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Abstract

Automatic classification and segmentation of land use land cover(LULC) is extremely

important for understanding the relationship between humans and nature. Human

pressures on the environment have drastically accelerated in the last decades, risking

biodiversity and ecosystem services. Remote sensing via satellite imagery is an ex-

cellent tool to study LULC. Research has shown that deep learning encoder-decoder

architectures have achieved worthy results in the area of LULC, however the applica-

tion of an ensemble approach has not been well quantified. Studies have shown it to be

useful in the area of medical imaging. Ensembling by pooling together predictions to

produce better predictions is a well known technique in machine learning. This study

aims to quantify the statistical improvement that a deep learning ensemble approach

can give to solving a semantic segmentation problem on satellite imagery.

Building on existing state-of-the-art approaches to semantic segmentation, such as

decoder-encoder architectures, data augmentation, transfer learning, this study asks:

to what extent can an average or weighted average ensemble improve the intersection

over union metric for a satellite image segmentation problem in comparison to a single

base model? The intersection over union measures the similarity between the ground

truth labelled images and those predicted by a deep learning model. Based on a review

of the literature on semantic segmentation, a U-Net architecture with a ResNet-34

decoder was used to build an average and a weighted average ensemble. A land cover

classification dataset presented by the DeepGlobe Challenge was then used for training

and evaluating the models.

The results have shown that an average ensemble gave a statistically greater inter-

section over union than a single average U-Net model, a statistical test found the effect
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to be very strong, however a weighted ensemble did not improve on the results of a

simple average. The results provide evidence that an ensemble approach can achieve

better segmentation classifications of LULC in satellite images by using an averaging

technique, however the inference time of an ensemble needs to be taken into consid-

eration, as this study showed a well selected single model can give results as good as

an ensemble and has an advantage of a much faster inference time. Further research

is needed to identify methods for model selection in ensemble deep learning in order

to reduce the inference time.

Keywords: Semantic segmentation, LULC classification, ensemble approach, Deep

learning, U-Net
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Chapter 1

Introduction

1.1 Background

The transformation of the Earth’s surface by humans is causing profound harm to the

functioning of global systems. The detection, prediction and classification of land use

land cover (LULC) change is critical for guiding land resource management, planning,

and sustainable development. The term “land use” here refers to the purpose the land

serves, for example, recreation, wildlife habitat, or agriculture and the term “land

cover” is the physical material at the surface of the earth. Land use can describe how

people utilize the land for the socio-economic activities.

According to Dı́az et al. (2019), the affects of human actions are causing the fabric

of life to unravel, posing serious risks for quality of life of people. This review goes on

to report that “Since 1970, global population has doubled, per capita consumption has

increased by 45%, the value of global economic activity as measured in gross domestic

product (GDP) has increased by >300%, global trade has increased by∼900%, and the

extraction of living materials from nature has increased by >200%.” The atmospheric

scientist Paul Crutzen introduced the term “Anthropocene” in the mid 70s to describe

this most recent period of earth’s history (Carruthers, 2019). The results of this period

are becoming more clearly visible as time passes due to the availability of LULC data

and LULC tools for observation and analysis.

One of the main methods for capturing LULC data is remotely sensed imagery,

1



CHAPTER 1. INTRODUCTION

the term ”remotely sensed” in general refers to using satellite or aircraft-based sensor

technologies. These technologies have revolutionized how natural and human resources

on the earth’s surface are monitored, and they make it possible to cover very large

areas.

There are two example areas which in the last year have highlighted the importance

and wide variety of satellite image analysis, the first example is the pledge made

by world leaders at the 26th Conference of the Parties (COP26) to end and reverse

deforestation by 2030 (Barnes, 2022) and the second is the War in Ukraine.

The first example, the pledge made at COP26 by more than 100 countries with

around 85% of the world’s forest to end deforestation by 2030 relies heavily on the

ability of climate scientists to measure that commitment. Land change science is

the name given to this interdisciplinary study of changes in land cover. Using earth

observation satellites, terabits of data is acquired daily which needs to be processed

to help COP track future progress or deterioration of the planet’s forest using clear

metrics such as deforestation rate and total area deforested. Ireland is ranked the

second lowest among EU member states in terms of proportion of land area that is

under forest cover (“Land Use - CSO - Central Statistics Office of Ireland”, 2022).

The second example for the importance of using remotely sensed imagery can be

seen in the current events taking place in Ukraine. Before and after the start of the

invasion, satellite data has proved to be essential for the international community in

order to establish facts of what is happening on the ground which include the Rus-

sian build up of equipment pre-invasion (“Russia planning massive military offensive

against Ukraine involving 175,000 troops, U.S. intelligence warns - The Washington

Post”, 2022) and possible evidence of war crimes after invasion had begun (“Satel-

lite companies join the hunt for Russian war crimes - POLITICO”, 2022; “Ukraine

war: Satellite images appear to contradict Russian denials over Bucha atrocities —

Euronews”, 2022). A vital computer vision task is being able to identify and count ob-

jects on the ground in this context, a task known as ‘object detection’. Deep Learning

(DL) has shown considerable success in solving such a problem. This is a difficult task

as it requires the knowledge of ‘what’ is in the image as well as ‘where’ it is, plus there

2



CHAPTER 1. INTRODUCTION

is need to monitor the same spot of land over a range of different seasons increasing

the difficulty of detection.

Being such a rich source of data, satellite imagery can require intensive effort and

time to process and classify, hence adopting an automated technique that enables

machines to think without human assistance is a broad research area for LULC. Over

the past 20 years, Machine Learning(ML) classification has become a major focus in

LULC based problems, for example in 2001, in the USA the National Land-Cover

Database (NLCD) land cover classification for a contiguous USA was produced using

decision trees (“Development of a 2001 National Land-Cover Database for the United

States”, 2004). Recently Deep Learning (DL) concepts such as convolutional neural

networks (CNN) have become the Gold Standard in the machine learning community

for LULC problems (Alzubaidi et al., 2021). DL has achieved outstanding results

due thanks not only to large qualities of training data but also the advances in the

computational processing whereby repetitive tasks can be done simultaneously. This

research will focus in on this concept of Deep Learning(DL) as applied to the problem

of LULC from satellite images.

The LULC problem is solved by using a computer vision approach known as se-

mantic segmentation. This approach tries to assign a label to every pixel in an image.

In the case of satellite images, the labels will be for example forest land, agricultural

land or urban land.

Since the first dedicated satellite(Landsat 1) designed to monitor the planets sur-

face was launched in 1972, there has been many more both commercial and non-

commercial launches over the years. According to the Union of Concerned Scientists

Satellite Database, more than 4,852 satellites were operational on 1st January 2022

and approximately 1,052 or 22% of them were dedicated to the observation of the

Earth (“Satellite Database — Union of Concerned Scientists”, 2022). These remote

sensing images are often available on a free access policy such as the dataset being

used in this research (Demir et al., 2018), allowing researchers to evaluate them in

order to improve their algorithms.

3



CHAPTER 1. INTRODUCTION

1.2 Research problem

This research uses a dataset from a paper entitled ”DeepGlobe 2018, a Satellite Image

Understanding Challenge” (Demir et al., 2018). In this paper, DeepGlobe aims to

raise awareness of remote sensing in the computer vision community and this is the

reason the large dataset is provided freely online.

