this, the similarity between each pair of users must be calculated, and the most 
similar users must be identified. For instance, if User A is very similar to User B, then recommendations 
for User A can be derived by observing User B's preferences (and vice versa). Table 1 presents an 
example utility matrix, which reveals that User 1 and User 4 share similar movie ratings. If no other user is 
more similar to User 1, then Movie 3 could be recommended to User 1 because it is highly rated by User 
4. 

To systematically identify the most similar users, pairwise user similarities must be computed. One widely 
used similarity metric is cosine similarity, which calculates the cosine of the angle between two user 
preference vectors using Equation 1, where A and B denote the preference vectors of two users. By 
computing all pairwise cosine similarities between users in a utility matrix, users who are most similar can 
be identified. Positive and higher cosine similarity values indicate that the angle between two users is 
smaller, which implies a higher degree of similarity between them. In other words, the larger the cosine 
similarity value, the greater the similarity between the users. 
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(1) 

We can use Equation 1 to compute the cosine similarity between User 1 and User 4 as 0.814 (as shown 
below). It is important to note that when computing cosine similarity, missing values in the utility matrix are 
treated as zeros. However, this does not necessarily mean that a user's preference for a particular item is 
zero, but rather that the preference for that user-item pair is unknown. 

Cosine similarity between User 1—User 4 = 
(5𝑥5) + (1𝑥1) + (0𝑥5) + (0𝑥0) + (4𝑥5)

(√52 + 12 + 02 + 02 + 42 ) 𝑥 (√52 + 12 + 52 + 02 + 52)
= 0.814 

Similarly, the cosine similarity between User 1 and User 2 can be calculated as 0.112 as follows: 

Cosine similarity between User 1—User 2 = 
(5𝑥0) + (1𝑥3) + (0𝑥2) + (0𝑥2) + (4𝑥0)

(√52 + 12 + 02 + 02 + 42) 𝑥 (√02 + 32 + 22 + 22 + 02)
= 0.112 

The above computations illustrate that User 1 is more similar to User 4 than to User 2, as evident from 
their cosine similarity values. By computing pairwise similarities between all users, we can identify the 
users who are most similar to each other. In this example, User 1 is most similar to User 4. Based on this, 
we can recommend items to User 1 by looking for the items that are highly rated by User 4 but not yet 
rated by User 1 (or vice versa). For instance, Movie 3 is rated 5 out of 5 by User 4, but it has no rating 
from User 1. Therefore, Movie 3 can be recommended to User 1. 

In summary, collaborative filtering involves constructing a utility matrix, computing pairwise cosine 
similarities, and analyzing the preferences of the top-n most similar users to provide recommendations. 
These are analytical tasks that do not require a particular storage technology. The utility matrix can be 
constructed using the application programming interface (API) of data analysis and manipulation libraries 
such as Numpy or Pandas. However, the data needs to be retrieved from a database using a query. In the 

case of a streaming service, the data may be stored in a transactional database that manages users, 
movies, and ratings to support the core processes of the service. As databases can get very large, 
organizations might opt for big data technologies like a NoSQL database, which can store vast amounts of 
data in a parallel and highly scalable architecture. Therefore, in the next section, we delve into the 
document database concepts, a particular type of NoSQL database. 

3 Document Databases 

NoSQL databases are considered big data technologies that offer several benefits over relational 
databases with respect to data storage, management, and availability. In particular, document databases 
such as MongoDB provide the flexibility of schema-free design with the scalability of a distributed 
computing infrastructure. From a data storage perspective, they use horizontal scaling to handle large 
volumes of data without sacrificing performance. From a data management perspective, some NoSQL 
databases are schema-less such that they can not only store structured, semi-structured, and 
unstructured data, but also allow changing the database schema as needed by adding new fields or 
entities without sophisticated migration procedures. Further, they support popular programming languages 
through APIs, making them developer-friendly for managing the data. Finally, NoSQL databases are an 
ideal choice for ensuring data availability, particularly in critical applications, as they are predominantly 
cloud-based and experience little to no downtime. 

