
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Science

2022

Performance Evaluation of an Edge Computing Implementation of Performance Evaluation of an Edge Computing Implementation of

Hyperledger Sawtooth for IoT Data Security Hyperledger Sawtooth for IoT Data Security

Sean Connolly

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Engineering Commons

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Performance evaluation of an edge

computing implementation of

Hyperledger Sawtooth for IoT data

security

Sean Connolly

A dissertation submitted in partial fulfilment of the requirements of

Technological University Dublin for the degree of

M.Sc. in Computer Science (Advanced Software Development)

16 June 2022

 i

I certify that this dissertation which I now submit for examination for the award of MSc

in Computing (Advanced Software Development), is entirely my own work and has not

been taken from the work of others save and to the extent that such work has been cited

and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of the

Technological University Dublin and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements of

the Institute’s guidelines for ethics in research.

Signed: _________________________________

Date: 12 June 2022

 ii

ABSTRACT

Blockchain offers a potential solution to some of the security challenges faced by the

internet-of-things (IoT) by using its practically immutable ledger to store data

transactions. However, past applications of blockchain in IoT encountered limitations in

the rate at which transactions were committed to the chain as new blocks. These

limitations were often the result of the time-consuming and computationally expensive

consensus mechanisms found in public blockchains.

 Hyperledger Sawtooth is an open-source private blockchain platform that offers

an efficient proof-of-elapsed-time (PoET) consensus mechanism. Sawtooth has

performed well in benchmarks against other blockchains. However, a performance

evaluation for a practical application of Sawtooth for IoT data security using real data

was found to be lacking in the literature.

 To address this gap, an experiment was designed to evaluate the performance of

an edge computing implementation of Sawtooth to store temperature data from a

physical IoT device. Experiments were then performed for a range of input transaction

rates to evaluate performance under different workloads.

 The results of the experiments indicate that Sawtooth can store transactions at a

rate of at least 10 transactions per second in the edge computing implementation that

was evaluated. The implementation was highly reliable in terms of transactions

submitted versus transactions committed. The experiment also demonstrates that

blockchain applications for IoT data security can be extended to any environment that

has access to relatively low specification hardware and Wi-Fi internet connectivity.

 Some limitations were encountered during the experiments, particularly in

relation to the amount of variance in the rate at which transactions were committed to

the blockchain. This could have implications for some use cases at the business solution

layer that depend on stable and consistent performance.

Key words: Blockchain, Internet-of-Things, IoT, Edge computing, Hyperledger

Sawtooth, Data security

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor Dr Marisa Llorens Salvador

for her support and guidance throughout my dissertation journey. Our weekly calls kept

me calm and focused and were something I looked forward to.

 I would also like to thank all my lecturers and the academic staff at TUDublin

who made my learning experience as enjoyable as it has been. Their level of knowledge

and experience is both exceptional and inspiring.

 I would also like to thank the Hyperledger developer community, whose amazing

work made my work possible, and to Dan Middleton for responding to my queries. I

hope I can now contribute some of my learning and experience back to this community.

 Finally, a special thanks to my partner Becca for her support and patience

through those long days and nights when I was engrossed in my computer, and to my

friends and family whom I look forward to seeing more of when I finally step away from

said computer.

 iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

TABLE OF FIGURES ... vii

TABLE OF TABLES .. ix

1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 Research problem .. 2

1.3 Research Objectives ... 3

1.4 Research Hypothesis .. 4

1.5 Research Methodologies .. 5

1.6 Scope, Assumptions, and Limitations ... 5

1.7 Document Outline ... 6

2. LITERATURE REVIEW .. 7

2.1 Internet-of-things .. 7

2.1.1 Raspberry Pi .. 8

2.2 Blockchain ... 9

2.2.1 Blockchain applications for IoT ... 11
2.2.2 Performance metrics for blockchain ... 13

2.3 Hyperledger blockchains .. 14

2.3.1 Hyperledger Fabric .. 14
2.3.2 Hyperledger Sawtooth .. 14
2.3.3 Performance of Hyperledger blockchains ... 16

2.4 Edge Computing ... 17
2.4.1 Edge computing for blockchain applications in IoT .. 18
2.4.2 Edge computing architectures for blockchain applications in IoT .. 18
2.4.3 Communication in the blockchain-IoT-edge network ... 20

 v

2.5 Summary ... 21

3. DESIGN & METHODOLOGY ... 22

3.1 Network Design & architecture .. 22

3.2 Software installation .. 24

3.3 Sawtooth configuration ... 24

3.4 Initialising the blockchain .. 25

3.5 IoT device configuration ... 27

3.6 Sawtooth application for IoT .. 28
3.6.1 IoT transactions ... 29
3.6.2 IoT Device namespace addressing .. 30
3.6.3 IoT Transaction Processor ... 31
3.6.4 IoT Client Application .. 33

3.7 Starting the network .. 36

3.7.1 Starting the IoT Client and sending transactions .. 37

3.8 Experiment process ... 38

3.9 Summary ... 40

4. RESULTS, EVALUATION, AND DISCUSSION .. 42

4.1 Real-time observations of experiment performance .. 42

4.2 Experiment Results .. 44

4.2.1 Transaction throughput .. 46
4.2.2 Transactions per block .. 49

4.3 Hypothesis test .. 53

4.4 Discussion of results .. 54

4.4.1 Transaction throughput .. 55
4.4.2 Performance variability ... 57

4.5 Summary ... 58

5. CONCLUSION ... 59

5.1 Research overview ... 59

5.2 Problem definition ... 59

 vi

5.3 Experimentation, evaluation & results ... 60

5.4 Contribution and Impact .. 62

5.5 Future Work and Recommendations ... 63

BIBLIOGRAPHY .. 65

 vii

TABLE OF FIGURES

FIGURE 1: ARCHITECTURAL LAYERS IN AN IOT SYSTEM .. 8

FIGURE 2: RASPBERRY PI COMPUTER ... 9

FIGURE 3: OUTLINE OF BASIC BLOCKCHAIN ARCHITECTURE .. 10

FIGURE 4: HYPERLEDGER SAWTOOTH ARCHITECTURE .. 15

FIGURE 5: EDGE COMPUTING ARCHITECTURE FOR IOT .. 19

FIGURE 6: NETWORK DESIGN FOR EXPERIMENT ... 23

FIGURE 7: TOML CONFIGURATION FILE .. 25

FIGURE 8: COMMANDS TO CREATE GENESIS BLOCK FOR POET CONSENSUS ENGINE 26

FIGURE 9: DISTRIBUTING A PUBLIC AND PRIVATE KEY PAIR TO THE IOT DEVICE 27

FIGURE 10: SETTING TRANSACTOR IOT POLICY ... 27

FIGURE 11: BATCH REJECTED FOR UNAPPROVED PRIVATE KEY 28

FIGURE 12: SAWTOOTH TRANSACTIONS AND BATCHES .. 29

FIGURE 13: GLOBAL STATE AND NAMESPACE ADDRESSING ... 31

FIGURE 14: IOT TRANSACTION PROCESSOR APPLY METHOD .. 32

FIGURE 15: IOT TRANSACTION PROCESSOR VALIDATION RULE 32

FIGURE 16: REST API RESPONSE SHOWING INVALID TRANSACTION 33

FIGURE 17: IOT CLIENT SENSOR CLASS .. 34

FIGURE 18: TEMPERATURE SENSOR BREADBOARD CIRCUIT ... 35

FIGURE 19: LOGGING OUTPUT OF THE SAWTOOTH VALIDATOR 36

FIGURE 20: MONITORING PERFORMANCE ON THE GRAFANA DASHBOARD 38

FIGURE 21: CHECKING THE NUMBER OF COMMITTED TRANSACTIONS 39

FIGURE 22: GRAFANA COMMITTED TRANSACTIONS DASHBOARD, SHOWING STEPPED

INCREASE .. 42

FIGURE 23: IOT TRANSACTION PROCESSOR LOG MESSAGES SHOWING INACTIVITY 43

FIGURE 24: GRAFANA PENDING BATCHES DASHBOARD ... 43

FIGURE 25: MEAN TPS FOR SINGLE AND MULTIPLE TRANSACTION BATCHES 46

FIGURE 26: EXAMPLE OF TRANSACTIONS COMMITTED IN TWO-MINUTE PERIOD (TARGET

TPS: 4) ... 47

FIGURE 27: COMMITTED TRANSACTION RATES FOR SINGLE TRANSACTION BATCHES 48

FIGURE 28: COMMITTED TRANSACTION RATES FOR MULTIPLE TRANSACTION BATCHES 49

FIGURE 29: BLOCKS COMMITTED FOR SINGLE AND MULTIPLE TRANSACTION BATCHES . 51

FIGURE 30: HTTP STATUS CODE 429 RECEIVED AT IOT CLIENT 52

 viii

FIGURE 31: COMMITTED TRANSACTION RATES COMPARISON OF DEFAULT AND UPDATED

MINIMUM BATCHES PER BLOCK ... 53

FIGURE 32: DENSITY PLOTS OF COMMITTED TRANSACTION DATA 55

 ix

TABLE OF TABLES

TABLE 1: EXAMPLES OF BLOCKCHAIN APPLICATIONS FOR IOT 12

TABLE 2: STUDIES ON THE PERFORMANCE OF BLOCKCHAIN PLATFORMS 16

TABLE 3: HARDWARE AND VIRTUAL MACHINE (VM) SPECS .. 23

TABLE 4: MAJOR SOFTWARE COMPONENTS INSTALLED ... 24

TABLE 5: TRANSACTION HEADER FIELDS ... 30

TABLE 6: IOT CLIENT COMMAND LINE ARGUMENTS ... 37

TABLE 7: RESULTS SHOWING MEAN TPS AND STANDARD DEVIATIONS 45

TABLE 8: TOTAL BLOCKS AND MEAN TRANSACTIONS PER BLOCK 50

TABLE 9: EXPERIMENT RESULTS WITH REDUCED MAXIMUM BATCHES PER BLOCK 51

 1

1. INTRODUCTION

This chapter will briefly introduce some of the important concepts and features of

blockchain, the internet-of-things, and edge computing. It will then introduce the

research problem, research objectives, research methodologies, and scope and

limitations, before finally giving an outline of the remaining chapters.

1.1 Background

The Internet-of-Things (IoT) is the name given to the ubiquitous collection of internet

connected devices and sensors that enable smart environments by producing, sharing,

and consuming data in real-time or close to real-time. This includes many household and

personal devices, everything from smart TVs to wearables and fitness trackers that are

deeply embedded and integrated into our day-to-day lives.

 These devices keep us informed, help us monitor our health and well-being, keep

us entertained, and generally add to the convenience and comfort of modern life. On a

larger scale, IoT devices monitor and control critical infrastructure like transport systems

and electricity grids. Unfortunately, the vast and heterogeneous IoT devices have known

issues relating to the security and privacy of data (Alfandi et al., 2021), and there are

already too many examples of bad actors exploiting vulnerabilities (Alladi et al., 2020).

 One of the proposed solutions to enhance IoT security is blockchain (Alfandi et

al., 2021). Blockchain is a decentralised and distributed ledger that uses a consensus

mechanism to add new blocks containing transactions. The consensus mechanism is

designed such that it is very difficult for a would-be attacker to gain control and alter

transactions (Nakamoto, 2008). Transactions may be financial transactions in the

traditional sense of a ledger, but equally a transaction can be used to store other types of

data and information.

 Previous applications of blockchain for IoT have shown some successes but have

also encountered limitations due the time taken for the consensus mechanism to add new

blocks (Huh et al., 2017). Consensus mechanisms vary depending on the type of

blockchain platform, and this is one of the differentiators of the various blockchain

platforms that have emerged and evolved. Evaluating the different performance of

consensus mechanisms for different applications is an active area of research.

 2

 Blockchains are often categorised as being public or private. Public blockchains,

also called permissionless, have open memberships and security is maintained by robust

consensus mechanisms. Private blockchains, also called permissionless, have restricted

membership that allows more efficient consensus mechanisms as there is already a level

of implicit trust in the network.

 An example of a private blockchain is Hyperledger Sawtooth which was

originally developed by IBM and is now supported by the Hyperledger Foundation1.

Sawtooth features a proof-of-elapsed-time (PoET) consensus mechanism that has

performed well when benchmarked against other blockchain platforms (Rasolroveicy &

Fokaefs, 2020).

 Edge computing has also been proposed alongside blockchain as a solution to

IoT security (Hassija et al., 2019). Edge computing complements blockchain and IoT by

providing the distributed computational and storage resources to enable their

decentralisation.

1.2 Research problem

Blockchain has been proposed by several authors as a solution to some of the challenges

faced within the domain of IoT security, by providing a secure and immutable distributed

log of transactions (Alfandi et al., 2021; Hassija et al. 2019). This is supported by

successful demonstrations of blockchain for IoT applications (Dorri et al., 2017).

 However, previous studies on blockchain for IoT found limitations on the

transaction throughput performance of proposed solutions, often due to the amount of

time taken for the consensus mechanism to add new blocks to the chain (Huh et al.,

2017). Transaction throughput limitations become an issue when the level of

performance is not sufficient to support the real-time or close to real-time decision-

making requirements of some IoT applications (Alfandi et al., 2021).

 Hyperledger Sawtooth offers a potential solution to the transaction throughput

limitation, based on its performance in benchmarking studies (Rasolroveicy & Fokaefs,

2020). However, a gap exists in the availability of data on the performance of practical

applications of Sawtooth for IoT data security. Many studies on Sawtooth performance

relied on test cases for benchmarking purposes (Ampel et al., 2019; Shi et al., 2019),

1 https://www.hyperledger.org/about

 3

while the practical applications focused on operational or other aspects (Baralla et al.,

2019; Kromes et al., 2019; Malik et al., 2019). This is the primary research problem, to

determine if a practical application of Hyperledger Sawtooth blockchain for IoT data

security, can achieve a minimum level of transaction throughput performance.

