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ABSTRACT

As malware continues to evolve, deep learning models are increas-
ingly used for malware detection and classification, including image-
based classification. However, adversarial attacks can be used to
perturb images so as to evade detection by these models. This study
investigates the effectiveness of training deep learning models with
Generative Adversarial Network-generated data to improve their
robustness against such attacks. Two image conversion methods,
byteplot and space-filling curves, were used to represent the mal-
ware samples, and a ResNet-50 architecture was used to train mod-
els on the image datasets. The models were then tested against a
projected gradient descent attack. It was found that without GAN-
generated data, the models’ prediction performance drastically de-
creased from 93-95% to 4.5% accuracy. However, the addition of
adversarial images to the training data almost doubled the accu-
racy of the models. This study highlights the potential benefits of
incorporating GAN-generated data in the training of deep learning
models to improve their robustness against adversarial attacks.
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1 INTRODUCTION

There exists a perpetual “arms race” between security analysts and
adversarial malware developers as malevolent programs evolve and
countermeasures are developed to detect and eradicate them. The
ease with which malicious actors can produce variants of malware
has seen significant increases in the amount of malware processed
by antivirus companies, with some reporting receiving upwards
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of 350,000 samples per day [3]. As such, this amount of malware
cannot feasibly be analysed manually, so analysts and AV compa-
nies are relying more and more on machine learning and artificial
intelligence to expedite the analysis process.

Deep learning is advantageous in that it is not reliant on expert
domain knowledge to identify salient features for classification. In-
stead, features are determined by the deep neural networks. This is
a highly motivating factor for utilising deep learning in the malware
classification space. Previous research efforts have demonstrated
the versatility of applying deep learning to enhance the classifica-
tion and detection of malware. For example, Raff et al. [22] used a
convolutional neural network to extract malware features from the
raw bytes of the Portable Executable file and achieved an accuracy
of greater than 88%. AL-Hawawreh et al. [2] used a combination
of a deep autoencoder and a feed-forward neural network to learn
malicious activity from TCP/IP packets and achieved a detection
rate greater than 92% depending on the dataset. Rezende et al. [23]
took advantage of a pre-trained ResNet-50 by freezing the convolu-
tional layers and modifying the last layer to malware classification.
The malware samples were represented as grayscale images and
accuracy of over 98% was achieved.

Generative Adversarial Networks (GANs) were first proposed by
[10]. They are comprised of a discriminative model and a generative
model which form a zero sum minimax two player game. The
generator generates adversarial examples of the training data in
order to trick the discriminator into determining the example is
real data. Both models learn from independent back-propagation
in order for the generator to produce better images and for the
discriminator to better distinguish between real and synthetic data.
GANs have allowed researchers to use the highly trained generators
to produce superficially authentic data when compared to the real
dataset. This allows researchers to train high-performance models
even though the dataset available contains insufficient samples
to train their neural network. Lu et al. [15] used this approach in
generating more malware image samples to train their classification
model and thus improve the performance. Their model had a higher
accuracy compared to models trained without GANS.

Deep learning models are vulnerable to adversarial examples,
which are slightly perturbed images resembling natural images but
maliciously crafted to fool pre-trained models [21]. Attacks such
as Projected Gradient Descent (PGD), Fast Gradient Sign Method
(FGSM) and Jacobian-based Saliency Map Attack (JSMA) can be
used to create perturbed images. Although deep learning models
provide many advantages, these risks require careful consideration
for use in critical environments such as self-driving cars or malware
classification and detection.
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Figure 1 is an example of an adversarial image created by FGSM.
It is evident from the adversarial example how the two panda im-
ages look identical to the human eye but the deep learning model
classified the image on the right as a gibbon. The same theory
holds true for malware samples converted to images. Our prob-
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Figure 1: FGSM generated adversarial image [32]

lem definition is as follows: The use of deep learning has helped
to advance the field of malware classification as expert domain
knowledge is not always necessary. However, these models are
vulnerable to adversarial attacks. Attackers can use these samples
to circumvent systems built on deep learning models such that the
sample is misclassified. While GANs have been used in the training
of image-based malware classification models, only their effect on
the performance of the model has been considered. This research
aims to first determine which image conversion method produces
the highest accuracy with and without the use of generative adver-
sarial networks. Secondly, it sets out to determine the robustness
of the image-based malware classification models trained with and
without generative adversarial networks.

