
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Electrical and Electronic Engineering

2023

NIPUNA: A Novel Optimizer Activation Function for Deep Neural NIPUNA: A Novel Optimizer Activation Function for Deep Neural

Networks Networks

Golla Madhu

Sandeep Kautish

Khalid Abdulaziz Alnowibet

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2

 Part of the Electrical and Electronics Commons

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Funder: The research is funded by Researchers Supporting Program at King Saud University, (RSP2023R305).

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart2
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart2?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Authors Authors
Golla Madhu, Sandeep Kautish, Khalid Abdulaziz Alnowibet, Hossam Zawbaa, and Ali Wagdy Mohamed

Citation: Madhu, G.; Kautish, S.;

Alnowibet, K.A.; Zawbaa, H.M.;

Mohamed, A.W. NIPUNA: A Novel

Optimizer Activation Function for

Deep Neural Networks. Axioms 2023,

12, 246. https://doi.org/10.3390/

axioms12030246

Academic Editor: Luis Carlos

Méndez-González

Received: 18 January 2023

Revised: 14 February 2023

Accepted: 19 February 2023

Published: 28 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

NIPUNA: A Novel Optimizer Activation Function for Deep
Neural Networks
Golla Madhu 1 , Sandeep Kautish 2 , Khalid Abdulaziz Alnowibet 3 , Hossam M. Zawbaa 4

and Ali Wagdy Mohamed 5,6,*

1 Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology,
Hyderabad 500090, Telangana, India

2 LBEF Campus (Asia Pacific University of Technology & Innovation, Malaysia), Kathmandu 44600, Nepal
3 Statistics and Operations Research Department, College of Science, King Saud University,

P.O. Box 2455, Riyadh 11451, Saudi Arabia
4 CeADAR Ireland’s Center for Applied AI, Technological University Dublin, D7 EWV4 Dublin, Ireland
5 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University,

Giza 12613, Egypt
6 Department of Mathematics and Actuarial Science, School of Sciences and Engineering, The American

University in Cairo, Cairo 11835, Egypt
* Correspondence: aliwagdy@staff.cu.edu.eg

Abstract: In recent years, various deep neural networks with different learning paradigms have been
widely employed in various applications, including medical diagnosis, image analysis, self-driving
vehicles and others. The activation functions employed in deep neural networks have a huge impact
on the training model and the reliability of the model. The Rectified Linear Unit (ReLU) has recently
emerged as the most popular and extensively utilized activation function. ReLU has some flaws,
such as the fact that it is only active when the units are positive during back-propagation and zero
otherwise. This causes neurons to die (dying ReLU) and a shift in bias. However, unlike ReLU
activation functions, Swish activation functions do not remain stable or move in a single direction.
This research proposes a new activation function named NIPUNA for deep neural networks. We test
this activation by training on customized convolutional neural networks (CCNN). On benchmark
datasets (Fashion MNIST images of clothes, MNIST dataset of handwritten digits), the contributions
are examined and compared to various activation functions. The proposed activation function can
outperform traditional activation functions.

Keywords: convolutional neural networks; deep neural networks; NIPUNA; periodic function

MSC: 62M45; 68T05; 68T10; 92B20; 62M45

1. Introduction

Deep learning has received a lot of attention recently, which has resulted in better
training procedures for larger and deeper networks. The activation function is an essential
component in neural networks, even though it may be a minor component in a network
with hundreds of layers and millions of parameters [1]. The activation function affects
the output data of one layer of neurons before it is transferred as input to the next layer.
This aids training by introducing nonlinearity, but it also aids network optimization [1].
As a result, the activation functions used in deep networks have a large influence on the
training dynamics and performance outcomes. Previously, saturating functions such as
sigmoid, tangent, and hyperbolic functions were utilized to activate neurons in artificial
neural networks [2,3]. These activation functions, however, are ineffective in cutting-edge
deep neural networks. If a neuron is saturated, the parameters in neural networks are not
updated. So, if the neuron is saturated, weights would not get updated. This is known as
the vanishing gradient problem. The Rectified Linear Unit (ReLU) is the most successful

Axioms 2023, 12, 246. https://doi.org/10.3390/axioms12030246 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12030246
https://doi.org/10.3390/axioms12030246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-4170-3146
https://orcid.org/0000-0001-5120-5741
https://orcid.org/0000-0001-5760-0216
https://orcid.org/0000-0002-5895-2632
https://doi.org/10.3390/axioms12030246
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12030246?type=check_update&version=3

Axioms 2023, 12, 246 2 of 13

and broadly utilized activation function among all non-saturating activation functions [4–6].
ReLU was employed for the first time by Hahnloser et al. in 2003 [7], was subsequently
applied to the field of object recognition, and was made well-known by Nair and Hinton
in the context of limited Boltzmann machines in 2010 [6,8]. The fading ReLU problem,
which affects a negative component of the input while leaving the positive part intact, is
a limitation of ReLU (seen in Figure 1a). As a result, some neurons’ weights and biases are
not updated during backpropagation. This will create dead neurons in the network that
will never get stimulated. Various activation functions, such as Leaky ReLU [9], Parametric
ReLU [10], Exponential Linear Units (ELU) [11], and Scaled Exponential Linear Units
(SELU) [12], have been developed over the years to improve network performance and
solve ReLU’s flaws. To overcome this problem, Swish [13] was introduced, which is a self-
gated non-monotonic activation function developed by researchers at Google research
lab and which has performed significantly better in experiments than ReLU (shown in
Figure 1b).