 A secondary research problem is the network design and solution architecture

for blockchain applications in IoT security. Network design and architecture didn't get

much attention in studies that focused on performance, again due in part to the reliance

on test cases for benchmarking (Ampel et al., 2019; Shi et al., 2019). This is something

that needs to be addressed, as it has been suggested that an effective architecture for

blockchain applications in IoT is not yet available (Pavithran et al., 2020).

 Some researchers have proposed the integration of blockchain, IoT, and edge

computing, as complementary elements of an overall system to increase data security

and deliver other benefits (Yang et al., 2019; Gadekallu et al., 2021). However, like the

primary research problem, there is a gap in the research for demonstrations of practical

applications that integrate Hyperledger Sawtooth blockchain with edge computing to

increase IoT data security.

 Bringing together the primary research problem and the secondary research

problems leads to the overall research problem as defined below.

Research Question: Can an edge computing implementation of Hyperledger Sawtooth

blockchain process and securely store data transactions from an IoT device, at a

predefined minimum rate of transaction throughput?

1.3 Research Objectives

The overall objective of this dissertation is to answer the research question that has been

formulated and defined. To do this, an edge computing architecture will be designed that

integrates a Hyperledger Sawtooth blockchain and an IoT device. The edge computing

architecture will consist of a physical edge server that will receive transactions of real

data from a physical IoT device.

 Experiments will then be carried out to collect data for analysis of performance

under different workloads. Data will be analysed at the most granular level possible to

understand the mean and variance, as these are key metrics to understanding the

performance implications for real-world applications. Data from experiments will also

 4

be used to test a hypothesis derived from the research question to understand if the

minimum level of performance is likely to be achieved.

The general and specific objectives can be summarised as:

• Review existing literature to identify the open challenges and understand the

state-of-the-art in relation to the research question.

• Design the network. Experiments will require an edge computing network

consisting of a physical edge server hosting multiple virtual machines to receive

data from the physical IoT device.

• Develop custom code required to get sensor data, add the data to a transaction,

then stream data from the IoT device to the Hyperledger Sawtooth blockchain

via REST API. Develop a transaction processor for IoT data to save sensor data

in the blockchain state.

• Install and configure Hyperledger Sawtooth blockchain. Use the built-in test

functionality available in Sawtooth to confirm the network is operating as

expected.

• Stream data from the IoT device to the Hyperledger Sawtooth blockchain,

monitor performance in real-time, and gather data for analysis. Data will be

streamed at multiple rates of input transaction to evaluate performance at

different workloads.

• Assess and validate the quality of data. Analyse the results to gain insights on

the mean and variance for each rate of input.

• Repeat experiments where initial findings lead to new insights requiring further

investigation.

• Apply any post-processing and transformations to the data in preparation for the

hypothesis test.

• Test the hypothesis, discuss the results and other findings, then draw conclusions

on the findings and outcomes.

• Provide directions and recommendations for future work.

1.4 Research Hypothesis

To deliver on the research objectives and answer the research question, the null and

alternate hypotheses are defined below. The minimum rate of transaction for the

 5

hypotheses has been defined as at least 10 transactions per second. The minimum rate

of 10 transactions per second was selected on the basis that the implementation could

support up to 10 devices sending an update every second.

H0: If a Hyperledger Sawtooth blockchain distributed ledger is implemented on an edge

computing server, then it will not process and securely store internet-of-things (IoT) data

transactions, in the form of temperature readings from a sensor connected to a Raspberry

Pi computer and transmitted via REST API, at a rate of at least 10 transactions per

second.

H1: If a Hyperledger Sawtooth blockchain distributed ledger is implemented on an edge

computing server, then it will process and securely store internet-of-things (IoT) data

transactions, in the form of temperature readings from a sensor connected to a Raspberry

Pi computer and transmitted via REST API, at a rate of at least 10 transactions per

second.

1.5 Research Methodologies

A deductive research methodology has been applied to formulate the null and alternate

hypothesis at the outset, based on gaps identified in the existing literature. Quantitative

methods will be applied to test the hypothesis using primary data for transaction

throughput, that will be generated by conducting a series of experiments. The hypothesis

test will provide an empirical result indicating if performance of the blockchain

implementation is or is not within the defined minimum rate of transaction throughput

required to reject the null hypothesis.

1.6 Scope, Assumptions, and Limitations

The scope of this study is the application of blockchain, implemented on an edge

computing network, to provide security for IoT device data. It is assumed that IoT data

is secure when it has been committed as a transaction on the practically immutable

blockchain. A limitation of the research is that not every possible IoT device can feasibly

be modelled as they are vast in quantity and heterogeneous in nature. This will be

delimited by using a Raspberry Pi computer connected to a temperature sensor to

represent the IoT device.

 6

1.7 Document Outline

Chapter 2 will review the existing literature, starting with the challenges and threats

facing IoT security. From there, it will explore some of the current research around

blockchain and how it offers a potential solution for securing IoT data, with a specific

focus on the performance and challenges of the different types of blockchain platforms.

Finally, this chapter will investigate edge computing as a proposed solution architecture

for blockchain applications in IoT.

 Chapter 3 will provide an overview of the experiment design and methodology.

It will start with the design of the network, then go on to outline the process to install

and configure Hyperledger Sawtooth and other software and hardware components. It

will also cover the design of the IoT client and the process to create and submit data

transactions. The methodology for conducting the experiments and collecting and

processing data will also be described.

 Chapter 4 will present the results of the experiments and the outcomes and

findings will be evaluated. The hypothesis will be tested to answer the research question.

Finally, the results of the hypothesis test, as well as any other findings or insights, will

be discussed thoroughly.

 Chapter 5 will summarise and conclude the results and findings in the context of

the research question and hypothesis test. It will address any limitations found in the

results and offer direction and recommendations for future research.

 7

2. LITERATURE REVIEW

This chapter will review the existing relevant research and explore the current state-of-

the-art in relation to the research question. It will begin with the internet-of-things (IoT),

to gain an initial understanding of the security challenges and the solutions that have

been proposed. It will then outline some of the research on blockchain applications for

IoT security and examine studies on performance aspects of different blockchain

platforms. Finally, it will explore the research on how blockchain and edge computing

can provide an integrated solution to the challenges of IoT data security.

2.1 Internet-of-things

The internet-of-things (IoT) is the name given to the ubiquitous collection of internet

connected devices and sensors that enable smart environments by producing, sharing,

and consuming data in real-time or close to real-time. Data exchanged by IoT devices is

often sensitive or highly sensitive in nature, everything from the health information of

individuals generated by fitness trackers to the real-time state of power grids and other

critical infrastructure. Keeping such data secure and private is imperative and the

consequences of a breach of data security could be devastating for individuals,

businesses, and society in general.

 IoT systems have different architectural layers, with the lowest layer, often

referred to as the perception or sensing layer, containing the physical devices such as

sensors and actuators (Hassija et al., 2019). The highest layer is the application layer that

contains the business logic and use cases that encompass various smart environments.

 Between the perception layer and the application layer is the network layer that

carries data from the devices to a middleware layer containing databases and other data

services to support the application layer. The middleware layer is particularly important

when considering data security as it is the location for the repositories and services that

exchange data (see Figure 1).

 Threats to security are present throughout all layers of IoT systems with multiple

attack modes described in the literature (Alfandi et al., 2021). Smartmeters, Fitbits, and

Nest thermostats are just some of the everyday consumer IoT devices that have had

vulnerabilities successfully exploited (Alladi et al., 2020). The challenge of securing IoT

 8

devices is compounded by the heterogeneity of devices that are low-powered and have

limited computational resources (Alfandi et al., 2021).

 Given the scale of the challenge, providing security for IoT systems will require

an integrated and multi-layered approach that operates over the multiple layers of

heterogeneous devices. Replacing the middleware layer with a blockchain layer and

edge computing are among the solutions that have been proposed as a solution to IoT

security (Alfandi et al., 2021; Hassija et al., 2019).

 Other solutions based on deep learning, big data technology, and intrusion

detection systems (IDS) have also been proposed to enhance security in IoT (Elrawy et

al., 2018; Amanullah et al., 2020).

Figure 1: Architectural layers in an IoT system (Hassija et al., 2019)

2.1.1 Raspberry Pi

While discussing IoT devices, it is worth mentioning the humble Raspberry Pi as a

device that is frequently used as a component for prototyping, testing, and evaluating

proposed IoT solutions. First released in 2012, the Raspberry Pi is a fully functioning

 9

computer about the size of a credit card with a Linux based operating system that costs

around €30 (see Figure 2). General purpose input/output (GPIO) pins support connection

of sensors and other peripheral devices directly to the Raspberry Pi.

 Having access to a filesystem for storage and the ability to execute higher level

programming languages like python gives the Raspberry Pi some advantages compared

to other microcontrollers like the Arduino. Pahl et al. (2016) found that the Raspberry

Pi is a feasible, cost-effective, and robust solution for sensor integration and local data

processing in an environment subject to power supply problems.

 Raspberry Pi computers connected to temperature or humidity sensors have also

been used to represent IoT devices in the development, test, and evaluation of blockchain

applications for IoT (Kullig et al., 2020).

Figure 2: Raspberry Pi computer

2.2 Blockchain

Blockchain is a decentralised and distributed ledger that uses a consensus mechanism to

verify and add blocks containing transactions. The consensus mechanism makes it

impractical for bad actors to gain control of the blockchain or alter transactions, while

privacy is preserved by using encryption with public and private keys (Nakamoto, 2008).

Every block that is added contains a reference to the previous block, creating a verifiable

chain that extends back to the first or genesis block. Each block also contains the root

 10

hash of a Merkle-Tree data structure consisting of the hashed transactions of all the child

nodes in the tree (see Figure 3).

 Some blockchains, such as Ethereum and Hyperledger Fabric, support on-chain

execution of programmable scripts that contain transaction processing rules and other

business logic (Wang et al., 2018). These scripts are known as smart contracts and have

been a key enabler for blockchain applications in domains other than cryptocurrency,

such as healthcare, supply chains, agriculture, energy, manufacturing, and IoT (Alladi

et al., 2020; Wang et al., 2018).

 Many blockchains use a consensus mechanism called proof-of-work (PoW) to

add new blocks, where blockchain nodes compete to solve a cryptographically complex

problem, for which they are then rewarded with cryptocurrency coins or other incentives.

This process of adding new blocks to a blockchain is often referred to as mining. Mining

blocks in a PoW blockchain is a time consuming and computationally expensive process

that consumes a large amount of energy, with bitcoin alone using as much electricity as

some entire countries (Sedlmeir et al., 2020).

 However, PoW is just one of many consensus mechanisms that are now available

across multiple blockchain platforms that have been developed for various use cases.

Evaluating the performance of different blockchain platforms for different applications

is an on-going and active area of research. Non-PoW consensus mechanisms have been

proposed to mitigate the sustainability issues relating to blockchain energy consumption

(Sedlmeir et al., 2020).

Figure 3: Outline of basic blockchain architecture (Nakamoto, 2008)

 11

 Another feature of blockchains is that they can be public, private, or consortium.

Public (or permissionless) blockchains are fully decentralised and open to any new

members, but often use computationally expensive consensus mechanisms like PoW.

Bitcoin is perhaps the best known of the public blockchains.

 Blockchains that use PoW consensus mechanisms have been shown not to

support the required transaction throughput for IoT applications, with one experiment

clocking up delays for transactions to be processed of up to 2.5 hours (Kullig et al.,

2020). This is not surprising as PoW was designed for fully decentralised public

blockchains where there is no trust between parties, requiring a robust consensus

mechanism.

 Private blockchains such as Hyperledger Fabric require permission to join, which

makes them more centralised (Hassija et al., 2019), but they offer computationally more

efficient consensus mechanisms that give better performance (Iftekhar et al., 2021). One

of these more efficient consensus mechanisms is called Practical Byzantine Fault

Tolerance (PBFT).

 PBFT is a vote-based system that can tolerate up to a third of nodes being

dishonest or faulty when validating a block. PBFT has been described as the most widely

used blockchain consensus mechanism and is available on a blockchain platform called

Hyperledger Fabric (Pavithran et al., 2020).

 Consortium blockchains have multiple parties but membership is restricted with

no single party in control. An example of a consortium blockchain would be a supply

chain management system where multiple actors interact to exchange data on a particular

product (Baralla et al., 2019).

2.2.1 Blockchain applications for IoT

Blockchain has several features that make it suitable for application to IoT security and

privacy. These features include decentralisation, encryption of data, immutability of data

on the blockchain, and management of identity (Alfandi et al., 2021; Hassija et al. 2019).

 Other benefits include reduced costs by lowering cloud storage overheads,

eliminating single points of failure through decentralisation, and building trust in the

network (Pavithran et al., 2020). Replication of data through the distributed blockchain

also provides a secure back-up of data and redundancy in the event of failure of

individual nodes in the network.

 12

 Experiments on the application of blockchain for IoT have produced some

positive results indicating that it does offer a potential solution. Some examples of these

applications are summarised in Table 1. However, it is also clear from Table 1 that there

remain some challenges to be overcome before blockchain can be widely adopted as a

solution for IoT data security.

Authors Blockchain Description, results, and limitations

Dorri et al., 2017 Not specified

Smart home with a miner node to validate transactions and
interact with the IoT devices, and local and cloud data
storage Additional resource requirements to implement the
blockchain were low and manageable and worth the benefits
of increased security and privacy. However, the authors do
not specify which blockchain platform was used in the
study.

Huh et al., 2017 Ethereum

IoT devices in a smart home communicate with a blockchain
containing energy management policies established in smart
contracts, but the relatively long time taken for transactions
to be approved would limit the feasibility of applications.