There are four main types of NoSQL databases: document databases, key-value stores, graph databases, 
and column-oriented databases. In this tutorial, we focus specifically on document databases because of 
their popularity. In a document database, data is stored in collections, which consist of multiple 
documents. Compared to a relational database, a collection corresponds to a table and a document 
corresponds to a row. Each document is stored using key-value pairs (sections of the document) following 
the JavaScript Object Notation (JSON) standard. For example, a MOVIES table with m rows and n 
columns in a relational database, as shown in Figure 1 (a), might correspond to a MOVIES collection with 
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m documents in a document database as shown in Figure 1 (b). Each document may consist of n key-
value pairs, although some documents may have more or fewer key-value pairs depending on the data 
being captured. This flexibility allows for a collection to have a variable schema, unlike a table in a 
relational database that has a rigid schema. Documents in a collection can have as many key-value pairs 
as needed, making it easy to accommodate changes in data requirements without the need for complex 
schema modifications or migrations. 

 

             (a)                                    (b) 

Figure 1. Comparison Between Relational Databases and Document Databases 

Document databases can have multiple collections, like a relational database with multiple tables. These 
collections can be independent of each other or have relationships through foreign keys. For instance, 
consider the example of adding a RATINGS collection to the document database shown in Figure 1 (b) to 
keep track of each movie's ratings. By including a foreign key, such as movie_id in the RATINGS 
collection, it becomes possible to identify every rating of a particular movie in the database. Figure 2 
provides an illustration of this scenario. In this way, document databases can entertain complex data 
models. 

 

Figure 2. Relationships in a Document Database 

One of the key benefits of a document database is its flexibility in handling relationships. In addition to 
storing related data in separate collections, a document database also allows for combining multiple 
collections into a single collection by nesting documents within other documents, which are referred to as 
subdocuments. This allows for hierarchical arrangements and embedding one collection in another. For 
example, in a scenario where a movie can have many ratings, rather than creating a separate RATINGS 
collection and creating a foreign key relationship, the ratings can be converted into an array of 
subdocuments and embedded in the MOVIES collection. This helps store the one-to-many relationship 
between movies and ratings in the same collection, simplifying data retrieval, and eliminating the need for 
costly join operations between collections. Please see Figure 3 for an example. 
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MOVIES collection 
 
{movie_id: 1, title: ‘The Godfather’, year: 1972,  
      RATINGS:  
 [  
     {user_id: 1, rating: 5}  
     {user_id: 2, rating: 4.5}  
   {…} 
 ] 
} 
{movie_id: 2, …} 
 

Figure 3. RATINGS Collection is Embedded in MOVIES 
Collection as Subdocuments 

However, this approach also comes with a tradeoff. Any analysis of these subdocuments (such as the 
RATINGS array in Figure 3) requires an unwind operation to flatten them so that the data they contain can 
be processed. The unwind operation converts an array of subdocuments into individual documents, 
allowing them to be processed independently. This can be a time-consuming operation, especially when 
dealing with large collections, as it involves creating a new document for each subdocument in the array. 
Despite the need for an unwind operation, the ability to nest documents to avoid join operations is a 
significant advantage of document databases, providing a more efficient and flexible way to store and 
access data. 

In summary, a document database allows storing large volumes of data with considerable flexibility. For 
instance, it allows for creating a normalized document database, where foreign keys establish 
relationships between collections. Alternatively, it enables embedding one collection in another using an 
array of subdocuments. In the following section, we look at an example dataset and provide three different 
document database designs to store this dataset. Then, we examine the compatibility of these designs 
with a collaborative filtering-based recommender system at a fictitious streaming company. 

4 Dataset 

The dataset used in this tutorial is obtained from the MovieLens database (Harper & Konstan, 2015). For 
the purposes of this tutorial, we only focus on the three entities of this database, namely MOVIES, 
USERS, and RATINGS from the 100K observation benchmark dataset.  

The MOVIES entity captures data about each movie in the database, such as its unique identifier 
(movie_id), title, release year, and its Internet Movie Database (IMDb) URL. It contains a total of 1,682 
movies. The USERS entity, on the other hand, captures data about each user who rated the movies in the 
database. There are a total of 943 unique users. User attributes include a unique identifier (user_id), age, 
gender, occupation, and zip code. Because there is a many-to-many relationship between MOVIES and 
USERS (such that a user can rate many movies, and a movie can be rated by many users), the RATINGS 
entity acts as the associative entity, capturing each user’s rating for a movie and the timestamp of the 
rating (i.e., rating_tstamp). Put simply, when a user rates a movie, the database records the rating and the 
timestamp in the RATINGS entity. Consequently, the RATINGS entity has a composite primary key 
comprising of movie_id and user_id. In total, there are 100,000 ratings captured in the database. If this 
database were designed using a relational model, the design would resemble the entity relationship 
diagram illustrated in Figure 4.  