To achieve these aims, the following questions will be examined:

(1) How does the method of image conversion affect the accu-
racy of the classification model?

(2) How robust are image-based malware classification models
trained without GANs?

(3) How robust are image-based malware classification models
trained with GANs?

The research objectives are

(1) To determine which method of image conversion produces
the optimum classification model.

(2) To determine the robustness of image-based malware classi-
fication models trained both with and without GANs.

2 ATTACKER MODEL

There is an important difference between malware obfuscation and
adversarial attacks in the context of malware detection. Malware
obfuscation is a technique used by malware distributors to evade
detection by antivirus software. It involves modifying the code of
malware in a way that makes it more difficult for antivirus software
to detect. This may involve changing the signature of the malware,
adding extra code to the malware to confuse detection algorithms,
or using encryption to make the malware harder to analyse.

On the other hand, adversarial attacks in image based malware
detection involve creating small perturbations in images to fool
a machine learning classifier. The goal is to make the classifier
misclassify the image, even though the perturbations are not visible
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to the human eye. This is done by adding carefully crafted noise to
the image to mislead the classifier.

While both techniques involve modifying the malware or image
in some way, they are different in their goals and methods. Malware
obfuscation is aimed at evading detection by antivirus software,
while adversarial attacks aim to bypass image-based malware de-
tection models.

Let A = (C, K, R, O, S) be an attacker model for an adversarial
attack on an image classification system, where:

C ={c1, 2, ..., cm} represents the set of attacker capabilities, such
as adversarial perturbations, image manipulation, image synthesis,
model inversion, and black-box attacks.

K = {k1, k2, .., kn} represents the set of attacker knowledge,
such as knowledge of the architecture and parameters of the image
classification system, knowledge of the training data distribution,
and knowledge of the system’s use case.

R ={r1, r2, .., rp} represents the set of attacker resources, such
as access to powerful GPUs, access to a large amount of training
data, and access to specialised knowledge or tools.

O ={o1, 02, ..., oq} represents the set of attacker objectives, such
as causing misclassification in the image classification system and
evading detection by the image classification system.

S ={s1, s2, ..., st} represents the set of attacker scenarios, such as
specific use cases or user profiles, that the attacker assumes when
crafting adversarial examples. Adversarial attacks in this context are
specialised targeted attacks that involve a lengthy reconnaissance
and a sophisticated multi-phase exploit in order to succeed. They
would be conducted by highly skilled and motivated attackers who
are willing to take risks, spend a long time covertly gathering
information, and invest lots of resources to infiltrate a high value
target, e.g., state actors attempting to install malware to gather
sensitive information or organised cybercriminal gangs motivated
by significant financial gain.

Training a classifier on adversarial example images can poten-
tially make it more robust against obfuscated malware, but this is
not guaranteed. Adversarial examples are created by perturbing the
original image in a way that is not perceptible to the human eye but
can cause misclassification by a classifier. By training a classifier
on adversarial examples, the classifier is exposed to different types
of perturbations, which can potentially improve its ability to dis-
tinguish between different types of malware, including obfuscated
malware. However, this is not a foolproof solution as attackers can
also create new adversarial examples that are specifically designed
to evade the classifier’s defences.

3 RELATED WORK

This section provides a review of related literature and research as-
sociated with malware classification. The focal points of the review
are central to our research, namely binary visualisation, image-
based malware classification and related work on GANS.

3.1 Binary Data Visualization

The first binary-to-image conversion technique considered is the
byteplot [6] and was used by [18] to convert malware to images.
This is a byte-to-pixel mapping, where each malware binary is
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read as a stream of 8-bit unsigned integers and organised in a 2-
dimensional array. The width of the image is fixed and the height
of the image is allowed to vary. The values in the 2-dimensional
array were between 0 (black) and 255 (white) to produce a grayscale
image. Fig. 2 shows a sample of the Trojan Dontovo in byteplot
format. The .text section contains executable code, which is mapped
to a distinct fine-grained texture. Following the code, the rest of the
section is padded with zeros, which are represented by the black
area in the image. The other sections within the file have distinct
texture patterns. The byte-to-pixel mapping of the byteplot method
means that similar binary code, such as that found in malware
variants maps to similar texture regions.

