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ABSTRACT 

Blockchain offers a potential solution to some of the security challenges faced by the 

internet-of-things (IoT) by using its practically immutable ledger to store data 

transactions. However, past applications of blockchain in IoT encountered limitations in 

the rate at which transactions were committed to the chain as new blocks. These 

limitations were often the result of the time-consuming and computationally expensive 

consensus mechanisms found in public blockchains.  

 Hyperledger Sawtooth is an open-source private blockchain platform that offers 

an efficient proof-of-elapsed-time (PoET) consensus mechanism. Sawtooth has 

performed well in benchmarks against other blockchains. However, a performance 

evaluation for a practical application of Sawtooth for IoT data security using real data 

was found to be lacking in the literature.  

 To address this gap, an experiment was designed to evaluate the performance of 

an edge computing implementation of Sawtooth to store temperature data from a 

physical IoT device. Experiments were then performed for a range of input transaction 

rates to evaluate performance under different workloads. 

 The results of the experiments indicate that Sawtooth can store transactions at a 

rate of at least 10 transactions per second in the edge computing implementation that 

was evaluated. The implementation was highly reliable in terms of transactions 

submitted versus transactions committed. The experiment also demonstrates that 

blockchain applications for IoT data security can be extended to any environment that 

has access to relatively low specification hardware and Wi-Fi internet connectivity. 

 Some limitations were encountered during the experiments, particularly in 

relation to the amount of variance in the rate at which transactions were committed to 

the blockchain. This could have implications for some use cases at the business solution 

layer that depend on stable and consistent performance. 

 

Key words: Blockchain, Internet-of-Things, IoT, Edge computing, Hyperledger 

Sawtooth, Data security 
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1. INTRODUCTION 

This chapter will briefly introduce some of the important concepts and features of 

blockchain, the internet-of-things, and edge computing. It will then introduce the 

research problem, research objectives, research methodologies, and scope and 

limitations, before finally giving an outline of the remaining chapters. 

1.1 Background  

The Internet-of-Things (IoT) is the name given to the ubiquitous collection of internet 

connected devices and sensors that enable smart environments by producing, sharing, 

and consuming data in real-time or close to real-time. This includes many household and 

personal devices, everything from smart TVs to wearables and fitness trackers that are 

deeply embedded and integrated into our day-to-day lives.  

 These devices keep us informed, help us monitor our health and well-being, keep 

us entertained, and generally add to the convenience and comfort of modern life. On a 

larger scale, IoT devices monitor and control critical infrastructure like transport systems 

and electricity grids. Unfortunately, the vast and heterogeneous IoT devices have known 

issues relating to the security and privacy of data (Alfandi et al., 2021), and there are 

already too many examples of bad actors exploiting vulnerabilities (Alladi et al., 2020). 

 One of the proposed solutions to enhance IoT security is blockchain (Alfandi et 

al., 2021). Blockchain is a decentralised and distributed ledger that uses a consensus 

mechanism to add new blocks containing transactions. The consensus mechanism is 

designed such that it is very difficult for a would-be attacker to gain control and alter 

transactions (Nakamoto, 2008). Transactions may be financial transactions in the 

traditional sense of a ledger, but equally a transaction can be used to store other types of 

data and information.  

 Previous applications of blockchain for IoT have shown some successes but have 

also encountered limitations due the time taken for the consensus mechanism to add new 

blocks (Huh et al., 2017). Consensus mechanisms vary depending on the type of 

blockchain platform, and this is one of the differentiators of the various blockchain 

platforms that have emerged and evolved. Evaluating the different performance of 

consensus mechanisms for different applications is an active area of research. 
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 Blockchains are often categorised as being public or private. Public blockchains, 

also called permissionless, have open memberships and security is maintained by robust 

consensus mechanisms. Private blockchains, also called permissionless, have restricted 

membership that allows more efficient consensus mechanisms as there is already a level 

of implicit trust in the network. 

  An example of a private blockchain is Hyperledger Sawtooth which was 

originally developed by IBM and is now supported by the Hyperledger Foundation1. 

Sawtooth features a proof-of-elapsed-time (PoET) consensus mechanism that has 

performed well when benchmarked against other blockchain platforms (Rasolroveicy & 

Fokaefs, 2020).  

 Edge computing has also been proposed alongside blockchain as a solution to 

IoT security (Hassija et al., 2019). Edge computing complements blockchain and IoT by 

providing the distributed computational and storage resources to enable their 

decentralisation. 

1.2 Research problem 

Blockchain has been proposed by several authors as a solution to some of the challenges 

faced within the domain of IoT security, by providing a secure and immutable distributed 

log of transactions (Alfandi et al., 2021; Hassija et al. 2019). This is supported by 

successful demonstrations of blockchain for IoT applications (Dorri et al., 2017).  

 However, previous studies on blockchain for IoT found limitations on the 

transaction throughput performance of proposed solutions, often due to the amount of 

time taken for the consensus mechanism to add new blocks to the chain (Huh et al., 

2017). Transaction throughput limitations become an issue when the level of 

performance is not sufficient to support the real-time or close to real-time decision-

making requirements of some IoT applications (Alfandi et al., 2021).  

 Hyperledger Sawtooth offers a potential solution to the transaction throughput 

limitation, based on its performance in benchmarking studies (Rasolroveicy & Fokaefs, 

2020). However, a gap exists in the availability of data on the performance of practical 

applications of Sawtooth for IoT data security. Many studies on Sawtooth performance 

relied on test cases for benchmarking purposes (Ampel et al., 2019; Shi et al., 2019), 

 
1 https://www.hyperledger.org/about 
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while the practical applications focused on operational or other aspects (Baralla et al., 

2019; Kromes et al., 2019; Malik et al., 2019). This is the primary research problem, to 

determine if a practical application of Hyperledger Sawtooth blockchain for IoT data 

security, can achieve a minimum level of transaction throughput performance. 

 A secondary research problem is the network design and solution architecture 

for blockchain applications in IoT security. Network design and architecture didn't get 

much attention in studies that focused on performance, again due in part to the reliance 

on test cases for benchmarking (Ampel et al., 2019; Shi et al., 2019). This is something 

that needs to be addressed, as it has been suggested that an effective architecture for 

blockchain applications in IoT is not yet available (Pavithran et al., 2020).  

 Some researchers have proposed the integration of blockchain, IoT, and edge 

computing, as complementary elements of an overall system to increase data security 

and deliver other benefits (Yang et al., 2019; Gadekallu et al., 2021). However, like the 

primary research problem, there is a gap in the research for demonstrations of practical 

applications that integrate Hyperledger Sawtooth blockchain with edge computing to 

increase IoT data security.  

 Bringing together the primary research problem and the secondary research 

problems leads to the overall research problem as defined below. 

 

Research Question: Can an edge computing implementation of Hyperledger Sawtooth 

blockchain process and securely store data transactions from an IoT device, at a 

predefined minimum rate of transaction throughput? 

1.3 Research Objectives  

The overall objective of this dissertation is to answer the research question that has been 

formulated and defined. To do this, an edge computing architecture will be designed that 

integrates a Hyperledger Sawtooth blockchain and an IoT device. The edge computing 

architecture will consist of a physical edge server that will receive transactions of real 

data from a physical IoT device.  

 Experiments will then be carried out to collect data for analysis of performance 

under different workloads. Data will be analysed at the most granular level possible to 

understand the mean and variance, as these are key metrics to understanding the 

performance implications for real-world applications. Data from experiments will also 
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be used to test a hypothesis derived from the research question to understand if the 

minimum level of performance is likely to be achieved.  

 

The general and specific objectives can be summarised as: 

• Review existing literature to identify the open challenges and understand the 

state-of-the-art in relation to the research question. 

• Design the network. Experiments will require an edge computing network 

consisting of a physical edge server hosting multiple virtual machines to receive 

data from the physical IoT device. 

• Develop custom code required to get sensor data, add the data to a transaction, 

then stream data from the IoT device to the Hyperledger Sawtooth blockchain 

via REST API. Develop a transaction processor for IoT data to save sensor data 

in the blockchain state. 

• Install and configure Hyperledger Sawtooth blockchain. Use the built-in test 

functionality available in Sawtooth to confirm the network is operating as 

expected. 

• Stream data from the IoT device to the Hyperledger Sawtooth blockchain, 

monitor performance in real-time, and gather data for analysis. Data will be 

streamed at multiple rates of input transaction to evaluate performance at 

different workloads. 

• Assess and validate the quality of data. Analyse the results to gain insights on 

the mean and variance for each rate of input.  

• Repeat experiments where initial findings lead to new insights requiring further 

investigation. 

• Apply any post-processing and transformations to the data in preparation for the 

hypothesis test. 

• Test the hypothesis, discuss the results and other findings, then draw conclusions 

on the findings and outcomes.  

• Provide directions and recommendations for future work. 

1.4 Research Hypothesis 

To deliver on the research objectives and answer the research question, the null and 

alternate hypotheses are defined below. The minimum rate of transaction for the 
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hypotheses has been defined as at least 10 transactions per second. The minimum rate 

of 10 transactions per second was selected on the basis that the implementation could 

support up to 10 devices sending an update every second. 

 

H0: If a Hyperledger Sawtooth blockchain distributed ledger is implemented on an edge 

computing server, then it will not process and securely store internet-of-things (IoT) data 

transactions, in the form of temperature readings from a sensor connected to a Raspberry 

Pi computer and transmitted via REST API, at a rate of at least 10 transactions per 

second.  

 

H1: If a Hyperledger Sawtooth blockchain distributed ledger is implemented on an edge 

computing server, then it will process and securely store internet-of-things (IoT) data 

transactions, in the form of temperature readings from a sensor connected to a Raspberry 

Pi computer and transmitted via REST API, at a rate of at least 10 transactions per 

second. 

1.5 Research Methodologies  

A deductive research methodology has been applied to formulate the null and alternate 

hypothesis at the outset, based on gaps identified in the existing literature. Quantitative 

methods will be applied to test the hypothesis using primary data for transaction 

throughput, that will be generated by conducting a series of experiments. The hypothesis 

test will provide an empirical result indicating if performance of the blockchain 

implementation is or is not within the defined minimum rate of transaction throughput 

required to reject the null hypothesis. 

1.6 Scope, Assumptions, and Limitations  

The scope of this study is the application of blockchain, implemented on an edge 

computing network, to provide security for IoT device data. It is assumed that IoT data 

is secure when it has been committed as a transaction on the practically immutable 

blockchain. A limitation of the research is that not every possible IoT device can feasibly 

be modelled as they are vast in quantity and heterogeneous in nature. This will be 

delimited by using a Raspberry Pi computer connected to a temperature sensor to 

represent the IoT device. 
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1.7 Document Outline  

Chapter 2 will review the existing literature, starting with the challenges and threats 

facing IoT security. From there, it will explore some of the current research around 

blockchain and how it offers a potential solution for securing IoT data, with a specific 

focus on the performance and challenges of the different types of blockchain platforms. 

Finally, this chapter will investigate edge computing as a proposed solution architecture 

for blockchain applications in IoT. 

 Chapter 3 will provide an overview of the experiment design and methodology. 

It will start with the design of the network, then go on to outline the process to install 

and configure Hyperledger Sawtooth and other software and hardware components. It 

will also cover the design of the IoT client and the process to create and submit data 

transactions. The methodology for conducting the experiments and collecting and 

processing data will also be described. 

 Chapter 4 will present the results of the experiments and the outcomes and 

findings will be evaluated. The hypothesis will be tested to answer the research question. 

Finally, the results of the hypothesis test, as well as any other findings or insights, will 

be discussed thoroughly. 

 Chapter 5 will summarise and conclude the results and findings in the context of 

the research question and hypothesis test. It will address any limitations found in the 

results and offer direction and recommendations for future research. 
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2. LITERATURE REVIEW 

This chapter will review the existing relevant research and explore the current state-of-

the-art in relation to the research question. It will begin with the internet-of-things (IoT), 

to gain an initial understanding of the security challenges and the solutions that have 

been proposed. It will then outline some of the research on blockchain applications for 

IoT security and examine studies on performance aspects of different blockchain 

platforms. Finally, it will explore the research on how blockchain and edge computing 

can provide an integrated solution to the challenges of IoT data security. 