Axioms 2023, 12, x FOR PEER REVIEW 2 of 14

the vanishing gradient problem. The Rectified Linear Unit (ReLU) is the most successful
and broadly utilized activation function among all non-saturating activation functions [4–
6]. ReLU was employed for the first time by Hahnloser et al. in 2003 [7], was subsequently
applied to the field of object recognition, and was made well-known by Nair and Hinton
in the context of limited Boltzmann machines in 2010 [6,8]. The fading ReLU problem,
which affects a negative component of the input while leaving the positive part intact, is
a limitation of ReLU (seen in Figure 1a). As a result, some neurons’ weights and biases are
not updated during backpropagation. This will create dead neurons in the network that
will never get stimulated. Various activation functions, such as Leaky ReLU [9], Paramet-
ric ReLU [10], Exponential Linear Units (ELU) [11], and Scaled Exponential Linear Units
(SELU) [12], have been developed over the years to improve network performance and
solve ReLU’s flaws. To overcome this problem, Swish [13] was introduced, which is a self-
gated non-monotonic activation function developed by researchers at Google research lab
and which has performed significantly better in experiments than ReLU (shown in Figure
1b).

(a) (b) (c)

(d)

Figure 1. Illustration of activation functions: (a) Rectified Linear Unit (ReLU) Ref. [6], (b) Swish ac-
tivation function (SWISH) Ref. [13], (c) NIPUNA activation function, (d) three graphical represen-
tations of activation functions.

In the era of deep learning, the Swish function has shown to be more important than
ReLU in terms of better propagation. This function is thought to be a smooth transition
between the linear and ReLU functions. However, advances in deep learning architecture
configuration pose new challenges, particularly in selecting the appropriate activation
functions to perform in various real-world applications. With these challenges in mind,
this study introduces the “NIPUNA activation function,” which combines the advantages
of both saturating and non-saturating activations (as shown in Figure 1c). It shows the
self-gated rectified linear unit, which is motivated by ReLU [6] and the self-gating prop-
erty of Swish [13].

Figure 1. Illustration of activation functions: (a) Rectified Linear Unit (ReLU) Ref. [6], (b) Swish activa-
tion function (SWISH) Ref. [13], (c) NIPUNA activation function, (d) three graphical representations
of activation functions.

In the era of deep learning, the Swish function has shown to be more important than
ReLU in terms of better propagation. This function is thought to be a smooth transition
between the linear and ReLU functions. However, advances in deep learning architecture
configuration pose new challenges, particularly in selecting the appropriate activation
functions to perform in various real-world applications. With these challenges in mind,
this study introduces the “NIPUNA activation function,” which combines the advantages
of both saturating and non-saturating activations (as shown in Figure 1c). It shows the
self-gated rectified linear unit, which is motivated by ReLU [6] and the self-gating property
of Swish [13].

In ReLU, small negative values are zeroed out—and those negative values may still
contain relevant information underlying the data—whereas large negative values may
be zeroed out. This benefit is provided by the smoothness property, but there are still

Axioms 2023, 12, 246 3 of 13

some modest negative weights; NIPUNA and Swish are linked, and both have a noticeable
negative concavity. This is illustrated in Figure 1.

In summary, the main contribution of this paper is as follows:

• This paper introduces a new activation function named NIPUNA, i.e., f (x) = max
(

x
1+e−βx , x

)
for deep neural networks.

• Solves the dying ReLU problem to estimate the optimal slope of the negative portion
of the input data, as it has a small positive slope in the negative area of the input.

• Combines the benefits of the ReLU and Swish activations in order to accelerate gradient
descent convergence towards global minima and optimize time-intensive computing
for deeper layers with huge parameter dimensions.

• The proposed activation function is tested on benchmark datasets using a tailored
convolution neural network architecture.

• This study also compares performance on two benchmark datasets using cutting-edge
activation functions with various types of deep neural networks.

The following is the order of the paper: Section 2 follows with a discussion of relevant
works and the importance of some typical activation functions. The problem statement
and design philosophy of the activation function is presented in Section 3. The results of
the experiment are shown in Section 4. The conclusion and summary of this study are
provided in Section 5.

2. Related Works

In the following, we first, give a summary of learned activation functions. Then we
intend a possible taxonomy of the key activation functions presented.