Kullig et al.,
2020 Ethereum

Raspberry Pi computers connected to temperature and
humidity sensors send data over the internet to a simulated
Ethereum blockchain. The test results of the experiment
indicate very long smart contract processing times that
increase linearly with the number of blocks on the chain due
to Ethereum's PoW consensus mechanism.

Iftekhar et al.,
2021

Hyperledger
Fabric

Access control system for IoT devices that uses Hyperledger
Fabric, an open source private blockchain. Access is granted
to trusted members, verified by a Certification Authority,
based on rules that are established using Fabric’s smart
contracts. Specially compiled software installations were
required to operate the IoT device as a blockchain node
potentially limiting practical application.

Baralla et al.,
2019

Hyperledger
Sawtooth

Farm-to-fork food traceability system for the agri-food
sector. Data from both human and non-human (sensor)
agents is exchanged over the Sawtooth REST API and
accessed via web and mobile clients. The relatively high
level of complexity in the system will require extensive
testing involving many parties.

Kromes et al.,
2019

Hyperledger
Sawtooth

Blockchain used to send data to police and other relevant
parties following a car accident. The analysis indicated that
a significant amount of the execution time was consumed by
the data hashing functions. The solution relied on non-
standard software installation and modified hardware,
potentially limiting scalability.

Table 1: Examples of blockchain applications for IoT

 13

 Among the challenges for blockchains in IoT is to find a blockchain platform

with a consensus mechanism that can process transactions at a sufficient rate to support

the real-time or close to real-time dependency on data to make decisions and perform

actions (Alfandi et al., 2021).

 Another challenge is to find a suitable architecture. Pavithran et al. (2020)

conclude that a suitable architecture for blockchain applications in IoT is still not

available and building blockchain networks that rely on cloud computing is a

contradiction of the original decentralised objective of blockchain.

 This establishes two important requirements for blockchain applications in IoT

security, the first is to achieve a level of performance in terms of transaction throughput

to support the data requirements at the application layer, the second is that the

architecture of any proposed solution should be complementary to the distributed nature

of both blockchain and IoT itself.

2.2.2 Performance metrics for blockchain

Determining if a blockchain platform is suitable for a particular IoT application, or

comparing the performance of different blockchain platforms and consensus

mechanisms, requires a common set of metrics that can be used to evaluate performance.

Two widely used performance metrics for blockchain are latency and throughput.

 Latency is the time taken for a transaction to be usable across a network, and

throughput is the rate at which transactions are committed to a blockchain in a defined

time-period (Monrat et al., 2020).

 Throughput and latency are influenced by the number of input transactions and

the number of nodes in the network (Monrat et al., 2020; Shi et al., 2019), and

performance under different rates of input transactions can be non-linear (Ampel et al.,

2019). For this reason, metrics for performance of a proposed blockchain application for

IoT need to be evaluated over a range of input transactions to understand how

performance varies under different workloads.

 Hyperledger Caliper has been widely used in many studies to measure

performance in terms of throughput and latency (Ampel et al., 2019; Monrat et al.,

2020). However, Caliper is a benchmarking tool that measures performance using

predefined use cases with generic transactions so is not best suited for monitoring

performance in practical applications of blockchain for IoT.

 14

 InfluxDB, a time series database, has also been used to collect time-series data

for monitoring and measuring the performance of blockchains (Shi et al., 2019). The

InfluxDB approach is preferable as it enables the gathering of data for practical

applications of blockchain and not just predefined use cases.

2.3 Hyperledger blockchains

Hyperledger Foundation is non-profit organisation, supported by the Linux Foundation,

that aims to develop and promote open-source enterprise blockchain technology2.

Hyperledger Fabric and Hyperledger Sawtooth are two blockchains from the

Hyperledger family that have been widely proposed for applications in IoT. Some of the

proposed applications were briefly outlined in Table 1.

2.3.1 Hyperledger Fabric

Hyperledger Fabric is a private blockchain with access granted to trusted members that

are verified by a Certification Authority. Permissions within the blockchain are

governed by policies to control who has access to which network resource, and the

policies themselves are approved by consensus within the network. More specific access

policies can be applied using an implementation of a smart contract called chain-code,

which again requires consensus from the network (Iftekhar et al., 2021).

 Fabric has been shown to outperform other permissioned blockchains for

throughput and latency due to its simpler and efficient modular consensus approach

(Monrat et al., 2020). A proposed access control application of Hyperledger Fabric

achieved a transaction throughput of 200 transactions per second (Iftekhar et al., 2021).

2.3.2 Hyperledger Sawtooth

Hyperledger Sawtooth is another open-source permissioned blockchain platform from

the Hyperledger family. Sawtooth offers both PBFT and Proof-of-Elapsed-Time (PoET)

consensus mechanisms, alongside a devmode consensus mechanism used for

development and testing. PoET is a lottery style consensus that uses a random timer to

determine which node is selected as leader to propose a new block. The consensus

2 https://www.hyperledger.org/about

 15

mechanism on a Sawtooth blockchain is established with the genesis block but can be

changed later by submitting a settings transaction.

 The architecture of a Sawtooth node, as shown in Figure 4, features among its

components, a validator to approve transactions, one or more transaction processors, a

state store, and a REST API to interface to clients. Permissions and other settings are

stored on-chain and can only be changed by consensus.

Figure 4: Hyperledger Sawtooth architecture3

 Sawtooth processes transactions as transaction families, each having their own

transaction processor to apply business logic and save data to the blockchain state.

Transaction processors are effectively smart contracts that run as plugins rather than on

the blockchain itself. A Sawtooth blockchain can support multiple transaction families

and multiple transaction processors can run simultaneously on the same blockchain.

 Transaction processors can be written in Python, JavaScript, and Go, and there

are several transaction processors for development, testing, and evaluation of networks

available for installation with Sawtooth. This modularity provided by separating the

application level from the core system is one of the distinct features offered by Sawtooth

that has driven its adoption (Baralla et al., 2019). In the context of IoT, this could mean

3 https://sawtooth.hyperledger.org/docs/1.2/architecture/

 16

having transaction families for different types of sensors that could each have their own

validation rules based on the type of data.

2.3.3 Performance of Hyperledger blockchains

A summary of the findings from several performance evaluations of both Hyperledger

Fabric and Hyperledger Sawtooth is presented in Table 2. Hyperledger Fabric has shown

strong results for throughput, outperforming other permissioned blockchains (Monrat et

al., 2020). However, Sawtooth has in turn outperformed Fabric, due to its parallel

processing of transactions, less transaction processing complexity, and its Proof-of-

Elapsed-Time (PoET) consensus mechanism (Rasolroveicy & Fokaefs, 2020).

Authors Blockchain(s) Findings

Monrat et al.
(2020)

Ethereum,
Hyperledger Fabric,
Quorum, Corda

Hyperledger Fabric performed better than the other
permissioned blockchains undergoing evaluation due
to its simpler and efficient modular consensus
approach.

Rasolroveicy &
Fokaefs (2020)

Hyperledger Fabric,
Hyperledger
Sawtooth,
Hyperledger
Burrow,
BigChainDB

Hyperledger Sawtooth was the best performing
blockchain in terms of writing latency and resource
utilisation due to its Proof-of-Elapsed-Time (PoET)
consensus mechanism, parallel processing of
transactions, and less processing complexity.

Shi et al. (2019) Hyperledger
Sawtooth

Improving VM specs of a blockchain node has a
significant positive effect on performance.
Performance varies significantly when running a
huge workload in a short time period. Parallel
scheduling of transaction batches increased
performance by around 30%.

Ampel et al.
(2019)

Hyperledger
Sawtooth

Performance bottlenecks exist at high input
transaction rates (>1000 transactions per second) and
at large transaction batch size. Latency and system
resource usage increases exponentially with
increasing input transaction rates.

Moschou et al.
(2020)

Hyperledger
Sawtooth

PoET consensus mechanism, parallel processing of
transactions, and using the GoLang transaction
processor, all had a positive (lowering) impact on the
execution time for a transaction to be confirmed on
the blockchain.

Table 2: Studies on the performance of blockchain platforms

 The studies listed in Table 2 reported different rates of throughput for Sawtooth.

Ampel et al. (2019) showed very high transaction throughput of up to 2,300 transactions

 17

per second (tps). However, another performance study of Sawtooth deployed on cloud

based VMs put throughput in the range of up to around 15 tps (Shi et al., 2019). Shi et

al. (2019) found that increasing the specification of virtual machines positively affects

throughput performance. This may be why some studies using high specification

machines hosted in the cloud obtained very high rates of throughput (Ampel et al., 2019;

Monrat et al., 2020).

 A limitation to the generalisability of some of the studies presented in Table 2

was the use of test transactions to evaluate performance (Ampel et al., 2019; Shi et al.,

2019). Results obtained in benchmarking studies that rely on test transactions are useful

for comparing performance of different blockchain platforms. However, the throughput

rates achieved in such studies should not be generalised as being indicative of

performance in real-world applications.

 A performance evaluation of a practical application of Sawtooth for IoT security,

using actual data transactions from a real device, will offer a better insight to the actual

throughput that can be achieved. Lower specification machines should also be utilised

as they are more representative of the resources that are likely to be available in the

resource constrained IoT environments at the edge of the network.

2.4 Edge Computing

Cloud computing has transformed computer networks by providing practically unlimited

scalability of storage and computational resources provided by remote data centres and

available as-a-service. However, the physical separation and distance between the cloud,

and the site where data is generated and consumed, presents challenges relating to higher

latency and the loss of direct control over data security (Sittón-Candanedo et al., 2019).

Security concerns also arise when personally and commercially sensitive data is being

transferred and stored in the cloud.

 To mitigate against the risks and overcome the challenges in cloud computing,

edge computing emerged as a distributed computing paradigm that utilises

computational and storage resources that are available closer to the physical devices that

generate and consume data. Edge computing architectures consist of IoT devices and

edge nodes or edge servers that cooperate to support low-latency, real-time processing

and analysis of data, resulting in lower operating and management costs (Sittón-

Candanedo et al., 2019).

 18

 Other benefits of edge computing include bandwidth savings from sending only

summarised or aggregated data to the cloud, reduced risk of security breaches with less

data-in-transit, and compliance with laws that restrict cross-border movement of data

(Hassija et al., 2019).

 However, edge computing nodes are also vulnerable to attack and hence the need

for secure data storage at the edge, which is where blockchain offers a solution by

providing an encrypted, decentralised, and immutable ledger of transactions, verified

through consensus (Yang et al., 2019).

2.4.1 Edge computing for blockchain applications in IoT

Edge computing and blockchain have been described as complementary technologies,

with blockchain enhancing the privacy and security of edge computing, and edge servers

enabling the participation of low-powered devices in the blockchain (Yang et al., 2019).

Another complementary feature of blockchain and edge computing is their

decentralisation that enables scalability of IoT systems by avoiding centralised

performance bottlenecks (Misra et al., 2020).

 Blockchain is effectively the distributed platform for securing and providing

trust in the network of interconnected IoT devices in an edge computing network.

Blockchain also provides benefits to the application layer through the non-repudiable

and secure exchange of data between entities using smart contracts (Sittón-Candanedo

et al., 2019).

 This creates opportunities for autonomous operation of smart systems through

the decentralised exchange of data, with applications in smart transportation, smart

grids, smart cities, smart homes, and smart healthcare (Gadekallu et al., 2021).

2.4.2 Edge computing architectures for blockchain applications in IoT

A prototype edge computing architecture with integrated blockchain for an agricultural

use case is shown as Figure 5. In this model, the IoT layer is collecting data from sensors

on a farm and adding it to the blockchain, then sending the encrypted data to an IoT edge

gateway for pre-processing and analysis, before finally forwarding the lower volume

data to the business solution layer for visualisation and decision making (Sittón-

Candanedo et al., 2019). This model could also be modified to host the blockchain on

the edge layer, if computational resources at the IoT layer were limited.

 19

Figure 5: Edge computing architecture for IoT (Sittón-Candanedo et al., 2019)

 Similar architectures have been applied on a smaller scale for smart homes with

a centralised edge server as the blockchain node that communicates with IoT devices

over Wi-Fi in the home network (Dorri et al., 2017; Kullig et al., 2020). In Dorri et al.

(2017), the edge server is responsible for running the consensus mechanism and

appending blocks to a local private blockchain, as well as performing other admin tasks

and providing additional storage if required.

 The centralised edge server approach could just as well be applied to any smart

environment. Individual smart environments can then become a node in a larger area

blockchain, even encompassing entire cities to form a smart-city (Malik et al., 2019).

 An alternative to the centralised edge server approach, is to operate the IoT

device itself as a node in the blockchain (Huh et al., 2017; Iftekhar et al., 2021). This

approach avoids the use of any centralised edge server and functions as a fully

distributed network with no compromise on the decentralisation of blockchain.

 However, the experiments performed by Huh et al. (2017) and Iftekhar et al.

(2021) used a Raspberry Pi as the IoT device and blockchain node. The Raspberry Pi is

 20

a relatively powerful piece of hardware that is not representative of most IoT devices,

which are typically power and computationally constrained (Alfandi et al., 2021).

Furthermore, the performance capability of a Raspberry Pi as a blockchain node is itself

in doubt due to its resource limitations compared to a more powerful server machine

(Misra et al., 2020).

 A further limitation in Iftekhar et al. (2021) was the specially compiled

Hyperledger Fabric Docker image for the Raspberry Pi ARM processor. A non-standard

installation cannot be considered a readily scalable solution. Notwithstanding the need

to innovate and test different approaches, a blockchain-IoT network based on standard

software installations and unmodified hardware will improve scalability by eliminating

the complexity of customisation.

2.4.3 Communication in the blockchain-IoT-edge network

Performance of blockchain for IoT devices in an edge network is affected by network

connectivity, with wired connections outperforming wireless (Misra et al., 2020).