2.1 Internet-of-things 

The internet-of-things (IoT) is the name given to the ubiquitous collection of internet 

connected devices and sensors that enable smart environments by producing, sharing, 

and consuming data in real-time or close to real-time. Data exchanged by IoT devices is 

often sensitive or highly sensitive in nature, everything from the health information of 

individuals generated by fitness trackers to the real-time state of power grids and other 

critical infrastructure. Keeping such data secure and private is imperative and the 

consequences of a breach of data security could be devastating for individuals, 

businesses, and society in general.  

 IoT systems have different architectural layers, with the lowest layer, often 

referred to as the perception or sensing layer, containing the physical devices such as 

sensors and actuators (Hassija et al., 2019). The highest layer is the application layer that 

contains the business logic and use cases that encompass various smart environments.  

 Between the perception layer and the application layer is the network layer that 

carries data from the devices to a middleware layer containing databases and other data 

services to support the application layer. The middleware layer is particularly important 

when considering data security as it is the location for the repositories and services that 

exchange data (see Figure 1).  

 Threats to security are present throughout all layers of IoT systems with multiple 

attack modes described in the literature (Alfandi et al., 2021). Smartmeters, Fitbits, and 

Nest thermostats are just some of the everyday consumer IoT devices that have had 

vulnerabilities successfully exploited (Alladi et al., 2020). The challenge of securing IoT 
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devices is compounded by the heterogeneity of devices that are low-powered and have 

limited computational resources (Alfandi et al., 2021).  

 Given the scale of the challenge, providing security for IoT systems will require 

an integrated and multi-layered approach that operates over the multiple layers of 

heterogeneous devices. Replacing the middleware layer with a blockchain layer and 

edge computing are among the solutions that have been proposed as a solution to IoT 

security (Alfandi et al., 2021; Hassija et al., 2019).  

 Other solutions based on deep learning, big data technology, and intrusion 

detection systems (IDS) have also been proposed to enhance security in IoT (Elrawy et 

al., 2018; Amanullah et al., 2020). 

 

Figure 1: Architectural layers in an IoT system (Hassija et al., 2019) 

2.1.1 Raspberry Pi 

While discussing IoT devices, it is worth mentioning the humble Raspberry Pi as a 

device that is frequently used as a component for prototyping, testing, and evaluating 

proposed IoT solutions. First released in 2012, the Raspberry Pi is a fully functioning 
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computer about the size of a credit card with a Linux based operating system that costs 

around €30 (see Figure 2). General purpose input/output (GPIO) pins support connection 

of sensors and other peripheral devices directly to the Raspberry Pi.  

 Having access to a filesystem for storage and the ability to execute higher level 

programming languages like python gives the Raspberry Pi some advantages compared 

to other microcontrollers like the Arduino. Pahl et al. (2016) found that the Raspberry 

Pi is a feasible, cost-effective, and robust solution for sensor integration and local data 

processing in an environment subject to power supply problems.  

 Raspberry Pi computers connected to temperature or humidity sensors have also 

been used to represent IoT devices in the development, test, and evaluation of blockchain 

applications for IoT (Kullig et al., 2020). 

 

 

Figure 2: Raspberry Pi computer 

2.2 Blockchain 

Blockchain is a decentralised and distributed ledger that uses a consensus mechanism to 

verify and add blocks containing transactions. The consensus mechanism makes it 

impractical for bad actors to gain control of the blockchain or alter transactions, while 

privacy is preserved by using encryption with public and private keys (Nakamoto, 2008).  

Every block that is added contains a reference to the previous block, creating a verifiable 

chain that extends back to the first or genesis block. Each block also contains the root 
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hash of a Merkle-Tree data structure consisting of the hashed transactions of all the child 

nodes in the tree (see Figure 3).  

 Some blockchains, such as Ethereum and Hyperledger Fabric, support on-chain 

execution of programmable scripts that contain transaction processing rules and other 

business logic (Wang et al., 2018). These scripts are known as smart contracts and have 

been a key enabler for blockchain applications in domains other than cryptocurrency, 

such as healthcare, supply chains, agriculture, energy, manufacturing, and IoT (Alladi 

et al., 2020; Wang et al., 2018).  

 Many blockchains use a consensus mechanism called proof-of-work (PoW) to 

add new blocks, where blockchain nodes compete to solve a cryptographically complex 

problem, for which they are then rewarded with cryptocurrency coins or other incentives. 

This process of adding new blocks to a blockchain is often referred to as mining. Mining 

blocks in a PoW blockchain is a time consuming and computationally expensive process 

that consumes a large amount of energy, with bitcoin alone using as much electricity as 

some entire countries (Sedlmeir et al., 2020).  

 However, PoW is just one of many consensus mechanisms that are now available 

across multiple blockchain platforms that have been developed for various use cases. 

Evaluating the performance of different blockchain platforms for different applications 

is an on-going and active area of research. Non-PoW consensus mechanisms have been 

proposed to mitigate the sustainability issues relating to blockchain energy consumption 

(Sedlmeir et al., 2020). 

 

 

Figure 3: Outline of basic blockchain architecture (Nakamoto, 2008) 
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 Another feature of blockchains is that they can be public, private, or consortium. 

Public (or permissionless) blockchains are fully decentralised and open to any new 

members, but often use computationally expensive consensus mechanisms like PoW. 

Bitcoin is perhaps the best known of the public blockchains.  

 Blockchains that use PoW consensus mechanisms have been shown not to 

support the required transaction throughput for IoT applications, with one experiment 

clocking up delays for transactions to be processed of up to 2.5 hours (Kullig et al., 

2020). This is not surprising as PoW was designed for fully decentralised public 

blockchains where there is no trust between parties, requiring a robust consensus 

mechanism.  

 Private blockchains such as Hyperledger Fabric require permission to join, which 

makes them more centralised (Hassija et al., 2019), but they offer computationally more 

efficient consensus mechanisms that give better performance (Iftekhar et al., 2021). One 

of these more efficient consensus mechanisms is called Practical Byzantine Fault 

Tolerance (PBFT).   

 PBFT is a vote-based system that can tolerate up to a third of nodes being 

dishonest or faulty when validating a block. PBFT has been described as the most widely 

used blockchain consensus mechanism and is available on a blockchain platform called 

Hyperledger Fabric (Pavithran et al., 2020). 

 Consortium blockchains have multiple parties but membership is restricted with 

no single party in control. An example of a consortium blockchain would be a supply 

chain management system where multiple actors interact to exchange data on a particular 

product (Baralla et al., 2019).  

2.2.1 Blockchain applications for IoT 

Blockchain has several features that make it suitable for application to IoT security and 

privacy. These features include decentralisation, encryption of data, immutability of data 

on the blockchain, and management of identity (Alfandi et al., 2021; Hassija et al. 2019). 

 Other benefits include reduced costs by lowering cloud storage overheads, 

eliminating single points of failure through decentralisation, and building trust in the 

network (Pavithran et al., 2020). Replication of data through the distributed blockchain 

also provides a secure back-up of data and redundancy in the event of failure of 

individual nodes in the network.  
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 Experiments on the application of blockchain for IoT have produced some 

positive results indicating that it does offer a potential solution. Some examples of these 

applications are summarised in Table 1. However, it is also clear from Table 1 that there 

remain some challenges to be overcome before blockchain can be widely adopted as a 

solution for IoT data security.   

Authors Blockchain Description, results, and limitations 

Dorri et al., 2017 Not specified 

Smart home with a miner node to validate transactions and 
interact with the IoT devices, and local and cloud data 
storage Additional resource requirements to implement the 
blockchain were low and manageable and worth the benefits 
of increased security and privacy. However, the authors do 
not specify which blockchain platform was used in the 
study. 

Huh et al., 2017 Ethereum 

IoT devices in a smart home communicate with a blockchain 
containing energy management policies established in smart 
contracts, but the relatively long time taken for transactions 
to be approved would limit the feasibility of applications. 

Kullig et al., 
2020 Ethereum 

Raspberry Pi computers connected to temperature and 
humidity sensors send data over the internet to a simulated 
Ethereum blockchain. The test results of the experiment 
indicate very long smart contract processing times that 
increase linearly with the number of blocks on the chain due 
to Ethereum's PoW consensus mechanism. 

Iftekhar et al., 
2021 

Hyperledger 
Fabric 

Access control system for IoT devices that uses Hyperledger 
Fabric, an open source private blockchain. Access is granted 
to trusted members, verified by a Certification Authority, 
based on rules that are established using Fabric’s smart 
contracts. Specially compiled software installations were 
required to operate the IoT device as a blockchain node 
potentially limiting practical application. 

Baralla et al., 
2019 

Hyperledger 
Sawtooth 

Farm-to-fork food traceability system for the agri-food 
sector. Data from both human and non-human (sensor) 
agents is exchanged over the Sawtooth REST API and 
accessed via web and mobile clients. The relatively high 
level of complexity in the system will require extensive 
testing involving many parties. 

Kromes et al., 
2019 

Hyperledger 
Sawtooth 

Blockchain used to send data to police and other relevant 
parties following a car accident. The analysis indicated that 
a significant amount of the execution time was consumed by 
the data hashing functions. The solution relied on non-
standard software installation and modified hardware, 
potentially limiting scalability. 

Table 1: Examples of blockchain applications for IoT 
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 Among the challenges for blockchains in IoT is to find a blockchain platform 

with a consensus mechanism that can process transactions at a sufficient rate to support 

the real-time or close to real-time dependency on data to make decisions and perform 

actions (Alfandi et al., 2021).   

 Another challenge is to find a suitable architecture. Pavithran et al. (2020) 

conclude that a suitable architecture for blockchain applications in IoT is still not 

available and building blockchain networks that rely on cloud computing is a 

contradiction of the original decentralised objective of blockchain.  

 This establishes two important requirements for blockchain applications in IoT 

security, the first is to achieve a level of performance in terms of transaction throughput 

to support the data requirements at the application layer, the second is that the 

architecture of any proposed solution should be complementary to the distributed nature 

of both blockchain and IoT itself. 

2.2.2 Performance metrics for blockchain 

Determining if a blockchain platform is suitable for a particular IoT application, or 

comparing the performance of different blockchain platforms and consensus 

mechanisms, requires a common set of metrics that can be used to evaluate performance. 

Two widely used performance metrics for blockchain are latency and throughput. 

 Latency is the time taken for a transaction to be usable across a network, and 

throughput is the rate at which transactions are committed to a blockchain in a defined 

time-period (Monrat et al., 2020).  

 Throughput and latency are influenced by the number of input transactions and 

the number of nodes in the network (Monrat et al., 2020; Shi et al., 2019), and 

performance under different rates of input transactions can be non-linear (Ampel et al., 

2019). For this reason, metrics for performance of a proposed blockchain application for 

IoT need to be evaluated over a range of input transactions to understand how 

performance varies under different workloads. 

 Hyperledger Caliper has been widely used in many studies to measure 

performance in terms of throughput and latency (Ampel et al., 2019; Monrat et al., 

2020). However, Caliper is a benchmarking tool that measures performance using 

predefined use cases with generic transactions so is not best suited for monitoring 

performance in practical applications of blockchain for IoT.  
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 InfluxDB, a time series database, has also been used to collect time-series data 

for monitoring and measuring the performance of blockchains (Shi et al., 2019). The 

InfluxDB approach is preferable as it enables the gathering of data for practical 

applications of blockchain and not just predefined use cases. 

2.3 Hyperledger blockchains 

Hyperledger Foundation is non-profit organisation, supported by the Linux Foundation, 

that aims to develop and promote open-source enterprise blockchain technology2. 

Hyperledger Fabric and Hyperledger Sawtooth are two blockchains from the 

Hyperledger family that have been widely proposed for applications in IoT. Some of the 

proposed applications were briefly outlined in Table 1. 

2.3.1 Hyperledger Fabric 

Hyperledger Fabric is a private blockchain with access granted to trusted members that 

are verified by a Certification Authority. Permissions within the blockchain are 

governed by policies to control who has access to which network resource, and the 

policies themselves are approved by consensus within the network. More specific access 

policies can be applied using an implementation of a smart contract called chain-code, 

which again requires consensus from the network (Iftekhar et al., 2021). 