In this challenge, there exists 7 classes of LULC. The problem is how can we best

classify these LULC classes, which algorithm and technique works best? The problem

is essentially a supervised machine learning problem, the dataset contains a mask for

the images which is the ground truth upon which any machine learning approach

can be measured. In order to compare results, a pixel-wise Intersection over Union

(IoU) score is used as the evaluation metric. The baseline CNN model outlined in

the DeepGlobe paper achieved an IoU score of 0.433. The higher this score the more

accurate the model is at the classification the LULC satellite images.

This research will focus on achieving the highest possible IoU score for the Deep-

Globe dataset because of it’s importance in accuracy identifying LULC labels. There

has been significant progress in this area of semantic segmentation in recent years

thanks to the advances that have been made in deep convolutional neural networks(DCNN).

Recent papers have developed DCNN models which have been able to increase accu-

racy by fiddling with the building blocks of these networks.

There are now a large array of different CNN architectures, this area has seen an

evolution of different networks ever since “AlexNet” in 2012 won the ImageNet Large

Scale Visual Recognition Challenge (Krizhevsky et al., 2012). Many of these networks

are more suitable for the task of image classification, where is the goal is to assign

one or more labels to the image as a whole. Semantic segmentation is a more difficult

task because pixelwise precision is needed. This was due to the vanishing gradient

problem which will be discussed in the Literature Review, “ResNet” came along in

2015 with a solution to this problem by adding skip connections to the networks, this

proved valuable to the semantic segmentation task, winning the Common Objects in

Context (COCO) segmentation competition in 2015 (He et al., 2015). Furthermore,

4



CHAPTER 1. INTRODUCTION

in 2015 a popular image segmentation model called “U-Net” was developed and out-

performed the best available methods at the time when applied to biomedical images

(Ronneberger et al., 2015). A U-Net architecture contains two main parts, an en-

coder(backbone) downsampling part and a decoder upsampling part and uses skip

connections also to solve the vanishing gradient problem.

A popular approach to solving segmentation in LULC problems is to apply an

encoder-decoder architecture such as U-Net with an encoder such as ResNet or AlexNet

(Wu et al., 2019; X. X. Zhu et al., 2017). To be effective, these encoders are pre-trained

on very large datasets of images such as ImageNet (Deng et al., 2010). This design can

give decent results however using model ensembling by pooling together predictions

from a set of different models should be able to produce better predictions. By applying

augmentation and random crop sampling, a set of different models is produced, with

each model looking at a slightly different aspect of the problem. It is important to

highlight the advantage that ensembling can provide.

The goal of this research is to apply ensembling to these different models in order to

better understand to what extent can it improve the IoU score. There are two specific

types of ensemble approach which are of interest. The first is to average the different

models predictions at inference time and the second is to do a weighted average by

training a weighted average model.

1.2.1 Research aim

To quantify the statistical improvement that an ensemble approach can provide in

terms of an IoU score to the semantic segmentation of the satellite images provided

by the DeepGlobe Land Cover challenge (Demir et al., 2018). Two methods of en-

sembling using the U-Net architecture will be analysed and compared against a single

U-Net result. The first method of ensembling is model averaging and the second is a

trained weighted average model.

The aim will be to address these research questions:
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1. Which ensemble technique receives greater results, a simple model averaging

approach or a weighted model averaging approach on a withheld test set of

satellite images?

2. Is there an advantage to using an ensemble approach in LULC classification

when compared to a single base model which was determined to be the average

of a group of models?

3. If there is an advantage to an ensemble compared to a single model, to what

extent can an ensemble approach boost the IoU results overall?

4. Is there an advantage to using an ensemble approach in LULC classification when

compared to a single base model which was determined to be the best from a

group of models?

5. If there is an advantage compared to a selected base model, to what extent can

an ensemble approach boost the IoU results overall?

1.2.2 Research hypothesis

If data augmentation and an ensembling technique are used during training then the

testing IoU score of a LULC semantic segmentation model is statistically significantly

higher than the testing IoU score of a model with data augmentation and without an

ensembling technique.

1.3 Research Methodologies

To conduct this research I acquired quantitative data from dataset that is provided in

Demir et al. (2018). This is secondary data that was collected by a satellite belonging

to the American company DigitalGlobe (Now Maxar Technologies).

The data contains 7 LULC classifications; urban, agriculture, rangeland, forest,

water, barren, and unknown. The data was made freely available for the purpose of

releasing three challenges namely; road extraction, building detection and land cover

6



CHAPTER 1. INTRODUCTION

classification, the latter being the one of interest in this study. The dataset contains

satellite images captured over Thailand, Indonesia, and India. The dataset has high

resolution sub meter images and mainly focuses on rural locations. The images follow

the RGB(Red Green Blue) model, with each pixel containing a value from 0 to 255

for the RGB triplet.

This study utilizes deductive reasoning starting off with the research problem of

labelling each pixel with an LULC class, creates a hypothesis to falsify, collects data

to measure and tests the hypothesis, essentially the theory already exists.

The research methodology used is quantitative using secondary data in the form of

the satellite images and corresponding masks. The data will be in the form of unsigned

integers number ranging from 0 to 255. The study will follow an empirical experiment

based approach which will use the hypothesis outlined above.

1.4 Scope and Limitations

A fundamental assumption of this problem is that the ground truth masks are accurate.

The training classification masks must correspond accurately to the satellite images,

these have been done by professional annotators and furthermore the fact that the

dataset is widely used supports the view, that this masks can be trusted.

This study is limiting its analysis to only the images contained in this DeepGlobe

set, the results of the models may not be as accurate for other remote sensing loca-

tions, different image resolutions and other class types. There are also many datasets

available which for each pixel may have thermal infrared readings and other bands,

such as Yuan et al. (2021) which uses image from the satellite Sentinel-2 containing

12 bands with only 3 being RGB, this study is focused on just using the RGB images

and so this study is only comparable to others using only RGB images.

The scope of this study will be delimited to focusing solely on only two ensemble

methods of classification, the reasons for this will be outlined in the following sec-

tion by following a literature review of the problem, in summary these two ensemble

methods are commonly used in other domains such as biomedical imagining and they
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easily implementable which is important if they are to be taken up in practise. This

delimitation was also done to narrow the scope so that it was more manageable and

feasibly possible to complete it within the 20 week period.

The figures reported in this research regarding any computational time taken to

complete tasks are hardware specific and also the number of samples which could be

processed are limited by the available resources.

1.5 Document Outline

The rest of the document is organized as follows.

• Chapter 2 - Review of existing literature.

This chapter is dedicated to the literature survey of the previous research papers

and their proposals, in the general area of semantic segmentation and the more

specific application on satellite imagery. This chapter concludes by discussing

the key ensemble methods used in the area of semantic segmentation.

• Chapter 3 - Experiment design and methodology

This chapter discusses the proposed methods for LULC prediction and provides

the necessary background to the model’s design and required resources. Further-

more, the chapter contains a detailed explanation of the dataset, model, how it

will be evaluated and how the hypothesis will be tested.

• Chapter 4 - Results, evaluation and discussion

This chapter contains a detailed analysis of the results, describes how the research

hypothesis was tested and is followed by a discussion of the key findings.