TEFC

Figure 2: Byteplot representation of the Trojan downloader
malware Dontovo.A [18]

The second binary-to-image conversion method considered was
space-filling curves (SFCs). In mathematical analysis, SFCs are
curves whose range contains the entire 2-dimensional unit square
or more generally an n-dimensional unit hypercube, but for the pur-
poses of this research only the 2-dimensional space was considered,
since the outputs are 2-dimensional images. An SFC traces a contin-
uous curve through every unit square, i.e., pixel, in the image, such
that closely located points in the binary file space will also be closely
located when mapped through the SFC. SFC techniques therefore
have a practical application in image-based malware classification
in that locality is preserved, i.e., similar regions in the binary code
can be grouped together by clusters or regions of distinct colours
or textures. The locality preservation property of SFCs means that
similar malware binaries will share similar images, which can then
be used to classify them according to their respective families. Fig.
3 shows three different variants from the Locky ransomware family,
mapped to images through the Z-order SFC. It is evident that there
is a high degree of similarity between the image texture patterns,
indicating very similar binary source code.

3.2 Image-based Malware classification

The method of using image processing techniques for malware
classification was first introduced by [18] where they converted
malware samples to gray-scale images. The study achieved an accu-
racy of 98% on samples from the Anubis analysis system using the
k-nearest neighbors algorithm. Ahmadi et al. [1] achieved an accu-
racy of 99.8% on the Microsoft Malware Classification Challenge
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Figure 3: Variants of Locky ransomware in SFC format.

[24] data set using the XGBoost algorithm. Considerable domain
knowledge is necessary and a complex feature extraction and fusion
method needs to be engineered for this approach.

Further studies such as [23] and [15] converted the byteplot
grayscale images further into RGB images. This was done by du-
plicating the grayscale channel to form three channels as RGB
images consist of three channels. O’Shaughnessy [20] used various
space filling curve approaches to classify malware according to
their family classes. The Hilbert, Z-order and Gray-code variations
of space filling curves were evaluated in the study. Using a dataset
comprising 9,235 Windows 32-bit executable samples from 28 dis-
tinct families, the three conversion methods were evaluated using
Local Binary Patterns (LBP), Gabor filters and Histogram of Gradi-
ents (HOG) for feature extraction and K-Nearest Neighbour (KNN),
Random Forest (RF), and Decision Trees (DT) for supervised classi-
fication. The Hog and KNN method produced the best performance
with the Z-order dataset, obtaining precision, recall and accuracy
scores of 82%, 80% and 83% respectively. It should be noted that the
Z-order SFC method was used to produce the image dataset used
in this paper, due to its superior results over other SFC methods.

Deep learning can be used to extract image features and form a
good representation of the malware sample with very little domain
knowledge. Rezende et al. [23] took advantage of a pre-trained
ResNet-50 which was trained on the ImageNet data set. Transfer
learning was used and the last softmax layer was adapted for clas-
sification on the MalIMG dataset. The byteplot grayscale images
were converted to RGB and scaled to 224x224. An accuracy of
98.62% was achieved. Gibert et al.[9] used a Convolutional Neural
Network (CNN) on the MalIMG and Microsoft Malware Classifica-
tion Challenge data sets to achieve accuracy’s of 98.4% and 97.5%
respectively. Lu et al. [15] used a Deep Convolutional Generative
Adversarial Network (DCGAN) to generate synthetic malware sam-
ples for malware families with small data sets in order to improve
the accuracy of their 18 layer deep residual network (ResNet-18).
Vasan et al. [28] approach is an Image-based malware classification
model using fine-tuned convolutional neural network architecture.
The research compares the accuracy of its IMCFN algorithm against
a pre-trained VGG-16 model, Googles Inception-v3 model and a
ResNet-50 model. IMCFN achieves an accuracy of 98.82%.