 Fabric has been shown to outperform other permissioned blockchains for 

throughput and latency due to its simpler and efficient modular consensus approach 

(Monrat et al., 2020). A proposed access control application of Hyperledger Fabric 

achieved a transaction throughput of 200 transactions per second (Iftekhar et al., 2021). 

2.3.2 Hyperledger Sawtooth 

Hyperledger Sawtooth is another open-source permissioned blockchain platform from 

the Hyperledger family. Sawtooth offers both PBFT and Proof-of-Elapsed-Time (PoET) 

consensus mechanisms, alongside a devmode consensus mechanism used for 

development and testing. PoET is a lottery style consensus that uses a random timer to 

determine which node is selected as leader to propose a new block. The consensus 

 
2 https://www.hyperledger.org/about 
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mechanism on a Sawtooth blockchain is established with the genesis block but can be 

changed later by submitting a settings transaction.  

 The architecture of a Sawtooth node, as shown in Figure 4, features among its 

components, a validator to approve transactions, one or more transaction processors, a 

state store, and a REST API to interface to clients. Permissions and other settings are 

stored on-chain and can only be changed by consensus.  

 

Figure 4: Hyperledger Sawtooth architecture3 

 Sawtooth processes transactions as transaction families, each having their own 

transaction processor to apply business logic and save data to the blockchain state. 

Transaction processors are effectively smart contracts that run as plugins rather than on 

the blockchain itself. A Sawtooth blockchain can support multiple transaction families 

and multiple transaction processors can run simultaneously on the same blockchain. 

 Transaction processors can be written in Python, JavaScript, and Go, and there 

are several transaction processors for development, testing, and evaluation of networks 

available for installation with Sawtooth. This modularity provided by separating the 

application level from the core system is one of the distinct features offered by Sawtooth 

that has driven its adoption (Baralla et al., 2019). In the context of IoT, this could mean 

 
3 https://sawtooth.hyperledger.org/docs/1.2/architecture/ 
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having transaction families for different types of sensors that could each have their own 

validation rules based on the type of data. 

2.3.3 Performance of Hyperledger blockchains  

A summary of the findings from several performance evaluations of both Hyperledger 

Fabric and Hyperledger Sawtooth is presented in Table 2. Hyperledger Fabric has shown 

strong results for throughput, outperforming other permissioned blockchains (Monrat et 

al., 2020). However, Sawtooth has in turn outperformed Fabric, due to its parallel 

processing of transactions, less transaction processing complexity, and its Proof-of-

Elapsed-Time (PoET) consensus mechanism (Rasolroveicy & Fokaefs, 2020).   

Authors Blockchain(s) Findings 

Monrat et al. 
(2020) 

Ethereum, 
Hyperledger Fabric, 
Quorum, Corda 

Hyperledger Fabric performed better than the other 
permissioned blockchains undergoing evaluation due 
to its simpler and efficient modular consensus 
approach. 

Rasolroveicy & 
Fokaefs (2020) 

Hyperledger Fabric, 
Hyperledger 
Sawtooth, 
Hyperledger 
Burrow, 
BigChainDB 

Hyperledger Sawtooth was the best performing 
blockchain in terms of writing latency and resource 
utilisation due to its Proof-of-Elapsed-Time (PoET) 
consensus mechanism, parallel processing of 
transactions, and less processing complexity. 

Shi et al. (2019) Hyperledger 
Sawtooth 

Improving VM specs of a blockchain node has a 
significant positive effect on performance. 
Performance varies significantly when running a 
huge workload in a short time period. Parallel 
scheduling of transaction batches increased 
performance by around 30%. 

Ampel et al. 
(2019) 

Hyperledger 
Sawtooth 

Performance bottlenecks exist at high input 
transaction rates (>1000 transactions per second) and 
at large transaction batch size. Latency and system 
resource usage increases exponentially with 
increasing input transaction rates. 

Moschou et al. 
(2020) 

Hyperledger 
Sawtooth 

PoET consensus mechanism, parallel processing of 
transactions, and using the GoLang transaction 
processor, all had a positive (lowering) impact on the 
execution time for a transaction to be confirmed on 
the blockchain. 

Table 2: Studies on the performance of blockchain platforms 

 The studies listed in Table 2 reported different rates of throughput for Sawtooth. 

Ampel et al. (2019) showed very high transaction throughput of up to 2,300 transactions 
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per second (tps). However, another performance study of Sawtooth deployed on cloud 

based VMs put throughput in the range of up to around 15 tps (Shi et al., 2019). Shi et 

al. (2019) found that increasing the specification of virtual machines positively affects 

throughput performance. This may be why some studies using high specification 

machines hosted in the cloud obtained very high rates of throughput (Ampel et al., 2019; 

Monrat et al., 2020). 

 A limitation to the generalisability of some of the studies presented in Table 2 

was the use of test transactions to evaluate performance (Ampel et al., 2019; Shi et al., 

2019). Results obtained in benchmarking studies that rely on test transactions are useful 

for comparing performance of different blockchain platforms. However, the throughput 

rates achieved in such studies should not be generalised as being indicative of 

performance in real-world applications.  

 A performance evaluation of a practical application of Sawtooth for IoT security, 

using actual data transactions from a real device, will offer a better insight to the actual 

throughput that can be achieved. Lower specification machines should also be utilised 

as they are more representative of the resources that are likely to be available in the 

resource constrained IoT environments at the edge of the network. 

2.4 Edge Computing 

Cloud computing has transformed computer networks by providing practically unlimited 

scalability of storage and computational resources provided by remote data centres and 

available as-a-service. However, the physical separation and distance between the cloud, 

and the site where data is generated and consumed, presents challenges relating to higher 

latency and the loss of direct control over data security (Sittón-Candanedo et al., 2019). 

Security concerns also arise when personally and commercially sensitive data is being 

transferred and stored in the cloud.  

 To mitigate against the risks and overcome the challenges in cloud computing, 

edge computing emerged as a distributed computing paradigm that utilises 

computational and storage resources that are available closer to the physical devices that 

generate and consume data. Edge computing architectures consist of IoT devices and 

edge nodes or edge servers that cooperate to support low-latency, real-time processing 

and analysis of data, resulting in lower operating and management costs (Sittón-

Candanedo et al., 2019).  
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 Other benefits of edge computing include bandwidth savings from sending only 

summarised or aggregated data to the cloud, reduced risk of security breaches with less 

data-in-transit, and compliance with laws that restrict cross-border movement of data 

(Hassija et al., 2019).  

 However, edge computing nodes are also vulnerable to attack and hence the need 

for secure data storage at the edge, which is where blockchain offers a solution by 

providing an encrypted, decentralised, and immutable ledger of transactions, verified 

through consensus (Yang et al., 2019).  

2.4.1 Edge computing for blockchain applications in IoT 

Edge computing and blockchain have been described as complementary technologies, 

with blockchain enhancing the privacy and security of edge computing, and edge servers 

enabling the participation of low-powered devices in the blockchain (Yang et al., 2019). 

Another complementary feature of blockchain and edge computing is their 

decentralisation that enables scalability of IoT systems by avoiding centralised 

performance bottlenecks (Misra et al., 2020).  

 Blockchain is effectively the distributed platform for securing and providing 

trust in the network of interconnected IoT devices in an edge computing network. 

Blockchain also provides benefits to the application layer through the non-repudiable 

and secure exchange of data between entities using smart contracts (Sittón-Candanedo 

et al., 2019).  

 This creates opportunities for autonomous operation of smart systems through 

the decentralised exchange of data, with applications in smart transportation, smart 

grids, smart cities, smart homes, and smart healthcare (Gadekallu et al., 2021). 

2.4.2 Edge computing architectures for blockchain applications in IoT 

A prototype edge computing architecture with integrated blockchain for an agricultural 

use case is shown as Figure 5. In this model, the IoT layer is collecting data from sensors 

on a farm and adding it to the blockchain, then sending the encrypted data to an IoT edge 

gateway for pre-processing and analysis, before finally forwarding the lower volume 

data to the business solution layer for visualisation and decision making (Sittón-

Candanedo et al., 2019). This model could also be modified to host the blockchain on 

the edge layer, if computational resources at the IoT layer were limited. 
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Figure 5: Edge computing architecture for IoT (Sittón-Candanedo et al., 2019) 

 Similar architectures have been applied on a smaller scale for smart homes with 

a centralised edge server as the blockchain node that communicates with IoT devices 

over Wi-Fi in the home network (Dorri et al., 2017; Kullig et al., 2020). In Dorri et al. 

(2017), the edge server is responsible for running the consensus mechanism and 

appending blocks to a local private blockchain, as well as performing other admin tasks 

and providing additional storage if required.  

 The centralised edge server approach could just as well be applied to any smart 

environment. Individual smart environments can then become a node in a larger area 

blockchain, even encompassing entire cities to form a smart-city (Malik et al., 2019). 

 An alternative to the centralised edge server approach, is to operate the IoT 

device itself as a node in the blockchain (Huh et al., 2017; Iftekhar et al., 2021). This 

approach avoids the use of any centralised edge server and functions as a fully 

distributed network with no compromise on the decentralisation of blockchain. 

 However, the experiments performed by Huh et al. (2017) and Iftekhar et al. 

(2021) used a Raspberry Pi as the IoT device and blockchain node. The Raspberry Pi is 
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a relatively powerful piece of hardware that is not representative of most IoT devices, 

which are typically power and computationally constrained (Alfandi et al., 2021). 

Furthermore, the performance capability of a Raspberry Pi as a blockchain node is itself 

in doubt due to its resource limitations compared to a more powerful server machine 

(Misra et al., 2020).  

 A further limitation in Iftekhar et al. (2021) was the specially compiled 

Hyperledger Fabric Docker image for the Raspberry Pi ARM processor. A non-standard 

installation cannot be considered a readily scalable solution. Notwithstanding the need 

to innovate and test different approaches, a blockchain-IoT network based on standard 

software installations and unmodified hardware will improve scalability by eliminating 

the complexity of customisation. 

2.4.3 Communication in the blockchain-IoT-edge network 

Performance of blockchain for IoT devices in an edge network is affected by network 

connectivity, with wired connections outperforming wireless (Misra et al., 2020). 

However, the lower performance of wireless connections can be offset by the advantages 

of mobility, provided performance achieves an acceptable level for a particular use case. 

 While it is acceptable to find compromises on performance in the network in lieu 

of other benefits, it should not be considered acceptable for security and privacy to be 

compromised under any circumstances. Sharing potentially sensitive data over a WiFi 

network exposes it to eavesdropping or man-in-the-middle attacks while the data is in 

transit.  

 Securing data against such attacks requires an encrypted communication channel 

between the IoT device and the server to prevent theft of personal network data (Alladi 

et al., 2020). The ultimate goal should be full end-to-end encryption of data (Hassija et 

al., 2019), but this can be a challenge for the computationally limited IoT devices 

(Kromes et al., 2019). 

 Communication between IoT devices and an Ethereum blockchain on an edge 

server using HTTP implemented in Python has been successfully demonstrated by 

Kullig et al. (2020).  Exchanging data over HTTP opens the possibility of using APIs to 

support the development of modular clients and applications in higher level 

programming languages and web development frameworks. This functionality is a core 
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feature of Hyperledger Sawtooth blockchains with its native REST API and SDK for 

many popular programming languages.  

 An implementation of Sawtooth to send data to police and other relevant parties 

following a car accident used a Raspberry Pi as an off-chain IoT node to send data to the 

blockchain via REST API (Kromes et al., 2019). The base case of their study found that 

the Raspberry Pi was able to deliver a 1 MB payload of data to the blockchain in under 

5 seconds. A payload of 1 MB is a sizable amount of data for most IoT devices, and this 

baseline level would be an acceptable level of performance for many applications. 

2.5 Summary 

Security of IoT data is a challenge that requires an integrated solution throughout the 

various architectural layers of an IoT system. Blockchain offers several benefits to 

enhance IoT security, including a secure and practically immutable log of transactions 

(Alfandi et al., 2021; Hassija et al. 2019). However, previous studies on blockchain for 

IoT encountered some limitations due to the length of time the consensus mechanism 

took to approve and add transactions as new blocks (Huh et al., 2017). 

