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Conventional process controllers (such as proportional integral derivative controllers and model predictive con-
trollers) are simple and effective once they have been calibrated for a given system. However, it is difficult and costly
to re-tune these controllers if the system deviates from its normal conditions and starts to deteriorate. Recently,
reinforcement learning has shown a significant improvement in learning process control policies through direct
interaction with a system, without the need of a process model or the system characteristics, as it learns the optimal
control by interacting with the environment directly. However, developing such a black-box system is a challenge
when the system is complex and it may not be possible to capture the complete dynamics of the system with just a
single reinforcement learning agent. Therefore, in this paper, we propose a simple architecture that does not replace
the conventional proportional integral derivative controllers but instead augments the control input to the system
with a reinforcement learning agent. The agent adds a correction factor to the output provided by the conventional
controller to maintain optimal process control even when the system is not operating under its normal condition.

Keywords: Deep Reinforcement Learning (DRL), Residual Policy Learning (RPL), process control, optimal control,
and alarm management.

1. Introduction

Industrial processes control has become au-
tonomous with the advent of sophisticated control
strategies such as Proportional Integral Deriva-
tive (PID) or Model Predictive Control (MPC)
Efheij et al. (2019), based on look-ahead opti-
mization. However, one of the major disadvan-
tages of such control laws is that their imple-
mentation requires an explicit understanding of
the system dynamics and sometimes also knowl-
edge of the environment. Furthermore, once the
controller is tuned to the specific model or set-
points of the system it only provides the optimal
control under set system specificities. If the sys-
tem deteriorates or the environmental conditions
and setpoints drift from the normal conditions,
the controller starts deviating and provides sub-
optimal control strategies and sometimes can fail
to control the process at all. In these cases, it

becomes necessary to optimize the controller per-
formance by re-tuning the controller parameters
and re-identification the system, tasks that lead to
process shutdowns, and massive time consump-
tion Spielberg et al. (2019).

Recent developments in model-free Deep Re-
inforcement Learning (DRL) have demonstrated
the feasibility of replacing such controllers with
fully autonomous controllers that interact with
the environment in an online setting and create
their understanding of the model of the envi-
ronment, thereby eliminating the need for sys-
tem re-identification Spielberg et al. (2019). Rein-
forcement Learning (RL) is a branch of machine
learning that learns through interaction with the
environment without having prior knowledge of
the data set Sutton and Barto (2018). Most of
the work on DRL for process control replaces
conventional controllers entirely with the DRL
controller, as suggested in Spielberg et al. (2019);
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Nian et al. (2020); McClement et al. (2021); Con-
radie and Aldrich (2001); Mageli (2019). Such an
approach is well suited for simpler control prob-
lems. However, developing a controller for sophis-
ticated control scenarios generally requires either
proper domain knowledge or a very complex DRL
algorithm structure that is not easily generalizable.

Process control is a critical optimization prob-
lem that needs to consider optimizing every time
step to be able to run the process smoothly be-
cause if it fails, at any instant, then the process
trips (shutdown), and this may lead to catastrophic
failures. DRL was developed to solve an opti-
mization problem without considering the path
that optimal policy takes to achieve the maximum
cumulative reward. Therefore, it is not necessarily
appropriate to replace conventional control with
DRL, as the trajectory a process follows can have
a major impact on the process control. Hence,
we argue that it is best to use DRL in a hybrid
setting with the conventional controllers, as also
recommended by Shin et al. (2019).

Therefore, we propose a methodology that
merges the conventional controller with a DRL-
based correction factor applied to each output of
the controller, an approach called Residual Policy
Learning (RPL) Silver et al. (2018) in process
control. The corrected signal is then fed as an
input to the plant. This correction factor aids the
adjustment of the control in the case of system
disturbances or when the controller requires re-
tuning. DRL interacts with the process in real-
time and generates an additional control signal
that rectifies the output provided by the conven-
tional controller (PID/MPC) and results in optimal
control with reduced alarm scenarios and operator
burden.