Initially, saturating functions such as sigmoid and hyperbolic functions were employed
to activate neurons in Artificial Neural Networks (ANNs) [2,3,14,15]. However, if any unit
is initialized within the activation function’s saturating range, it is extremely difficult to
backpropagate the error rate in the network. With the initiation of ReLU [6], overfitting
and vanishing gradient concerns were eliminated. Given ReLU’s linear behavior and
attitude and non-saturating essence, the negative portion of the input is clipped, and the
positive portion is sent to the output unchanged. This aids the linear gradient flow in
deep network models during backpropagation, and activation functions have a significant
impact on realizing nonlinear modeling. In 2012, for the first time, ReLU is used as
the activation function in the ImageNet ILSVRC competition [16]. ReLU is the most
important and successful breakthrough in deep convolutional neural networks among
all activation functions. Following that, a slew of changes is made, intended to prevent
the issue of neuron loss during training. In 2013, Leaky ReLU (LReLU) [9] overcomes
the problem by giving the negative portion of the input a non-zero slope value, whereas
the positive half of the signal is treated similarly to ReLU. The slope of the coefficient in
Parametric ReLU (PReLU) (2015) [10] is a trainable parameter rather than a fixed value for
the negative components of the signal. It competes with linear mapping terms for non-linear
transformation functions and also solves the problem of neuron death. Model weights are
used to train negative slope coefficients during model training. Given that each layer in the
model learns various parameter values, the negative half of the model has its activation
behavior. In 2015, the Exponential Linear Unit [11] models the negative part of the input
signal using an exponential function. This solves the output variance and bias problems
while also forcing the nonlinear mapping term to compete for nonlinear transformation
capabilities with the original input. Similar to ELU, SELU [12], a scaled form of ELU,
pushes neuron activations towards unit variance and zero mean as they travel through
the network. In 2016, Aboubakar Nasser Samatin Njikam and Huan Zhao [17] proposed
a “rectified hyperbolic secant activation function,” which is inspired by the intuition that
sigmoidal activation functions are inadequate and inefficient at dealing with real-world
recognition and classification tasks. Furthermore, a randomized leaky rectified linear unit
(RLReLU) is proposed in [18], which employs a nonlinear random coefficient rather than
a linear one. The selection of optimal activation functions in a CNN is critical because it is

Axioms 2023, 12, 246 4 of 13

clearly relevant to the efficiency. The Gaussian Error Linear Unit [19] activation function
was first proposed by Dan Hendrycks and Kevin Gimpel in 2016, and it simply multiplies
its inputs by the cumulative density function of the normal distribution at each input. The
Swish activation function, invented at Google Brain in 2017 by Ramachandran et al. [13],
multiplies the input function by its sigmoid function. Conversely, Swish is a non-monotonic
function. If we examine the negative area, the function starts to fall just after zero before
starting to rise again. Swish differs from the other activation functions due to this; however,
it is computationally costly. In 2017, Parametric ELU (PELU) [20] was introduced, which
entails learning ELU parameterization to determine the best activation shape for each layer
in deep neural networks. Essentially, it was taught alongside weights and biases during the
training period. In 2018, Ömer Faruk Ertuğrul [21] proposed an optimal activation function
that was trained for each neuron using linear regression and learned its shape using a linear
regression model. In 2019, Misra et al. [22] envisaged a new activation function named
Mish activation. When tested on CIFAR-100 with the Squeeze Excite Net-18, this new
activation function outperformed both the ReLU and Swish activation functions. In 2020,
Liu et al. [23] envisaged the Tanh exponential activation function as a new activation
function. It is a continuous function with negative values and an approximately linear
positive part. In 2021, Sayan Nag et al. [24] proposed the Serf activation function, which is
self-regularized and non-monotonic. In 2022, Xueliang Wang et al. [25] envisaged a new
nonlinear activation function named ‘Smish activation’ that is a smooth non-monotonic
function with a lower bound. Smish’s intricacy is undoubtedly greater than those of
other comparably activated functions. In 2022, Shui-Long Shen et al. [26] proposed a new
activation function (tanhLU) that is a combination of the hyperbolic tangent function (tanh)
and a linear unit. This function is based on five various types of neural networks and
seven benchmark datasets from various domains and outperformed others in terms of
accuracy. In 2023, Iván Vallés-Pérez et al. [27] conducted an empirical investigation of
a new non-monotonic activation function for computer vision applications, and this model
generalizes better than other nonlinearities but has a slightly higher computational cost.

All the activation functions listed above focus on the signal’s negative side. Consid-
ering these constraints, we suggest a new activation function that not only accounts for
the negative half of the activation function but also represents the non-linear character of
neural connections in the network.

3. Problem Definition

ReLU is the source of all current activation functions in the literature, and it has all the
basic behavioral features. In theory, ReLU is not a non-linear function, although it is widely
used in deep learning applications because it mainly simulates linear data relationships.
To illustrate, consider the following example of a simple perceptron model for input (X)
with a weight matrix (W) and bias (b). The following is the output function (y): The
transformation of the input vector X is defined as follows:

Y = Y = WT ∗ b (1)

In Equation (1), X represents the input vector, W is the weighted vector and b is the
bias. The activation function is required here, first to transform these linear outputs into
non-linear output for further computing, and second to learn the patterns in the data.
The mappings of the equation produce linear outcomes and the models’ output is given
as follows:

z = (w1x1 + w2x2 + w3x3 + · · ·wn xn) + b . . . (2)

Multilayered networks use these outputs from each layer, which are linear by default,
to feed into the next layer until the final output is achieved. We can also represent this
Equation (2) in a compact form, as shown in Equation (3).

z =
(
∑n

i=1 wi ∗ xi
)
+ b (3)

Axioms 2023, 12, 246 5 of 13

This weighted sum computation that we’ve done so far has been done linearly. If each
neuron performed this calculation independently, the neural network could only learn
linear input–output mappings. The following is the output function (Z) after applying
non-linearity:

Z = f(Y) = f(WT∗X + b) . . . (4)

As a result, Equation (4) can be rewritten as follows:

Z = Y∗α(.) . . . (5)

In Equation (5), α is represents a binary matrix and it is given the following equation:

α =

{
1, i f y > 0
0, i f y ≤ 0

(6)

According to Equation (6), if the input signal is less than or equal to zero, the ReLU
function will force the output to be zero. If not, the output signal will have the same
value as the input signal. As a result, the neuron receives any gradient and remains in the
same state.

The goal of this research is to solve the previously described constraint of activation
functions by presenting a new activation that is resistant to the issues that come with
saturating activation.