 Hyperledger Sawtooth offers an efficient consensus mechanism in an open-

source private blockchain (Rasolroveicy & Fokaefs, 2020). Performance evaluations of 

Sawtooth have shown promising results but they were often obtained using high 

specification environments and test transactions (Ampel et al., 2019; Shi et al., 2019).  

 A practical application of Sawtooth for IoT security using actual data 

transactions and lower specification environments is required to evaluate performance 

in a way that is more representative of real-world scenarios. 

 Another requirement for integrating blockchain and IoT is finding a suitable 

solution architecture. To this end, edge computing was identified as a suitable approach 

as it provides the computational resources close to the resource constrained IoT devices. 
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3. DESIGN & METHODOLOGY 

This chapter will describe the design and methodology for conducting an experiment to 

evaluate the application of Hyperledger Sawtooth as a blockchain platform to securely 

store data from an IoT device using an edge computing architecture. It will begin by 

describing the network design and architecture for the experiment. This will be followed 

by an outline of the steps to install and configure Hyperledger Sawtooth and related 

required software. After that, the python code developed for the experiment to handle 

and process the IoT data transactions will be discussed. Finally, it will detail the 

methodology for initiating multiple experiments and the process to collect performance 

data under different workloads and using different settings. 

3.1 Network Design & architecture 

The experimental network was set up on a home Wi-Fi network, with a MacBook Air 

laptop as the edge server that hosted three Ubuntu 18.04 virtual machines (VMs) on 

VirtualBox virtualisation software (see Figure 6). This was the edge layer of the network 

that hosted the Sawtooth blockchain.  

 The PoET consensus mechanism in Sawtooth requires at least three validator 

nodes to operate, hence the requirement for three VMs. Data transactions were sent 

randomly to the REST API on one of the three VMs to load balance, but in general 

EDG10 VM was the primary VM and blockchain node. 

 Docker images are available from Sawtooth for testing, but VMs are preferred 

as they give better isolation for performance assessment (Shi et al., 2019) and greater 

control over the software and other system configurations. The VMs were set up with 

mostly the default VirtualBox settings but network was set to bridged adaptor to give 

the VM its own IP address on the Wi-Fi network. Having an IP address on the Wi-Fi 

network allowed remote login from the host to the VM for installing software, 

monitoring, configuration, changing settings, and other admin tasks. SSH was enabled 

on the VMs to expose port 22 for remote login. 

 The operating system installed on the VMs was Ubuntu 18.04 in line with the 

version specified in the Hyperledger Sawtooth documentation4. It was installed using 

 
4 https://sawtooth.hyperledger.org/docs/1.2/app_developers_guide/installing_sawtooth.html#using-ubuntu-for-a-single-sawtooth-

node 
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the minimal install option to save the maximum possible amount of resources for the 

core system components. The full specifications of the VMs are listed in Table 3. The 

IoT device was a Raspberry Pi 3 Model B with its native Raspian OS and represents the 

IoT layer. SSH was also enabled on the Raspberry Pi to enable remote login.  
 

Device Operating System (OS) OS Version RAM Python version 

MacBook Air 2020 MacOS Big Sur 11.6 8 GB N/A 

Virtual Machines Ubuntu 18.04 1 GB 3.6.9 

Raspberry Pi 3, Model B Raspian 9 1 GB 3.5.3 

Table 3: Hardware and virtual machine (VM) specs 

 

 

Figure 6: Network design for experiment 

 A temperature sensor to provide real-world data to store on the blockchain was 

connected to the Raspberry Pi but is omitted from the network diagram in Figure 6. The 

architecture is consistent with the model proposed by Sittón-Candanedo et al. (2019), 

having an edge layer and an IoT layer. There was no business solution layer in the 

experiment design which focused on performance of the blockchain at the edge and IoT 

layers. 
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3.2 Software installation 

The main software component for the experiment was Hyperledger Sawtooth, which 

was selected for its high performance in previous studies that were summarised in Table 

2. Hyperledger Sawtooth components were installed on all the VMs that comprise the 

blockchain network.  

 Some additional python packages, like secp256k1 which is used for 

cryptographic signatures, had to be installed before all Sawtooth components could be 

successfully installed. These were not mentioned in the documentation and required 

some debugging that led to delays in the initial set up. 

 InfluxDB and Telegraf are additional third-party components that were installed 

on the VMs to collect and store performance metrics. Telegraf is an open-source tool to 

collect metrics on system performance and InfluxDB is an open-source time-series 

database used to store the metrics collected by Telegraf and Sawtooth.  

 Grafana, an open-source data visualisation tool, was installed on the host 

machine to present the performance metrics on a dashboard5 for real-time monitoring. 

The version numbers for each of the major software components are listed in Table 4. 

Device Software Version 
MacBook Air VirtualBox 6.1.30 
Virtual machine Hyperledger Sawtooth 1.2.6 
Virtual machine InfluxDB 1.8.10 
Virtual machine Telegraf 1.21.4 
MacBook Air Grafana 8.3.4 

Table 4: Major software components installed 

3.3 Sawtooth configuration 

Sawtooth settings are stored both on-chain and off-chain. An example of an on-chain 

setting is the type of consensus mechanism. On-chain settings are changed by submitting 

transactions that are approved by the consensus mechanism. Off-chain settings, which 

are usually network related, are stored in TOML6 configuration files. Network 

parameters for the various blockchain components can be passed as command line 

 
5 https://raw.githubusercontent.com/hyperledger/sawtooth-core/1-0/docker/grafana/dashboards/sawtooth_performance.json 
6 https://en.wikipedia.org/wiki/TOML 
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arguments when they are started, but a more optimal solution is to hard code the 

parameters within the TOML configuration files.  

 The network parameters tell Sawtooth where to listen for the local components 

of the current node, like the validator and REST API, to set where other nodes should 

listen for the current node, and to set the peer nodes of the current node, as shown in 

Figure 7. Network settings default to localhost if they are not added to the TOML 

configuration file or not passed as command line arguments when starting the Sawtooth 

processes. The settings for the InfluxDB database and Telegraf are also stored in the 

TOML configuration files, including the database name, a database user, and the IP 

address and port number for the database.   

 A public and private keypair was also generated and added to the TOML 

configuration file to secure communication between the Sawtooth components. 

Communication between nodes and components defaults to unsecured without this key 

pair. The process for updating the TOML configuration files is outlined in the Sawtooth 

documentation7.  

 

Figure 7: TOML configuration file 

3.4 Initialising the blockchain 

After installing the components and configuring the network, the next step was to create 

a genesis block to be the first block in the blockchain. The genesis block contains the 

initial settings, including the type of consensus mechanism, that are inherited by other 

peers when they join the network. Creating a genesis block was done once on the primary 

 
7 https://sawtooth.hyperledger.org/docs/1.2/sysadmin_guide/configuring_sawtooth.html 
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node and the entire blockchain from then on contains a chain of references back to that 

block, where each reference is the header signature of the previous block.  

 The commands to create the Genesis block, with the PoET consensus 

mechanism, is shown in Figure 8, and was executed on the EDG10 VM. It contains the 

type and version of the consensus mechanism and some other settings. 

 

Figure 8: Commands to create genesis block for PoET consensus engine 

 The consensus mechanism is a setting that can be changed at any time with the 

consensus of the other approval nodes on the network. This dynamic consensus is a core 

feature of Sawtooth, with three consensus mechanisms available for installation – 

devmode, PBFT, and PoET.  

 The documentation advises that devmode is for testing single node environments 

and is not suitable for multi-node test and production networks, though it has been used 

in other studies to evaluate performance (Moschou et al., 2020). PBFT on the other hand 

is recommended for small networks that do not require open membership. PoET is 

recommended for large production networks with open membership8. For this 

experiment, the PoET consensus mechanism is selected for its high performance 

(Rasolroveicy & Fokaefs, 2020; Moschou et al., 2020). 

 
8 https://sawtooth.hyperledger.org/docs/1.2/sysadmin_guide/about_dynamic_consensus.html 
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3.5 IoT device configuration 

There was less configuration required on the Raspberry Pi IoT device compared to the 

VMs, as it was a client only and did not run any blockchain components. The only 

software required for the Raspberry Pi to operate as an IoT client was python, which 

comes pre-installed as standard. The IoT client was developed in python specifically for 

this experiment and will be discussed in detail later.  

 The only other configuration step for the IoT device was the creation of a pair of 

public and private keys, as all components and devices need a public and private key to 

transact with the Sawtooth Network. The key pair for the Raspberry Pi was created on 

the EDG10 VM and transferred to the Raspberry Pi using an SCP command, by 

following the steps shown in Figure 9.  

 

Figure 9: Distributing a public and private key pair to the IoT device 

 The public key for the Raspberry Pi, along with the public key of the current 

node, was then added as a PERMIT_KEY in an IoT policy and assigned to the Sawtooth 

transactor role as shown in Figure 10. The IoT policy gets wrapped in a transaction that 

must be submitted and validated before being committed to the blockchain, just like any 

other transaction.  

 When the IoT policy is committed, transactions and batches can only be signed 

by the private keys corresponding to the public keys listed in the IoT policy. Any 

transaction or batch that is signed by any other private key not listed in the policy will 

be rejected by the DENY_KEY asterisk symbol (*) that denies all other keys.  

 

 Figure 10: Setting transactor IoT policy 
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 A test was performed by submitting a transaction from the IoT device that was 

signed by a randomly generated, but technically valid private key. The test resulted in 

the batch being rejected for being invalid and a HTTP 400 bad request response code 

was sent to the IoT client, as shown in the console log messages in Figure 11. This level 

of control improves security by requiring transactors to have explicit permission that is 

hard coded into the Sawtooth blockchain itself.  

 Only approved admin users that are also hard coded into the blockchain can 

change or update the policy. Similar controls on membership can be applied for validator 

node permissions. This is an example of what makes Sawtooth a private and 

permissioned blockchain. Public blockchains do not enforce policy or settings to restrict 

membership or transactions. 

 

Figure 11: Batch rejected for unapproved private key 

3.6 Sawtooth application for IoT  

Sawtooth doesn't natively support IoT applications as such, but it does support the 

development of transaction processors and clients for specific use cases (Baralla et al., 

2019; Kromes et al., 2019). Development of transaction processors is supported for 

several popular programming languages, including python, using the available SDK and 

interfaces. To evaluate the application of Sawtooth for securely storing IoT data using 

an edge computing architecture, an IoT transaction processor was developed in python 

as part of the experiment design.  

 Before transactions can be processed, a client-side application is required to read 

data from a sensor, add this data to a transaction, then sign, batch and submit the 

transactions to the Sawtooth REST API. Sawtooth also provides the necessary SDK and 

interfaces to support the development of client-side applications. An IoT client 

application was also developed in python as part of the experiment design.  

 Before discussing the IoT transaction processor and the IoT client-side code in 

any more detail, it is helpful to explore the structure of a Sawtooth transaction, and how 

transactions are batched for processing.  
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3.6.1 IoT transactions 

Transactions in Sawtooth belong to families, for example, some on-chain settings are 

members of the settings transaction family and are processed by the settings transaction 

processor. The structure of a transaction is shown in Figure 12; it consists of a transaction 

header, a header signature, and a payload. The payload contains the data that will be 

handled by the transaction processor and can be stored in state. For the IoT application, 

the payload contained temperature sensor data.  

 

Figure 12: Sawtooth transactions and batches9 

 The transaction header contains multiple fields which are described in Table 5. 

A transaction header is signed with a private key, like the one that was created and 

authorised for the Raspberry Pi. Transactions are wrapped in a batch before being 

submitted to the Sawtooth REST API. A batch can contain one or more transactions in 

a list, with a batch header and a batch header signature, and is either committed or 

rejected as an atomic unit. The number of transactions per batch has been shown to have 

an impact on Sawtooth performance (Ampel et al., 2019). 