 

Figure 4. The Entity Relationship Diagram of the Example Database Used in this Tutorial 

 

 

MOVIES

Movie_id (PK)
Title
Year
IMDB_URL

RATINGS

Movie_id (PK, FK)
User_id (PK, FK)
Rating
Rating_tstamp

USERS

User_id (PK)
Age
Gender
Occupation
Zipcode

An array of 
subdocuments to 
capture the ratings 
of each movie 
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5 Issue at Hand 

A fictious streaming company is adopting a document database to manage its growing customer base and 
store the data discussed above. As document databases provide greater flexibility in schema design, the 
company’s data scientist is exploring three database designs. One key consideration is that the document 
database will also be used for making recommendations using collaborative filtering. Hence, the challenge 
is to identify the database design that is most compatible with the query required to generate the utility 
matrix for collaborative filtering. In the context of this tutorial, the level of compatibility is determined by the 
time it takes to execute the query. Therefore, a higher level of compatibility indicates that the query to 
generate the utility matrix executes in less time. Below, we discuss these three database designs in detail. 

5.1 Option 1: Keep Each Entity Separate and Independent 

This design option entails the creation of a distinct collection for each entity in the document database. 
Thus, the relational model depicted in Figure 4 will be replicated in the document database, resulting in 
three collections: MOVIES, RATINGS, and USERS. These collections contain foreign keys, enabling them 
to be joined when necessary.  

This option offers the advantage of capturing data in a normalized manner, facilitating easier 
maintenance. Modifying, adding, or removing data can be done without encountering insertion, deletion, 
or update anomalies. Additionally, this design offers flexibility by allowing new collections to be added 
(with appropriate foreign key relationships) when necessary. However, the drawback of this design is that 
it may necessitate expensive join operations if users query data from multiple collections simultaneously. 
Such a scenario could result in an increased query execution time. 

5.2 Option 2. RATINGS are subdocuments of MOVIES  

For this option, each rating of a movie will be made a subdocument of that movie. Therefore, the MOVIES 
collection will contain a RATINGS array that stores ratings as subdocuments, as demonstrated in Figure 
5. Additionally, a separate collection will be created for the USERS entity, allowing it to be joined with the 
MOVIES collection as needed. This approach results in two collections in the document database: 
MOVIES and USERS. 

 
{movie_id: 1, title: ‘The Godfather’, release_year: 1972, 
imdb_url: 'https://www.imdb.com/title/tt0068646/',  
RATINGS:  
 [  
     {user_id: 1, rating: 5, rating_tstamp: 884646537}  
     {user_id: 2, rating: 4.5, rating_tstamp: 864246847}  
   {…} 
 ] 
} 
{movie_id: 2, …} 
{…} 

 
Figure 5. RATINGS are Subdocuments of MOVIES 

(for Option 2) 

One advantage of using this option is that it reduces the number of collections in the database (compared 
to Option 1), which can help avoid costly join operations. As a result, queries related to movies and their 
ratings may produce faster results than with a normalized design. However, this approach has some 
disadvantages, such as the possibility of update and deletion anomalies. If a movie is deleted from the 
MOVIES collection, all its subdocuments will be removed as well, potentially causing data loss. Another 
disadvantage is that analyzing the RATINGS subdocuments will require an unwind operation, which may 
increase query execution times. 

5.3 Option 3. RATINGS are subdocuments of USERS 

Option 3 involves storing each rating of a user as a subdocument of that user in the USER collection. The 
RATINGS array in each document will hold these subdocuments. Please refer to Figure 6 for an 
illustration. Additionally, a separate MOVIES collection will be created to enable joins with the USERS 
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collection as needed. Consequently, the document database will consist of two collections: MOVIES and 
USERS.  