However, the lower performance of wireless connections can be offset by the advantages

of mobility, provided performance achieves an acceptable level for a particular use case.

 While it is acceptable to find compromises on performance in the network in lieu

of other benefits, it should not be considered acceptable for security and privacy to be

compromised under any circumstances. Sharing potentially sensitive data over a WiFi

network exposes it to eavesdropping or man-in-the-middle attacks while the data is in

transit.

 Securing data against such attacks requires an encrypted communication channel

between the IoT device and the server to prevent theft of personal network data (Alladi

et al., 2020). The ultimate goal should be full end-to-end encryption of data (Hassija et

al., 2019), but this can be a challenge for the computationally limited IoT devices

(Kromes et al., 2019).

 Communication between IoT devices and an Ethereum blockchain on an edge

server using HTTP implemented in Python has been successfully demonstrated by

Kullig et al. (2020). Exchanging data over HTTP opens the possibility of using APIs to

support the development of modular clients and applications in higher level

programming languages and web development frameworks. This functionality is a core

 21

feature of Hyperledger Sawtooth blockchains with its native REST API and SDK for

many popular programming languages.

 An implementation of Sawtooth to send data to police and other relevant parties

following a car accident used a Raspberry Pi as an off-chain IoT node to send data to the

blockchain via REST API (Kromes et al., 2019). The base case of their study found that

the Raspberry Pi was able to deliver a 1 MB payload of data to the blockchain in under

5 seconds. A payload of 1 MB is a sizable amount of data for most IoT devices, and this

baseline level would be an acceptable level of performance for many applications.

2.5 Summary

Security of IoT data is a challenge that requires an integrated solution throughout the

various architectural layers of an IoT system. Blockchain offers several benefits to

enhance IoT security, including a secure and practically immutable log of transactions

(Alfandi et al., 2021; Hassija et al. 2019). However, previous studies on blockchain for

IoT encountered some limitations due to the length of time the consensus mechanism

took to approve and add transactions as new blocks (Huh et al., 2017).

 Hyperledger Sawtooth offers an efficient consensus mechanism in an open-

source private blockchain (Rasolroveicy & Fokaefs, 2020). Performance evaluations of

Sawtooth have shown promising results but they were often obtained using high

specification environments and test transactions (Ampel et al., 2019; Shi et al., 2019).

 A practical application of Sawtooth for IoT security using actual data

transactions and lower specification environments is required to evaluate performance

in a way that is more representative of real-world scenarios.

 Another requirement for integrating blockchain and IoT is finding a suitable

solution architecture. To this end, edge computing was identified as a suitable approach

as it provides the computational resources close to the resource constrained IoT devices.

 22

3. DESIGN & METHODOLOGY

This chapter will describe the design and methodology for conducting an experiment to

evaluate the application of Hyperledger Sawtooth as a blockchain platform to securely

store data from an IoT device using an edge computing architecture. It will begin by

describing the network design and architecture for the experiment. This will be followed

by an outline of the steps to install and configure Hyperledger Sawtooth and related

required software. After that, the python code developed for the experiment to handle

and process the IoT data transactions will be discussed. Finally, it will detail the

methodology for initiating multiple experiments and the process to collect performance

data under different workloads and using different settings.

3.1 Network Design & architecture

The experimental network was set up on a home Wi-Fi network, with a MacBook Air

laptop as the edge server that hosted three Ubuntu 18.04 virtual machines (VMs) on

VirtualBox virtualisation software (see Figure 6). This was the edge layer of the network

that hosted the Sawtooth blockchain.

 The PoET consensus mechanism in Sawtooth requires at least three validator

nodes to operate, hence the requirement for three VMs. Data transactions were sent

randomly to the REST API on one of the three VMs to load balance, but in general

EDG10 VM was the primary VM and blockchain node.

 Docker images are available from Sawtooth for testing, but VMs are preferred

as they give better isolation for performance assessment (Shi et al., 2019) and greater

control over the software and other system configurations. The VMs were set up with

mostly the default VirtualBox settings but network was set to bridged adaptor to give

the VM its own IP address on the Wi-Fi network. Having an IP address on the Wi-Fi

network allowed remote login from the host to the VM for installing software,

monitoring, configuration, changing settings, and other admin tasks. SSH was enabled

on the VMs to expose port 22 for remote login.

 The operating system installed on the VMs was Ubuntu 18.04 in line with the

version specified in the Hyperledger Sawtooth documentation4. It was installed using

4 https://sawtooth.hyperledger.org/docs/1.2/app_developers_guide/installing_sawtooth.html#using-ubuntu-for-a-single-sawtooth-

node

 23

the minimal install option to save the maximum possible amount of resources for the

core system components. The full specifications of the VMs are listed in Table 3. The

IoT device was a Raspberry Pi 3 Model B with its native Raspian OS and represents the

IoT layer. SSH was also enabled on the Raspberry Pi to enable remote login.

Device Operating System (OS) OS Version RAM Python version

MacBook Air 2020 MacOS Big Sur 11.6 8 GB N/A

Virtual Machines Ubuntu 18.04 1 GB 3.6.9

Raspberry Pi 3, Model B Raspian 9 1 GB 3.5.3

Table 3: Hardware and virtual machine (VM) specs

Figure 6: Network design for experiment

 A temperature sensor to provide real-world data to store on the blockchain was

connected to the Raspberry Pi but is omitted from the network diagram in Figure 6. The

architecture is consistent with the model proposed by Sittón-Candanedo et al. (2019),

having an edge layer and an IoT layer. There was no business solution layer in the

experiment design which focused on performance of the blockchain at the edge and IoT

layers.

 24

3.2 Software installation

The main software component for the experiment was Hyperledger Sawtooth, which

was selected for its high performance in previous studies that were summarised in Table

2. Hyperledger Sawtooth components were installed on all the VMs that comprise the

blockchain network.

 Some additional python packages, like secp256k1 which is used for

cryptographic signatures, had to be installed before all Sawtooth components could be

successfully installed. These were not mentioned in the documentation and required

some debugging that led to delays in the initial set up.

 InfluxDB and Telegraf are additional third-party components that were installed

on the VMs to collect and store performance metrics. Telegraf is an open-source tool to

collect metrics on system performance and InfluxDB is an open-source time-series

database used to store the metrics collected by Telegraf and Sawtooth.

 Grafana, an open-source data visualisation tool, was installed on the host

machine to present the performance metrics on a dashboard5 for real-time monitoring.

The version numbers for each of the major software components are listed in Table 4.

Device Software Version
MacBook Air VirtualBox 6.1.30
Virtual machine Hyperledger Sawtooth 1.2.6
Virtual machine InfluxDB 1.8.10
Virtual machine Telegraf 1.21.4
MacBook Air Grafana 8.3.4

Table 4: Major software components installed

3.3 Sawtooth configuration

Sawtooth settings are stored both on-chain and off-chain. An example of an on-chain

setting is the type of consensus mechanism. On-chain settings are changed by submitting

transactions that are approved by the consensus mechanism. Off-chain settings, which

are usually network related, are stored in TOML6 configuration files. Network

parameters for the various blockchain components can be passed as command line

5 https://raw.githubusercontent.com/hyperledger/sawtooth-core/1-0/docker/grafana/dashboards/sawtooth_performance.json
6 https://en.wikipedia.org/wiki/TOML

 25

arguments when they are started, but a more optimal solution is to hard code the

parameters within the TOML configuration files.

 The network parameters tell Sawtooth where to listen for the local components

of the current node, like the validator and REST API, to set where other nodes should

listen for the current node, and to set the peer nodes of the current node, as shown in

Figure 7. Network settings default to localhost if they are not added to the TOML

configuration file or not passed as command line arguments when starting the Sawtooth

processes. The settings for the InfluxDB database and Telegraf are also stored in the

TOML configuration files, including the database name, a database user, and the IP

address and port number for the database.

 A public and private keypair was also generated and added to the TOML

configuration file to secure communication between the Sawtooth components.

Communication between nodes and components defaults to unsecured without this key

pair. The process for updating the TOML configuration files is outlined in the Sawtooth

documentation7.

Figure 7: TOML configuration file

3.4 Initialising the blockchain

After installing the components and configuring the network, the next step was to create

a genesis block to be the first block in the blockchain. The genesis block contains the

initial settings, including the type of consensus mechanism, that are inherited by other

peers when they join the network. Creating a genesis block was done once on the primary

7 https://sawtooth.hyperledger.org/docs/1.2/sysadmin_guide/configuring_sawtooth.html

 26

node and the entire blockchain from then on contains a chain of references back to that

block, where each reference is the header signature of the previous block.

 The commands to create the Genesis block, with the PoET consensus

mechanism, is shown in Figure 8, and was executed on the EDG10 VM. It contains the

type and version of the consensus mechanism and some other settings.

Figure 8: Commands to create genesis block for PoET consensus engine

 The consensus mechanism is a setting that can be changed at any time with the

consensus of the other approval nodes on the network. This dynamic consensus is a core

feature of Sawtooth, with three consensus mechanisms available for installation –

devmode, PBFT, and PoET.

 The documentation advises that devmode is for testing single node environments

and is not suitable for multi-node test and production networks, though it has been used

in other studies to evaluate performance (Moschou et al., 2020). PBFT on the other hand

is recommended for small networks that do not require open membership. PoET is

recommended for large production networks with open membership8. For this

experiment, the PoET consensus mechanism is selected for its high performance

(Rasolroveicy & Fokaefs, 2020; Moschou et al., 2020).

8 https://sawtooth.hyperledger.org/docs/1.2/sysadmin_guide/about_dynamic_consensus.html

 27

3.5 IoT device configuration

There was less configuration required on the Raspberry Pi IoT device compared to the

VMs, as it was a client only and did not run any blockchain components. The only

software required for the Raspberry Pi to operate as an IoT client was python, which

comes pre-installed as standard. The IoT client was developed in python specifically for

this experiment and will be discussed in detail later.

 The only other configuration step for the IoT device was the creation of a pair of

public and private keys, as all components and devices need a public and private key to

transact with the Sawtooth Network. The key pair for the Raspberry Pi was created on

the EDG10 VM and transferred to the Raspberry Pi using an SCP command, by

following the steps shown in Figure 9.

Figure 9: Distributing a public and private key pair to the IoT device

 The public key for the Raspberry Pi, along with the public key of the current

node, was then added as a PERMIT_KEY in an IoT policy and assigned to the Sawtooth

transactor role as shown in Figure 10. The IoT policy gets wrapped in a transaction that

must be submitted and validated before being committed to the blockchain, just like any

other transaction.

 When the IoT policy is committed, transactions and batches can only be signed

by the private keys corresponding to the public keys listed in the IoT policy. Any

transaction or batch that is signed by any other private key not listed in the policy will

be rejected by the DENY_KEY asterisk symbol (*) that denies all other keys.

 Figure 10: Setting transactor IoT policy

 28

 A test was performed by submitting a transaction from the IoT device that was

signed by a randomly generated, but technically valid private key. The test resulted in

the batch being rejected for being invalid and a HTTP 400 bad request response code

was sent to the IoT client, as shown in the console log messages in Figure 11. This level

of control improves security by requiring transactors to have explicit permission that is

hard coded into the Sawtooth blockchain itself.

 Only approved admin users that are also hard coded into the blockchain can

change or update the policy. Similar controls on membership can be applied for validator

node permissions. This is an example of what makes Sawtooth a private and

permissioned blockchain. Public blockchains do not enforce policy or settings to restrict

membership or transactions.

Figure 11: Batch rejected for unapproved private key

3.6 Sawtooth application for IoT

Sawtooth doesn't natively support IoT applications as such, but it does support the

development of transaction processors and clients for specific use cases (Baralla et al.,

2019; Kromes et al., 2019). Development of transaction processors is supported for

several popular programming languages, including python, using the available SDK and

interfaces. To evaluate the application of Sawtooth for securely storing IoT data using

an edge computing architecture, an IoT transaction processor was developed in python

as part of the experiment design.

 Before transactions can be processed, a client-side application is required to read

data from a sensor, add this data to a transaction, then sign, batch and submit the

transactions to the Sawtooth REST API. Sawtooth also provides the necessary SDK and

interfaces to support the development of client-side applications. An IoT client

application was also developed in python as part of the experiment design.

 Before discussing the IoT transaction processor and the IoT client-side code in

any more detail, it is helpful to explore the structure of a Sawtooth transaction, and how

transactions are batched for processing.

 29

3.6.1 IoT transactions

Transactions in Sawtooth belong to families, for example, some on-chain settings are

members of the settings transaction family and are processed by the settings transaction

processor. The structure of a transaction is shown in Figure 12; it consists of a transaction

header, a header signature, and a payload. The payload contains the data that will be

handled by the transaction processor and can be stored in state. For the IoT application,

the payload contained temperature sensor data.

Figure 12: Sawtooth transactions and batches9

 The transaction header contains multiple fields which are described in Table 5.

A transaction header is signed with a private key, like the one that was created and

authorised for the Raspberry Pi. Transactions are wrapped in a batch before being

submitted to the Sawtooth REST API. A batch can contain one or more transactions in

a list, with a batch header and a batch header signature, and is either committed or

rejected as an atomic unit. The number of transactions per batch has been shown to have

an impact on Sawtooth performance (Ampel et al., 2019).

9 https://sawtooth.hyperledger.org/docs/1.2/architecture/transactions_and_batches.html

 30

Field Description

Batcher public key The public key used to sign the batch containing this transaction

Dependencies Specify dependencies for transaction processing order

Family name The transaction family, e.g., IoT-Data

Family version A version number for the transaction family

Inputs Address of input state

Nonce Random number to provide uniqueness of like transactions

Outputs Address of output state

Payload SHA512 A SHA-512 hash of the transaction payload

Signer public key Public key used to sign the transaction header

 Table 5: Transaction header fields10

3.6.2 IoT Device namespace addressing

Sawtooth stores state on a Merkle-Radix tree data structure that has a namespace

addressing scheme composed of 35 bytes or 70 hexadecimal characters, giving each leaf

node its own unique namespace for storing state data, as shown in Figure 13. The

addressing scheme must be unique and deterministic to avoid name collisions and allow

retrieval or updating of state data.