2. Related Literature

A model-free adaptive and self-learning DRL
controller is proposed Spielberg et al. (2019).
The proposed controller learns while interacting
with the process in real-time; therefore, it is a
data-based approach. The proposed system uses
an actor-critic architecture Konda and Tsitsiklis
(1999) for the DRL agent based on the Deep
Policy Gradient (DPG) Lillicrap et al. (2015). To

make the DRL agent aware of the system dy-
namics, the state is defined as the current state,
as well as the previous states, and the current
control action taken by the RL agent, as well as the
previous control actions, up to a predefined num-
ber of the previous time steps. Additionally, the
state also incorporates the current deviation from
the setpoint defined by the system. The approach
is validated on the setpoint tracking problem in
control theory where the controller has to reach
the predefined setpoint with minimal oscillations
and time while reducing the error caused by the
deviation of the system state from the defined
setpoints. The performance of the DRL controller
is evaluated through simulation experiments with
several use cases, including (i) a paper machine,
(ii) a distillation column, and (iii) a heating, ven-
tilation, and air conditioning (HVAC) system.

A multi-criteria decision-making control pro-
cess using DRL has been implemented He et al.
(2021) and has been evaluated using the case study
of a textile manufacturing process. Process opti-
mization for the textile industry includes various
parameters that must be tuned simultaneously, and
DRL is well suited for such multi-objective opti-
mization.

Panzer and Bender (2021) provide a review
of the literature on the use of DRL in produc-
tion systems. The research reviewed was applied
across several case studies, such as the liquid level
control of multiple connected tanks, single- and
multi-input and -output processes, and chemical-
mechanical polishing Noel and Pandian (2014);
Spielberg et al. (2017); Yu and Guo (2020). In all
reviewed case studies, DRL was used to replace
the conventional controller, and the DRL-based
controller achieved optimal performance with re-
duced maintenance and cost along with increased
process stability relative to conventional control
strategies.

Mageli (2019) used a DRL agent to replace
regular controllers in a case study of tank-level
regulation. The DRL controller was compared
with a Proportional controller, a type of PID
controller where only the first component Propor-
tional (P) is used. The results showed that the P-
controller performed better with stable controller
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output changes, whereas DRL with larger output
changes resulted in system oscillation. This re-
search shows that replacing a conventional con-
troller with a DRL agent does not always result in
improved performance, particularly in relatively
simple control scenarios where the complexity of
a DRL agent may not be necessary. However,
in more complex scenarios with potentially non-
linear system dynamics that require the controller
to have the ability to accommodate the deviation
of the system from the standard operating condi-
tions for which the controller was originally tuned
DRL has great potential.

A generalizable approach to process control
using DRL is used McClement et al. (2021). The
approach can be integrated within existing con-
trol structures and used to tune the PID or MPC
controllers, or it can be used as an independent
controller without the aid of any other existing
control. For example, DRL is used as a setpoint
decision-maker Hernández-del Olmo et al. (2018)
in a wastewater treatment plant, where the sug-
gested setpoint is then controlled using a PID
controller.

Shin et al. (2019) presents a brief introduc-
tion to RL and its use in process control, fol-
lowed by its limitations and comparison with
conventional controllers. They argue that model-
based/mathematical programming-based con-
trollers such as MPC are limited in their ability to
incorporate stochasticity of the environment and
that RL can overcome these issues. Furthermore,
they identify three strategies for implementing RL
in process control: (i) replacing the conventional
control with RL, (ii) hybrid RL and conventional
controller, and (iii) RL to manage the control sys-
tems (PID tuning or MPC gain adjustments). In
this paper, the second method of using a hybrid
model is followed and an instantiation of this
strategy is proposed.

Residual reinforcement learning (or residual
policy learning (RPL) is effective in the context of
robot control that involves stochastic events (un-
certain and random) as shown by Johannink et al.
(2019); Silver et al. (2018). Robot control includes
dynamics that can not be easily computed with
the first-order physical modeling and therefore is

difficult to tune manually. They show the effec-
tiveness of such an approach of superpositioning
two control signals (RPL). A part of the control is
solved by a conventional control and the residual
is solved by RL. The effectiveness is proven in
a real-world block assembly task performed by
the robot. Kulkarni et al. (2022) discusses that
learning a control strategy for a robot through RL
is data-inefficient, time-consuming, and involves
high risk. In contrast, the conventional untrained
classical controllers are nearly optimal and re-
liable. However, the real-world environment is
stochastic and does not allow the classical control
to achieve optimality. Therefore, to get the best of
both worlds, a strategy is proposed by the authors
that combine classical control with a recurrent RL
with a time-varying weighted sum that achieves
accurate and robust control of the system.