• Chapter 5 - Conclusion

This chapter summarizes the overall research and results obtained from the ex-

periments conducted. Furthermore, it suggests possible future work which could

be performed as an extension to this research.
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Chapter 2

Literature Review

2.1 Introduction

Efforts to improve the labelling of satellite images have been widely associated with

machine learning and deep learning topics, however as this topic improves in small

and sometimes large increments through the years, there is still scope for refining and

fine-tuning learned techniques and architectures to focus on faster inference, better ac-

curacies and more efficient models. This review will explain the topic, the solutions we

currently have to solve it and the techniques we can use to improve current solutions.

In the general case, image segmentation is about using a model to assign a label

to each pixel in an image, thus segmenting the image into different categories. In the

case of satellite LULC classification, these different classes range from grassland to

urban land and can have different total number of classes depending on which organi-

zation is followed, 18 classes if following the International Geosphere Biosphere Pro-

gramme (IGBP) (“International Geosphere Biosphere Programme (IGBP) - Surface

types”, 2022) to 8 when using the Food and Agriculture Organization of the United

Nations(FAO)’s highest level of classification (Camara, 2022). This study uses the

Anderson classification which segments the image into maximum 7 classes (Anderson

et al., 1976).

The literature for image segmentation is broken into two similar topics: semantic

segmentation and instance segmentation. Semantic segmentation is the type of seg-
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mentation used for LULC based problems, where each pixel is independently labeled.

Instance segmentation goes further and tries to label each pixel as well as trying to

separate different object instances, not a problem LULC is trying to solve, therefore

this literature will focus on semantic segmentation in the board sense and more specif-

ically semantic segmentation when applied to the problem of classifying LULC maps

using satellite images.

Figure 2.1: Four of the most essential computer vision tasks, arranged by level of

difficulty from a) to d). Taken from Garcia-Garcia et al. (2017)

2.2 Semantic segmentation

This topic could be again split into two methods: unsupervised methods and super-

vised methods. Unsupervised methods which by definition try to learn without tagged
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data, try to group pixels which are homogeneous in low level features (H. Zhu et al.,

2016). These low level features could be for example, colour, texture or curvature.

Unsupervised methods tend to be faster and can be applied to many tasks(where la-

belled data is not available), but performance is poorer in comparison to supervised

methods especially for tasks such as scene parsing due in part to the emergence of very

large scale image databases such as ImageNet (Deng et al., 2010). Supervised learning

methods can take advantage of fully annotated data in very fine-grained form, and it

is the supervised methods which will be discussed in depth next as this is a method

which is becoming more popular over time in the literature.

Within supervised methods, we have a clear break in the trajectory of research ever

since 2012. Before 2012, image segmentation was a task to be solved by algorithms

such as thresholding, k-means clustering, watershed methods and graph theories such

as Markov Random Field(MRF) or Conditional Random Field(CRF) (Minaee et al.,

2021). There were difficulties with using these algorithms; this type of feature engi-

neering required domain expertise in computer vision, and they could not adjust very

well for an incorrect prediction (Sultana et al., 2020), however elements from these

traditional algorithms have been utilized in models such as “DeepLab” which will be

described later. Over the years, deep learning(DL) models were yielding better per-

formance results and didn’t require the same domain understanding. Since LeNet-5

in 1998 (LeCun et al., 1998), there was an understanding in the community that Con-

volutional Neural Networks(CNN or ConvNets) which extract features using “feature

maps” would be effective in the topic of semantic segmentation. CNN’s were proving

to be very useful at classifying a whole image, they could find and recognize objects

within an image, graphic processing units(GPUs) achieved training times which were

70 times faster than a dual-core CPU implementation (Raina et al., 2009).

CNN’s are comprised of 3 types of layers; convolutional layers, pooling layers and

fully connected layers. These CNN layers are the hidden layers of the neural network,

for image data the input layer will hold the pixel values and the output layer will be

the different classes which are to be predicted, a brief introduction is given in O’Shea

and Nash (2015). In the next few paragraphs a review of the methods that were
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first used for image classification that become invaluable for semantic segmentation is

conducted, afterwards their performances will be compared.

The breakthrough in 2012 was a paper by Krizhevsky et al. (2012) that spurred the

growth of a Deep Convolutional Neural Networks (DCNN) in the area of image clas-

sification, this paper achieved a considerably higher image classification accuracy on

the ImageNet Large Scale Visual Recognition Challenge(ILSVRC) by using a DCNN

called AlexNet. AlexNet was the first to start using Rectified Linear Units (ReLUs)

as activation functions. Figure 2.2 below depicts this basic structure of a CNN.

Figure 2.2: End to end structure of a basic CNN showing two convolutional mod-

ules containing a convolution plus a ReLU and a max pool, it is followed by a fully

connected neural network that is trained to predict a class for the image, taken from

Google (2022b).

After 2012, networks to solve segmentation problems become deeper and deeper

(Simonyan & Zisserman, 2014; Szegedy et al., 2014), started to contain fully con-

volutional networks(FCN) (with no fully-connected dense layers) (Shelhamer et al.,

2017), added more blocks and batch normalisation (Szegedy et al., 2014) and started

using skip connections(He et al., 2015). Skip connections were massively valuable to

semantic segmentation because the tasks require information on the “what” as well as

the “where”. Moreover, a criticism of FCN is that the resolution of the segmentation

boundaries was still losing lots of information during the downsampling.

In 2015, U-net (Ronneberger et al., 2015) was first proposed to deal with this

criticism of losing information in the resolution and also to address the state-of-the-

12



CHAPTER 2. LITERATURE REVIEW

art segmentation models in 2015 which were performing a full CNN on each pixel

or patch of the image (Cireşan et al., 2012) which were slow and had redundancy.

U-net modified “the upsampling part to contain a large number of feature channels,

which allow the network to propagate context information to higher resolution layers”

(Ronneberger et al., 2015). U-net consists of an encoder and a decoder section; with

layers of convolutions and deconvolution. The design increases the resolution of the

output by adding the downsampled feature extractions to the location information

during upsampling, this is achieved using the same idea of skip connections used in

He et al. (2015). U-net advanced semantic segmentation by allowing fast training and

good results on a small about of data with the use of image augmentation (Ronneberger

et al., 2015).

Figure 2.3: U-Net architecture, downsampling via max pooling on the left side, up-

sampling on the right side, there are also concatenation layers on the right side which

add the spatial information, taken from Ronneberger et al. (2015)

An encoder-decoder network is always trying to do two things in practise; the en-
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coder is trying to gradually reduce the feature map and capture high semantic infor-

mation while the decoder is then trying to recover the “where” or spatial information

of the input image.

After U-net, more decoder-encoder designs were to follow to help improve the se-

mantic segmentation task, Segnet in 2017 (Badrinarayanan et al., 2017), works similar

to add location information to the upsampling. Furthermore, PSPNet (Pyramid Scene

Parsing) (H. Zhao et al., 2017) tries to solve semantic segmentation by adding a Pyra-

mid Pooling Module between the feature map and the final prediction, this module

allowed for distinguishing patterns are different scales by using different pooling scales

and adding this information to the feature extraction output.