3.3 Adversarial Attacks on DL Models

The concept of adversarial examples was first introduced by Szegedy
et al. [26] where it was proved that the addition of an imperceptible
non-random perturbation to an image could change a models pre-
diction. The adversarial examples were produced using the L-BFGS
method which is the Limited Memory Broyden Fletcher Goldfarb
Shanno algorithm. The Fast Gradient Sign Method (FGSM) was
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first introduced by [11] as a practical means to generate adversar-
ial examples. In contrast to the L-BFGS linear search method the
FGSM method updates one step along the sign of the gradient for
each pixel. The study showed that training deep networks with
adversarial examples improved the robustness of the model by de-
creasing the error rate from 89.4% to 17.9%. Goodfellow et al. [13]
introduced the Basic Iterative Method (BIM) and the Iterative Least-
Likely Class (ILLC) method to generate their adversarial examples
as well as using the FGSM method. The study was conducted in
the physical world with printed adversarial images fed to an Incep-
tion v3 image classification neural network through pictures taken
on a mobile phone. It was found that the FGSM is more robust to
photo transformation than the iterative methods. Projected Gradi-
ent Decent (PGD) is introduced by [16] as a first order adversary.
That is the strongest attack using the first order information of the
network. Deng et al. [8] recently proposed the Universal Projected
Gradient Descent (UPGD) attack method which produces image
agnostic universal perturbations. This method has shown good
generalization across models such as VGG-16 and ResNet-50.

3.4 Generative Adversarial Networks as Defence

GANs have been added to the training of deep learning algorithms
in order to achieve a more robust model. Goodfellow et al. [11]
demonstrated that adversarial training can provide an additional
regularisation benefit to deep neural networks which also provides
for a more robust model.

Adversarial examples generalise well across models in that an
adversarial example created on one model will be difficult to predict
on another. This is the case even with different hyper-parameters
between the models and a disjoint of the data set. These charac-
teristics allow researchers to conclude that models trained with
adversarial examples should be protected against examples gener-
ated by an attacker. Samangouei et al. [25] introduced Defense-GAN
which is a framework for protecting classifiers against adversarial
attacks using generative models. This has been proven to be effec-
tive against both black-box and white-box attacks on the MNIST
[14] and F-MNIST [31] data sets.

While malware classification studies have used GANSs to enlarge
the data set of malware samples, none have studied the approach
in relation to adding robustness to the model. The work in this
paper will specifically investigate the potential for increasing the
robustness of a model when trained on GAN-generated samples.

4 METHODOLOGY

In this section we discuss the methodology used to complete the
objectives of the research. The research approach used in this study
was quantitative and empirical. Two datasets were created for the
application of this study and transfer learning was used to train
deep learning algorithms for malware classification. Adversarial
examples were generated using a DCGAN and PGD attacks were
carried out on the models.
The research steps are as follows:

(1) Anextensive literature review was conducted to better under-
stand the research topic and formulate research questions.

(2) Two malware datasets were compiled from the VirusTotal
(VT) academic collection 19-11-2020 edition, using samples
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in Portable Executable (PE) file format [29]. No such datasets
existed as all previous works were based on an individual
conversion method and thus have no correlation. One dataset
was converted using the byteplot method and the other using
the space filling curve method, as discussed in Sec. 4.2

(3) Two ResNet-50 models were trained on each method and fine-
tuned to obtain the best accuracy. The models were trained
on a combination of Google Colabs and Kaggle due to the
GPU usage limitations. On the completion of the DCGAN
phase, a further model were trained on the z-order dataset,
which included the adversarial examples.

(4) The DCGAN phase involved the creation of adversarial ex-
amples by training a DCGAN on the z-order dataset. The
examples produced were saved and later added to the dataset
for the training of the final ResNet-50 model.

(5) The final phase of the research was to conduct the PGD
attacks on the three models produced from the previous
phases. Analysis was then conducted on the results to answer
the research questions.

4.1 Data Preparation and Preprocessing

The VT data set consists of 14,068 malware samples comprising 305
distinct family classes of malware with one of the classes represent-
ing unidentified samples, referred to as Singletons.