Liu et al. (2022) use RPL for the control of
a blimp. They point out the inherent non-linear
dynamics and the time-delayed response of the
blimp structure that makes a PID-controller dif-
ficult to tune and demonstrated the ability of the
RPL system to robustly control the blimp even
in the case of disturbances such as the windy
conditions.

The approach proposed in this paper is inspired
by the deep residual policy reinforcement learning
strategy used by Zhang et al. (2019) and that will
be described in more detail in section 3. They use a
bidirectional target network to stabilize the resid-
ual policy learning and evaluate the performance
on the DeepMind Control Suite benchmark. They
show that the residual algorithm also solves the
problem of the distribution mismatch, even with a
weaker model assumption.

2.1. Literature Gap

Several hybrid structures of MPC with RL were
proposed Lee and Wong (2010). The first method
is a hierarchical structure where MPC determines
the state regions to focus on for RL. The second
includes a learning value function for states to
capture the uncertainties within the system model
and incorporate them within the MPC formula-
tion. The third approach uses switching between
MPC and RL, where MPC is used instead of RL
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when a new state is observed. Another exam-
ple is the dual MPC methodology introduced by
Morinelly and Ydstie (2016), where RL is used to
incorporate the predicted information within the
model.

Most of the hybrid DRL-based conventional
controller either uses RL to predict uncertainties
within the environment and then incorporate such
information within the mathematical modeling or
uses RL independently with the conventional con-
trollers with a switching probability. However,
we propose to use DRL alongside the process
controllers and to act as a correcting agent that
feeds in the information of the current state and
action proposed by the conventional control and
outputting a correction factor added to the output
of the conventional control same as RPL. This
method can help correct the control signal during
the process disturbances and abnormalities where
the probability of occurrence of multiple alarms
is high, and it can help minimize or mitigate such
alarm scenarios. Therefore, the main contribution
of this paper is to use the method of RPL within
the context of process control to help optimize the
process in the presence of stochastic events.

3. Proposed Methodology

RPL uses the approach of learning on top of the
baseline policy. We present the mathematical con-
cept for it in the next subsection.

3.1. Preliminaries

We propose a Deep Residual Policy Reinforce-
ment Learning (DRPRL) as a corrective term in
process control to reduce process alarms and de-
viations when the system observes some uncertain
and stochastic events or when the system requires
recalibration. PID or conventional controllers tend
to lose their effectiveness in such scenarios and
these cases, the process observes an alarm flood.

3.1.1. Residual Policy Learning (RPL)

RPL is a strategy to enhance non-differentiable
baseline policies through model-free DRL. The
goal is to improve the baseline policy in cases
where manual improvement and retuning is not
viable option. It can also be categorized into

the paradigm of imitation learning and learn-
ing from demonstrations, where the initial guid-
ance is provided to the machine learning algo-
rithm for a more directed learning approach. RPL
works within a framework of Partially Observable
Markov Decision processes (POMDPs), where the
state of the system is not fully observable and
depends on some hidden unobservable factors.
This makes it ideally suited to be used in the
process industry which normally is viewed as
POMDP. Given an initial policy πθ, it learns a
residual policy fθ over the initial baseline policy
π, at a given state s as shown in eq. (1). Further,
eq. (2a) represents a PID control law, where Kp,
Ki, and Kd are the tunable gains of the control,
and e(t) is the error between the actual process
output and the desired setpoint. eq. (2b) is the
control action provided by the DRL agent, where
Q is the state-action value. RPL is data-efficient
and practical in the case of process industries,
where the DRL agent is not allowed to explore
to avoid catastrophic failures than learning from
scratch (i.e. learning without any knowledge of the
world/environment). There are two ways in which
an RPL can be used. The first one is for the case
when the initial baseline policy is nearly perfect
and only requires recalibration or retuning when
anomalous behaviour occurs, therefore, in these
cases, the residual policy is used as a corrective
term. The second case is when the initial policy
is far from ideal and therefore, the initial policy
provided by the conventional controller just pro-
vides the guidance to the reinforcement learning
for exploration. We use the first case in the context
of the process industry.