DeepLab created by Google has seen multiple versions and improvements in the

state of semantic segmentation, making use of a dilated convolution, a dilated or

“atrous” convolution has the advantage of using the same size of receptive field as

a normal convolution but with a lower amount of parameters, which will lower the

computational cost. DeepLab version 1 (DeepLabv1) (L.-C. Chen et al., 2014) uses

this atrous convolutions in the upsampling to create feature extraction maps combined

with Conditional Random Field (CRF) to improve localisation accuracy. Version 2

(DeepLabv2) (L.-C. Chen et al., 2016) uses a new technique called Atrous Spatial

Pyramid Pooling (ASPP), which applies this diluted convolution to the feature map

using different sampling rates and adds the output together, greatly improving accu-

racy for objects with different scales in the input images. DeepLabv3 and DeepLabv3+

(L.-C. Chen et al., 2017; L.-C. Chen et al., 2018) tries to match more the encoder-

decoder relationship seen in U-net to try to capture sharper object boundaries, using

features from v1 and v2 except the CRF combination, and introduces something called

dilated separable convolutions, which dilutes the convolutions in two dimensions. The

solution proposed in DeepLabv3 is to use a Xception network model as the backbone

to construct the features.

The main point of DeepLab in general is to try to circumvent the issue of con-

volutions being very local and not having global information of the image, dilated

convolutions and spatial pyramid pooling are methods used to give the model more
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global information to help it label the pixels. This is known as enlarging the receptive

field. After DeepLab, there were many flavours of DCNN which tried to solve the

same problem.

Between the years 2015 to 2018, there was a spike in these so-called ”classical

semantic segmentation” models according to Mo et al. (2022) and a table from their

review is shown in Table 2.1 that highlights some of the most successful methods.

Method Publish Year Method Publish Year

FCN CVPR 2015 Dilated Convolutions ICLR 2016

U-net MICCAI 2015 RefineNet CVPR 2017

DeconvNet ICCV 2015 DUC WACV 2018

SegNet TPAMI 2015 ICNet ECCV 2018

ERFNet TITS 2018 BiSeNet ECCV 2018

PSPNet CVPR 2017 CCNet ICCV 2019

Deeplab v1 ICLR 2015 AdaptSegNet CVPR 2018

Deeplab v2 TPAMI 2018 EncNet CVPR 2018

Deeplab v3 arXiv 2016 Large Kernel Matters CVPR 2017

Deeplab v3+ ECCV 2018

Table 2.1: Classical models of semantic segmentation based on deep learning taken

from Mo et al. (2022)

This paper studies the usage of weakly-supervised methods applied to this classical

models as a way to reduce the economic and time cost of the pixel level annotation,

which is a burden to preparing good deep learning training data. The authors say it’s

the quality of the annotations which is preventing further segmentation performance

improvements. The general method used for weak supervising is to first generate a

rough heat map as an original rough mask and then apply clustering algorithms to

refine that mask. This rough map can be set up by simply pointing or a scribble

to what is in the image and labelling it rather than explicitly label each pixel. This

research outlines well the practical problems in using a semantic segmentation model,
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how poor performance can be when the domain shifts compared to a human observer

(Hoffman et al., 2016), furthermore how geographic regions and weather conditions

can affect results significantly.

In the last few years, the transformer model first introduced in the paper “Atten-

tion is all you need” (Vaswani et al., 2017) started to become popular for semantic

segmentation, as opposed to DCNN models, this approach allows for modelling the

global context at the first layer of the network such as with “Segmenter” (Strudel

et al., 2021). The transformer architecture started overtaking recurrent neural net-

works(RNN) across the natural language processing(NLP) tasks from 2017 onwards.

“Segmenter” works by splitting the images into patches and uses linear patch embed-

dings as input tokens to the transformer encoder, upsampling is then done to get pixel

level scores or as an alternative a mask transformer can be used to further improve

the performance of the decoder. This method has achieved state-of-the-art results on

two well known datasets; ADE20K (B. Zhou et al., 2016) and Pascal Context (2014)

and was competitive on the Cityscape (Cordts et al., 2016) dataset.

2.3 Semantic segmentation metrics

Before comparing the performance of the various models already introduced, the met-

rics used to commonly evaluate the performance of the segmentation models will be

discussed. As well as quantitative metrics to determine the accuracy of each segmen-

tation model, the inference time and memory footprint are important measures to take

into account when evaluating models (Minaee et al., 2021).

The most important metric to gauge the accuracy of a model for semantic segmen-

tation in literature is Intersection over Union (IoU) also known as the Jaccard Index,

it is “ defined as the area of intersection between the predicted segmentation map A

and the ground truth map B, divided by the area of the union between the two maps,

and ranges between 0 and 1”(Minaee et al., 2021)

IoU = J (A,B) =
|A ∩B|
|A ∪B|

(2.1)
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In this research, a land cover challenge data set provided by Demir et al. (2018) is

used, the IoU is defined for each class(forest, urban, grass etc.) as:

IoUj =

∑n
i=1 TPij∑n

i=1 TPij +
∑n

i=1 FPij +
∑n

i=1 FNij

n: number of images

j: current class

TPij : number of pixels in image i that are correctly predicted as class j

FPij : number of pixels in image i that are wrongly predicted as class j

FNij : number of pixels in image i that are wrongly predicted as any class other than class j

(2.2)

It is then averaged across all classes and entitled mIoU as it occurs in all literature:

mIoU =
1

k

k∑
j=1

IoUj (2.3)

Another common metric in the literature is Pixel Accuracy, this is the ratio of

correctly classified pixels divided by the total number of pixels, however when a dataset

has an imbalanced number of classes, this metric does not capture well the poor

performance on some classes.

Finally, a metric which is common in papers where images are segmented into

multiple classes is the F1 score also known as the Dice Similarity Coefficient. This

is essentially a measure of overlap between two samples. It ranges from 0 to 1 like

the IoU score, where 1 is perfect and complete overlap. The Dice Coefficient(DC) is

calculated as (Taghanaki et al., 2021):

DC =
2TP

2TP + FP + FN
= 2

|A ∩B|
|A|+ |B|

(2.4)

2.4 Semantic segmentation model comparisons

Before comparing the different methods used to perform semantic segmentation, there

are several popular semantic segmentation datasets which are commonly used for eval-
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uating the models outlined previously. Below is a list of those mentioned within this

piece of research, a few have been mentioned already when discussing the “Segmenter”

transformer model. These first three datasets are seen as benchmark datasets in the

semantic segmentation community.

• ADE20K (B. Zhou et al., 2016) - standard scene parsing dataset, which contains

20,210 images for training and 2000 images for validation, 150 total objects such

as dog, cow, person, road, sky etc.

• Cityscapes (Cordts et al., 2016)- collected from 50 European cities, there is a

coarse and a fine set of 2048x1024 resolution images. 30 classes in total, again

made up of road, bus, sky, person etc.

• PASCAL Context (Mottaghi et al., 2014) - scene images. 400 classes with 59

which are the most common.

• EM segmentation challenge (ISBI, 2022)- biomedical imaging used in Ronneberger

et al. (2015) has 30 images with binary masks with either the cell or the mem-

brane.