{user_id: 1, age: 21, gender: ‘F’, occupation: ‘student’, zipcode: 33620,  
RATINGS:  
 [  
     {movie_id: 1, rating: 5, rating_tstamp: 884646537}  
     {movie_id: 2, rating: 3, rating_tstamp: 864246847}  
   … 
 ] 
} 
{user_id: 2, …) 
{…} 

 
Figure 6. RATINGS are subdocuments of USERS  

(for Option 3) 

This design has a similar advantage, when compared with Option 1, in that it reduces the number of 
collections in the database, which can help avoid costly join operations. Therefore, queries related to 
users and their ratings may produce much faster results than with a normalized design. However, this 
option, like the previous one, is vulnerable to potential update and deletion anomalies. For instance, 
deleting a user from the USERS collection will also remove all user's subdocuments, potentially resulting 
in data loss. Further, like the previous design, this option requires an unwind operation to analyze the 
RATINGS subdocuments, which may increase query execution times. 

It is important to note that there could be many other designs to store the same data. For this tutorial, we 
focus on these three specific designs. To illustrate these designs, we created three separate document 
databases in MongoDB Atlas, the cloud-based version of the popular document database provider, 
MongoDB. These databases correspond to the three options described earlier and are named 
ML_Option_1 (for Option 1), ML_Option_2 (for Option 2), and ML_Option_3 (for Option 3). We encourage 
instructors and students to connect to these databases using the connection details provided in Table 2 
and explore them. The program for accessing these databases, MongoDB Compass, can be downloaded 
and installed for free from https://www.mongodb.com/try/download/compass. 

Table 2. Connection details of MongoDB Atlas 

Server: cluster0.dadyq.mongodb.net 

Username: movielens 

Password: movielens123 

5.4 Question 1 

To efficiently manage the growing customer base, the data scientist will implement one of the database 
designs discussed earlier. This database will also be used to make recommendations using collaborative 
filtering. This will involve writing a query against the database to retrieve the necessary fields for 
constructing the utility matrix. Which database design provides the shortest query execution time? To 
answer this question, it is necessary to write a query to construct the utility matrix from each database and 
compare the query execution times in seconds.  

5.5 Question 2  

If the data scientist wants to perform gender-specific recommendations, which database design would 
provide the shortest query execution time? It is worth emphasizing that providing gender-specific 
recommendations entails generating separate utility matrices for each gender represented in the 
database. In this context, gender has a binary representation, with users identified as either male or 
female. As a result, two separate queries are required, one for each gender. To answer this question, you 
should compare the query execution times of both queries across all three databases.  
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6 Instructor Guide  

6.1 Initial Discussion 

Instructors running this tutorial can use MongoDB Compass to connect to the three document databases 
using the connection details provided in Table 2. Once connected, instructors can display each database 
design using MongoDB Compass. We suggest showing all collections in each database and displaying 
any subdocuments (if present) in each collection. Instructors can lead a discussion on the design 
differences between the three databases. During this discussion, instructors can prompt students to 
identify and locate the fields necessary to construct the utility matrix in each database and think about the 
query required to retrieve these fields from each database.  

6.2 Hands-on Demonstration 

After the class discussion, instructors can proceed to the hands-on portion of the tutorial by using the two 
Jupyter Notebooks available at https://github.com/varolkayhan/movielens_tutorial. These files can be 
opened using the Jupyter Notebook application, which requires a Python engine greater than version 3. 
We recommend using the Anaconda distribution to install both Jupyter Notebook and Python on a local 
device. 

Both notebooks establish a connection to MongoDB Atlas. The notebooks retrieve the fields required for 
the utility matrix by sending a query to each of the three databases discussed earlier. The notebooks keep 
track of the query execution time for each query and compare them. The remaining parts of the notebooks 
demonstrate one approach to collaborative filtering and how to leverage the utility matrix to make movie 
recommendations. Please note that the collaborative filtering approach is optional and does not affect the 
query execution times. The explanation of the code is provided in each notebook.  

6.3 Debriefing 

After running the notebooks, instructors can debrief students using the information provided in Appendix 
A. It is also important to discuss the reasons for long query execution times, which are also provided in the 
same appendix. 

After debriefing, instructors can continue the conversation by addressing scaling issues. For example, it is 
important to think about scaling for a million users. Retrieving the required fields to create the utility matrix 
from the database for a million users is a challenging task, and it becomes even more challenging to 
calculate the pairwise cosine similarity values from a utility matrix that has a million users, as it involves 
dealing with an O(n2) complexity. 