 A typical approach is to take the first three bytes of the address from a hash of

the transaction family name and the remaining 32 bytes from a hash of the public key11.

Another example in the documentation calculates the 35 bytes from the hash of various

attributes belonging to some widget12. Another proposed supply chain use case used

family name, a resource type, and hashed unique identifiers as the namespace addressing

scheme (Baralla et al., 2019).

 The approach adopted for the IoT application was to take the first 3 bytes from

a hash of the transaction family name, the next 2 bytes from a hash of the device ID, and

the remaining 30 bytes from a hash of the public key belonging to the IoT device.

Including the device ID creates a unique address in the Merkle-Radix tree for that device,

and the values stored in state are only contextual to parties with knowledge of the

10 https://sawtooth.hyperledger.org/docs/1.2/architecture/transactions_and_batches.html
11 https://github.com/danintel/sawtooth-cookiejar/blob/master/pyclient/cookiejar_client.py
12 https://sawtooth.hyperledger.org/docs/1.2/app_developers_guide/address_and_namespace.html

 31

physical device associated with that ID and who have knowledge of the public key for

that device. This provides an additional level of privacy through anonymity.

Figure 13: Global state and namespace addressing13

3.6.3 IoT Transaction Processor

Sawtooth transaction processors are like smart contracts in other blockchains. It is here

that business logic and other validation rules can be implemented through the apply

function, and state data can be set or retrieved (see Figure 14). An IoT transaction

processor for an IoT application was developed in python as part of the experiment

design and assigned a family called IoT-data.

 The IoT transaction processor registers with a Sawtooth node, then processes all

IoT-data transactions submitted by the IoT client through the Sawtooth REST API. The

13 https://sawtooth.hyperledger.org/docs/1.2/architecture/global_state.html

 32

main task of the IoT transaction processor is to save the transaction payload to state. As

an additional proof-of-concept, two validation rules were included in the IoT transaction

processor, as can be seen in Figure 14 and Figure 15.

 One of the validation rules checked that the timestamp was not greater than the

current time, as a safeguard against future timestamping of transactions. The other

validation rule checked that values for temperature sensors were within a realistic range

of between -10 and +35 on the basis that temperatures outside of this range could be

erroneous or even malicious readings.

Figure 14: IoT transaction processor apply method

Figure 15: IoT transaction processor validation rule

 If the validation rules are violated, an invalid transaction exception is raised, and

the payload will not be saved to state. The REST API response of a test transaction that

contained an injected temperature value outside of the valid range is shown in Figure

 33

16. The response shows the transaction with a status of INVALID, meaning it was not

committed to the blockchain. This is a somewhat trivial example, but it serves to

demonstrate the functionality that can be applied to increase security through enhanced

validation rules in the transaction processor.

 Applying validation rules helps to secure the blockchain against malicious

attempts to inject data values outside of a specified range and can also help protect

against spurious or erroneous readings from a defective or faulty sensor.

Figure 16: REST API response showing invalid transaction

3.6.4 IoT Client Application

It was the job of the IoT client application to read sensor values, create and batch

transactions, sign the transactions, then submit the batched transactions to the Sawtooth

REST API on one of the VM nodes. The IoT client consisted of multiple python scripts

which were developed and pushed to a GitHub repository14. A requirements.txt file with

a list of the python packages and the specific version required was also bundled in the

repository. To perform the experiments, the python scripts were cloned from their

GitHub repository and run in a python virtual environment on the Raspberry Pi IoT

device.

 Some compatibility issues occurred initially with python packages that had been

updated since the latest Sawtooth release (installed version). There was no explanation

for this in the Sawtooth documentation and debugging was required to overcome some

errors. The requirements.txt file lists the versions of the packages that are compatible

with the installed version of Sawtooth, as discovered through the debugging process.

Running in the virtual environment with the versions specified in the requirements.txt

file overcame the compatibility issues.

14 https://github.com/SeanConnolly82/iot-blockchain

 34

 The process to set-up and activate the virtual environment, including installation

of the required packages, was initiated by running a start-up bash script that was included

in the GitHub repository. Command line arguments to initialise a specific IoT device

and its operation were passed to the IoT client by adding them to the start-up bash script.

Logging functionality was also included in the IoT client to generate log files for

performance monitoring and debugging in the event of any issues or errors occurring.

 An important component of the IoT client was the sensor class to represent the

physical sensor. The sensor class is shown as Figure 17. All attributes of the sensor were

wrapped inside the single payload dictionary that became the payload of the Sawtooth

transaction. The specific type of sensor was abstracted away from the class definition,

so that a sensor object could represent any possible sensor as indicated by the

device_type attribute.

 For the current experimental implementation, two types of sensors were possible,

temperature and humidity, consistent with the type of sensors used for similar studies

(Kullig et al., 2020), though only temperature was implemented in the final experiment

design. To avoid runtime errors, a control was applied to the command line argument

parser to limit the selection of device type to either temp or humidity. The selection of

either temp or humidity determines the validation rules that were applied when the

transaction was being processed (see Figure 15).

Figure 17: IoT client sensor class

 Each sensor object also had a device_id attribute to provide a unique identifier

for a particular sensor. Recall that device id was also one of the inputs used to determine

the namespace address for storing the sensor state. The device id only needs to be unique

within the scope of a public key to avoid collisions for namespace addressing, but good

practice would be to keep it unique among all sensor instances. The other attributes of

 35

the sensor were the timestamp in Unix time and the value which is the latest reading

from the sensor.

 After getting the sensor values and adding them to transactions and batches, the

other major function of the IoT client was to send the batched transactions to the REST

API of a Sawtooth node. Communication between the IoT client and the Sawtooth node

was implemented using the python requests library. The batched transactions were sent

in a HTTP POST request payload to the Sawtooth node IP address on port number 8008.

 State values at a particular namespace address could also be retrieved using a

GET request without submitting a transaction. This is a useful feature that enables

authorised parties with knowledge of a public key and associated device ids to use the

data stored in state for applications and use cases at the business solution layer.

 For the current implementation, the physical temperature sensor circuit was

assembled on a breadboard and connected to the Raspberry Pi GPIO pins using a starter

kit available from Freenove15. The temperature sensor circuitry can be seen in Figure

18.

Figure 18: Temperature sensor breadboard circuit

15 https://github.com/Freenove/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi

Thermistor

 36

3.7 Starting the network

When all software and other components were installed, and the network was

configured, the blockchain nodes and the IoT client were started. Sawtooth processes

were started first, beginning with the EDG10 VM as the primary node that contained the

genesis block. Processes were started manually from the command line of the VM via a

remote SSH session from the host machine. The minimum processes that must be started

on Sawtooth are the validator, the REST API, the settings transaction processor, the

PoET consensus engine, and the IoT transaction processor.

 Each Sawtooth process was started separately and immediately started logging

output to the console window at the level of verbosity specified from -v (less) to -vvv

(more). An example of the logging output can be seen in Figure 19. Higher levels of

logging verbosity are better for monitoring during the initial testing and evaluation of

the network. Log files are also written to disk if required for later analysis.

Figure 19: Logging output of the Sawtooth validator

 After starting the components for the first time, an approved node inherits the

genesis block and associated settings from a node already active on the network.

Sawtooth nodes must be fully peered before any transactions can be approved by the

consensus engine. Prior to starting the experiments, peering was confirmed by reviewing

the logging output and by checking through a web browser connection to the REST API.

 As soon as peering had occurred, the operation of the network was confirmed by

submitting a transaction to the IntegerKey built-in transaction processor. IntegerKey

provides shell commands for submitting test transactions to confirm the network is

functional. Some studies have based their entire performance evaluation of Sawtooth on

the IntegerKey transaction processor (Shi et al., 2019) but this limits the validity of the

experiment to be generalised for real-world applications.

 37

3.7.1 Starting the IoT Client and sending transactions

When the Sawtooth network was confirmed to be fully peered and operational, the IoT

client application was started on the IoT device. The Raspberry Pi IoT device was

interfaced via an SSH session from the host machine and the IoT client was started by

calling a bash script.

 The bash script included the commands to set up and activate a python virtual

environment and start the python processes with the required command line arguments

reflecting the parameters for the experiment. This included the time interval for reading

the sensor data to enable the application to send transactions at different rates of input

to evaluate performance across varying workloads.

 When a time interval argument was included, the IoT client read data and sent

transactions, every number or fraction of seconds specified, in a continuous loop until

interrupted using a keyboard interrupt. If the interval was omitted, the IoT client sent a

single transaction to Sawtooth.

 Table 6 outlines the specification for the IoT client command line arguments.

The first command line argument is either GET or POST, indicating the HTTP method

to be called. POST requires two further command line arguments to specify the type of

device, and an ID for the device, with a further optional argument to specify the interval

for sending data to Sawtooth.

 If the first command line argument is GET, then only one additional argument is

required – the device ID, which is sufficient to retrieve the current state value from the

namespace address for that device. GET requests are retrieved from state using a REST

API endpoint and do not require a transaction to be created.

Argument Description Allowed values

action HTTP method that will be invoked POST, GET

device_id An ID for the individual sensor Any string

device_type The type of sensor temp, humidity

interval Interval in seconds for sending transactions A valid floating-point number

Table 6: IoT client command line arguments

 When the network was fully peered, and the IoT client was started, an initial

batch of 200 transactions was submitted from the IoT device to the REST API to test

that the network was fully operational. Operation could be monitored in real-time

 38

through the Grafana dashboard on the host machine (see Figure 20). When the 200

transactions were observable in the count of committed transactions on the dashboard,

the experiment was initiated by executing the IoT client start-up script with an interval

in seconds to give the required rate of input transactions.

Figure 20: Monitoring performance on the Grafana dashboard

3.8 Experiment process

Multiple experiments were carried out to evaluate performance of different

configurations under different input transaction workloads. Transactions were submitted

as either single transaction batches or multiple transaction batches as the number of

transactions per batch has been shown to have an impact on Sawtooth performance

(Ampel et al., 2019).

 Single transaction batches were submitted with a target tps of between 2 and 12,

incrementing in steps of 2 transactions. Multiple transaction batches were submitted

with a target tps of 8, 10, and 12, enabling direct comparison with the upper end of the

single batch transactions target tps. A further target tps of 20 was also submitted as a

multiple transaction batch, to measure performance at a higher throughput workload.

The number of transactions in the multiple transaction batches was set to 10, in line with

the number of transactions per second specified in the hypothesis test.

 Each experiment was allowed to run for just over one hour to ensure that there

was a 60-minute window of stable operating data available for each rate of input

 39

transaction. Following each experiment, a counter of the number of transactions sent by

the IoT device was used to confirm that all transactions had been committed to the

blockchain. The metric for how many transactions were committed versus how many

were sent is known as the success rate, and the expected performance is 100% (Ampel

et al., 2019).

 The number of committed transactions must also be consistent across each of the

blockchain nodes, indicating that all nodes have received and committed all transactions

that were sent by the IoT device. Figure 21 shows an example of a consistent count of

transactions across blockchain nodes, using the show transaction list command piped

into a count of line endings. This data is also available through the Grafana dashboard

and can be accessed from the InfluxDB database for more detailed analysis.

Figure 21: Checking the number of committed transactions

 Data was collected for each experiment and stored in the InfluxDB instance

running on EDG10. InfluxDB is a time-series database that stores data in table-like

structures that it calls measurements. It has been used in other performance evaluations

of Hyperledger Sawtooth (Shi et al., 2019).

 InfluxDB was the only source of data used for the analysis and evaluation of

Sawtooth performance. No external or third-party data was required for any part of the

analysis or results. A small change was required to the Sawtooth core files to lower the

granularity of the time-series from 10 seconds to one second, to capture data at the rate

required to test the hypothesis. This change to the core Sawtooth files was the only non-

standard feature of the entire installation.

 Analysis of the results dataset to evaluate performance and test the hypothesis

was performed in the R statistical analysis application. A package called influxdbr

enabled connection from R to the InfluxDB instance on EDG10 to import data. InfluxDB

implements a SQL-like InfluxQL query language and this was one of the options

available to perform filtering, aggregation, and other data transformations at the database

level. However, the approach adopted was to use influxdbr to load the entire dataset

 40

from its InfluxDB source into an R dataframe. In this way, all the analysis,

transformation and visualisation of data could be performed in one application.

 Data on throughput was sourced from an InfluxDB measurement that contains a

value for the count of transactions stored on the blockchain. The value was in absolute

terms and required some additional processing to calculate the relative change in the

number of transactions from one time interval to the next. This step was necessary to

report the number of transactions per second. The same process was followed for data

on the number of blocks added, which was available in another InfluxDB measurement.

 Mean tps was the primary measure of throughput and the key metric for

measuring overall performance. Throughput is the rate at which transactions are added

to the blockchain. A secondary measure of performance was the standard deviation, to

evaluate the amount of variance in the rate of transaction throughput. A low standard

deviation relative to its corresponding mean tps, is indicative of stable and consistent

performance, whereas higher values are indicative of unstable and intermittent

performance.

3.9 Summary

An experiment to evaluate performance of a practical application of Sawtooth for IoT

data security was designed with an architecture consisting of an edge layer and an IoT

layer, similar to that proposed by (Sittón-Candanedo et al., 2019). The edge layer

consisted of a MacBook Air laptop that hosted three virtual machines. The IoT layer

consisted of a Raspberry Pi connected to a temperature sensor.

 Hyperledger Sawtooth was installed on each of the three VMs as this is the

minimum number of nodes required for the PoET consensus mechanism to operate.