3.1. Proposed Activation Function

Activation functions are typically utilized in neural networks to generate non-linear
changes. Taking inspiration from the development of ReLU and Swish, we propose a novel
activation function named “NIPUNA” in this study, which is theoretically specified in
Equation (7) and has the following universal approximation power of a deep neural
network, which helps with the learning of higher-order polynomials for deeper networks:

f (x) = max(g(x), x)where g(x) =
x

(1 + e−βx)
(7)

In Equation (6), the parameter β value is either a constant or trainable parameter; for
this study, we used β = 1 a trainable parameter.

f ′(x) =
d

dx

(
max

(
x

1 + e−x

))
=

 1, i f x
ex+1 ≥ 0

ex(x+ex+1)
(ex+1)2 , Otherwise

(8)

Figure 1c plots the activation curve of NIPUNA for the value of β = 1. In Figure 2, we
show how the Sigmoid, Tanh, ReLU, Leaky ReLU, Swish and NIPUNA activation works in
the network model. They are very similar, but NIPUNA allows the model to capture small
negative inputs. Unboundedness above aids training speed, whereas boundness below
functions as a regularizes by ignoring inputs spanning from zero to negative infinity.

3.2. Customized Convolution Neural Network (CCNN)

We use a customized convolution neural network (CCNN) architecture (shown in
Figure 3) to run experiments on the benchmark MINST dataset to test the efficacy of this
activation function.

Two convolutional layers and two dense layers are employed in a fourteen-layer
CNN. There are 32 kernels in the first convolutional layer and 64 kernels in the fourth
convolutional layer. All convolutional layers have the same kernel size (3 × 3). All
experiments use the same model architecture and training conditions.

Axioms 2023, 12, 246 6 of 13
Axioms 2023, 12, x FOR PEER REVIEW 6 of 14

Figure 2. Commonly used baseline activation functions.

3.2. Customized Convolution Neural Network (CCNN)
We use a customized convolution neural network (CCNN) architecture (shown in

Figure 3) to run experiments on the benchmark MINST dataset to test the efficacy of this
activation function.

Figure 3. Customized convolutional neural network.

Two convolutional layers and two dense layers are employed in a fourteen-layer
CNN. There are 32 kernels in the first convolutional layer and 64 kernels in the fourth
convolutional layer. All convolutional layers have the same kernel size (3 × 3). All experi-
ments use the same model architecture and training conditions.

4. Experiments and Their Outcomes
In this section, we determine the proposed activation function’s performance on

benchmark datasets: (a) MNIST [28] is a dataset aimed to classify handwritten digits into
ten classes; it is a binary image collection of digits with 60,000 training and 10,000 testing
samples, and it also comprises ten classes with images that are 28 × 28 in size. In this work,
the following state-of-the-art activation functions are compared: Sigmoid [2], Tanh [3],
ReLU [6], SELU [12] and Swish [13]. The impacts of the model (NIPUNA) accuracy are
depicted in Tables 1 and 2.

Table 1. Compares the proposed activation function’s classification accuracies (for 50 Epochs).

Dataset: MNIST (50 Epochs), Optimizer = Adam, Kernel_Initializer = HeNormal
Cus-
tom-
ized
CNN

Activation Type Accuracy Loss
Test Train Test Train

Sigmoid 0.9372 0.9691 0.2404 0.1243
Tanh 0.9250 0.9790 0.2930 0.0809

Figure 2. Commonly used baseline activation functions.

Axioms 2023, 12, x FOR PEER REVIEW 6 of 14

Figure 2. Commonly used baseline activation functions.

3.2. Customized Convolution Neural Network (CCNN)
We use a customized convolution neural network (CCNN) architecture (shown in

Figure 3) to run experiments on the benchmark MINST dataset to test the efficacy of this
activation function.

Figure 3. Customized convolutional neural network.

Two convolutional layers and two dense layers are employed in a fourteen-layer
CNN. There are 32 kernels in the first convolutional layer and 64 kernels in the fourth
convolutional layer. All convolutional layers have the same kernel size (3 × 3). All experi-
ments use the same model architecture and training conditions.

4. Experiments and Their Outcomes
In this section, we determine the proposed activation function’s performance on

benchmark datasets: (a) MNIST [28] is a dataset aimed to classify handwritten digits into
ten classes; it is a binary image collection of digits with 60,000 training and 10,000 testing
samples, and it also comprises ten classes with images that are 28 × 28 in size. In this work,
the following state-of-the-art activation functions are compared: Sigmoid [2], Tanh [3],
ReLU [6], SELU [12] and Swish [13]. The impacts of the model (NIPUNA) accuracy are
depicted in Tables 1 and 2.

Table 1. Compares the proposed activation function’s classification accuracies (for 50 Epochs).

Dataset: MNIST (50 Epochs), Optimizer = Adam, Kernel_Initializer = HeNormal
Cus-
tom-
ized
CNN

Activation Type Accuracy Loss
Test Train Test Train

Sigmoid 0.9372 0.9691 0.2404 0.1243
Tanh 0.9250 0.9790 0.2930 0.0809

Figure 3. Customized convolutional neural network.