One possible approach to reduce the computational burden of this task is to sample users. For example, 
5% of users can be sampled to compute the cosine similarities using a 5,000 x 5,000 matrix. Then, a fixed 
number of similar users, such as 100, can be cached and stored in the database. With subsequent re-
sampling, this list can be updated with the discovery of new similar users. Finally, a subset of users can 
be sampled for generating recommendations (e.g., 30 out of 100) so that recommendations are fresh for 
each request. These parameters can be adjusted to control computational costs. 

7 Lessons Learned 

We used this tutorial in several graduate-level database courses over the course of two years at a 
university in the southeast United States. We learned the following lessons. 

7.1 Preparing the Students 

To manage class time effectively, instructors may consider assigning the front end of this tutorial as a 
reading assignment before the class meeting intended for the hands-on demonstration. Students should 
read the sections on recommender systems, collaborative filtering, utility matrix, and document databases 
as discussed in this tutorial. This way, students can come prepared to the class and the instructor can 
focus on the hands-on demonstration of the tutorial during class time. 
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7.2 Initial Discussion 

Before the hands-on demonstration, we recommended that instructors engage in a class discussion about 
each database design to help students understand the required fields for the utility matrix and where to 
locate them in each collection. Additionally, the concept of utility matrix should be revisited to ensure that 
students can identify the appropriate fields to retrieve from the collections. During the discussion, 
instructors should highlight some of the expensive operations, such as joins and unwinding, in document 
databases. For example, joining collections in document databases can be as costly as joining tables in 
relational databases. Therefore, instructors can guide students in identifying the design options with 
minimal to no joins when retrieving the required fields for the utility matrix. Similarly, retrieving fields from 
subdocuments using the unwind operation can be more costly than retrieving them directly from 
documents. Instructors can offer guidance on identifying the design options that provide the required fields 
without the unwind operation. 

It is important to keep in mind that the discussions should revolve around query execution times. The 
objective is to help students identify the database design that would result in the shortest query execution 
time while retrieving the fields required for the utility matrix. 

7.3 Hands-on Demonstration 

We suggest that instructors demonstrate and run the Jupyter Notebook titled “Question 1” in class cell-by-
cell. This will give students practical experience on how to connect to the MongoDB Atlas server and 
execute queries. As the queries in this notebook execute fast, instructors can run the entire notebook 
relatively quickly. However, we recommend that instructors run the second notebook (titled “Question 2”) 
before coming to class and open the notebook to show only the results. Otherwise, queries in this 
notebook require more time to run, and thus, might consume valuable class time that instructors could use 
for debriefing. 

7.4 Debriefing 

During the debrief, we suggest that instructors explicitly distinguish between the various steps of 
collaborative filtering, which include constructing the utility matrix, calculating cosine similarities, and 
comparing the preferences of similar users. It is important to emphasize that the database design solely 
influences the construction of the utility matrix but not the speed at which other steps are completed. The 
computational power of the device that executes the recommender system is the only factor affecting the 
speed of the other steps.  

To encourage further engagement with the material, instructors can ask students to brainstorm additional 
analytic queries that could leverage the same data set. For instance, analyzing the number of ratings 
received by each movie per month can reveal which movies are losing popularity over time. By doing so, a 
streaming platform can selectively include or exclude these movies from its recommendations based on 
its user engagement policy. Additionally, examining the number of ratings given by each user per month 
and segmenting the results by user demographics, such as gender or profession, can assist a streaming 
platform in developing targeted strategies to boost user engagement. These types of discussions can help 
students gain a deeper understanding of how a database can serve different types of queries. 

If a single database design may not be able to provide short execution times for some of these queries, 
instructors can guide students to consider potential trade-offs and strategies for prioritizing the queries 
based on criteria such as execution frequency and business value. For instance, they might consider 
creating separate databases with differing designs for different queries, or they might choose to optimize 
the database design to support multiple queries. These discussions can help students identify the trade-
offs involved in using a single technology to support multiple workloads. 

7.5 Query Optimization 

To extract the necessary fields for the utility matrix, multi-step queries must be written for document 
databases like MongoDB. For instance, a query for Question 2 might involve unwinding subdocuments, 
joining them with another collection, and filtering by gender. Unlike relational databases, MongoDB's 
query optimizer doesn't reorder these steps, so queries are executed as written. This offers instructors an 
opportunity to challenge students to think creatively about query construction and evaluate the query 
execution times. For instance, students could experiment with different approaches to gender-based 
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filtering (as in Question 2, Option 3) to see how query execution times are affected, gaining valuable 
insights into effective query-writing practices for document databases. 