 
9 https://sawtooth.hyperledger.org/docs/1.2/architecture/transactions_and_batches.html 
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Field Description 

Batcher public key The public key used to sign the batch containing this transaction 

Dependencies Specify dependencies for transaction processing order 

Family name The transaction family, e.g., IoT-Data 

Family version A version number for the transaction family 

Inputs Address of input state 

Nonce Random number to provide uniqueness of like transactions 

Outputs Address of output state 

Payload SHA512 A SHA-512 hash of the transaction payload 

Signer public key Public key used to sign the transaction header 

 Table 5: Transaction header fields10 

3.6.2 IoT Device namespace addressing 

Sawtooth stores state on a Merkle-Radix tree data structure that has a namespace 

addressing scheme composed of 35 bytes or 70 hexadecimal characters, giving each leaf 

node its own unique namespace for storing state data, as shown in Figure 13. The 

addressing scheme must be unique and deterministic to avoid name collisions and allow 

retrieval or updating of state data.  

 A typical approach is to take the first three bytes of the address from a hash of 

the transaction family name and the remaining 32 bytes from a hash of the public key11. 

Another example in the documentation calculates the 35 bytes from the hash of various 

attributes belonging to some widget12. Another proposed supply chain use case used 

family name, a resource type, and hashed unique identifiers as the namespace addressing 

scheme (Baralla et al., 2019). 

 The approach adopted for the IoT application was to take the first 3 bytes from 

a hash of the transaction family name, the next 2 bytes from a hash of the device ID, and 

the remaining 30 bytes from a hash of the public key belonging to the IoT device. 

Including the device ID creates a unique address in the Merkle-Radix tree for that device, 

and the values stored in state are only contextual to parties with knowledge of the 

 
10 https://sawtooth.hyperledger.org/docs/1.2/architecture/transactions_and_batches.html 
11 https://github.com/danintel/sawtooth-cookiejar/blob/master/pyclient/cookiejar_client.py 
12 https://sawtooth.hyperledger.org/docs/1.2/app_developers_guide/address_and_namespace.html 
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physical device associated with that ID and who have knowledge of the public key for 

that device. This provides an additional level of privacy through anonymity.  

 

Figure 13: Global state and namespace addressing13 

3.6.3 IoT Transaction Processor 

Sawtooth transaction processors are like smart contracts in other blockchains. It is here 

that business logic and other validation rules can be implemented through the apply 

function, and state data can be set or retrieved (see Figure 14). An IoT transaction 

processor for an IoT application was developed in python as part of the experiment 

design and assigned a family called IoT-data.  

 The IoT transaction processor registers with a Sawtooth node, then processes all 

IoT-data transactions submitted by the IoT client through the Sawtooth REST API. The 

 
13 https://sawtooth.hyperledger.org/docs/1.2/architecture/global_state.html 
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main task of the IoT transaction processor is to save the transaction payload to state.  As 

an additional proof-of-concept, two validation rules were included in the IoT transaction 

processor, as can be seen in Figure 14 and Figure 15.  

 One of the validation rules checked that the timestamp was not greater than the 

current time, as a safeguard against future timestamping of transactions. The other 

validation rule checked that values for temperature sensors were within a realistic range 

of between -10 and +35 on the basis that temperatures outside of this range could be 

erroneous or even malicious readings.  

 

Figure 14: IoT transaction processor apply method 

 

Figure 15: IoT transaction processor validation rule 

 If the validation rules are violated, an invalid transaction exception is raised, and 

the payload will not be saved to state. The REST API response of a test transaction that 

contained an injected temperature value outside of the valid range is shown in Figure 
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16. The response shows the transaction with a status of INVALID, meaning it was not 

committed to the blockchain. This is a somewhat trivial example, but it serves to 

demonstrate the functionality that can be applied to increase security through enhanced 

validation rules in the transaction processor.  

 Applying validation rules helps to secure the blockchain against malicious 

attempts to inject data values outside of a specified range and can also help protect 

against spurious or erroneous readings from a defective or faulty sensor. 

 

Figure 16: REST API response showing invalid transaction 

3.6.4 IoT Client Application 

It was the job of the IoT client application to read sensor values, create and batch 

transactions, sign the transactions, then submit the batched transactions to the Sawtooth 

REST API on one of the VM nodes. The IoT client consisted of multiple python scripts 

which were developed and pushed to a GitHub repository14. A requirements.txt file with 

a list of the python packages and the specific version required was also bundled in the 

repository. To perform the experiments, the python scripts were cloned from their 

GitHub repository and run in a python virtual environment on the Raspberry Pi IoT 

device.  

 Some compatibility issues occurred initially with python packages that had been 

updated since the latest Sawtooth release (installed version). There was no explanation 

for this in the Sawtooth documentation and debugging was required to overcome some 

errors. The requirements.txt file lists the versions of the packages that are compatible 

with the installed version of Sawtooth, as discovered through the debugging process. 

Running in the virtual environment with the versions specified in the requirements.txt 

file overcame the compatibility issues.  

 
14 https://github.com/SeanConnolly82/iot-blockchain 
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 The process to set-up and activate the virtual environment, including installation 

of the required packages, was initiated by running a start-up bash script that was included 

in the GitHub repository. Command line arguments to initialise a specific IoT device 

and its operation were passed to the IoT client by adding them to the start-up bash script. 

Logging functionality was also included in the IoT client to generate log files for 

performance monitoring and debugging in the event of any issues or errors occurring.  

 An important component of the IoT client was the sensor class to represent the 

physical sensor. The sensor class is shown as Figure 17. All attributes of the sensor were 

wrapped inside the single payload dictionary that became the payload of the Sawtooth 

transaction. The specific type of sensor was abstracted away from the class definition, 

so that a sensor object could represent any possible sensor as indicated by the 

device_type attribute.  

 For the current experimental implementation, two types of sensors were possible, 

temperature and humidity, consistent with the type of sensors used for similar studies 

(Kullig et al., 2020), though only temperature was implemented in the final experiment 

design. To avoid runtime errors, a control was applied to the command line argument 

parser to limit the selection of device type to either temp or humidity. The selection of 

either temp or humidity determines the validation rules that were applied when the 

transaction was being processed (see Figure 15).  

 

Figure 17: IoT client sensor class 

 Each sensor object also had a device_id attribute to provide a unique identifier 

for a particular sensor. Recall that device id was also one of the inputs used to determine 

the namespace address for storing the sensor state. The device id only needs to be unique 

within the scope of a public key to avoid collisions for namespace addressing, but good 

practice would be to keep it unique among all sensor instances. The other attributes of 



 

  35 

the sensor were the timestamp in Unix time and the value which is the latest reading 

from the sensor.  

 After getting the sensor values and adding them to transactions and batches, the 

other major function of the IoT client was to send the batched transactions to the REST 

API of a Sawtooth node. Communication between the IoT client and the Sawtooth node 

was implemented using the python requests library. The batched transactions were sent 

in a HTTP POST request payload to the Sawtooth node IP address on port number 8008. 

 State values at a particular namespace address could also be retrieved using a 

GET request without submitting a transaction. This is a useful feature that enables 

authorised parties with knowledge of a public key and associated device ids to use the 

data stored in state for applications and use cases at the business solution layer.  

 For the current implementation, the physical temperature sensor circuit was 

assembled on a breadboard and connected to the Raspberry Pi GPIO pins using a starter 

kit available from Freenove15. The temperature sensor circuitry can be seen in Figure 

18. 

 

Figure 18: Temperature sensor breadboard circuit 

 
15 https://github.com/Freenove/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi 

Thermistor 
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3.7 Starting the network 

When all software and other components were installed, and the network was 

configured, the blockchain nodes and the IoT client were started. Sawtooth processes 

were started first, beginning with the EDG10 VM as the primary node that contained the 

genesis block. Processes were started manually from the command line of the VM via a 

remote SSH session from the host machine. The minimum processes that must be started 

on Sawtooth are the validator, the REST API, the settings transaction processor, the 

PoET consensus engine, and the IoT transaction processor.  

 Each Sawtooth process was started separately and immediately started logging 

output to the console window at the level of verbosity specified from -v (less) to -vvv 

(more). An example of the logging output can be seen in Figure 19. Higher levels of 

logging verbosity are better for monitoring during the initial testing and evaluation of 

the network. Log files are also written to disk if required for later analysis.  

 

Figure 19: Logging output of the Sawtooth validator 

 After starting the components for the first time, an approved node inherits the 

genesis block and associated settings from a node already active on the network. 

Sawtooth nodes must be fully peered before any transactions can be approved by the 

consensus engine. Prior to starting the experiments, peering was confirmed by reviewing 

the logging output and by checking through a web browser connection to the REST API.  

 As soon as peering had occurred, the operation of the network was confirmed by 

submitting a transaction to the IntegerKey built-in transaction processor. IntegerKey 

provides shell commands for submitting test transactions to confirm the network is 

functional. Some studies have based their entire performance evaluation of Sawtooth on 

the IntegerKey transaction processor (Shi et al., 2019) but this limits the validity of the 

experiment to be generalised for real-world applications. 
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3.7.1 Starting the IoT Client and sending transactions 

When the Sawtooth network was confirmed to be fully peered and operational, the IoT 

client application was started on the IoT device. The Raspberry Pi IoT device was 

interfaced via an SSH session from the host machine and the IoT client was started by 

calling a bash script.  

 The bash script included the commands to set up and activate a python virtual 

environment and start the python processes with the required command line arguments 

reflecting the parameters for the experiment. This included the time interval for reading 

the sensor data to enable the application to send transactions at different rates of input 

to evaluate performance across varying workloads.  

 When a time interval argument was included, the IoT client read data and sent 

transactions, every number or fraction of seconds specified, in a continuous loop until 

interrupted using a keyboard interrupt. If the interval was omitted, the IoT client sent a 

single transaction to Sawtooth.  

 Table 6 outlines the specification for the IoT client command line arguments. 

The first command line argument is either GET or POST, indicating the HTTP method 

to be called. POST requires two further command line arguments to specify the type of 

device, and an ID for the device, with a further optional argument to specify the interval 

for sending data to Sawtooth.  

 If the first command line argument is GET, then only one additional argument is 

required – the device ID, which is sufficient to retrieve the current state value from the 

namespace address for that device. GET requests are retrieved from state using a REST 

API endpoint and do not require a transaction to be created.  

Argument Description Allowed values 

action HTTP method that will be invoked POST, GET 

device_id An ID for the individual sensor Any string 

device_type The type of sensor temp, humidity 

interval Interval in seconds for sending transactions A valid floating-point number 

Table 6: IoT client command line arguments 

 When the network was fully peered, and the IoT client was started, an initial 

batch of 200 transactions was submitted from the IoT device to the REST API to test 

that the network was fully operational. Operation could be monitored in real-time 
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through the Grafana dashboard on the host machine (see Figure 20). When the 200 

transactions were observable in the count of committed transactions on the dashboard, 

the experiment was initiated by executing the IoT client start-up script with an interval 

in seconds to give the required rate of input transactions. 

 

Figure 20: Monitoring performance on the Grafana dashboard 

3.8 Experiment process 

Multiple experiments were carried out to evaluate performance of different 

configurations under different input transaction workloads. Transactions were submitted 

as either single transaction batches or multiple transaction batches as the number of 

transactions per batch has been shown to have an impact on Sawtooth performance 

(Ampel et al., 2019). 

 Single transaction batches were submitted with a target tps of between 2 and 12, 

incrementing in steps of 2 transactions. Multiple transaction batches were submitted 

with a target tps of 8, 10, and 12, enabling direct comparison with the upper end of the 

single batch transactions target tps. A further target tps of 20 was also submitted as a 

multiple transaction batch, to measure performance at a higher throughput workload. 

The number of transactions in the multiple transaction batches was set to 10, in line with 

the number of transactions per second specified in the hypothesis test. 

 Each experiment was allowed to run for just over one hour to ensure that there 

was a 60-minute window of stable operating data available for each rate of input 
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transaction. Following each experiment, a counter of the number of transactions sent by 

the IoT device was used to confirm that all transactions had been committed to the 

blockchain. The metric for how many transactions were committed versus how many 

were sent is known as the success rate, and the expected performance is 100% (Ampel 

et al., 2019).  