Other software was also installed on the edge layer to collect and display data and

metrics on the blockchain performance.

 A transaction processor was developed in python for the experiment, to receive

transactions and apply some proof-of-concept validation rules before saving the

temperature data to the blockchain state. An IoT client was also developed in python to

read temperature data from the sensor and then add it to a transaction within a batch that

was then submitted to the REST API.

 41

 The physical sensor device, which was assembled on a breadboard and

connected to the Raspberry Pi, was represented in the IoT client as an object of a sensor

class, and its attributes would become the payload of the IoT data transaction.

 After the IoT client and Sawtooth components were started, some testing was

applied to confirm that the blockchain nodes had peered and the network was

operational. A series of experiments were then performed with a range of input

transactions in both single and multiple batch transactions. This ensured performance

was evaluated under a range of workloads.

 Each experiment submitted transactions for a 60-minute period and data on

blockchain performance was collected in an InfluxDB time-series database at one-

second intervals. Data from InfluxDB was then imported into R for analysis,

visualisation and to perform the hypothesis test.

 Mean tps was the primary measure of performance in terms of throughput, with

standard deviation as a secondary measure to evaluate the variance. Measuring variance

is important to understand the overall stability or intermittency in the performance of

transaction throughput.

 42

4. RESULTS, EVALUATION, AND DISCUSSION

In this chapter, the results of the experiments described in chapter 3 will be presented

alongside an initial discussion of the key metrics relating to transaction throughput. This

will be followed by a detailed analysis and evaluation of the data, leading up to the

hypothesis test. The chapter will conclude with a discussion of the main outcomes and

findings from the experiments and hypothesis test.

4.1 Real-time observations of experiment performance

Performance during the experiments was monitored in real-time using the Grafana

dashboard. This provided an initial subjective evaluation before results were available

for analysis. Under ideal conditions, a linear rate of input transactions would have an

approximately corresponding linear rate of transactions being committed to the

blockchain. This ideal scenario would provide a stable platform with predictable

performance to support applications and use cases at the business solution layer.

 Figure 22 shows an example of the Grafana dashboard displaying the increase in

the number of committed transactions during one of the experiments. At a macro level,

the rate of increase of committed transactions appears approximately linear, as would be

expected for a given constant rate of input transactions. However, while the rate of

committed transactions does have an approximate linear form, zooming in reveals

occasional stepped increases after periods of no change.

Figure 22: Grafana committed transactions dashboard, showing stepped increase

 The pattern of stepped increments in Figure 22 is consistent with some

intermittency in the console logging output of the transaction processor, which was also

Stepped increase

 43

monitored during the experiment. The logging messages often froze temporarily,

followed by a short burst of activity, before settling back to a steadier rate of processing

activity.

 An example of intermittency in the logging output is highlighted in Figure 23,

which shows an approximately 25 second period when no transactions were processed

by the IoT transaction processor. These periods of inactivity, followed by bursts of

activity, were probably the result of the internal operation of the Sawtooth components

and the consensus mechanism. Another possibility is that some of this behaviour may

have been due to bottlenecks and latencies in the network.

Figure 23: IoT transaction processor log messages showing inactivity

 The freeze in activity often coincided with spikes in pending batches that could

be observed on another Grafana display. Recall that transactions are added and

processed by the validator in batches. An example of a spike in pending batches is visible

on Figure 24 between 20:34 to 20:35. There is no clear explanation for spikes like this

as conditions were kept constant throughout the experiment. If pending batches are not

processed within a certain time-period, it can lead to rejection of the batches and all

transactions contained therein due to queue timeout (Ampel et al., 2019).

Figure 24: Grafana pending batches dashboard

 Another observation of the data that is visible on Figure 22 is that the number of

committed transactions on each node can be slightly different in a given time interval.

The number of committed transactions on each of the three nodes varies between 631

 44

and 638 in the time interval highlighted by the tooltip display on Figure 22. This is a

point-in-time phenomenon, as the different nodes appended blocks slightly earlier or

later than other nodes.

 Different nodes alternated between leading and lagging, in terms of the number

of committed transactions, at different times. While this does not necessarily represent

an issue, it is a feature of the blockchain that could have implications for applications at

the business solution layer that have time-sensitive functionality.

 Ultimately, each of the nodes had the same block head and the same number of

committed transactions when the experiments concluded, though the blockchain had

forked several times during each of the experiments. Forking is the process by which the

blockchain manages divergences in the blocks comprising the chain. This tendency to

fork, especially at higher rates of input has also been observed in other performance

evaluations of Hyperledger Sawtooth (Shi et al., 2019).

 A full analysis and discussion of the consequences of forking are beyond the

scope of this study but would warrant further analysis in future work. Forking in the

blockchain is not necessarily an issue but a greater understanding of the causes and

implications would be required before the experiment could be scaled for real-world use

cases.

4.2 Experiment Results

A summary of the results obtained for each iteration of the experiment can be found in

Table 7. The results include the mean number of transactions committed to the

blockchain per second as mean tps, with its corresponding standard deviation, for each

target tps. The target tps is the target rate of input transactions submitted by the IoT

client via the REST API. Mean tps is the primary measure of performance in terms of

transaction throughput and will ultimately be used to test the research hypothesis.

 The number of transactions per batch are also included in the results table. The

transactions per batch were either one or ten, but these will generally be referred to as

either single transaction batches or multiple transactions batches.

 The first observation on the results in Table 7 is that the rate of committed

transactions, as measured by mean tps, did not achieve the target tps for any of the

experiments, for either single transaction batches or multiple transaction batches. The

mean tps was less than half the target tps in most instances. It is important to interpret

 45

this correctly, as the results are not indicating that, for example, 10 transactions were

submitted and only 5 were committed to the blockchain, but rather that the actual input

rate from the IoT client was constrained by the performance of the network to a level

close to the mean tps.

Target tps Transactions per batch Mean tps Standard deviation
2 1 1.367 4.498
4 1 1.917 6.619
6 1 2.484 8.752
8 1 3.814 13.046
10 1 4.518 13.996
12 1 5.006 16.064
8 10 5.953 20.077
10 10 6.783 23.541
12 10 7.634 26.911
20 10 10.680 37.116

Table 7: Results showing mean tps and standard deviations

 Another observation on the results is the high variability in the number of

committed transactions per second, as indicated by the large standard deviations relative

to their respective means. This high variability is consistent with the findings of Shi et

al. (2019) whose results also showed high variance that increased with increasing rates

of input transactions. Variability in the results is an indicator of unstable performance

which may impact on how data from the blockchain is used and consumed at the

business solution layer.

 The results in Table 7 also show that multiple transaction batches consistently

achieved a higher mean tps compared to single transaction batches, though variance was

higher for the multiple transaction batches. This observation is based on the target tps of

8, 10 and 12, where a direct comparison is possible between single and multiple

transaction batches. Figure 25 shows the comparison where the higher throughput of

multiple transaction batches is strongly evident. Ampel et al. (2019) also reported batch

size as a factor affecting performance in their study of Sawtooth.

 At a target rate of 20 tps, the mean tps achieved was more than 10 tps, offering

some initial support for the hypothesis that Sawtooth can process IoT data transactions

at a rate of at least 10 transactions per second.

 46

Figure 25: Mean tps for single and multiple transaction batches

4.2.1 Transaction throughput

InfluxDB records the second-by-second time-series of the number of transactions

committed to the blockchain. Taking a closer look at the data at this level of granularity

gives a greater insight into how transactions were committed to the blockchain. Figure

26 shows a two-minute time slice from one of the experiments. The first observation on

the data when viewed at this level of granularity is the many one-second time intervals

when no transactions at all were committed to the blockchain.

 What Figure 26 shows is that transactions were committed intermittently, in

volumes that were proportional to the amount of time that had elapsed since the last

transactions were committed. This intermittency creates latency in the system, as a

transaction is not available to applications at the business solution layer until it has been

committed to the blockchain. Intermittency of committing transactions will have

contributed to the high level of variance observed in the results data.

 Another observation on the data was negative numbers of transactions in some

one-second intervals, for some iterations of the experiment. The data has been

thoroughly checked and it was confirmed that this is not a data quality issue. The

negative values are most likely due to removal of duplicate transactions by Sawtooth to

2

4

6

8

10

8 tps 10 tps 12 tps

Target tps

M
ea

n
tp

s

Single transaction batches

Multiple transaction batches

Committed transaction rates

 47

keep the blockchain consistent across nodes. Although this occurred infrequently, it

warrants further investigation to obtain a fuller understanding in future studies.

Figure 26: Example of transactions committed in two-minute period (target tps: 4)

 Variability in the rate of committed transactions is also apparent in the

histograms showing the number of transactions committed per second for each target tps

(see Figure 27 and Figure 28). For readability, intervals with negative or zero number of

transactions are not shown on the histograms.

 Figure 27 shows that while the mean for single transaction batches ranges from

between approximately 1.4 and 5.0 tps, there were up to 100 transactions committed to

the blockchain in some one-second periods. This number coincides with the default

maximum number of batches per block. The default setting for maximum batches per

block was left unchanged in the initial configuration, though it can be changed by

submitting a settings transaction.

 For single transaction batches, the maximum number of transactions per block is

equivalent to the maximum number of batches per block, as there exists a one-to-one

relationship. Therefore, it's reasonable to assume from the histograms shown in Figure

27 that transactions submitted in batches of one were added to blocks containing up to

the maximum of 100 batches allowed by the default setting.

0

10

20

30

00:00 00:30 01:00 01:30 02:00

Elapsed time

Tr
an

sa
ct

io
ns

 c
om

m
itt

ed
 (t

ps
)

Example of transactions committed in two mintute period

 48

Figure 27: Committed transaction rates for single transaction batches

 For multiple transaction batches, up to 520 transactions were committed in some

one second intervals. Multiple transaction batches, with 10 transactions per batch, can

have up to 1,000 transactions per block with the default setting for the maximum number

of batches per block. The higher number of transactions per block for multiple

0

50

100

150

0 20 40 60
tps

fre
qu
en
cy

Target rate: 2 tps

0

50

100

150

0 25 50 75
tps

fre
qu
en
cy

Target rate: 4 tps

0

25

50

75

100

0 25 50 75 100
tps

fre
qu
en
cy

Target rate: 6 tps

0

20

40

60

0 25 50 75 100
tps

fre
qu
en
cy

Target rate: 8 tps

0

10

20

30

40

50

0 25 50 75 100
tps

fre
qu
en
cy

Target rate: 10 tps

0

10

20

30

40

0 25 50 75 100
tps

fre
qu
en
cy

Target rate: 12 tps

Committed transaction histograms of single transaction batches

 49

transaction batches will have contributed to the higher variance for multiple transaction

batches observed in the results in Table 7.

 Both sets of histograms also display a shift from higher frequencies of low rates

of tps, to lower frequencies of more varied rates of tps, as the target tps increased. The

pattern can be observed in both single transaction batch inputs and multiple transaction

batch inputs and will also have contributed to the increased variance as target tps

increased.

Figure 28: Committed transaction rates for multiple transaction batches

4.2.2 Transactions per block

It was observed in the results presented in Table 7 that the variance for the number of

committed transactions per second increased as the rate of target tps increased. It was

also observed from Figure 27 that transactions were committed at a rate up to the

0

30

60

90

0 50 100 150 200
tps

fre
qu
en
cy

Target rate: 8 tps

0

30

60

90

0 100 200 300
tps

fre
qu
en
cy

Target rate: 10 tps

0

30

60

90

0 100 200 300
tps

fre
qu
en
cy

Target rate: 12 tps

0

20

40

0 100 200 300 400 500
tps

fre
qu
en
cy

Target rate: 20 tps

Committed transaction histograms of multiple transaction batches

 50

maximum permitted for the default setting for maximum number of batches per block.

 The next step is to explore further the relationship between blocks and

transactions. There is no data available that specifically reports on the number of

transactions per block, but it can be inferred by comparing the number of blocks and the

number of transactions, both of which are available separately.

 The results for the total number of blocks and mean number of transactions per

block are presented in Table 8. They show that the mean number of transactions per

block increased as the target tps increased. The increase in mean number of transactions

per block coincides with increases in the standard deviation seen in Table 7.

 The results also show that the total number of blocks decreased in absolute terms

with increases in the target tps, though the number was relatively stable throughout.

Interestingly, the number of blocks was consistent between the single and multiple

transaction batches, e.g., at a target tps of 10, there were 475 blocks for the single

transaction batches versus 473 for the multiple transaction batches (see Figure 29).

 The mean number of transactions per block was higher for multiple transaction

batches than it was for single transaction batches. Given that the number of blocks was

relatively constant for single and multiple batch transactions at a given target tps, the

higher mean transactions per block for multiple transaction batches reflects the higher

throughput achieved.

Target tps Transactions per batch Total blocks Mean transactions per block
2 1 550 8.945
4 1 538 12.827
6 1 518 17.264
8 1 483 28.424
10 1 475 34.238
12 1 464 38.841
8 10 503 42.604
10 10 473 51.628
12 10 455 60.400
20 10 415 92.682

Table 8: Total blocks and mean transactions per block

 Results presented in Table 7, Figure 27 and Figure 28 indicate that the high

variance for committed transactions was driven in some part by the variance in the

number of transactions per block. This raised the question if reducing the maximum

 51

number of transactions per block may help to reduce the variance, by forcing the network

to commit transactions more frequently in smaller blocks.

Figure 29: Blocks committed for single and multiple transaction batches

 To evaluate if this approach could offer an effective solution for reducing

variance, a series of follow up experiments were performed with the maximum number

of batches per block set at 10, and the results are presented as Table 9. For all but three

of the experiments, failure occurred after the network became overwhelmed when the

same number of input transactions were submitted at the lower maximum batches per

block. In many cases, failure occurred within a few minutes of starting the experiment.