The Singletons were removed from the data set and only classes
with samples of fifty or more were considered for this research. This
left a total of 11,554 samples across forty different malware families.
They were: virlock (1494), sfone (1369), salgorea (991), vobfus (811),
razy (802), hematite (601), berbew (574), sytro (524), zusy (385),
allaple (351), stihat (320), ceeinject (256), sillywnse (220), xcnfe
(181), tiggre (176), cuegoe (167), mira (151), wofith (146), wabot
(140), wabot 140, picsys (127), drolnux (124), fsysna (110), dinwod
(109), wapomi (103), sillyp2p (100), dorkbot (99), oberal (98), sivis
(84), blackmoon (81), gify (80), zbot (78), smallagent (75), pykspa (69),
mepaow (66), packedent (64), gamania (61), wacatac (56), auitinj
(55), aohk (50).

The VirusTotal malware data is contained within one folder
which is composed of the malware samples named by their sha256
hash and a .json file with their VirusTotal scan results. We separate
these files into individual directories. To find the families of the
malware we use AVClass [12] which is available on GitHub. The
library helps to read from the .json files and extract the family name
of the malware samples, which are written to a CSV file and then
sorted using the sortMalware.py script. The script iterates through
the CSV file moving the malware samples into their family named
directories or creating the new directory if necessary.

4.2 Image Conversion Design

To convert the malware binaries to Z-order images, the GitHub
Scurve [7] library was used with its implementation of Binvis. The
library was chosen as it was used in the study on space filling
curves by [20]. As it is an outdated library some import changes
need to be made in order for it to compile. A bash script is used in
order to facilitate an automated method of calling the library on
the different malware sample directories. The script handles the
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sample source and the save location for all files and folders in a
given directory.

The byteplot conversion was handled by a python script for-
mulated by the merging of two libraries from GitHub. Both the
BinaryTolmage [33] and Binary-Image Converter [17] were com-
bined in order to facilitate the image width depending on the file
size and running of the library as a script. Similar to the Z-order
conversion, a bash script was used to handle the sample source
and the save location for all files and folders in a given directory.
Figure 4 shows the byteplot and Z-order conversion of the malware
sample with the sha256 hash ending in ab1f72a4fb660afc10c2770f.
The sample has been identified as the Allaple malware family.

Figure 4: (a) Space Filling Curve z-order (b) Byteplot

4.3 ResNet-50 Architecture Strategy

The model chosen for the classification of the malware samples
was the pre-trained ResNet-50. It has been proven to be effective
for transfer learning by [23] who achieved an accuracy of 98.62% in
malware classification. The model’s last layer is a fully-connected
(fc) layer of 1,000 nodes with softmax activation. In order to match
the datasets created, this layer is changed to contain 40 nodes, one
for each malware family. All previous layers to the last layer are
frozen during training.

4.4 DCGAN Architecture Strategy

The study by [15] used a DCGAN to generate synthetic data in
order to improve the accuracy of their ResNet-18 model by 6%. The
study used an image size of 32x32.

As this study is using an image size of 64X64 pixels, an extra
layer needs to be added to the convolutional network of both the
generator and the discriminator. The convolutional networks will
be five layers deep with the discriminator using the LeakyReLU
activation function while the generator uses the ReLU function.

4.5 Projected Gradient Descent Attack

To carry out the PGD attack, the Advertorch [4] library was used.
Advertorch is a Python toolbox for adversarial robustness training,
containing modules for generating adversarial perturbations and
defending against adversarial examples. For the purposes of this
experiment the advertorch.attacks.PGDAttack function was ap-
plied. The function is an iterative PGD attack which takes in the
trained model, maximum distortion value, number of iterations
and the learning rate. The output was then fed images through the
perturb method and produced adversarial images which could then
be classified by the model to test its classification performance. The
settings used were: 0.1 maximum distortion, 5 iterations, step size
0.0001.
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4.6 Experimental Design and Limitations

The data processing of the malware samples is carried out on a
VirtualBox [19] virtual machine running the Ubuntu 20.04 LTS
ISO image [27]. As previously discussed in Section 4.2 Bash and
Python scripts are also used within the virtual machine for the
image conversion process. The training/testing of the deep learn-
ing models is carried out on both Google Colab and Kaggle using
Python, PyTorch, Matplotlib and Numpy.