 The number of committed transactions must also be consistent across each of the 

blockchain nodes, indicating that all nodes have received and committed all transactions 

that were sent by the IoT device. Figure 21 shows an example of a consistent count of 

transactions across blockchain nodes, using the show transaction list command piped 

into a count of line endings. This data is also available through the Grafana dashboard 

and can be accessed from the InfluxDB database for more detailed analysis. 

 

Figure 21: Checking the number of committed transactions 

 Data was collected for each experiment and stored in the InfluxDB instance 

running on EDG10. InfluxDB is a time-series database that stores data in table-like 

structures that it calls measurements. It has been used in other performance evaluations 

of Hyperledger Sawtooth (Shi et al., 2019).  

 InfluxDB was the only source of data used for the analysis and evaluation of 

Sawtooth performance. No external or third-party data was required for any part of the 

analysis or results. A small change was required to the Sawtooth core files to lower the 

granularity of the time-series from 10 seconds to one second, to capture data at the rate 

required to test the hypothesis. This change to the core Sawtooth files was the only non-

standard feature of the entire installation. 

 Analysis of the results dataset to evaluate performance and test the hypothesis 

was performed in the R statistical analysis application. A package called influxdbr 

enabled connection from R to the InfluxDB instance on EDG10 to import data. InfluxDB 

implements a SQL-like InfluxQL query language and this was one of the options 

available to perform filtering, aggregation, and other data transformations at the database 

level. However, the approach adopted was to use influxdbr to load the entire dataset 



 

  40 

from its InfluxDB source into an R dataframe. In this way, all the analysis, 

transformation and visualisation of data could be performed in one application. 

 Data on throughput was sourced from an InfluxDB measurement that contains a 

value for the count of transactions stored on the blockchain. The value was in absolute 

terms and required some additional processing to calculate the relative change in the 

number of transactions from one time interval to the next. This step was necessary to 

report the number of transactions per second. The same process was followed for data 

on the number of blocks added, which was available in another InfluxDB measurement. 

 Mean tps was the primary measure of throughput and the key metric for 

measuring overall performance. Throughput is the rate at which transactions are added 

to the blockchain. A secondary measure of performance was the standard deviation, to 

evaluate the amount of variance in the rate of transaction throughput. A low standard 

deviation relative to its corresponding mean tps, is indicative of stable and consistent 

performance, whereas higher values are indicative of unstable and intermittent 

performance. 

3.9 Summary 

An experiment to evaluate performance of a practical application of Sawtooth for IoT 

data security was designed with an architecture consisting of an edge layer and an IoT 

layer, similar to that proposed by (Sittón-Candanedo et al., 2019). The edge layer 

consisted of a MacBook Air laptop that hosted three virtual machines. The IoT layer 

consisted of a Raspberry Pi connected to a temperature sensor.  

 Hyperledger Sawtooth was installed on each of the three VMs as this is the 

minimum number of nodes required for the PoET consensus mechanism to operate. 

Other software was also installed on the edge layer to collect and display data and 

metrics on the blockchain performance. 

 A transaction processor was developed in python for the experiment, to receive 

transactions and apply some proof-of-concept validation rules before saving the 

temperature data to the blockchain state. An IoT client was also developed in python to 

read temperature data from the sensor and then add it to a transaction within a batch that 

was then submitted to the REST API.  
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 The physical sensor device, which was assembled on a breadboard and 

connected to the Raspberry Pi, was represented in the IoT client as an object of a sensor 

class, and its attributes would become the payload of the IoT data transaction. 

 After the IoT client and Sawtooth components were started, some testing was 

applied to confirm that the blockchain nodes had peered and the network was 

operational. A series of experiments were then performed with a range of input 

transactions in both single and multiple batch transactions. This ensured performance 

was evaluated under a range of workloads. 

 Each experiment submitted transactions for a 60-minute period and data on 

blockchain performance was collected in an InfluxDB time-series database at one-

second intervals. Data from InfluxDB was then imported into R for analysis, 

visualisation and to perform the hypothesis test.  

 Mean tps was the primary measure of performance in terms of throughput, with 

standard deviation as a secondary measure to evaluate the variance. Measuring variance 

is important to understand the overall stability or intermittency in the performance of 

transaction throughput. 
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4. RESULTS, EVALUATION, AND DISCUSSION 

In this chapter, the results of the experiments described in chapter 3 will be presented 

alongside an initial discussion of the key metrics relating to transaction throughput. This 

will be followed by a detailed analysis and evaluation of the data, leading up to the 

hypothesis test. The chapter will conclude with a discussion of the main outcomes and 

findings from the experiments and hypothesis test. 

4.1 Real-time observations of experiment performance 

Performance during the experiments was monitored in real-time using the Grafana 

dashboard. This provided an initial subjective evaluation before results were available 

for analysis. Under ideal conditions, a linear rate of input transactions would have an 

approximately corresponding linear rate of transactions being committed to the 

blockchain. This ideal scenario would provide a stable platform with predictable 

performance to support applications and use cases at the business solution layer. 

 Figure 22 shows an example of the Grafana dashboard displaying the increase in 

the number of committed transactions during one of the experiments. At a macro level, 

the rate of increase of committed transactions appears approximately linear, as would be 

expected for a given constant rate of input transactions. However, while the rate of 

committed transactions does have an approximate linear form, zooming in reveals 

occasional stepped increases after periods of no change. 

 

Figure 22: Grafana committed transactions dashboard, showing stepped increase 

 The pattern of stepped increments in Figure 22 is consistent with some 

intermittency in the console logging output of the transaction processor, which was also 

Stepped increase 
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monitored during the experiment. The logging messages often froze temporarily, 

followed by a short burst of activity, before settling back to a steadier rate of processing 

activity.  

 An example of intermittency in the logging output is highlighted in Figure 23, 

which shows an approximately 25 second period when no transactions were processed 

by the IoT transaction processor. These periods of inactivity, followed by bursts of 

activity, were probably the result of the internal operation of the Sawtooth components 

and the consensus mechanism. Another possibility is that some of this behaviour may 

have been due to bottlenecks and latencies in the network. 

 

Figure 23: IoT transaction processor log messages showing inactivity 

 The freeze in activity often coincided with spikes in pending batches that could 

be observed on another Grafana display. Recall that transactions are added and 

processed by the validator in batches. An example of a spike in pending batches is visible 

on Figure 24 between 20:34 to 20:35. There is no clear explanation for spikes like this 

as conditions were kept constant throughout the experiment. If pending batches are not 

processed within a certain time-period, it can lead to rejection of the batches and all 

transactions contained therein due to queue timeout (Ampel et al., 2019). 

 

Figure 24: Grafana pending batches dashboard 

 Another observation of the data that is visible on Figure 22 is that the number of 

committed transactions on each node can be slightly different in a given time interval. 

The number of committed transactions on each of the three nodes varies between 631 
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and 638 in the time interval highlighted by the tooltip display on Figure 22. This is a 

point-in-time phenomenon, as the different nodes appended blocks slightly earlier or 

later than other nodes.  

 Different nodes alternated between leading and lagging, in terms of the number 

of committed transactions, at different times. While this does not necessarily represent 

an issue, it is a feature of the blockchain that could have implications for applications at 

the business solution layer that have time-sensitive functionality. 

 Ultimately, each of the nodes had the same block head and the same number of 

committed transactions when the experiments concluded, though the blockchain had 

forked several times during each of the experiments. Forking is the process by which the 

blockchain manages divergences in the blocks comprising the chain. This tendency to 

fork, especially at higher rates of input has also been observed in other performance 

evaluations of Hyperledger Sawtooth (Shi et al., 2019).  

 A full analysis and discussion of the consequences of forking are beyond the 

scope of this study but would warrant further analysis in future work. Forking in the 

blockchain is not necessarily an issue but a greater understanding of the causes and 

implications would be required before the experiment could be scaled for real-world use 

cases. 

4.2 Experiment Results 

A summary of the results obtained for each iteration of the experiment can be found in 

Table 7. The results include the mean number of transactions committed to the 

blockchain per second as mean tps, with its corresponding standard deviation, for each 

target tps. The target tps is the target rate of input transactions submitted by the IoT 

client via the REST API. Mean tps is the primary measure of performance in terms of 

transaction throughput and will ultimately be used to test the research hypothesis. 

 The number of transactions per batch are also included in the results table. The 

transactions per batch were either one or ten, but these will generally be referred to as 

either single transaction batches or multiple transactions batches. 

 The first observation on the results in Table 7 is that the rate of committed 

transactions, as measured by mean tps, did not achieve the target tps for any of the 

experiments, for either single transaction batches or multiple transaction batches. The 

mean tps was less than half the target tps in most instances. It is important to interpret 
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this correctly, as the results are not indicating that, for example, 10 transactions were 

submitted and only 5 were committed to the blockchain, but rather that the actual input 

rate from the IoT client was constrained by the performance of the network to a level 

close to the mean tps.    

Target tps Transactions per batch Mean tps Standard deviation 
2 1 1.367 4.498 
4 1 1.917 6.619 
6 1 2.484 8.752 
8 1 3.814 13.046 
10 1 4.518 13.996 
12 1 5.006 16.064 
8 10 5.953 20.077 
10 10 6.783 23.541 
12 10 7.634 26.911 
20 10 10.680 37.116 

Table 7: Results showing mean tps and standard deviations 

 Another observation on the results is the high variability in the number of 

committed transactions per second, as indicated by the large standard deviations relative 

to their respective means. This high variability is consistent with the findings of Shi et 

al. (2019) whose results also showed high variance that increased with increasing rates 

of input transactions. Variability in the results is an indicator of unstable performance 

which may impact on how data from the blockchain is used and consumed at the 

business solution layer. 

 The results in Table 7 also show that multiple transaction batches consistently 

achieved a higher mean tps compared to single transaction batches, though variance was 

higher for the multiple transaction batches. This observation is based on the target tps of 

8, 10 and 12, where a direct comparison is possible between single and multiple 

transaction batches. Figure 25 shows the comparison where the higher throughput of 

multiple transaction batches is strongly evident. Ampel et al. (2019) also reported batch 

size as a factor affecting performance in their study of Sawtooth. 

 At a target rate of 20 tps, the mean tps achieved was more than 10 tps, offering 

some initial support for the hypothesis that Sawtooth can process IoT data transactions 

at a rate of at least 10 transactions per second. 
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Figure 25: Mean tps for single and multiple transaction batches 

4.2.1 Transaction throughput 

InfluxDB records the second-by-second time-series of the number of transactions 

committed to the blockchain. Taking a closer look at the data at this level of granularity 

gives a greater insight into how transactions were committed to the blockchain. Figure 

26 shows a two-minute time slice from one of the experiments. The first observation on 

the data when viewed at this level of granularity is the many one-second time intervals 

when no transactions at all were committed to the blockchain.  

 What Figure 26 shows is that transactions were committed intermittently, in 

volumes that were proportional to the amount of time that had elapsed since the last 

transactions were committed. This intermittency creates latency in the system, as a 

transaction is not available to applications at the business solution layer until it has been 

committed to the blockchain. Intermittency of committing transactions will have 

contributed to the high level of variance observed in the results data. 

 Another observation on the data was negative numbers of transactions in some 

one-second intervals, for some iterations of the experiment. The data has been 

thoroughly checked and it was confirmed that this is not a data quality issue. The 

negative values are most likely due to removal of duplicate transactions by Sawtooth to 
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keep the blockchain consistent across nodes. Although this occurred infrequently, it 

warrants further investigation to obtain a fuller understanding in future studies. 

 

Figure 26: Example of transactions committed in two-minute period (target tps: 4) 

 Variability in the rate of committed transactions is also apparent in the 

histograms showing the number of transactions committed per second for each target tps 

(see Figure 27 and Figure 28). For readability, intervals with negative or zero number of 

transactions are not shown on the histograms.  

 Figure 27 shows that while the mean for single transaction batches ranges from 

between approximately 1.4 and 5.0 tps, there were up to 100 transactions committed to 

the blockchain in some one-second periods. This number coincides with the default 

maximum number of batches per block. The default setting for maximum batches per 

block was left unchanged in the initial configuration, though it can be changed by 

submitting a settings transaction.  