4. Experiments and Their Outcomes

In this section, we determine the proposed activation function’s performance on
benchmark datasets: (a) MNIST [28] is a dataset aimed to classify handwritten digits into
ten classes; it is a binary image collection of digits with 60,000 training and 10,000 testing
samples, and it also comprises ten classes with images that are 28 × 28 in size. In this work,
the following state-of-the-art activation functions are compared: Sigmoid [2], Tanh [3],
ReLU [6], SELU [12] and Swish [13]. The impacts of the model (NIPUNA) accuracy are
depicted in Tables 1 and 2.

Table 1. Compares the proposed activation function’s classification accuracies (for 50 Epochs).

Dataset: MNIST (50 Epochs), Optimizer = Adam, Kernel_Initializer = HeNormal

Customized
CNN

Activation Type Accuracy Loss
Test Train Test Train

Sigmoid 0.9372 0.9691 0.2404 0.1243
Tanh 0.9250 0.9790 0.2930 0.0809
ReLU 0.9366 0.9839 0.2684 0.0859
SELU 0.9247 0.9612 0.2590 0.1321
Swish 0.9311 0.9850 0.2960 0.0739

NIPUNA (Proposed) 0.9341 0.9874 0.2652 0.0723

(b) Fashion MNIST [29] is a Zalando article image dataset that consists of black and white
clothing photos rather than numbers. A 60,000-sample training set and a 10,000-sample test

Axioms 2023, 12, 246 7 of 13

set, each of which was a 28 × 28 grayscale image labeled with one of ten categories. These
samples were used to observe different aspects of the activation functions, such as how they
propagate gradients through this network, as well as to test activation performance and
gradient flow. We can also study a newly prepared network and see how each activation
function affects the gradients by computing the gradients for each network parameter with
a batch size of 256 images and then determining how each activation function affects the
gradients. Our gradients will vanish until they reach the input layer if the gradient via the
activation function is smaller than one. Gradients rise exponentially, and if the activation
function’s gradient is greater than one, they may explode. Figure 4a–g shows the gradient
magnitude distribution for other popular activation functions.

Table 2. Compares the proposed activation function’s classification accuracies (for 100 Epochs).

Dataset: MNIST (100 Epochs), Optimizer = SGD, Kernel_Initializer = HeNormal

Customized
CNN

Activation Type Accuracy Loss
Test Train Test Train

Sigmoid 0.9242 0.9511 0.3257 0.1579
Tanh 0.9150 0.9620 0.3930 0.1274
ReLU 0.9266 0.9349 0.2114 0.1810
SELU 0.9307 0.9723 0.3104 0.1620
Swish 0.9236 0.9514 0.2216 0.1356

NIPUNA (Proposed) 0.9337 0.9969 0.3601 0.0212

In Figure 4a, the pattern of the sigmoid activation function is unfavorable. While
the output layer seems to have tremendous gradients of up to 0.1, the input layer has
the lowest gradient norm at learning rate 1 × 10−5 and, because of the small maximum
gradient of 0.1, the outcome of an adequate learning rate across all layers is not achievable
in this circumstance. Across all levels, every one of the activation functions has similar
gradient norms. Surprisingly, dead neurons and the zero parts on the left cause a drop in
ReLU activation around 0. These functions add different types of adjustable parameters
to improve performance to varying extents, and the parameter settings and learning
parameters of the activation functions studied in this study are shown in Table 3, along
with our model validation performance on the Fashion MNIST dataset, which is shown in
Figure 5.

Table 3. A summary of the activation functions studied in this study.

Activation Function Parameters Setting/Initialization Learned Parameters

Sigmoid – –
Tanh – –
ReLU – –
SELU λ ≈ 1.0507, α ≈ 1.6732 α, λ
Swish β = 0, 1, 0.5, σ = 0.1 β, σ

NIPUNA β = 1 β

The sigmoid activation function model falls short of outperforming random chance
(10 classes => 1/10 for random chance). All other activation functions perform better as
well. To arrive at a more accurate conclusion, we model training for multiple seeds and
average the results (see Figure 6a–g. A few other factors, however, influence the “optimal”
activation function.

Axioms 2023, 12, 246 8 of 13

c ::,
0
u

60000

c 40000
::,
0

u

20000

0

60000

c
il 40000
u

20000

0

125000

100000

75000

50000

25000

0

layers.0.weight

-1 0

layers.0.weight

-0.002 0.000 0.002

layers.a.weight

15000

c 10000
::,
0 u

5000

0

25000

20000

c 15000
::,
0

U 10000

5000

0

125000
100000

c::, 75000
0
u 50000

25000
0

Gradient magnitude distribution for activation function Sigmoid
layers.2.weight layers.4.weight layers.6.weight

6000 4000

3000
c 4000 C:

::, il 2000 0 u u
2000 1000

0 0
-5 0 5 -0.0025 0.0000 0.0025 -0.0025 0.0000 0.0025

(a)

Gradient magnitude distribution for activation function Tanh
layers.2.weight layers.4.weight layers.6.weight

12500 5000

10000 4000

c § 3000 7500 ::,
0 0 u 5000 u 2000

2500 1000

0 0
-0.0025 0.0000 0.0025 -0.0025 0.0000 0.0025 -0.005 0.000

(b)

Gradient magnitude distribution for activation function ReLU
layers.2.weight layers.4.weight layers.6.weight

60000

1
80000

l 1
_ 60000 - 40000
C: C: ::, ::,
8 40000 0

u

20000
20000

0 0

0.005

c ::,
0
u

layers.a.weight

200

- 150
::,

8 100

50

0
0.00 0.05

layers.a.weight
150

- 100
C: ::,
0 u

50

0
-0.01 0.00 0.01

600
layers.a.weight

400

200

-0.001 0.000 0.001 -0.002 0.000 0.002 -0.002 0.000 0.002 -0.00250.0000 0.0025 0.000 0.005