The main limitations of this research are due to the computa-
tional cost and processing power required for training deep learning
models. Without the ability to use a locally available GPU, the exper-
iments had to be carried out on the cloud-based resources, Google
Colabs and Kaggle. While both provide free access to the machine
learning field they can also be quite limiting. Google Colabs allows
sessions of up to twelve hours only and also use captcha popups
during the session. Kaggle proves to be the more reliable tool but
its session times are limited to nine hours. A GPU can be used for
up to a total of thirty six hours per week.

5 EXPERIMENTAL ANALYSIS

The research questions proposed in this study were answered
through three distinct experiments. Experiments one and two tested
the robustness of trained models to adversarial examples on the
byteplot and space-filling curve image conversion techniques. Ex-
periment three tested the robustness of the space-filling curve
model trained on adversarial examples.

5.1 Model Performance Against PGD Attack

This section details the robustness testing of the Byteplot and Z-
order models against an adversarial PGD attack. For each dataset,
the data was separated into an 80/20 split with the training data
being 9,243 samples and the validation data being 2,311 samples.
The random seed was set to zero for repeatable results. Bayesian
Optimisation was used to find the optimal batch size and learning
rate. For the Z-order dataset, the batch size was set to 97 and the
learning rate to a value of 0.00545; for the Byteplot dataset, the
batch size was set to 58 and the learning rate to a value of 0.000731.

In each case, the pre-trained ResNet-50 was then trained for a to-
tal of 25 epochs. Once the pre-trained ResNet-50 models completed
training of the final fully connected layer, the PGD attack was ex-
ecuted on the saved Byteplot and Z-order models. The validation
training set was used for the creation and testing of the perturbed
images.

5.2 Robustness of GAN-trained Model

Due to the resource constraints on Google Colab and Kaggle, it
was not feasible within the time-frame to train a DCGAN suffi-
ciently to learn the distribution of the byteplot dataset, thus it is
not considered for robustness testing.

To create the adversarial examples, a DCGAN was trained for
1,000 epochs on the training data of the Z-order dataset. After 100
epochs, a batch of generated samples was saved every 500 iterations.
The batch contained one sample per class and generated over 250
samples per class on completion. The last 250 samples were taken
for each class giving a total of 10,000 new samples. The adversarial
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examples were added to the training dataset by concatenation and
the same process was followed as in 5.1.

6 RESULTS

This section presents the results of the experiments outlined in Sec-
tion 5. A comparative analysis of the Byteplot and Z-order models
results from malware classification with and without the adversar-
ial PGD attack is presented. Next, the performance of the Z-order
dataset trained with adversarial examples is discussed.

6.1 Evaluation Metrics

To compare the models in this study, the metrics Accuracy, Preci-
sion, Recall and F1-score were employed. As the class distribution
was uneven, a weighted average was used for Precision, Recall and
F1-score. Accuracy was used to determine the robustness of the
model. A Confusion Matrix was also used to determine the perfor-
mance of the models on a per-class basis. In order to compute these
metrics, we used the following values obtained from the validation
process: True positive (TP), which represents items of the target
class are classified as the target class. True negative (TN), which
represents items not of the target class are not classified as the
target class. False-positive (FP), which represents items not of the
target class are classified as the target class. False-negative (FN),
which represents items of the target class are not classified as the
target class. Accuracy measures how well a model can correctly
classify the input data into the correct class labels and is defined as
the ratio of the number of correctly classified examples to the total
number of examples in the dataset [20].
TP+TN

TP+FP+TN+FN

Precision is the ratio of correctly predicted positives of all the
predicted positives. All predicted positives includes the true posi-
tives and false positives [20]. For malware classification precision
means, for all the malware labelled as a particular family, how many
were correct?

Accuracy =

TP
TP + FP

Recall is the ratio of correctly predicted positives of a class with
respect to all the samples of the class [20]. In this case, it is the
ratio of the correctly predicted malware to the total number for
that family, i.e., for each malware family, how many that should
have been labelled as that family, were labelled correctly?