• DeepGlobe land cover (Demir et al., 2018)- dataset used in this research, cap-

tured over Thailand, Indonesia, and India, 1,146 high resolution images (2,448

x 2,448), RBG format with a pixel resolution of 50cm. 7 classes.

Below in Table 2.2, a brief comparison of the methods and datasets described

above is shown. In this table, over time transformers are becoming the state-of-the-

art methods to do semantic segmentation. At the time of writing, a transformer based

approach currently holds the best IoU score for the benchmark dataset ADE20K (B.

Zhou et al., 2016). Transformers are replacing the previous state-of-the-art solution

which was CNNs especially when large training sets are available. The winning authors

of Z. Chen et al. (2022) have proposed a Vision Transformer Adapter (VIT-Adapter).

The idea of being able to increase the receptive field is the winning ingredient. Similar

to “Segmenter” (Strudel et al., 2021) and ever since 2020’s paper “An image is worth
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Method
PASCAL-Context

(2014)

CityScapes

(2016)

ADE20k

(2016)

EM

(2022)

DeepGlobe

(2018)

U-Net (2015) 77.5

Long U-Net (2021) 57.3

Attention U-Net (2020) 44.88

SegNet (2017) 57.0

PSPNet (2017) 80.2 44.94

DeepLabv1 (2014) ResNet18 43.33

DeepLabv3+ (2018) 48.5 82.7 46.47

Segmenter (2021) 59.0 81.3 53.63

ViT-Adapter-L (2022) 60.5

Table 2.2: Semantic segmentation methods based on deep learning, all values reported

in mIoU as a percentage.

16x16 words” (Dosovitskiy et al., 2020), transformer solutions have topped the IoU

charts.

In terms of non-transformer methods, U-Net and SegNet have a similar architecture

having a symmetrical design with skip connections, however DeepLabv3 has better

IoU results than both those methods. The use of spatial pyramid pooling atrous

convolutional layers allowing DeepLabv3 to extract dense feature maps to capture

long range contexts is the main reason for better performance.

2.4.1 Semantic segmentation on satellite data

In terms of semantic segmentation in satellite imagery, the theme tended to follow

the general problem of semantic segmentation, deep learning(DL) models have offered

superior performance compared to SVM (Support Vector Machines), conventional NNs

(Neural Networks), RF (Random Forest), CRF (Conditional Random Fields) and

other supervised classification methods (Neupane et al., 2021).

However, DL based models have included parts of these traditional methods to

support their models, using then either for pre-processing or post-processing. A pop-

ular post-processing method to CNN based models was to apply CRF at the end in
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order to over-come the “salt-and-pepper” noise effects (Sherrah, 2016; W. Zhao et al.,

2017). Within CRF, the most used is Linear Chain CRF, because the linear chain

lowers the high computational cost of using CRF, in general CRF comes with a high

computational cost even with Linear Chain CRF. Other studies have used de-noising

filters as a post-processing step, such as Poomani et al. (2021) where a Wiener filter

is applied.

As mentioned in the previous section, encoder-decoder architectures such SegNet,

FCN, U-Net and DeepLabv3+ improved the problem of boundary pixel classifcation

in satellite imagery. They minimized the problem by using both lower-level and higher

level information coming from the skip connections. The convolutional backbones for

these architectures can vary, the most popular architectures in the literature according

to Neupane et al. (2021) are FCN, U-net, Segnet and DeepLab and the most popular

backbones are ResNet and VGG. The figures from this review are shown below.

Figure 2.4: Overview of the popularity of backbones seen in papers using deep learn-

ing based semantic segmentation of urban features in satellite images. Taken from

Neupane et al. (2021),
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Figure 2.5: Overview of the most popular architectures utilized by papers describing

deep learning based semantic segmentation of urban features in satellite images. Taken

from Neupane et al. (2021),

The benchmark datasets used for satellite or remote sensing segmentation differ

from those of general semantic segmentation, they can sometimes contain many more

channels than the typical RGB image format, satellite data can have channel such

as near-infrared, Aerosols, water vapour, cirrus cloud and more (Helber et al., 2017).

A few benchmark datasets in the area of satellite imagery segmentation (or remote

sening as the data may be sourced via an aeroplane) are listed below:

• Vaihingen - Germany, 33 high resolution(2,000 x 2,000), 9cm per pixel, contain-

ing 5 channels including near-infrared, red, green, DSMs, and nDSMs. 16 tiles

have ground truths. 6 classes (impervious surfaces, building, low vegetation,

tree, car, and clutter) are labelled.

• Potsdam - Germany, 38 high resolution(6,000 x 6,000), 5cm per pixel, 6 channels,

i.e., near-infrared, red, green, blue, DSMs, and nDSMs. 6 classes labelled (same
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six as Vaihingen).

• IEEE GRSS (Geoscience and Remote Sensing Society) Data Fusion Contest 2015

(Campos-Taberner et al., 2016) - Zeebruges Belgium, using airplane. 8 classes.

• Indian Pines (Baumgardner et al., 2015) - Northwestern Indiana USA, good for

crop analysis. 16 classes.

• EuroSAT (Helber et al., 2017)- Sentinel-2 satellite images, 13 bands and 10

classes.

• DeepGlobe land cover (Demir et al., 2018)- data used in this research, captured

over Thai- land, Indonesia, and India, 1,146 high resolution images (2,448 x

2,448), RBG format with a pixel resolution of 50cm. 7 classes.

Besides the aforementioned CNN architectures such as U-Net, DeepLabv3 etc.,

there are other developments which are more specific to the satellite image segmen-

tation. These developments mainly focus on reducing the computational complexity

of the method by designing a model which has fewer layers and so fewer parameters

to train. DenseNet (Huang et al., 2016) is a network designed by Facebook AI Re-

search, it does exactly this, DenseNet can reduce the number of parameters by around

5 times compared to a state-of-the-art ResNet architecture with the same number of

layers. In DenseNet, each layer obtains additional inputs from all preceding layers and

passes on its own feature maps to all subsequent layers. This allows the error signal to

be distributed back through the network without losing that signal when having too

many layers. DenseNet trains richer patterns in each layer due to receiving all this

information from previous layers.
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Figure 2.6: DenseNet block where each layer is connected to all previous layers, giving

richer patterns. Taken from Huang et al. (2016),

Figure 2.7: DenseNet network has multiple blocks, each block is separated by transition

layers which changes the feature-maps size. Taken from Huang et al. (2016),

ShuffleNet is designed like DenseNet to also improve the computational efficiency,

with mobile devices in mind. ShuffleNet claimed “The new architecture utilizes two

new operations, pointwise group convolution and channel shuffle, to greatly reduce

computation cost while maintaining accuracy” (Zhang et al., 2017).

One of the challenges faced in satellite semantic segmentation is the lack of training

examples. Training a high quality deep network requires many examples, the labelling

of these training images is usually expensive as it requires experts, whereas image

classification can be helped with a crowdsourcing strategy to identify images, this is
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not easily possible with remote sensing images(Yuan et al., 2021). There are many

strategies to deal with this channel which will be detailed next.