 For single transaction batches, the maximum number of transactions per block is 

equivalent to the maximum number of batches per block, as there exists a one-to-one 

relationship. Therefore, it's reasonable to assume from the histograms shown in Figure 

27 that transactions submitted in batches of one were added to blocks containing up to 

the maximum of 100 batches allowed by the default setting. 
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Figure 27: Committed transaction rates for single transaction batches 

 For multiple transaction batches, up to 520 transactions were committed in some 

one second intervals. Multiple transaction batches, with 10 transactions per batch, can 

have up to 1,000 transactions per block with the default setting for the maximum number 

of batches per block. The higher number of transactions per block for multiple 
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transaction batches will have contributed to the higher variance for multiple transaction 

batches observed in the results in Table 7. 

 Both sets of histograms also display a shift from higher frequencies of low rates 

of tps, to lower frequencies of more varied rates of tps, as the target tps increased. The 

pattern can be observed in both single transaction batch inputs and multiple transaction 

batch inputs and will also have contributed to the increased variance as target tps 

increased. 

 

 

 

Figure 28: Committed transaction rates for multiple transaction batches 

4.2.2 Transactions per block 

It was observed in the results presented in Table 7 that the variance for the number of 

committed transactions per second increased as the rate of target tps increased. It was 

also observed from Figure 27 that transactions were committed at a rate up to the 
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maximum permitted for the default setting for maximum number of batches per block. 

 The next step is to explore further the relationship between blocks and 

transactions. There is no data available that specifically reports on the number of 

transactions per block, but it can be inferred by comparing the number of blocks and the 

number of transactions, both of which are available separately.  

 The results for the total number of blocks and mean number of transactions per 

block are presented in Table 8. They show that the mean number of transactions per 

block increased as the target tps increased. The increase in mean number of transactions 

per block coincides with increases in the standard deviation seen in Table 7. 

 The results also show that the total number of blocks decreased in absolute terms 

with increases in the target tps, though the number was relatively stable throughout. 

Interestingly, the number of blocks was consistent between the single and multiple 

transaction batches, e.g., at a target tps of 10, there were 475 blocks for the single 

transaction batches versus 473 for the multiple transaction batches (see Figure 29). 

 The mean number of transactions per block was higher for multiple transaction 

batches than it was for single transaction batches. Given that the number of blocks was 

relatively constant for single and multiple batch transactions at a given target tps, the 

higher mean transactions per block for multiple transaction batches reflects the higher 

throughput achieved. 

Target tps Transactions per batch Total blocks Mean transactions per block 
2 1 550 8.945 
4 1 538 12.827 
6 1 518 17.264 
8 1 483 28.424 
10 1 475 34.238 
12 1 464 38.841 
8 10 503 42.604 
10 10 473 51.628 
12 10 455 60.400 
20 10 415 92.682 

Table 8: Total blocks and mean transactions per block 

 Results presented in Table 7, Figure 27 and Figure 28 indicate that the high 

variance for committed transactions was driven in some part by the variance in the 

number of transactions per block. This raised the question if reducing the maximum 
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number of transactions per block may help to reduce the variance, by forcing the network 

to commit transactions more frequently in smaller blocks.  

 

Figure 29: Blocks committed for single and multiple transaction batches 

 To evaluate if this approach could offer an effective solution for reducing 

variance, a series of follow up experiments were performed with the maximum number 

of batches per block set at 10, and the results are presented as Table 9. For all but three 

of the experiments, failure occurred after the network became overwhelmed when the 

same number of input transactions were submitted at the lower maximum batches per 

block. In many cases, failure occurred within a few minutes of starting the experiment. 

Target tps Transactions per batch Mean tps Standard deviation 
2 1 Error - 
4 1 Error - 
6 1 Error - 
8 1 Error - 
10 1 Error - 
12 1 Error - 
8 10 5.894 18.411 
10 10 6.717 20.918 
12 10 7.736 23.483 
20 10 Error - 

Table 9: Experiment results with reduced maximum batches per block 
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 This type of failure can occur when batches are submitted faster than they can be 

processed, and they accumulate as pending batches. If the number of pending batches 

reaches a certain threshold, then batches will be rejected to reduce pressure on the 

network, in a feature known as back-pressure16 in Sawtooth. This is a security measure 

that helps to prevent Distributed-Denial-of-Service (DDoS) attacks. Figure 30 shows a 

HTTP 429 status code indicating the error at the IoT client. This error halted execution 

of the IoT client in the current network design. 

 

Figure 30: HTTP status code 429 received at IoT client 

 The results suggest that when the maximum batches per block is set to 10, the 

network can only reliably process around one batch per second, as this is the rate of 

batch submission when the target tps is between 8 and 12 and the batch size is 10 

transactions per batch. Even at 2 batches per second the experiment failed relatively 

quickly, as is the case for a target tps of 2 or greater in a single transaction batch and for 

a target tps of 20 in the 10 transactions batch. 

 Another interesting result is that for the experiments that were successful, there 

is no real observable improvement in the mean tps compared to the equivalent target tps 

with the default setting for maximum batches per block, as can be seen in Figure 31. 

However, there is some reduction in variance as measured by the standard deviation. 

Future studies could evaluate performance with different maximum batches per block to 

find the optimal configuration for this setting. 

 
16 https://sawtooth.hyperledger.org/faq/rest.html#what-is-the-back-pressure-test 
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Figure 31: Committed transaction rates comparison of default and updated minimum 

batches per block 

4.3 Hypothesis test 

The highest mean tps of any experiment was achieved when the target tps was 20 with 

a batch size of 10 and using the default setting for maximum batches per block (see 

Table 7). The data obtained during this experiment will be used to test the hypothesis 

that Sawtooth can process IoT data at a rate of at least 10 transactions per second.  

 A one-sample t-test was selected to test if the mean of the committed transactions 

was statistically significantly greater than a hypothesised mean. The mean of the 

hypothesised distribution in this scenario is 10 transactions per second (tps). Testing the 

hypothesis with a one-sample t-test requires several assumptions to be fulfilled. 

Normally distributed data is one of the assumptions.  

 However, it is clear from the density plot shown in Figure 32 (a) that the 

assumption of data being normally distributed is not valid for the committed transactions 

data. Normality of the data was also shown to be unlikely by performing a Shapiro-Wilk 

test in R.  

 The high number of one-second intervals where zero transactions are being 

committed is a significant contributor to the non-normality of the data. This can be seen 
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on the density plot as the very prominent peak that is centred around zero committed 

transactions. Attempts to transform the data, using a range of methods, including square-

root and log transforms, did not produce a distribution that was normal or even 

approximately normal. An example of the log transformed committed transactions data 

is shown as Figure 32 (b). 

 Without the assumption of normality, an alternate approach to test the hypothesis 

was required. The approach selected was the central limit theorem. The central limit 

theorem states that for sufficiently large random samples, taken (with replacement) from 

a population with mean µ and variance s2, the distribution of the sample means will 

approach normality (Kwak & Kim, 2017). This occurs regardless of the distribution of 

the parent population.  

 The central limit theorem was applied to the committed transactions data by 

taking 5,000 samples of size 300, resulting in a distribution of sample means that is 

shown in Figure 32 (c). The distribution of sample means appears approximately normal, 

and with a mean of 10.69 tps it is very close to the true population mean of 10.68 tps.  

 To improve the normality of the data even further, a square root transformation 

was applied to the central limit theorem data before completing the hypothesis test (see 

Figure 32 (d)). The transformed data was checked using a Shapiro-Wilk test which 

provided strong evidence that the data was normally distributed.  

 Applying the one-sample t-test to the transformed data obtained a p value less 

than the significance level of a = 0.05, meaning we reject the null hypothesis and 

conclude that it is plausible that if Hyperledger Sawtooth blockchain distributed ledger 

is implemented on an edge computing server, then it will process and securely store 

internet-of-things (IoT) data transactions, in the form of temperature readings from a 

sensor connected to a Raspberry Pi computer and transmitted via REST API, at a rate of 

at least 10 transactions per second. 

4.4 Discussion of results 

The results support the alternate hypothesis and answer the research question posed at 

the outset. A possible limitation was having to use a target rate of 20 tps to achieve a 

rate of throughput at the level required to reject the null hypothesis. The decision to 

apply this methodology was made on the basis that 20 was the target and not the actual 
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rate of submission. It follows that the actual rate is equivalent to the mean tps, which has 

achieved the level required to reject the null hypothesis.  

 

 

 

Figure 32: Density plots of committed transaction data 

 This gap between the actual rate of transaction throughput and the target level of 

throughput was one of the main findings in the results. Another finding was the very 

high level of variance in the rate at which transactions were committed to the blockchain. 

Each of these findings will now be discussed further. 

4.4.1 Transaction throughput 

The first of the additional findings to be discussed in detail, was the failure of the mean 

tps to achieve the level specified in the target tps. This is a potential limitation of the 

current network design, and possibly of Hyperledger Sawtooth itself, that requires a 
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better understanding of why it occurred to propose possible solutions and directions for 

future research.  

 Some of the difference between target tps and mean tps was due to the design of 

the network and the method for setting the rate of input transaction submission at the 

IoT client. A time delay was specified at run time by providing an interval at the IoT 

client through a command line argument, where the interval was a programmed delay 

between submitting successive transactions, e.g., for 10 transactions per second the 

interval was 100 milliseconds.  

 The input transaction submission interval did not leave room for additional 

processing times within any of the software components or latencies in the REST API 

response. This will have contributed to a lower mean tps relative to the target tps rate 

due to the total round-trip time of sending a transaction being longer than the specified 

interval between transactions.  

 Differences between target tps and mean tps could also be due to internal delays 

within the Sawtooth components, including the consensus mechanism. Delays in the 

Sawtooth components or consensus mechanism would represent a more binding 

constraint for achieving a target level of performance.  

 Changing the design of the IoT client to submit transactions asynchronously may 

remove some of the delays due to the REST API response latencies. Sawtooth SDKs are 

available for JavaScript that may offer a better solution for asynchronously posting the 

HTTP requests. This approach could be applied in future studies aimed at improving and 

optimising performance. Such a redesign would help highlight the extent to which delays 

were occurring internally in the Sawtooth components by removing any possible 

latencies arising from the REST API.  

 Another redesign that could be explored in future work would be to use a lower-

level messaging protocol to submit transactions. Sawtooth natively supports the ZMQ 

messaging protocol for this task. This solution is more complex than using the REST 

API but offers a lighter-weight and more efficient and robust solution17. 

 One approach to reduce the delta between target tps and actual tps that was 

evaluated during the experiments was to batch together multiple transactions before 

submitting them to the REST API. This approach results in fewer round trips per 

transaction. The effect of increasing the number of transactions per batch is visible in 

 
17 https://sawtooth.hyperledger.org/docs/1.2/architecture/rest_api.html 
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Figure 25, where the results indicate that multiple transaction batches do achieve a 

higher mean tps compared to single transaction batches, for a given target tps.  

 However, increasing the number of transactions per batch does also present some 

potential risks to overall performance. Multiple transaction batches incur a higher cost 

if a batch is rejected by a timeout resulting from an excess of pending batches, as all 

transactions in the batch will be rejected together.  

 More transactions per batch also increases latency in the network by increasing 

the time for some transactions to be committed, as the first transaction added to the batch 

is not submitted to the REST API until the last transaction has been added to the batch. 

For example, if transactions are added to a 10 transactions batch, at the rate of one per 

second, then at least 10 seconds will pass from the time of adding the first transaction 

until the last transaction is added to complete the batch and send to the REST API. 

4.4.2 Performance variability 

Variability in performance was another finding of the experiment results. This can be 

seen in Table 7 where it presents as the large standard deviations relative to the 

corresponding means, and throughout Figure 27 and Figure 28, where it presents as a 

long tail in the histogram distributions. Variance was also observed during the 

experiments, where it presented as unevenness in the performance of the network. This 

unevenness, which has been discussed already, presents as pauses and bursts of activity 

in the rate of committed transactions, visible through the console logging messages and 

on the Grafana dashboard.  