TP
TP+FN

F1-score is the harmonic mean between precision and recall and
is used to check the balance in an uneven class distribution [15].

Precision =

Recall =

Precision X Recall
Fl—score=2X —M
Precision + Recall

6.2 Comparative Analysis of Byteplot and
Z-order Model Classification

As described in 5.1, the Byteplot and Z-order model’s performances
were first evaluated on unperturbed data and then against an adver-
sarial PGD attack. Both model’s classification performance metrics
are shown in Table 1. From the table, both models performed com-
paratively well on unperturbed data, with the Byteplot achieving
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~2% improvement over the Z-order model, with Precision, Recall,
Accuracy and F1-score of 95.8%, 95.9%, 95.% and 95.7% respectively.

Model Prec. Recall Acc. F1 PGD Acc.
Z-order 93.1 93.8 93.1 93.0 4.54
Byteplot 95.8 95.9 95.8 95.7 4.59

Table 1: Performance of Z-order vs. Byteplot models (%)

Figure 5 shows the confusion matrix for the Z-order model on
unperturbed data. It is evident from the matrix that there are mis-
classification errors with the mepaow, wofith, sfone and stihat
families. It was observed in the mepaow and stihat families that the
samples were obfuscated and had large amounts of null padding,
which could have influenced the predictive capabilities of the model.
In the case of wofith and sfone, several samples from each family
were uploaded to VirusTotal and it was observed that wofith is used
as an alias for sfone, hence the confusion between the two families.
A sample of the VirusTotal detection outputs can be found at [30].

label (ground truth)

2usy

g
orediction

Figure 5: Vanilla Z-order Confusion Matrix

Figure 6 shows the confusion matrix for the Byteplot model.
From the matrix, it is evident that there are fewer errors than that
of the Z-order model. The only significant error is the wofith family
being predicted as sfone, as explained previously.

The Z-order and Byteplot models were then subjected to an
adversarial PGD attack. The accuracy results of the post-PGD attack
for both models is shown in the last column of Table 1. It can be seen
that the adversarial attacks drastically affected the performance of
both models, reducing accuracy to ~4.5% in each case.

6.3 Robustness of GAN-trained Z-order Model

To test the robustness of the Z-order model trained with adversarial
samples, the ResNet-50 model was trained on a dataset containing
the Z-order unperturbed samples combined with the generated
GAN samples. The same adversarial PGD attack as described pre-
viously was then performed on the resulting model. The model,
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Figure 6: Vanilla Byteplot Confusion Matrix

of
of

which we will refer to as GAN Z-order, achieved an accuracy
70.45%, a precision of 74.79%, recall of 70.45% and an F1 score
69.74%, as seen in Table 2.

Recall Acc. Fl-score ~ PGD Acc.
70.45 70.45 69.74 8.61
Table 2: GAN Z-order results in percentages

Prec.
74.79

The confusion matrix for the GAN Z-order model’s performance
is shown in Figure 7. The addition of the adversarial samples had
a significant negative effect on the model’s predictive capabilities,
which is evidenced from the resulting matrix. It can be seen that
there are multiple prediction errors, which negatively affected the
overall accuracy of the model, reducing it to 70.45%. The primary
cause of the marked decline in overall classification accuracy can
be attributed to the un-optimised method employed for generating
adversarial examples using DCGAN. A reasonable assumption is
that the out-of-the-box approach used to create adversarial exam-
ples was not optimal for certain families of malware, and resulted
in lower-quality images that failed to retain the distinctive features
of those families, leading to misclassifications. For instance, the
Stihat and Tiggre families were misclassified as the Lamer and Razy
families, respectively (13 Stihat predictions were misclassified as
Lamer in the original data also). Further analysis of these families
revealed that the adversarial examples created for the Stihat/Lamer
and Tiggre/Razy families were significantly more similar to the
other than the original images generated for these families. We
also looked at a comparison between the Sivis and Dinwod families
as there was zero mislassification from models trained without
and with adversarial examples, and we can see that there is no
significant difference between the similarity of the original data
and the adversarial examples. We used Structural Similarity Index
Measure (SSIM) to measure similarity [5], which is a score between
-1 and 1 and can be interpreted as the higher the score the higher
the similarity. The detailed findings of the SSIM comparisons using
both RGB and YCbCr colour spaces are presented in Table 3.
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Figure 7: GAN Z-order Confusion Matrix

l Average l Max l Min l Std
Stihat and Lamer SSIM Comparison (36 misclassifications)
Org RGB 0.208553 | 0.764172 | -0.454563 | 0.185787
Org YCbCr | 0.345199 | 0.806296 | -0.26673 0.204001
Adv RGB 0.293365 | 0.812677 | -0.32338 | 0.204001
Adv YCbCr | 0.551854 | 0.888554 | -0.03792 0.149135