To solve the issue of small training examples, Kemker et al. (2018) have used

self-taught feature learning to get around the problem of using unlabelled data, once

trained, the authors can then use supervised methods to fine tune the models, this is

an approach similar to transfer learning. Z. Zhou and Gong (2018) have included data

augmentation techniques in their training data in order to create additional labelled

examples by randomly flipping and rotating images. Ma et al. (2016) proposed using

a semi-supervised classification algorithm based on multi-decision labelling based on

neighbours to utilize as much information as possible for unlabelled pixels, that way

those labelled pixels with high confidence could be added to the supervised training.

Another challenge in applying deep learning to solve LULC segmentation tasks is

using transfer learning, there are many pre-trained models available that can only be

applied to the usual image format of RGB which has only 3 channels, satellite data

can as shown above come in more channels, sometimes up to 200. This amount of

dimensions can be computationally tough and require a lot of time to train. Novelli

et al. (2017) has shown how pre-trained models do provide better accuracy as expected

because these weights are often learned on very large training sets done on expensive

hardware.

There is a problem with satellite segmentation models also when it comes to apply-

ing the model on different satellite data than it was trained for. In real applications of

these models, limits in the training data will be exploited, changes in the test data such

as different weather conditions can cause real trouble. This is called Cross-domain se-

mantic segmentation and studied in Benjdira et al. (2019) where the overall accuracy

of going from the Potsdam dataset domain to the Vaihingen domain is improved from

35% to 52%.

The trends in the results of this collection of remote sensing methods follows the

general methods for semantic segmentation, albeit perhaps with a slight delay. In

the general case, semantic segmentation changed to CNN model from 2012 onwards,

adding residuals connections, decoder-encoder architecture using different upsampling
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methods and then finally ending in the last few years with transformers.

Taking a look at results on the Vaihingen dataset, the results range from 84.46%

for a U-Net (Dong et al., 2019), 85.63% for a Dense U-net(Dong et al., 2019), 87.8%

for a PSPNet (Yu et al., 2018), to 90.3% for an ensemble of SegNets (Marmanis

et al., 2018). With a transformer style method that could avail of capturing the

global context, these authors(Wang et al., 2021) designed a UNet-like Transformer

(UNetFormer) for real-time urban scene segmentation and got an overall accuracy of

91.0 with a fast inference speed to match the good accuracy. This indicts the future

direction of satellite segmentation tasks, plus the score for the ensemble approach

indicates its unchanged usefulness when it comes to model accuracy.

Furthermore, there are some common techniques used in semantic segmentation of

remote imagery, the data augmentation technique of random cropping have proven to

increase overall accuracy in a few studies (Sang & Minh, 2018; Su et al., 2022),

2.5 Ensembling Methods

The idea of ensemble learning can be traced back to a political scientist named Marquis

de Condorcet who in 1785 in France proposed a theorem that said if the probability

of each voter being correct is above 0.5 and the voters are independent, then the

addition of more voters would increase the probability of the majority being correct

until approaches 1 (De Condorcet, 1785). Also known as “the wisdom of the crowd”

from Aristotle, in today’s information age sites such as Wikipedia, Reddit or Quora

rely on this collective knowledge.

In the area of deep learning, ensemble learning have been known to enhance the

performance of models, but there are different views on the computational cost of

training, the objective is to have deep ensemble models that share the best of both

ensemble and deep models without being overly inefficient.

One of the main reasons ensembles work according to Fort et al. (2019) is com-

putational wherein a learning algorithms get stuck in a local optima due to it using

a local search, whereas ensemble models can overcome this issue by performing some
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form of local search via a different starting point which leads to better approximation

of the true unknown function.

Figure 2.8: Ensembles tend to find different solutions or modes which can be missed

if a model searches only locally, note the ”variational methods” does poorly against

validation in comparison to the ensembles. Taken from Fort et al. (2019)

The main point is if we diversify the base classifiers we have can have a suc-

cessful ensemble which isn’t easily prone to overfitting. These have been around for

many years and there are a host of different strategies to follow this approach like

bagging(bootstrap aggregating), boosting and stacking. There are some types of en-

sembles which are implicit to the neural network such as Dropout (Srivastava et al.,

2014) where hidden nodes are randomly dropped during training.

2.5.1 Bagging (bootstrap aggregating)

The main idea in bagging is to generate independent observations by creating bags

of samples with the same size and distribution as the original data. These samples

may be taken with or without replacement, after training each bag of samples, the

output is combined, either by majority voting for classification tasks or by averaging

for regressions tasks. Some advantages include parallelization of training, decrease

overall model variance and decreasing overfitting. The concerns with bagging is that

it is computationally expensive.
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Bagging is used by Smaida and Yaroshchak (2020) to classify medical images to

help doctors diagnose eye diseases. The train three different CNN architectures; a

CNN trained from scratch, a VGG16 network that was pre-trained and Inceptionv3

that was pre-trained. The authors show that combining the results improves the

performance.

2.5.2 Boosting

The main idea of boosting is to convert a weak learning model into a learning model

with better generalization. The methods can vary, but one popular implementation

is AdaBoost (Freund et al., 1999), this solution assigns weights to the samples used

to train the weak learners, it’s adaptive in the sense that at each iteration, the weak

learners are tweaked so that the subsequent learners focus on more difficult cases, in

the end the learners are combined in a weighted sum. Boosting differs from bagging

because the training can’t be done in parallel, it has to been sequential and the overall

model’s bias is decreased and not so much it’s variance. Furthermore, it is useful if a

model is under-fitting.

The AdaBoost technique has been utilized with a CNN in Taherkhani et al. (2020),

the proposed AdaBoost-CNN is designed to reduce the computational cost of the clas-

sical AdaBoost when dealing with large sets of training data by reducing the required

number of epochs for each weak learner. AdaBoost-CNN uses transfer learning to se-

quentially transfer the trained knowledge of a learner to the next learner while updat-

ing the weights of the samples to improve accuracy. The authors found this approach

gave them a 3.51% improvement in accuracy for the CIFAR-10 dataset (Krizhevsky,

Hinton, et al., 2009) compared to a base CNN.

2.5.3 Stacking

Another approach to building an ensemble is stacking, this can be done by combining

the output of multiple base models and using a classifier to compute the final pre-

dictions. In many implementations, a logistic regression mode is often used as the
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combiner.

2.5.4 Ensemble Methods applied to Semantic Segmentation

Ensemble methods have been used to help improve the accuracy scores of semantic

segmentation models, Shimizu et al. (2008) use an ensemble segmentation trained by

AdaBoost to a liver lesion extraction problem for a competition called “Liver Tumor

segmentation Challenge 2008”. Their results showed the extracted regions improved

as the number of weak segmentation processes T increased. They concluded that “the

proposed ensemble segmentation algorithm over-extracted the surrounding tissues,

such as muscle and stomach wall, when the number T of weak segmentation processes

was small. However, it succeeded to reduce such false positives without increasing

false negatives as the number T increased”.

Nigam et al. (2018) does semantic segmentation on aerial scenes captured by a

fleet of drones by using Fully Convolutional Networks(FCNs) trained with a stochastic

gradient descent optimizer. The FCNs have been pre-trained on larger datasets such

as ULSVRC, ADE20K and AeroScapes, so the bottom layers of these models are

frozen when retrained on the aerial scenes. The idea of this paper is to study the

transferability of knowledge from multiple segmentation benchmarks. These fine-tuned

models from different domains are then ensembled by aggregating them to improve

performance. Using these different domains with their pre-trained weights resulted in

an improvement of 8.12%.
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Figure 2.9: This is a comparison for accuracy scores from Nigam et al. (2018) showing

the segmentation models which were either fine-tuned from a single source or multiple

sources. The chart shows that an ensemble of models from a diverse source domain

gives the best performance.