100000

80000
c 60000 ::,
0

u 40000

20000

60000

5 40000
u

20000

0

100000

80000
c 60000
0 u 40000

20000

0

80000

c 60000
::,
8 40000

20000

0

layers.a.weight
100000

80000
c 60000 ::,
0

u 40000

20000

0
0.000 0.001

layers.O.weight

-0.002 0.000 0.002

layers.O.we1ght

c

25000
20000

5 15000
U 10000

5000
0

40000

c 30000
::,
8 20000

10000

0

(c)

Gradient magnitude distribution for activation function LeakyReLU
layers.2.weight layers.4.weight layers.6.weight

40000

l
60000

30000
C 40000 c:, 5 20000
0

u u

20000 10000

0 0
-0.002 0.000 0.002 -0.002 0.000 0.002 -0.0020.000 0.002 0.004

(d)
Gradient magnitude distribution for activation function ELU

layers.2.weight layers.4.weight layers.6.weight

12500
10000

c 7500
u 5000

2500
0

-0.0025 0.0000 0.0025 -0.0025 0.0000 0.0025

4000

- 3000 C:
8 2000

1000

0
-0.0025 0.0000 0.0025

(e)
Gradient magnitude distribution for activation function Swish

layers.2.weight layers.4.weight layers.6.welght
15000

c 10000
::,

5000

0

5000
4000

§ 3000
0 u 2000

1000

layers.a.weight

300

§ 200
0

u

100

0
-0.005 0.000 0.005

layers.a.weight

150

c 100

8
50

0

-0.01 0.00 0.01

layers.a.weight
150

C 100
::,
8

50

0
-0.0002 0.00000.0002 -0.0005 0.0000 0.0005 -0.0025 0.0000 0.0025 0.0000 0.0005 0.000 0.002

(f)

Gradient magnitude distribution for activation function Nipuna
layer5.0.weight layers.2.weight layers.4. weight layers.6.weight layers.a.weight

50000 25000 150

)
I

8000

I j
40000 20000

§ 30000 § 15000

I
c 6000 c 100
::, ::,

0 0
8 4000

0

u 20000 U 10000 u
50

10000 5000 2000

0 0 0 0
-0.001 0.000 0.001 -0.002 0.000 0.002 -0.002 0.000 0.002 -0.002 0.000 0.002 -0.005 0.000 0.005

(g)

Figure 4. This is a figure showing the gradient magnitude distribution for other state-of-the-art
activation functions. (a) Illustration of gradient magnitude of the Sigmoid activation function; (b) illus-
tration of gradient magnitude of the tanh activation function; (c) illustration of gradient magnitude
of the ReLU activation function; (d) illustration of gradient magnitude of the LeakyReLU activation
function; (e) illustration of gradient magnitude of the ELU activation function; (f) illustration of
gradient magnitude of the Swish activation function; (g) illustration of gradient magnitude of the
NIPUNA activation function.

Axioms 2023, 12, 246 9 of 13

Axioms 2023, 12, x FOR PEER REVIEW 9 of 14

Figure 4. This is a figure showing the gradient magnitude distribution for other state-of-the-art ac-
tivation functions. (a) Illustration of gradient magnitude of the Sigmoid activation function; (b) il-
lustration of gradient magnitude of the tanh activation function; (c) illustration of gradient magni-
tude of the ReLU activation function; (d) illustration of gradient magnitude of the LeakyReLU acti-
vation function; (e) illustration of gradient magnitude of the ELU activation function; (f) illustration
of gradient magnitude of the Swish activation function; (g) illustration of gradient magnitude of the
NIPUNA activation function.

In Figure 4a, the pattern of the sigmoid activation function is unfavorable. While the
output layer seems to have tremendous gradients of up to 0.1, the input layer has the
lowest gradient norm at learning rate 1 × 10−5 and, because of the small maximum gradient
of 0.1, the outcome of an adequate learning rate across all layers is not achievable in this
circumstance. Across all levels, every one of the activation functions has similar gradient
norms. Surprisingly, dead neurons and the zero parts on the left cause a drop in ReLU
activation around 0. These functions add different types of adjustable parameters to im-
prove performance to varying extents, and the parameter settings and learning parame-
ters of the activation functions studied in this study are shown in Table 3, along with our
model validation performance on the Fashion MNIST dataset, which is shown in Figure
5.

Table 3. A summary of the activation functions studied in this study.

Activation Func-
tion Parameters Setting/Initialization Learned Parameters

Sigmoid -- --
Tanh -- --
ReLU -- --
SELU λ ≈ 1.0507, α ≈ 1.6732 𝛼, 𝜆
Swish 𝛽 = 0, 1, 0.5, 𝜎 = 0.1 𝛽, 𝜎

NIPUNA 𝛽 = 1 𝛽

Figure 5. Validation performance of proposed activation function on the Fashion MNIST dataset.

The sigmoid activation function model falls short of outperforming random chance
(10 classes => 1/10 for random chance). All other activation functions perform better as
well. To arrive at a more accurate conclusion, we model training for multiple seeds and
average the results (see Figure 6a–g. A few other factors, however, influence the “optimal”
activation function.

Figure 5. Validation performance of proposed activation function on the Fashion MNIST dataset.
Axioms 2023, 12, x FOR PEER REVIEW 10 of 14

(a)

(b)

(c)

Figure 6. Cont.