Tiggre and Razy C

omparison (27 misclassifications)

Org RGB 0.160677 | 0.947724 | -0.07818 | 0.044445
Org YCbCr | 0.298973 | 0.955656 | 0.123103 | 0.039511
Adv RGB 0.765138 | 1 0.193337 | 0.108254
Adv YCbCr | 0.870646 | 1 0.47245 0.065808

Sivis and Dinwod Comparison (0 misclassifications)

Org RGB 0.090456 | 0.543959 | -0.20318 | 0.137572
Org YCbCr | 0.24172 | 0.603095 | -0.07483 | 0.117178
Adv RGB 0.066774 | 0.43929 | -0.35923 | 0.109251
Adv YCbCr | 0.390751 | 0.694679 | -0.05338 | 0.083962

Table 3: SSIM Comparison of Images from Malware Families

Carrying out the PGD attack against the GAN Z-order model
further reduced the accuracy of the model from 70.45% to 8.61%.
Although the notion of enhancing the resilience of image-based
classification models with adversarial Al displays immense promise,
achieving this goal necessitates thorough investigation in the future.

7 ANALYSIS

This paper defined several research questions; the first was to de-
termine which method of image conversion produces the most
accurate model. From the results, it is evident the byteplot con-
version technique produced a more accurate model with 95.76%
versus 93.12% accuracy of the Z-order conversion. In comparison,
the K-Nearest Neighbour Z-order model in [20] achieved an accu-
racy of 83%. However, the Z-order conversion method proved to be
more efficient in terms of size and computational cost; the byteplot
data set created was 13.6GB in size while the Z-order data set was
0.274GB in size for the same amount of samples.

The second question was to determine how robust are image-
based malware classification models trained without GANs. For
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both the byteplot and Z-order models, there is an evident lack of
robustness against the attacks. Both models were reduced from
93-95% accuracy to ~4.5% accuracy showing a near-total collapse in
the performance of the model.

The third question was to determine the robustness of image-
based malware classification models trained with GANs. While the
trained GAN Z-order model achieved a reduced accuracy of 70.45%
on unperturbed data, it achieved greater accuracy than the vanilla
models on the perturbed images. The accuracy of 8.61% is almost
double that of the 4.59% and 4.54% achieved by the byteplot and
Z-order vanilla models respectively. Despite the low overall accu-
racy achieved, the results indicate that the addition of adversarial
examples improves the robustness of the model. Better adversarial
examples may improve the accuracy and robustness further.

8 CONCLUSION

This research compared two methods, byteplot and space-filling
curve conversion, for classifying malware images and evaluated
their robustness when trained with and without GANs. Two datasets
were created using both methods and models were trained using a
pre-trained ResNet-50. The vanilla byteplot model achieved 95.76%
accuracy and the vanilla Z-order achieved 93.12% accuracy, but
both were susceptible to the PGD attack with an accuracy loss of
91.21 and 88.56 percentage points respectively. Training with ad-
versarial images generated by a DCGAN improved the robustness
and reduced the accuracy loss to 61.84 percentage points. The study
suggests that including adversarial images in training can improve
the robustness of malware classification models.

To build upon the results of this study, it would be valuable to in-
vestigate the robustness of a model trained with adversarial images
generated from our byteplot dataset. Additional research could ex-
plore the use of different GAN architectures and their parameters to
improve the adversarial examples and thus the accuracy of models
trained on both z-order and byteplot. Additionally, the computa-
tional and space savings afforded by the space filling curve method
used in this study suggests the need for further investigation into
ways to enhance this process.
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