Tapper et al. (2020) used an ensemble on a LULC segmentation problem, the

ensemble contained multiple FCNs each trained with different data, they have noted

this ensemble architecture prevents overfitting and gave excellent accuracy. They claim

this is a real help when training on a certain location but then focusing on how well

the solution works on a global level. While this paper reports great overall accuracy

figures on the 14 labels in their dataset, it does not detail how much of an impact the

ensemble part had in solving their problem.

Marmanis et al. (2016) is another paper in the LULC domain which reports using an

ensemble network on a ISPRS (International Society for Photogrammetry and Remote

Sensing) semantic labelling benchmark dataset. Again Marmanis et al. (2016) report

state-of-the-art semantic segmentation performance on aerial images, but without an

assessment of the effect an ensemble had, the computational power required by an

ensemble is a trade-off where the benefit needs to be known. The authors did report

on the fact there is a certain amount of ‘label noise’ which is unavoidable in the dataset,

these are errors in the dataset where the labelling has ground truth errors, it can make

the dataset become saturated and obsolete. This is an important consideration for
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satellite semantic segmentation since maybe it may be impossible to use an ensemble

that can keep performing better if the ground truth has too much ‘label noise’.

Cheng et al. (2020) have proposed a weighted ensemble of randomly cropped images

to classify objects seen by a robotic arm’s camera. Using a weighted ensemble improved

the reliability, accuracy and stability of the image classification. The authors used a

range of different architectures such as AlexNet, VGG16 and ResNet34. ResNet34

gave the authors the best individual accuracy. In order to compute the weights for

the averaging of the models, the authors assigned the smaller weights to models with

larger cross entropy. The question is whether this weighted ensemble approach could

be extended to semantic segmentation problems.

Ensembles are popular within the MRI (magnetic resonance imaging) classification

topic due to the importance of recall(or sensitivity) and to reduce as much as possible

the type II errors. Shah and Madabushi (2021) used a U-net architecture to clas-

sify MRIs of the brain into tumorous and non-tumorous regions. The authors state

that training models independently on different MRI modalities1 allow each model to

specialize on certain labels or regions, which could then be ensembled to achieve im-

proved predictions. This statement was concluded to be true in their findings, which

showed that ensemble gave benefits in terms of the Dice score. However, the authors

did mention that there was a class imbalance in the data and suggested future work

could involve data augmentation and a weighted ensemble method so as to optimally

leverage individual models’ strengths.

There is a lack of research on the usage of a trained weighted average on satellite

imagery in the literature, it is more commonly used in the MRI and biomedical imag-

ing disciplines, perhaps due to the lower statistical significance level in the medical

industry. A type II error is much more serious in medicine and MRI diagnosis than in

satellite imagery.

The area of satellite imagery may suffer from a small number of training examples

for certain LULC segmentations for many reasons. The first being the data is expensive

to gather, requiring great cost and coordination. The second reason for small training

1Modality refers to a particular type or sequence of MRI
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examples is an inherit imbalance in certain LULC types, such as snow, wetlands or

glaciers. It could also be imagined that more LULC types will come in the future as

more land is transformed by human development.

A solution to deal with a lack of examples is to build as many training examples

as possible with the usage of augmentation and use these examples to train multiple

models. Two ensemble approaches have worked well in the domain of biomedical

images, the first being Bagging, by averaging these models in parallel and the second

is boosting, by assigning weights to each of the trained models before averaging them.

Prior studies have failed to evaluate the extent to which these approaches could help

LULC segmentation and in terms of the trade-off, does the high computational effort

pay off?

2.6 Conclusion

Research into semantic segmentation of satellite images has mainly focused on using

general semantic segmentation architectures, which are broadly thought of as an en-

coder network followed by a decoder network, the encoder is usually pre-trained on

something like ImageNet and decoder is doing it’s best to project the features learnt

back onto the same pixel space as the input. A commonly used example of that is the

U-Net architecture. While it is shown that an ensemble approach such as average or

weighted average can help improve the metrics of IoU and accuracy, particaluarly a

weighted average has been benificial to image classifations problems. It is not shown

in the literature to what extent it can improve semantic segmentation for images such

as satellite images. The conclusions of this literature review leads to the design exper-

iments which will be detailed in the next chapter.
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Experiment Design and

Methodology

Prior studies in the area of semantic segmentation of satellite imagery have failed to

focus on quantifying the benefits given by using an ensemble approach. There is a

high computational cost to selecting it as an approach, therefore it is of interest to

know specifically what advantage an ensemble method such as bagging and boosting

can have on the IoU of a benchmark satellite LULC segmentation challenge dataset.

The purpose of this study was to analyse a satellite imagery dataset and to quantify

the statistical improvement of a semantic segmentation model trained with augmented

images and using ensembling in terms of an IoU score. The first step was to source the

data, I have chosen to use the dataset provided by the ”DeepGlobe 2018, a Satellite

Image Understanding Challenge” (Demir et al., 2018) as described in Section 1.2. The

data can be downloaded via ”Land Cover Classification” link on the challenge website

1 after subscribing to the competition or is also available via kaggle2. Once the dataset

is extracted, there are 803 satellite images available, JPEG format images of size 2,448

x 2,448 pixels, 3 channels red, green and blue(RGB), each encoded with 8 bits for a

range of 0 to 255.

For each satellite image, there is also a paired mask image. This mask is also in

1http://deepglobe.org/challenge.html
2https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset
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RGB with 7 classes of labels, Table 3.1 below shows the method of coding for each

LULC classification and is followed by a bar chart in Figure 3.1 which shows how

unbalanced the LULC classifications are.

Classification Description Red Green Blue Colour

Urban land Man-made, built up areas with human artifacts 0 255 255 aqua

Agriculture land

Farms, any planned (i.e. regular) plantation,

cropland, orchards, vineyards, nurseries, and

ornamental horticultural areas; confined feeding operations

255 255 0 yellow

Rangeland Any non-forest, non-farm, green land, grass 255 0 255 violet

Forest land Any land with x% tree crown density plus clearcuts 0 255 0 green

Water Rivers, oceans, lakes, wetland, ponds. 0 0 255 blue

Barren land Mountain, land, rock, dessert, beach, no vegetation 255 255 255 white

Unknown Clouds and others 0 0 0 black

Table 3.1: Satellite image LULC classifications Demir et al. (2018)

Figure 3.1: Total number of Pixels in the 803 satellite images, aggregated per label in

the Billions(B) of pixels.

An example of one image and mask is shown below in Figure 3.2. The dataset
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was released in 2018, taken from satellite images collected by an American company

DigitalGlobe (Now Maxar Technologies). There is no information about when exactly

the images were taken, whether in the summer, winter or what time of the day, we

know that they were captured over the countries of Thailand, Indonesia, and India.

Figure 3.2: Example image and mask of image id 513968 from the Deeplobe competi-

tion dataset.