7.6 Student Feedback 

We incorporated this tutorial into multiple graduate-level courses that focus on advanced database design 
and administration. The feedback we received from students has been consistently positive. In one 
particular course, we administered a short survey comprising five questions, and 75% of the students 
strongly agreed that the tutorial was informative. The students appreciated the discussions on database 
scalability, relational versus document database design, and collaborative filtering. The students were 
especially pleased with the live Jupyter notebook-based demonstrations.  

It is important to highlight an observation that emerged during the use of the tutorial in these courses. 
Students who lacked familiarity with NoSQL concepts did not actively participate in the initial discussion. 
However, this lack of participation does not imply that these students did not benefit from the tutorial. On 
the contrary, students found the tutorial to be highly informative. Their limited contributions to the 
discussion were primarily due to their lack of background knowledge. To address this issue, we revisited 
several important topics during the tutorial's discussion, including the NoSQL landscape, scaling database 
systems (from shared memory relational databases to distributed computing NoSQL databases), 
document databases (including nested subdocuments), relational versus document database designs, 
and design options for collaborative filtering and cosine similarity computations. By reviewing these topics, 
we aimed to establish a foundation for the tutorial. Therefore, we recommend that the tutorial should be 
accompanied by at least one additional module focusing on NoSQL database concepts. This approach 
ensures that students have the necessary background before engaging in discussions about document 
database designs. 

8 Conclusion 

This paper presents a tutorial that explores the compatibility between a big data technology and a 
collaborative-filtering based recommender system. Specifically, we investigate which document database 
design implemented in the big data technology generates the shortest execution time for a query that 
extracts the necessary data to construct a utility matrix for a collaborative filtering-based recommender 
system. After introducing essential concepts related to recommender systems and document databases, 
we present a fictitious data scientist's challenge and provide a detailed guide for instructors on how to 
conduct the tutorial, including discussion, hands-on demonstration, and debriefing. Finally, we share some 
of the insights gained from using the tutorial in several graduate-level database courses. 



 
Navigating Workload Compatibility Between a Recommender System and a NoSQL Database: An Interactive 

Tutorial 

 

  Accepted Manuscript 

 

References 

Anuradha, J. (2015). A brief introduction on Big Data 5Vs characteristics and Hadoop technology. 
Procedia computer science, 48, 319-324. 

Bean, R. (2020). The ‘Failure’ Of Big Data. Forbes.com. Retrieved from 
https://www.forbes.com/sites/randybean/2020/10/20/the-failure-of-big-data/?sh=3f7395b9a218 

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an 
information tapestry. Communications of the ACM, 35(12), 61-70. 

Harper, F. M., & Konstan, J. A. (2015). The MovieLens Datasets: History and Context. ACM Trans. 
Interact. Intell. Syst., 5(4), Article 19. 

Hinkle, D. (2021). How Streaming Services Use Algorithms. amt-lab.org. Retrieved from https://amt-
lab.org/blog/2021/8/algorithms-in-streaming-services 

MongoDB. Advantages of NoSQL Databases. Retrieved from https://www.mongodb.com/nosql-
explained/advantages 

Ramasamy, K. (2019). How Big Data Can Be A Big Problem. Forbes.com. Retrieved from 
https://www.forbes.com/sites/forbestechcouncil/2019/07/26/how-big-data-can-be-a-big-
problem/?sh=18e377b435c9 

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. 

Sharma, R. (2022). Overcoming Key Challenges To Achieve Success With Digital Transformation. 
Forbes.com. Retrieved from 
https://www.forbes.com/sites/forbestechcouncil/2022/07/07/overcoming-key-challenges-to-achieve-
success-with-digital-transformation/?sh=7be398962f66 

Statistica. (2022). Big data market size revenue forecast worldwide from 2011 to 2027. Retrieved from 
https://www.statista.com/statistics/254266/global-big-data-market-forecast/ 

Wang, X., & He, Y. (2016). Learning from uncertainty for big data: future analytical challenges and 
strategies. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 26-31. 