 Under ideal conditions, a linear rate of input transactions would have an 

approximately corresponding linear rate of transactions being committed to the 

blockchain. Such linearity may be unrealistic in real-world conditions, as latencies and 

bottlenecks occur at various stages of processing. However, even allowing for latency, 

it is reasonable to expect that the blockchain should achieve a steady state of transaction 

throughput that has a linear relationship with the rate of input transactions. 

 Attempts to reduce the amount of variance by forcing the transactions into 

smaller blocks resulted in failure for most rates of input transaction, though the 

experiments that completed successfully did have some reduction in their standard 

deviations compared to the initial results. Repeating the experiment in a higher resource 

environment may improve performance for smaller blocks but that goes against the goal 
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of using low-powered edge computing resources. Ultimately, it seems that variance at 

higher rates of input transaction is a characteristic of Hyperledger Sawtooth as other 

studies have shown the same finding (Shi et al., 2019). 

 High variance creates a limitation on the types of applications and use cases for 

Sawtooth at the business solution layer. For non-time critical applications, with lower 

throughputs, Sawtooth may be an appropriate blockchain platform to provide a secure 

log of IoT data transactions. On the other hand, for time sensitive applications and use 

cases with higher throughputs, then Sawtooth may not be an appropriate blockchain 

platform, at least not with the current network design. 

4.5 Summary 

Results were presented for multiple experiments across a range of input transaction rates 

and for different configurations. These results provided some interesting findings and 

insights on how transactions are committed to the blockchain.  

 One finding was the failure of the network to support the specified rate of input 

transactions, as measured by the target tps. This finding relates more to the design of the 

network rather than the performance of Sawtooth. 

 Another finding was the variability in the rate at which transactions were 

committed to the blockchain. Such variance has been observed in other studies (Shi et 

al., 2019), indicating that this finding relates more to an inherent performance 

characteristic of Sawtooth. Attempts to reduce the variance by reducing the number of 

transactions per block were largely unsuccessful. 

 A one-sample t-test was applied to the committed transaction data to test the 

hypothesis. Application of the central limit theorem and a square root transform was 

required to fulfil the assumption of normally distributed data that is required for a one-

sample t-test.  

 The result of the test supports the hypothesis that a Hyperledger Sawtooth 

blockchain distributed ledger implemented on an edge computing server will process 

and securely store internet-of-things (IoT) data transactions, in the form of temperature 

readings from a sensor connected to a Raspberry Pi computer and transmitted via REST 

API, at a rate of at least 10 transactions per second. 
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5. CONCLUSION 

This final chapter will begin with a summary of the research from the literature review, 

before restating the problem definition that framed the research question at the outset of 

the work. This will be followed with an overview of the results and findings from an 

experiment designed to address the research problem, including the implications and 

limitations. Finally, the chapter will offer recommendations for future work. 

5.1 Research overview 

The research conducted in the literature review focused on three main elements that were 

integrated into the research question and hypothesis test. These three elements were IoT 

security, blockchain applications for IoT security, and edge computing in the context of 

IoT security and blockchain. 

 To begin with, the research focused on gaining an understanding of the security 

challenges facing IoT and the existing proposed solutions, which includes blockchain. 

Blockchain has been shown to offer a feasible solution for IoT security (Dorri et al., 

2017), but limitations have been encountered in the rate of transaction throughput due 

to the time taken for the consensus mechanism to approve and add transactions to a new 

block (Huh et al., 2017). 

 The research then explored how the transaction throughput limitations can 

potentially be overcome using private blockchains with more efficient consensus 

mechanisms. One such private blockchain is Hyperledger Sawtooth, which has shown 

promising results in performance benchmarks compared to other blockchain platforms 

(Rasolroveicy & Fokaefs, 2020). 

 Finally, proposals for integrating IoT and blockchain with edge computing were 

explored to establish the benefits, and to understand the patterns and reference 

architectures that have previously been applied. A proposed architecture consisting of 

an IoT layer, an edge layer, and a business solution layer (Sittón-Candanedo et al., 2019), 

was selected as a blueprint for the experiment design. 

5.2 Problem definition 

A gap existed in the literature for a performance evaluation of Hyperledger Sawtooth in 

a practical application of blockchain for IoT data security that included a detailed design 
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and a solution architecture. A practical application using real data collected by real 

sensors and submitted over a physical network provides better generalisation of results 

compared to experiments that use test transactions.  

 Results obtained in an evaluation of a practical application can be taken as more 

indicative of real-world performance than results obtained from simulated networks and 

test transactions. As such, a practical application serves as a better indicator of 

performance for development of use cases, especially when combined with a detailed 

design and solution architecture that potentially can be scaled. 

5.3 Experimentation, evaluation & results 

To address the research problem, an experiment was designed for an edge computing 

implementation of Hyperledger Sawtooth blockchain to store data from an IoT device. 

The edge computing network consisted of a MacBook Air laptop representing the edge 

server and a Raspberry Pi computer connected to a temperature sensor representing the 

IoT device. The edge server hosted three Sawtooth blockchain nodes on three virtual 

machines. Communication between the IoT device and the blockchain nodes on the edge 

server was over a home Wi-Fi network using Sawtooth's REST API.  

 Experiments were run over a range of input transaction rates and with different 

configurations to evaluate performance under different workloads. Data for each of the 

experiments was captured in an InfluxDB instance on one of the virtual machines. After 

the experiments were complete, data was exported to R for analysis, visualisation, and 

hypothesis testing.  

 The minimum rate of throughput required to reject the null hypothesis was at 

least 10 transactions per second. The hypothesis test was performed using a one-sample 

t-test at an a = 0.05 level of significance. Prior to testing the hypothesis, the central limit 

theorem and a square root transformation was applied to the results data. This was 

required to achieve the assumption of normality required for the one-sample t-test. 

 The outcome of the hypothesis test indicates that if Hyperledger Sawtooth 

blockchain distributed ledger is implemented on an edge computing server, then it will 

process and securely store IoT data transactions, in the form of temperature readings 

from a sensor connected to a Raspberry Pi computer and transmitted via REST API, at 

a rate of at least 10 transactions per second. 
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 The level of throughput observed in the results would support many use cases, 

such as a smart home environment, where IoT devices could communicate with the 

centralised edge server to store and exchange data securely, e.g., the temperature data 

could be accessed by the heating system as a thermostatic control. 

 However, results also showed a high level of variance in the rate of transaction 

throughput that appears to be characteristic of Sawtooth as similar studies have also 

reported this finding (Shi et al., 2019). Variance in throughput was the result of 

intermittency in the rate at which transactions were committed to the blockchain. This 

variance could be an issue for some use cases and applications at the business solution 

layer that depend on a steady rate of data availability.  

 Unsuccessful attempts were made to reduce the amount of variance by altering 

the configuration to add fewer batches and hence fewer transactions per block. Using 

this approach, the network quickly became overwhelmed and experienced a queue 

timeout leading to the rejection of transactions. The few experiments that did complete 

successfully did show a slight reduction in variance but no overall improvement in 

throughput. 

 There were also some limitations in achieving the desired target rate of 

transaction throughput from the IoT client. This was due to the round-trip time of 

submitting a transaction via the Sawtooth REST API being longer than anticipated. 

Typically, the actual rate achieved for throughput was about half the target rate. Some 

or most of this delay is related to the design of the experiment and cannot be attributed 

to the performance of Sawtooth itself.  

 Crucially, every transaction that was submitted to the REST API was either 

committed or was reported as an error in the cases where the minimum transaction per 

batch was lowered leading to failure of the experiment. The importance of this cannot 

be overstated in a series of experiments where 100s of thousands of transactions were 

submitted by the IoT client. In this regard, it can be concluded that the reliability of 

Sawtooth and the network design was very high. 

 Results and findings must be viewed within the context of the edge computing 

implementation that was designed for the experiments. The host machine representing 

the centralised edge server for the Sawtooth network was a basic specification MacBook 

Air laptop. This edge server was running three blockchain nodes as that is the minimum 

number required by the PoET consensus mechanism.   
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 This is a heavy workload for the host machine as each blockchain node was 

running within its own virtual machine (VM). If the network was extended to three or 

more edge servers in a larger area blockchain network, then each edge server would need 

to run only a single blockchain node, thereby reducing the workload on each edge server. 

 A final point relates to the setup and configuration of both the software and 

hardware components, which was a significant effort. The Sawtooth documentation 

available online was to a high standard but there were some gaps. As Sawtooth is 

somewhat of a niche software application, the user community is small and there are 

relatively few resources available for support and discussion. Troubleshooting during 

installation and operation was a challenge requiring long hours of testing, investigation, 

and debugging. 

5.4 Contribution and Impact  

The experiments conducted have addressed a gap in the existing literature to provide a 

performance evaluation of a practical application of Hyperledger Sawtooth for IoT data 

security. Notwithstanding the limitations that have been discussed, the outcome of the 

hypothesis test indicates that an edge computing implementation of Sawtooth can 

achieve a throughput rate of at least 10 transactions per second in the experiment that 

was designed and evaluated. 

 Performance was evaluated using a physical IoT device, consisting of a 

Raspberry Pi connected to a temperature sensor, sending real data over a REST API to 

the Sawtooth nodes on a basic specification MacBook Air that acted as a centralised 

edge server. This improves the generalisability of the results compared to other 

performance assessments of Sawtooth that applied test cases only. It also extends the 

scope of Sawtooth applications for IoT to just about any environment that has an internet 

connection and some basic hardware. 

 A detailed analysis on the sources of variance in transaction throughput was 

presented alongside the experiment results, something which wasn't provided in other 

studies of Sawtooth. Understanding the sources of variance paves the way for future 

efforts to reduce it and achieve a more stable performance. 

 The detailed network and experiment design provides a scalable reference 

architecture and blueprint for future development of use cases and applications that can 
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utilise the data stored on the blockchain. Design improvements have also been 

suggested, notably in relation to reducing the round-trip time of submitting transactions. 

5.5 Future Work and Recommendations  

Further work will be required to understand the limitations and other observations that 

were not fully explored in the results as they were not within scope. One observation 

that was noted but not explored was the forking of the blockchain that occurred in all 

experiments. Forking could have implications on performance at the business solution 

layer and would benefit from further investigation and understanding before use cases 

and applications are developed. 

 Another observation that was noted but not fully explored was the occasional 

reduction in the number of committed transactions on individual blockchain nodes. This 

may well have been related to forking of the blockchain and self-correcting mechanisms 

to ensure no duplicate transactions were added in blocks. Comfort is taken from the fact 

that the experiments concluded with the expected number of transactions committed on 

each blockchain node. However, it is worth understanding the reasons why this occurred 

before proceeding to development of use cases and applications. 

 Limitations relating to achieving the target level of throughput could potentially 

be overcome by redesigning some of the features, such as by sending transactions to 

Sawtooth's REST API asynchronously to reduce waiting time on HTTP responses. This 

redesign should be evaluated and benchmarked against the existing design to see if it 

offers any improvement. Sawtooth transactions can also be submitted using the ZMQ 

protocol, and this could also be included in future benchmarking performance evaluation 

of transaction submission. 

 Results showed that reducing the batches per block does reduce performance 

variance slightly, though the setting that was evaluated in the experiments was perhaps 

too ambitious and caused the network to quickly get overwhelmed. Further analysis 

should be performed to find the optimal configuration in terms of batch size and batches 

per block to find a balance between minimising variance while avoiding overwhelming 

the network with too many batches.  

 Given the initial success of the experiments conducted in this study, use cases 

and applications at the business solution layer can be prototyped, tested, and evaluated, 

in parallel to work addressing the limitations and observations discussed. The network 
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for these prototypes should be scaled to encompass a wider area of multiple sites, with 

each site a separate blockchain node. Each site or blockchain node can in turn have 

multiple IoT devices. Performance of the network with multiple nodes supporting 

multiple IoT devices can then be re-evaluated to measure throughput for scaled 

applications. 

 A final recommendation to the Hyperledger developers and community would 

be to maintain support through the available channels for troubleshooting and 

debugging. Community support is crucial for a niche application like Sawtooth as other 

learning resources are very limited. While resources were often hard to find, the quality 

of documentation and resources that were available from official channels was of an 

excellent standard. Some gaps exist so regular updates will be required to ensure these 

are addressed and closed off. 
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