πθ(s) = u(t) + fθ(s) (1)

u(t) = Kpe(t)+Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(2a)

fθ(s) = max
θ

E
s∼D

[Qϕ (s, µθ(s))] (2b)
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3.2. Deep Residual Policy Reinforcement
Learning (DRPRL)

Our proposed methodology is to add the inte-
grated DRL agent to the industrial process. The
agent continuously observes the state of the sys-
tem and at each time step provides a corrected
signal to be added to the output of the PID/MPC
controller, which is then fed as the control signal
to the plant. We propose two different architec-
tures in terms of the representative state of the
RL as shown in fig. 1 and fig. 2. The objective
function of the agent is to minimize the deviation
from the setpoint during the disturbance phase,
where the PID/MPC controller fails to mitigate the
error and reduce the number of alarms.

The first architecture shown in fig. 1 represents
the state as a function of the industrial process
(plant) output concatenated with the output signal
from the PID controller. In the figure, the term
Ysp denotes the setpoint or a reference set by the
control operator at the beginning of the plant oper-
ation. The difference operator after the reference
is used to calculate the difference between the
actual plant output at the current time yt and the
reference signal Ysp. This error term is then fed to
a controller, which provides the control signal to
the plant to mitigate the error as smoothly and as
quickly as possible. The proposed methodology is
to add a corrective term to this controller output
before feeding it to the plant.

The modified architecture as shown in fig. 2
represents the state as the function of output from
the plant, output signal from the PID controller,
deviation of process variables from the setpoint,
and the previous action proposed by the DRL
agent. The difference between the two architec-
tures is in terms of the input fed to the DRL agent.
The advantage of having a more informative state
representation for the DRL makes the state fully
observable; however, on the other hand, with more
features in the state space, it becomes difficult
for the agent to explore the whole state space
efficiently to find the optimal policy.

3.3. Reward Formulation

Three different reward functions can be used
based on the error signal received from the en-

vironment (Ysp − yt): (i) the norm L1 as shown
in eq. (3), (ii) the norm L2 as shown in eq. (4),
and (iii) the polar reward as shown in eq. (5), as
represented in Spielberg et al. (2019). In these
equations ny represents the number of process
outputs (sensor readings), yt represents the cur-
rent measurements and ysp represents the setpoint
configured by the operator at the start of the pro-
cess. The first two reward functions will enable an
agent to learn faster but will likely result in more
oscillation in the control signals than the third.
The third reward function stops penalizing the
agent once it observes the improvement in terms
of the current reward compared with the reward at
the previous time step.

r (st, at, st+1) = −
ny∑
i=1

|yi,t − yi,sp| (3)

r (st, at, st+1) = −
ny∑
i=1

|yi,t − yi,sp|2 (4)

r (st, at, st+1) ={
0 if |yi,t − yi,sp| > |yi,t+1 − yi,sp|
−1 otherwise

(5)

4. Conclusion and Future Work

In this paper, we proposed a hybrid architecture
of conventional process control and DRL (RPL)
and its potential applications in the case of alarm
reduction and mitigation. It aims to help the op-
erators in an abnormal situation where handling
multiple alarms simultaneously becomes difficult,
which obscures the root cause failure of the sys-
tem. In the future, we aim to use this method-
ology in a real-world case study with historical
data or with the help of a simulator and compare
the performance of such hybrid architecture over
conventional control or the replacement of con-
ventional control by DRL. The state and reward
architectures presented in the simplified and mod-
ified methodology will be compared and evaluated
against the benchmark of an average of the total
number of alarms generated compared to the con-
ventional control.
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Fig. 1.: Simplified DRL-RA methodology.

Fig. 2.: Enriched-state-modified DRL-RA methodology (ES-DRL-RA).
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