Watson, H. J. (2019). Update tutorial: Big Data analytics: Concepts, technology, and applications. 
Communications of the Association for Information Systems, 44(1), 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Communications of the Association for Information Systems  

 

  Accepted Manuscript 

 

Appendix A: Answers to the Hands-on Demonstration 

Question 1 of the tutorial aims to identify the document database design that achieves the shortest query 
execution time for constructing the utility matrix for the collaborative filtering-based recommender system. 
The Jupyter Notebook for Question 1 compares the three database options and shows that Option 1, 
which uses a normalized database, has the shortest query execution time. On average, constructing the 
utility matrix from this database is 21% faster than using Option 2 and 11% faster than using Option 3. It's 
important to note that these values are not based on the hardware of the client computer where the 
notebooks are run, but rather on the performance of the cloud server at the time of notebook execution. 
Option 1 has the shortest query execution time because of its normalized database structure. The 
necessary fields for the utility matrix are stored in the RATINGS collection, and a simple find() query 

retrieves them directly from there without the need for additional operations like join or unwind. This query 
is equivalent to the following select statement in a relational database: SELECT movie_id, user_id, 

rating FROM RATINGS. Since no additional operations are required, the normalized database design 

delivers the shortest query execution time. In contrast, Option 2 and Option 3 both require an unwind 
operation to flatten subdocuments, which adds to the query execution time. Although the unwind operation 
is simple, it still has a cost in terms of query performance.  

Question 2 of the tutorial aims to identify the document database design that achieves the shortest query 
execution time for constructing the gender-based utility matrices for the collaborative filtering 
recommender system. The Jupyter Notebook for Question 2 compares the three database options 
and finds that Option 3 achieves the shortest query execution times. Queries that use this database 
execute, on average, 97-99% faster than those that use the other databases. It is important to note 
that these values may depend on the cloud server's performance at the time of notebook execution. 
The short query execution time observed in Option 3 is because this database design does not 
require a join operation unlike the other databases. In this database, ratings are stored as 
subdocuments of USERS. By performing the gender-based filter, we can unwind the ratings 
subdocuments and retrieve all the required fields without any additional operation. In contrast, 
queries that construct the utility matrices in Option 1 and Option 2 join the results of the gender filter 
in the USERS collection with other collections to retrieve the required fields. Join operations are 
expensive in document databases, just like in relational databases. As a result, Option 3 is the only 
option that doesn't require join operations, making it the database with the shortest query execution 
time. 
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Appendix B: Definition of Key Terms 

Table B1. Definition of Key Terms 

Term Definition 

$addFields An operation performed in MongoDB to add new fields to a document. It is used to 
remove the object notation of subdocuments in this tutorial. 

$lookup An operation performed in MongoDB to join two collections. 

$match An operation performed in MongoDB to filter the documents of a collection. 

$project An operation performed in MongoDB to select requested fields only. 

$unwind An operation performed in MongoDB to deconstruct an array of a document. It can 
also be used to flatten the subdocuments of a document. 

Collection A group of records in a document database that is equivalent to a “table” in relational 
databases. 

Cosine similarity A metric that measures similarity between two vectors using the cosine of the angle 
between the vectors. Higher values indicate higher similarity. 

cosine_similarity A function of the Pandas library (in Python) that calculates pairwise cosine similarities 
between multiple vectors. 

Dictionary A data structure in Python that consists of key-value pairs. Each key is mapped to the 
associated value. 

Document An individual record in a collection of a document database that is equivalent to a 
single “row” of a table in relational databases.  

find() A command to execute a query and retrieve results in MondoDB. 

Jupyter Notebook A web-based interactive computing platform that can be installed locally to run Python 
code. 

MongoDB Atlas The cloud version of the MongoDB document database. 

MongoDB Compass The client program for accessing a MongoDB document database (either installed 
locally or on the cloud). 

pivot_table A function of the Pandas library (in Python) that can create a cross tabulation using a 
aggregate function. It is used to create the utility matrix in this tutorial. 

Subdocument A document that is nested in another document in document databases. 

Unwind  See $unwind. 

Utility matrix A matrix used in collaborative filtering recommender systems that captures users’ 
preferences of items. 

Warm up In the context of this tutorial, it refers to caching the queried data. It lets the database to 
cache the data so faster results can be obtained.  
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