Target tps Transactions per batch Mean tps Standard deviation
2 1 Error -
4 1 Error -
6 1 Error -
8 1 Error -
10 1 Error -
12 1 Error -
8 10 5.894 18.411
10 10 6.717 20.918
12 10 7.736 23.483
20 10 Error -

Table 9: Experiment results with reduced maximum batches per block

100

200

300

400

500

600

8 tps 10 tps 12 tps

Target tps

B
lo
ck
s

Single transaction batches

Multiple transaction batches

Number of blocks added

 52

 This type of failure can occur when batches are submitted faster than they can be

processed, and they accumulate as pending batches. If the number of pending batches

reaches a certain threshold, then batches will be rejected to reduce pressure on the

network, in a feature known as back-pressure16 in Sawtooth. This is a security measure

that helps to prevent Distributed-Denial-of-Service (DDoS) attacks. Figure 30 shows a

HTTP 429 status code indicating the error at the IoT client. This error halted execution

of the IoT client in the current network design.

Figure 30: HTTP status code 429 received at IoT client

 The results suggest that when the maximum batches per block is set to 10, the

network can only reliably process around one batch per second, as this is the rate of

batch submission when the target tps is between 8 and 12 and the batch size is 10

transactions per batch. Even at 2 batches per second the experiment failed relatively

quickly, as is the case for a target tps of 2 or greater in a single transaction batch and for

a target tps of 20 in the 10 transactions batch.

 Another interesting result is that for the experiments that were successful, there

is no real observable improvement in the mean tps compared to the equivalent target tps

with the default setting for maximum batches per block, as can be seen in Figure 31.

However, there is some reduction in variance as measured by the standard deviation.

Future studies could evaluate performance with different maximum batches per block to

find the optimal configuration for this setting.

16 https://sawtooth.hyperledger.org/faq/rest.html#what-is-the-back-pressure-test

 53

Figure 31: Committed transaction rates comparison of default and updated minimum

batches per block

4.3 Hypothesis test

The highest mean tps of any experiment was achieved when the target tps was 20 with

a batch size of 10 and using the default setting for maximum batches per block (see

Table 7). The data obtained during this experiment will be used to test the hypothesis

that Sawtooth can process IoT data at a rate of at least 10 transactions per second.

 A one-sample t-test was selected to test if the mean of the committed transactions

was statistically significantly greater than a hypothesised mean. The mean of the

hypothesised distribution in this scenario is 10 transactions per second (tps). Testing the

hypothesis with a one-sample t-test requires several assumptions to be fulfilled.

Normally distributed data is one of the assumptions.

 However, it is clear from the density plot shown in Figure 32 (a) that the

assumption of data being normally distributed is not valid for the committed transactions

data. Normality of the data was also shown to be unlikely by performing a Shapiro-Wilk

test in R.

 The high number of one-second intervals where zero transactions are being

committed is a significant contributor to the non-normality of the data. This can be seen

2

4

6

8

10

8 tps 10 tps 12 tps

Target tps

M
ea

n
tp

s

Default batches per block (100)

Updated batches per block (10)

Committed transaction rates

 54

on the density plot as the very prominent peak that is centred around zero committed

transactions. Attempts to transform the data, using a range of methods, including square-

root and log transforms, did not produce a distribution that was normal or even

approximately normal. An example of the log transformed committed transactions data

is shown as Figure 32 (b).

 Without the assumption of normality, an alternate approach to test the hypothesis

was required. The approach selected was the central limit theorem. The central limit

theorem states that for sufficiently large random samples, taken (with replacement) from

a population with mean µ and variance s2, the distribution of the sample means will

approach normality (Kwak & Kim, 2017). This occurs regardless of the distribution of

the parent population.

 The central limit theorem was applied to the committed transactions data by

taking 5,000 samples of size 300, resulting in a distribution of sample means that is

shown in Figure 32 (c). The distribution of sample means appears approximately normal,

and with a mean of 10.69 tps it is very close to the true population mean of 10.68 tps.

 To improve the normality of the data even further, a square root transformation

was applied to the central limit theorem data before completing the hypothesis test (see

Figure 32 (d)). The transformed data was checked using a Shapiro-Wilk test which

provided strong evidence that the data was normally distributed.

 Applying the one-sample t-test to the transformed data obtained a p value less

than the significance level of a = 0.05, meaning we reject the null hypothesis and

conclude that it is plausible that if Hyperledger Sawtooth blockchain distributed ledger

is implemented on an edge computing server, then it will process and securely store

internet-of-things (IoT) data transactions, in the form of temperature readings from a

sensor connected to a Raspberry Pi computer and transmitted via REST API, at a rate of

at least 10 transactions per second.

4.4 Discussion of results

The results support the alternate hypothesis and answer the research question posed at

the outset. A possible limitation was having to use a target rate of 20 tps to achieve a

rate of throughput at the level required to reject the null hypothesis. The decision to

apply this methodology was made on the basis that 20 was the target and not the actual

 55

rate of submission. It follows that the actual rate is equivalent to the mean tps, which has

achieved the level required to reject the null hypothesis.

Figure 32: Density plots of committed transaction data

 This gap between the actual rate of transaction throughput and the target level of

throughput was one of the main findings in the results. Another finding was the very

high level of variance in the rate at which transactions were committed to the blockchain.

Each of these findings will now be discussed further.

4.4.1 Transaction throughput

The first of the additional findings to be discussed in detail, was the failure of the mean

tps to achieve the level specified in the target tps. This is a potential limitation of the

current network design, and possibly of Hyperledger Sawtooth itself, that requires a

0.00

0.01

0.02

0.03

0.04

0.05

0 200 400

Committed transaction rate (tps)

de
ns
ity

(a) Raw data

0.0

2.5

5.0

7.5

0 1 2

log10(Committed transaction rate (tps))

de
ns
ity

(b) Raw data, log transform

0.00

0.05

0.10

0.15

5 10 15 20

Committed transaction rate (tps)

de
ns
ity

(c) Central limit theorem

0.0

0.3

0.6

0.9

1.2

2.0 2.5 3.0 3.5 4.0 4.5

sqrt(Committed transaction rate (tps))

de
ns
ity

(d) Central limit theorem, square root transform

Density plots of committed transaction data

 56

better understanding of why it occurred to propose possible solutions and directions for

future research.

 Some of the difference between target tps and mean tps was due to the design of

the network and the method for setting the rate of input transaction submission at the

IoT client. A time delay was specified at run time by providing an interval at the IoT

client through a command line argument, where the interval was a programmed delay

between submitting successive transactions, e.g., for 10 transactions per second the

interval was 100 milliseconds.

 The input transaction submission interval did not leave room for additional

processing times within any of the software components or latencies in the REST API

response. This will have contributed to a lower mean tps relative to the target tps rate

due to the total round-trip time of sending a transaction being longer than the specified

interval between transactions.

 Differences between target tps and mean tps could also be due to internal delays

within the Sawtooth components, including the consensus mechanism. Delays in the

Sawtooth components or consensus mechanism would represent a more binding

constraint for achieving a target level of performance.

 Changing the design of the IoT client to submit transactions asynchronously may

remove some of the delays due to the REST API response latencies. Sawtooth SDKs are

available for JavaScript that may offer a better solution for asynchronously posting the

HTTP requests. This approach could be applied in future studies aimed at improving and

optimising performance. Such a redesign would help highlight the extent to which delays

were occurring internally in the Sawtooth components by removing any possible

latencies arising from the REST API.

 Another redesign that could be explored in future work would be to use a lower-

level messaging protocol to submit transactions. Sawtooth natively supports the ZMQ

messaging protocol for this task. This solution is more complex than using the REST

API but offers a lighter-weight and more efficient and robust solution17.

 One approach to reduce the delta between target tps and actual tps that was

evaluated during the experiments was to batch together multiple transactions before

submitting them to the REST API. This approach results in fewer round trips per

transaction. The effect of increasing the number of transactions per batch is visible in

17 https://sawtooth.hyperledger.org/docs/1.2/architecture/rest_api.html

 57

Figure 25, where the results indicate that multiple transaction batches do achieve a

higher mean tps compared to single transaction batches, for a given target tps.

 However, increasing the number of transactions per batch does also present some

potential risks to overall performance. Multiple transaction batches incur a higher cost

if a batch is rejected by a timeout resulting from an excess of pending batches, as all

transactions in the batch will be rejected together.

 More transactions per batch also increases latency in the network by increasing

the time for some transactions to be committed, as the first transaction added to the batch

is not submitted to the REST API until the last transaction has been added to the batch.

For example, if transactions are added to a 10 transactions batch, at the rate of one per

second, then at least 10 seconds will pass from the time of adding the first transaction

until the last transaction is added to complete the batch and send to the REST API.

4.4.2 Performance variability

Variability in performance was another finding of the experiment results. This can be

seen in Table 7 where it presents as the large standard deviations relative to the

corresponding means, and throughout Figure 27 and Figure 28, where it presents as a

long tail in the histogram distributions. Variance was also observed during the

experiments, where it presented as unevenness in the performance of the network. This

unevenness, which has been discussed already, presents as pauses and bursts of activity

in the rate of committed transactions, visible through the console logging messages and

on the Grafana dashboard.

 Under ideal conditions, a linear rate of input transactions would have an

approximately corresponding linear rate of transactions being committed to the

blockchain. Such linearity may be unrealistic in real-world conditions, as latencies and

bottlenecks occur at various stages of processing. However, even allowing for latency,

it is reasonable to expect that the blockchain should achieve a steady state of transaction

throughput that has a linear relationship with the rate of input transactions.

 Attempts to reduce the amount of variance by forcing the transactions into

smaller blocks resulted in failure for most rates of input transaction, though the

experiments that completed successfully did have some reduction in their standard

deviations compared to the initial results. Repeating the experiment in a higher resource

environment may improve performance for smaller blocks but that goes against the goal

 58

of using low-powered edge computing resources. Ultimately, it seems that variance at

higher rates of input transaction is a characteristic of Hyperledger Sawtooth as other

studies have shown the same finding (Shi et al., 2019).

 High variance creates a limitation on the types of applications and use cases for

Sawtooth at the business solution layer. For non-time critical applications, with lower

throughputs, Sawtooth may be an appropriate blockchain platform to provide a secure

log of IoT data transactions. On the other hand, for time sensitive applications and use

cases with higher throughputs, then Sawtooth may not be an appropriate blockchain

platform, at least not with the current network design.

4.5 Summary

Results were presented for multiple experiments across a range of input transaction rates

and for different configurations. These results provided some interesting findings and

insights on how transactions are committed to the blockchain.

 One finding was the failure of the network to support the specified rate of input

transactions, as measured by the target tps. This finding relates more to the design of the

network rather than the performance of Sawtooth.

 Another finding was the variability in the rate at which transactions were

committed to the blockchain. Such variance has been observed in other studies (Shi et

al., 2019), indicating that this finding relates more to an inherent performance

characteristic of Sawtooth. Attempts to reduce the variance by reducing the number of

transactions per block were largely unsuccessful.

 A one-sample t-test was applied to the committed transaction data to test the

hypothesis. Application of the central limit theorem and a square root transform was

required to fulfil the assumption of normally distributed data that is required for a one-

sample t-test.

 The result of the test supports the hypothesis that a Hyperledger Sawtooth

blockchain distributed ledger implemented on an edge computing server will process

and securely store internet-of-things (IoT) data transactions, in the form of temperature

readings from a sensor connected to a Raspberry Pi computer and transmitted via REST

API, at a rate of at least 10 transactions per second.

 59

5. CONCLUSION

This final chapter will begin with a summary of the research from the literature review,

before restating the problem definition that framed the research question at the outset of

the work. This will be followed with an overview of the results and findings from an

experiment designed to address the research problem, including the implications and

limitations. Finally, the chapter will offer recommendations for future work.

5.1 Research overview

The research conducted in the literature review focused on three main elements that were

integrated into the research question and hypothesis test. These three elements were IoT

security, blockchain applications for IoT security, and edge computing in the context of

IoT security and blockchain.

 To begin with, the research focused on gaining an understanding of the security

challenges facing IoT and the existing proposed solutions, which includes blockchain.

Blockchain has been shown to offer a feasible solution for IoT security (Dorri et al.,

2017), but limitations have been encountered in the rate of transaction throughput due

to the time taken for the consensus mechanism to approve and add transactions to a new

block (Huh et al., 2017).

 The research then explored how the transaction throughput limitations can

potentially be overcome using private blockchains with more efficient consensus

mechanisms. One such private blockchain is Hyperledger Sawtooth, which has shown

promising results in performance benchmarks compared to other blockchain platforms

(Rasolroveicy & Fokaefs, 2020).

 Finally, proposals for integrating IoT and blockchain with edge computing were

explored to establish the benefits, and to understand the patterns and reference

architectures that have previously been applied. A proposed architecture consisting of

an IoT layer, an edge layer, and a business solution layer (Sittón-Candanedo et al., 2019),

was selected as a blueprint for the experiment design.

5.2 Problem definition

A gap existed in the literature for a performance evaluation of Hyperledger Sawtooth in

a practical application of blockchain for IoT data security that included a detailed design

 60

and a solution architecture. A practical application using real data collected by real

sensors and submitted over a physical network provides better generalisation of results

compared to experiments that use test transactions.

 Results obtained in an evaluation of a practical application can be taken as more

indicative of real-world performance than results obtained from simulated networks and

test transactions. As such, a practical application serves as a better indicator of

performance for development of use cases, especially when combined with a detailed

design and solution architecture that potentially can be scaled.

5.3 Experimentation, evaluation & results

To address the research problem, an experiment was designed for an edge computing

implementation of Hyperledger Sawtooth blockchain to store data from an IoT device.