Axioms 2023, 12, 246 10 of 13Axioms 2023, 12, x FOR PEER REVIEW 11 of 14

(d)

(e)

(f)

Figure 6. Cont.

Axioms 2023, 12, 246 11 of 13Axioms 2023, 12, x FOR PEER REVIEW 12 of 14

(g)

Figure 6. This is a figure showing the activation distribution for other state-of-the-art activation
functions. (a). Layer-wise activation distribution for the sigmoid activation function; (b) layer-wise
activation distribution for the tanh activation function; (c) layer-wise activation distribution for the
ReLU activation function; (d) layer-wise activation distribution for the LeakyReLU activation func-
tion; (e) layer-wise activation distribution for the ELU activation function; (f) layer-wise activation
distribution for the Swish activation function; (g) layer-wise activation distribution for the NIPUNA
activation function.

Figure 6 illustrates state-of-the-art activation distributions and plots the activation
histogram within the network. The activations are less meaningful because the model with
sigmoid activation was unable to train adequately, and they all clustered near 0.5. The
behavior of the Tanh function is more varied. The activations in the two subsequent layers
are closer to zero, even though the input layer has more neurons with activations near −1
and 1, in which the gradients are close to zero. This is most likely the reason that the input
layers search the input image for certain traits, which are then merged by the subsequent
layers. The activations for the last layer are once again skewed toward the extremes be-
cause the classification layer is a weighted average of those values.

Predictably, ReLU exhibits a robust peak at zero. Given that negative values have no
gradients, the network has a longer tail toward positive values. The LeakyReLU behaves
similarly, whereas the ELU has a more Gaussian distribution. Swish behaves similarly to
LeakyReLU, but the activation appears to be in the middle. Although it is worth mention-
ing that NIPUNA activation employs significantly greater values than other activation
functions, it appears to be in the middle (up to 10). Given that all activation functions have
slightly different behaviors while achieving identical results for our customized network,
it is clear that choosing the “best” activation function depends on a variety of criteria and
isn’t the same for all potential networks.

5. Conclusions
A new activation function was proposed in this work (named ‘NIPUNA’). This acti-

vation function decomposes into small non-linear segments, each with a distinct activa-
tion pattern. It aids in the learning of non-linear transformations for improved feature
representation. Our experiments used models and hyperparameters to discuss the effect
of the gradient distribution across layers. When these models and hyperparameters are
expressly constructed with our activation function (NIPUNA) in mind, we expect even
more advantages. Given that the highest gradient provided by Sigmoid is 0.25, it tends to
fail in deep neural networks, resulting in vanishing gradients in early layers. This activa-
tion function performed equally well or better than Swish in most of the computer vision

Figure 6. This is a figure showing the activation distribution for other state-of-the-art activation
functions. (a). Layer-wise activation distribution for the sigmoid activation function; (b) layer-wise
activation distribution for the tanh activation function; (c) layer-wise activation distribution for
the ReLU activation function; (d) layer-wise activation distribution for the LeakyReLU activation
function; (e) layer-wise activation distribution for the ELU activation function; (f) layer-wise activation
distribution for the Swish activation function; (g) layer-wise activation distribution for the NIPUNA
activation function.

Figure 6 illustrates state-of-the-art activation distributions and plots the activation
histogram within the network. The activations are less meaningful because the model with
sigmoid activation was unable to train adequately, and they all clustered near 0.5. The
behavior of the Tanh function is more varied. The activations in the two subsequent layers
are closer to zero, even though the input layer has more neurons with activations near −1
and 1, in which the gradients are close to zero. This is most likely the reason that the input
layers search the input image for certain traits, which are then merged by the subsequent
layers. The activations for the last layer are once again skewed toward the extremes because
the classification layer is a weighted average of those values.

Predictably, ReLU exhibits a robust peak at zero. Given that negative values have no
gradients, the network has a longer tail toward positive values. The LeakyReLU behaves
similarly, whereas the ELU has a more Gaussian distribution. Swish behaves similarly to
LeakyReLU, but the activation appears to be in the middle. Although it is worth men-
tioning that NIPUNA activation employs significantly greater values than other activation
functions, it appears to be in the middle (up to 10). Given that all activation functions have
slightly different behaviors while achieving identical results for our customized network, it
is clear that choosing the “best” activation function depends on a variety of criteria and
isn’t the same for all potential networks.

5. Conclusions

A new activation function was proposed in this work (named ‘NIPUNA’). This activa-
tion function decomposes into small non-linear segments, each with a distinct activation
pattern. It aids in the learning of non-linear transformations for improved feature rep-
resentation. Our experiments used models and hyperparameters to discuss the effect of
the gradient distribution across layers. When these models and hyperparameters are ex-
pressly constructed with our activation function (NIPUNA) in mind, we expect even more
advantages. Given that the highest gradient provided by Sigmoid is 0.25, it tends to fail
in deep neural networks, resulting in vanishing gradients in early layers. This activation
function performed equally well or better than Swish in most of the computer vision tasks.

Axioms 2023, 12, 246 12 of 13

In addition, the NIPUNA activation function provided various detailed experiments to
demonstrate its superiority. It helps when optimizing the model in terms of convergence
to the minimum loss. As a result, the NIPUNA activation function inherits the advan-
tages of ReLU and Swish: (i) it avoids slow training times during near-zero gradients and
(ii) it is more computationally efficient when compared with other state-of-the-art activation
functions. There are some significant computational costs associated with lightweight deep
learning prototypes which will be addressed in future research.