The edge computing network consisted of a MacBook Air laptop representing the edge

server and a Raspberry Pi computer connected to a temperature sensor representing the

IoT device. The edge server hosted three Sawtooth blockchain nodes on three virtual

machines. Communication between the IoT device and the blockchain nodes on the edge

server was over a home Wi-Fi network using Sawtooth's REST API.

 Experiments were run over a range of input transaction rates and with different

configurations to evaluate performance under different workloads. Data for each of the

experiments was captured in an InfluxDB instance on one of the virtual machines. After

the experiments were complete, data was exported to R for analysis, visualisation, and

hypothesis testing.

 The minimum rate of throughput required to reject the null hypothesis was at

least 10 transactions per second. The hypothesis test was performed using a one-sample

t-test at an a = 0.05 level of significance. Prior to testing the hypothesis, the central limit

theorem and a square root transformation was applied to the results data. This was

required to achieve the assumption of normality required for the one-sample t-test.

 The outcome of the hypothesis test indicates that if Hyperledger Sawtooth

blockchain distributed ledger is implemented on an edge computing server, then it will

process and securely store IoT data transactions, in the form of temperature readings

from a sensor connected to a Raspberry Pi computer and transmitted via REST API, at

a rate of at least 10 transactions per second.

 61

 The level of throughput observed in the results would support many use cases,

such as a smart home environment, where IoT devices could communicate with the

centralised edge server to store and exchange data securely, e.g., the temperature data

could be accessed by the heating system as a thermostatic control.

 However, results also showed a high level of variance in the rate of transaction

throughput that appears to be characteristic of Sawtooth as similar studies have also

reported this finding (Shi et al., 2019). Variance in throughput was the result of

intermittency in the rate at which transactions were committed to the blockchain. This

variance could be an issue for some use cases and applications at the business solution

layer that depend on a steady rate of data availability.

 Unsuccessful attempts were made to reduce the amount of variance by altering

the configuration to add fewer batches and hence fewer transactions per block. Using

this approach, the network quickly became overwhelmed and experienced a queue

timeout leading to the rejection of transactions. The few experiments that did complete

successfully did show a slight reduction in variance but no overall improvement in

throughput.

 There were also some limitations in achieving the desired target rate of

transaction throughput from the IoT client. This was due to the round-trip time of

submitting a transaction via the Sawtooth REST API being longer than anticipated.

Typically, the actual rate achieved for throughput was about half the target rate. Some

or most of this delay is related to the design of the experiment and cannot be attributed

to the performance of Sawtooth itself.

 Crucially, every transaction that was submitted to the REST API was either

committed or was reported as an error in the cases where the minimum transaction per

batch was lowered leading to failure of the experiment. The importance of this cannot

be overstated in a series of experiments where 100s of thousands of transactions were

submitted by the IoT client. In this regard, it can be concluded that the reliability of

Sawtooth and the network design was very high.

 Results and findings must be viewed within the context of the edge computing

implementation that was designed for the experiments. The host machine representing

the centralised edge server for the Sawtooth network was a basic specification MacBook

Air laptop. This edge server was running three blockchain nodes as that is the minimum

number required by the PoET consensus mechanism.

 62

 This is a heavy workload for the host machine as each blockchain node was

running within its own virtual machine (VM). If the network was extended to three or

more edge servers in a larger area blockchain network, then each edge server would need

to run only a single blockchain node, thereby reducing the workload on each edge server.

 A final point relates to the setup and configuration of both the software and

hardware components, which was a significant effort. The Sawtooth documentation

available online was to a high standard but there were some gaps. As Sawtooth is

somewhat of a niche software application, the user community is small and there are

relatively few resources available for support and discussion. Troubleshooting during

installation and operation was a challenge requiring long hours of testing, investigation,

and debugging.

5.4 Contribution and Impact

The experiments conducted have addressed a gap in the existing literature to provide a

performance evaluation of a practical application of Hyperledger Sawtooth for IoT data

security. Notwithstanding the limitations that have been discussed, the outcome of the

hypothesis test indicates that an edge computing implementation of Sawtooth can

achieve a throughput rate of at least 10 transactions per second in the experiment that

was designed and evaluated.

 Performance was evaluated using a physical IoT device, consisting of a

Raspberry Pi connected to a temperature sensor, sending real data over a REST API to

the Sawtooth nodes on a basic specification MacBook Air that acted as a centralised

edge server. This improves the generalisability of the results compared to other

performance assessments of Sawtooth that applied test cases only. It also extends the

scope of Sawtooth applications for IoT to just about any environment that has an internet

connection and some basic hardware.

 A detailed analysis on the sources of variance in transaction throughput was

presented alongside the experiment results, something which wasn't provided in other

studies of Sawtooth. Understanding the sources of variance paves the way for future

efforts to reduce it and achieve a more stable performance.

 The detailed network and experiment design provides a scalable reference

architecture and blueprint for future development of use cases and applications that can

 63

utilise the data stored on the blockchain. Design improvements have also been

suggested, notably in relation to reducing the round-trip time of submitting transactions.

5.5 Future Work and Recommendations

Further work will be required to understand the limitations and other observations that

were not fully explored in the results as they were not within scope. One observation

that was noted but not explored was the forking of the blockchain that occurred in all

experiments. Forking could have implications on performance at the business solution

layer and would benefit from further investigation and understanding before use cases

and applications are developed.

 Another observation that was noted but not fully explored was the occasional

reduction in the number of committed transactions on individual blockchain nodes. This

may well have been related to forking of the blockchain and self-correcting mechanisms

to ensure no duplicate transactions were added in blocks. Comfort is taken from the fact

that the experiments concluded with the expected number of transactions committed on

each blockchain node. However, it is worth understanding the reasons why this occurred

before proceeding to development of use cases and applications.

 Limitations relating to achieving the target level of throughput could potentially

be overcome by redesigning some of the features, such as by sending transactions to

Sawtooth's REST API asynchronously to reduce waiting time on HTTP responses. This

redesign should be evaluated and benchmarked against the existing design to see if it

offers any improvement. Sawtooth transactions can also be submitted using the ZMQ

protocol, and this could also be included in future benchmarking performance evaluation

of transaction submission.

 Results showed that reducing the batches per block does reduce performance

variance slightly, though the setting that was evaluated in the experiments was perhaps

too ambitious and caused the network to quickly get overwhelmed. Further analysis

should be performed to find the optimal configuration in terms of batch size and batches

per block to find a balance between minimising variance while avoiding overwhelming

the network with too many batches.

 Given the initial success of the experiments conducted in this study, use cases

and applications at the business solution layer can be prototyped, tested, and evaluated,

in parallel to work addressing the limitations and observations discussed. The network

 64

for these prototypes should be scaled to encompass a wider area of multiple sites, with

each site a separate blockchain node. Each site or blockchain node can in turn have

multiple IoT devices. Performance of the network with multiple nodes supporting

multiple IoT devices can then be re-evaluated to measure throughput for scaled

applications.

 A final recommendation to the Hyperledger developers and community would

be to maintain support through the available channels for troubleshooting and

debugging. Community support is crucial for a niche application like Sawtooth as other

learning resources are very limited. While resources were often hard to find, the quality

of documentation and resources that were available from official channels was of an

excellent standard. Some gaps exist so regular updates will be required to ensure these

are addressed and closed off.

 65

BIBLIOGRAPHY

Alfandi, O., Khanji, S., Ahmad, L., & Khattak, A. (2021). A survey on boosting IoT

security and privacy through blockchain. Cluster Computing 24(1), 37-55.

Alladi, T., Chamola, V., Parizi, R. M., & Choo, K.-K. R. (2020). Blockchain applications

for industry 4.0 and industrial IoT: A review. IEEE Access 7, 176935-176951.

Alladi, T., Chamola, V., Sikdar, B., & Choo, K.-K. (2020). Consumer IoT: Security

vulnerability case studies and solutions. IEEE Consumer Electronics Magazine,

9(2), 17-25.

Amanullah, M. A., Habeeb, R. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A.

S., . . . Imran, M. (2020). Deep learning and big data technologies for IoT

security. Computer Communications 151 , 495-517.

Ampel, B., Patton, M., & Chen, H. (2019, July). Performance modeling of hyperledger

sawtooth blockchain. 2019 IEEE International Conference on Intelligence and

Security Informatics (ISI) (pp. 59-61). IEEE.

Baralla, G., Pinna, A., & Corrias, G. (2019, May). Ensure traceability in European food

supply chain by using a blockchain system. 2019 IEEE/ACM 2nd International

Workshop on Emerging Trends in Software Engineering for Blockchain

(WETSEB) (pp. 40-47). IEEE.

Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2017). Blockchain for IoT

Security and Privacy: The Case Study of a Smart Home. 2017 IEEE international

conference on pervasive computing and communications workshops (PerCom

workshops) (pp. 618-623). IEEE.

Elrawy, M. F., Awad, A. I., & Hamed, H. F. (2018). Intrusion detection systems for IoT-

based smart environments: a survey. Journal of Cloud Computing 7, (1), 1-20.

Gadekallu, T. R., Pham, Q. V., Nguyen, D. C., Maddikunta, P. K., Deepa, N., Prabadevi,

B., . . . Hwang, W. J. (2021). Blockchain for edge of things: applications,

opportunities, and challenges. IEEE Internet of Things Journal 9, no. 2, 964-988.

Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey

on IoT security: application areas, security threats, and solution architectures.

IEEE Access 7, 82721-82743.

Huh, S., Cho, S., & Kim, S. (2017). Managing IoT devices using blockchain platform.

2017 19th international conference on advanced communication technology

(ICACT) (pp. 464-467). IEEE.

 66

Iftekhar, A., Cui, X., Tao, Q., & Zheng, C. (2021). Hyperledger fabric access control

system for internet of things layer in blockchain-based applications. Entropy,

23(8), 1054.

Kromes, R., Gerrits, L., & Verdier, F. (2019, October). Adaptation of an embedded

architecture to run Hyperledger Sawtooth Application. 2019 IEEE 10th Annual

Information Technology, Electronics and Mobile Communication Conference

(IEMCON) (pp. 0409-0415). IEEE.

Kullig, N., Lämmel, P., & Tcholtchev, N. (2020). Prototype Implementation and

Evaluation of a Blockchain Component on IoT Devices. Procedia Computer

Science 175 , 379-386.

Kwak, S., & Kim, J. (2017). Central limit theorem: the cornerstone of modern statistics.

Korean journal of anesthesiology, 70(2), 144-156.

Malik, A. A., Tosh, D. K., & Ghosh, U. (2019, June). Non-intrusive deployment of

blockchain in establishing cyber-infrastructure for smart city. 2019 16th Annual

IEEE International Conference on Sensing, Communication, and Networking

(SECON) (pp. 1-6). IEEE.

Misra, S., Mukherjee, A., Roy, A., Saurabh, N., Rahulamathavan, Y., & Rajarajan, M.

(2020). Blockchain at the edge: Performance of resource-constrained IoT

networks. IEEE Transactions on Parallel and Distributed Systems, 32(1), 174-

183.

Monrat, A. A., Schelén, O., & Andersson, K. (2020). Performance Evaluation of

Permissioned Blockchain Platforms. 2020 IEEE Asia-Pacific Conference on

Computer Science and Data Engineering (CSDE) (pp. 1-8). IEEE.

Moschou, K., Theodouli, A., Terzi, S., Votis, K., Tzovaras, D., Karamitros, D., &

Diamantopoulos, S. (2020, November). Performance Evaluation of different

Hyperledger Sawtooth transaction processors for Blockchain log storage with

varying workloads. 2020 IEEE International Conference on Blockchain

(Blockchain) (pp. 476-481). IEEE.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from

bitcoin.org: https://bitcoin.org/bitcoin.pdf

Pahl, C., Helmer, S., Miori, L., Sanin, J., & Lee, B. (2016). A container-based edge

cloud paas architecture based on raspberry pi clusters. 2016 IEEE 4th

International Conference on Future Internet of Things and Cloud Workshops

(FiCloudW) (pp. 117-124). IEEE.

 67

Pavithran, D., Shaalan, K., Al-Karaki, J. N., & Gawanmeh, A. (2020). Towards building

a blockchain framework for IoT. Cluster Computing, 23(3), 2089-2103.

Rasolroveicy, M., & Fokaefs, M. (2020, July). Performance evaluation of distributed

ledger technologies for iot data registry: A comparative study. 2020 Fourth

World Conference on Smart Trends in Systems, Security and Sustainability

(WorldS4) (pp. 137-144). IEEE.

Sedlmeir, J., Buhl, H. U., Fridgen, G., & Keller, R. (2020). The Energy Consumption of

Blockchain Technology: Beyond Myth. Business & Information Systems

Engineering, 62(6), 599-608.

Shi, Z., Zhou, H., Hu, Y., Jayachander, S., de Laat, C., & Zhao, Z. (2019, June).

Operating permissioned blockchain in clouds: A performance study of

hyperledger sawtooth. 019 18th International Symposium on Parallel and

Distributed Computing (ISPDC) (pp. 50-57). IEEE.

Sittón-Candanedo, I., Alonso, R. S., Corchado, J. M., Rodríguez-González, S., &

Casado-Vara, R. (2019). A review of edge computing reference architectures and

a new global edge proposal. Future Generation Computer Systems, 99, 278-294.

Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., & Wang, F.-Y. (2018). An Overview of

Smart Contract: Architecture, Applications, and Future Trends,. 2018 IEEE

Intelligent Vehicles Symposium (IV) (pp. 108-113). IEEE.

Yang, R., Yu, F. R., Si, P., Yang, Z., & Zhang, Y. (2019). Integrated blockchain and

edge computing systems: A survey, some research issues and challenges. IEEE

Communications Surveys & Tutorials, 21(2), 1508-1532.

	Performance Evaluation of an Edge Computing Implementation of Hyperledger Sawtooth for IoT Data Security
	Microsoft Word - D20124903_Sean_Connolly_MSc_thesisForEvaluation.docx