Author Contributions: G.M. proposed the new activation function and experimented. S.K., K.A.A.
H.M.Z. and A.W.M. supervised the study, analyzed the results, and provided insightful suggestions
for the manuscript. G.M drafted the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: The research is funded by Researchers Supporting Program at King Saud University,
(RSP2023R305).

Data Availability Statement: Not applicable.

Acknowledgments: The authors present their appreciation to King Saud University for funding the
publication of this research through Researchers Supporting Program (RSP2023R305), King Saud
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016.
2. Yamada, T.; Yabuta, T. Neural network controller using autotuning method for nonlinear functions. IEEE Trans. Neural Netw.

1992, 3, 595–601. [CrossRef] [PubMed]
3. Chen, C.T.; Chang, W.D. A feedforward neural network with function shape autotuning. Neural Netw. 1996, 9, 627–641. [CrossRef]
4. Hahnloser, R.H.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital selection and analogue amplification coexist

in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951. [CrossRef] [PubMed]
5. Jarrett, K.; Kavukcuoglu, K.; Ranzato, A.; Le Cun, Y. What is the best multi-stage architecture for object recognition? In Proceedings

of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2146–2153.
6. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
7. Richard, H.R.; Hahnloser, H.; Seung, S. Permitted and forbidden sets in symmetric threshold-linear networks. In Advances in

Neural Information Processing Systems; MIT Press: Cambridge, UK, 2001; pp. 217–223.
8. Hinton, G.; Salakhutdinov, R. An efficient learning procedure for deep Boltzmann machines. Neural Comput. 2012, 24, 1967–2006.
9. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th

International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; Volume 30, p. 3.
10. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
11. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv

2015, arXiv:1511.07289.
12. Günter, K.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 972–981.
13. Prajit, R.; Zoph, B.; Le, Q.V. Swish: A self-gated activation function. arXiv 2017, arXiv:1710.05941.
14. Singh, B.V.; Kumar, V. Linearized sigmoidal activation: A novel activation function with tractable non-linear characteristics to

boost representation capability. Expert Syst. Appl. 2019, 120, 346–356.
15. Lohani, H.K.; Dhanalakshmi, S.; Hemalatha, V. Performance Analysis of Extreme Learning Machine Variants with Varying

Intermediate Nodes and Different Activation Functions. In Cognitive Informatics and Soft Computing; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 613–623.

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, 3–6 December 2012; Volume 1, pp. 1097–1105.

17. Njikam, S.; Nasser, A.; Zhao, H. A novel activation function for multilayer feed-forward neural networks. Appl. Intell. 2016, 45,
75–82. [CrossRef]

18. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015,
arXiv:1505.00853.

19. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.

http://doi.org/10.1109/72.143373
http://www.ncbi.nlm.nih.gov/pubmed/18276459
http://doi.org/10.1016/0893-6080(96)00006-8
http://doi.org/10.1038/35016072
http://www.ncbi.nlm.nih.gov/pubmed/10879535
http://doi.org/10.1007/s10489-015-0744-0

Axioms 2023, 12, 246 13 of 13

20. Trottier, L.; Giguere, P.; Chaib-Draa, B. Parametric exponential linear unit for deep convolutional neural networks. In Proceedings
of the 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December
2017; pp. 207–214.

21. Faruk, E.Ö. A novel type of activation function in artificial neural networks: Trained activation function. Neural Netw. 2018, 99,
148–157.

22. Diganta, M. Mish: A self-regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681.
23. Liu, X.; Di, X. TanhExp: A smooth activation function with high convergence speed for lightweight neural networks. IET Computer

Vision 2021, 15, 136–150. [CrossRef]
24. Sayan, N.; Bhattacharyya, M.; Mukherjee, A.; Kundu, R. SERF: Towards better training of deep neural networks using log-Softplus

ERror activation Function. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa,
HI, USA, 3–7 January 2023; pp. 5324–5333.

25. Wang, X.; Ren, H.; Wang, A. Smish: A Novel Activation Function for Deep Learning Methods. Electronics 2022, 11, 540. [CrossRef]
26. Shen, S.L.; Zhang, N.; Zhou, A.; Yin, Z.Y. Enhancement of neural networks with an alternative activation function tanhLU. Expert

Syst. Appl. 2022, 199, 117181. [CrossRef]
27. Vallés-Pérez, I.; Soria-Olivas, E.; Martínez-Sober, M.; Serrano-López, A.J.; Vila-Francés, J.; Gómez-Sanchís, J. Empirical study of

the modulus as activation function in computer vision applications. Eng. Appl. Artif. Intell. 2023, 120, 105863. [CrossRef]
28. Deng, L. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012, 29,

141–142. [CrossRef]
29. Han, X.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv

2017, arXiv:1708.07747.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1049/cvi2.12020
http://doi.org/10.3390/electronics11040540
http://doi.org/10.1016/j.eswa.2022.117181
http://doi.org/10.1016/j.engappai.2023.105863
http://doi.org/10.1109/MSP.2012.2211477

	NIPUNA: A Novel Optimizer Activation Function for Deep Neural Networks
	Authors

	Introduction
	Related Works
	Problem Definition
	Proposed Activation Function
	Customized Convolution Neural Network (CCNN)

	Experiments and Their Outcomes
	Conclusions
	References