The data preparation, exploration and processing of the data was all completed

with the Python v3.7.13 programming language along with the following libraries;

Pandas v1.4.1 (pandas development team, 2020) for data manipulation, Matplotlib

v3.5.1 (Hunter, 2007) for data visualization, TensorFlow v2.8.0 (Mart́ın Abadi et

al., 2015) for machine learning model building and experimentation, Albumentations

v1.1.0 (Alexander et al., 2018) for image augmentations, Seaborn v0.11.2 (similiar to

Matplotlib) (Waskom, 2021) and segmentation-models v1.0.1 (Yakubovskiy, 2019) for

building pre-trained image segmentation based models. TensorFlow is the tool which

performs all the underlying computation and training for deep learning, Keras3 is the

abstract level which Python makes use of to build and develop TensorFlow models.

During this chapter I will discuss using some of Keras’s core data structures which

are layers and models. Using both Keras and TensorFlow together allows me to take

full advantage of modern GPUs (graphics processing unit), these GPUs have many

3https://keras.io/about/
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cores which allows for better computation of multiple parallel processes such as a

convolutional operation.

The research was divided into two phases each with it’s own goal. Phase 1 was to

import the data and create many independent DCNN models, phase 2 was to use the

models from phase 1 to create ensembles and evaluate them as shown in the illustration

in Figure 3.3 on the next page. A short explanation of the key steps is given below:

Phase 1:

The entire Deepglobe dataset is split 90:10 so that a test set is put aside.

The training set is shuffled and split 90:10 into train and validation subsets.

The validation set is used after each epoch to determine when to stop training,

thus reducing the opportunity for overfitting.

Augmentation is applied to the training set. Specifically images are randomly

cropped to 512x512, with 50% vertical flips, 50% rotate 90 degrees and 20%

random brightness contrast.

N models were created using the U-net with a ResNet34 backbone pre-trained

on ImageNet.

Phase 2:

Ensemble method number 1, a simple average ensemble was created by

pooling all the models and averaging their predictions at inference time.

Ensemble method number 2, a weighted average ensemble was created by

pooling all the models, training a new WeightedAverage Keras Layer in a

training subset, using the weights learned to make predictions at inference

time.
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Figure 3.3: Overview of full design with explanation on previous page.
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All code execution for this research was split between two machines. The first

machine is a Dell OptiPlex 5040 with an i5-6500 CPU @ 3.20GHz for data preparation,

exportation, testing and ensemble work. The second machine is a Google Colab VM

(Google, 2022a) with a Xeon(R) CPU @ 2.20GHz which has a Tesla p100 16GB GPU

which was used for model training4.

In the next two sections I detail the design and the steps taken for phase 1 and

phase 2 of this research, followed by a description of the statistical test which was

carried out to either accept or reject the null hypothesis.

3.1 Phase 1: Model creation

3.1.1 Split dataset and choose architecture

The very first step in phase 1 was to put aside a group of images and corresponding

masks which were going to be the test set used for evaluation at the end of model

creation and ensemble creation. It was vital that none of the trained models had at

any time seen these images. There were 803 total images, 80 or 10% of those were put

away for testing, leaving 723 images for training.

After the test set was dropped from the dataset, the procedure for creating inde-

pendent deep neural networks could be started. This procedure needed to be replicated

for each model creation. I will now focus on the design of this procedure.

As outlined in the literature review, the model that is created here needs to be

able to predict a label for each pixel in the input image, a task known as semantic

segmentation, deep convolutional neural network(DCNN) have demonstrated partic-

ularly good results in this area. The issue of getting the error gradient back through

the network during backpropagation to change the value of the weights in a DCNN

has also been overcome by using Residual networks(ResNet), these networks can allow

error gradients to skip one or more layers and lessen the problem of the vanishing

gradient problem as seen by He et al. (2015).

4Available with a Colab Pro licence
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An architecture which takes advantage of this skip connection modification is U-

Net, it was designed for biomedical images, but it has proved to be a useful architecture

for all sorts of segmentation applications, it has be shown to work fast. A segmentation

of a 512 x 512 image took less than a second on a GPU according to the U-net paper

(Ronneberger et al., 2015), it also worked well with low amounts of training images

thanks to the usage of augmentation. As discussed in the literature review, it has

achieved competitive results on the benchmark Vaihingen dataset (Dong et al., 2019),

it was one of the four most popular models according to Neupane et al. (2021). The

research aim was not to find the highest possible IoU score for the DeepGlobe dataset

but to explore the contribution of an ensemble approach to improve that metric;

therefore the choice of architecture is in fact not a vital component to achieve the

research aim.

Another aspect of deep learning techniques which is useful is transfer learning.

As highlighted in the literature, transfer learning means we can transfer pre-trained

weights from one problem to another, it allows faster and better convergence of the

model during training.

A convenient Python library which combines these 3 aspects, namely; ResNet,

U-net and pre-trained weights is the ‘segmentation-models’ library by Yakubovskiy

(2019). The segmentation-models library comes with many backbones such as differ-

ent models of VGG, ResNet, Inception and DenseNet all trained on the 2012 ILSVRC

(ImageNet) dataset. The library is built to work with the TensorFlow Keras frame-

work.

A medium-sized ResNet encoder with 34 layers was chosen for this study, since

ResNet was one of the most popular backbone options according to Neupane et al.

(2021). Inference time and accuracy results for an ImageNet classification from the

figures reported by the library authors also suggested ResNet-34 gave a good com-

promise when compared to other models (Pavel, 2022). This ResNet34 backbone was

used in a U-net architecture in my implementation as seen in Figure 3.3.
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3.1.2 U-Net architecture

The structure of the U-Net architecture is highly symmetrical, it consists of a contract-

ing (decoding) path and an expansive (encoding) path making up a “U” shape. There

are typical repeated uses of convolutions followed by rectified linear units(ReLU) and

max pooling on the decoding. Then on the encoding side, there are repeated uses of

convolutions, ReLUs and up-sampling. The idea is that during decoding, the feature

information is increased and the spatial information in reduced. There are connections

which combine this feature information through upsampling with the spatial informa-

tion from downsampling, giving an overall architecture which is good at identifying

high resolution features required for a semantic segmentation task.

The U-Net as implemented in Keras is made up of the following layers types:

• Downsampling side: BatchNormalization, ZeroPadding2D, Conv2D, Activation,

MaxPooling2D

• Upsampling side: BatchNormalization, ZeroPadding2D, Conv2D, Activation,

Concatenate and UpSampling2D.

Batch normalization is designed to apply a transformation that maintains the mean

output close to 0 and having a standard deviation close to 1. The zero padding

is required to allow the convolutions to work on the edges of the image by adding

padding.

The Conv2D layer will apply many kernels to the whole image in order to extract

features, they can come in different sizes such as 3x3 or 5x5, in the chosen U-Net all

kernel size’s were 3x3, except for the very first which was a 7x7. The amount of filter

kernel increases as the model downsamples, each filter was trying to find out some

interesting information in the image, going from 64 to 128, to 256 and to 512. This

is a well-known feature of the CNN architecture which I won’t detail here as O’Shea

and Nash (2015) provides a great overview.

The next layer used in U-Net is the Activation layer, this layer simply applies an

activation function to the input and it can also reside in the convolutional layer itself.
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For CNN architectures, this is almost always a Rectified Linear Unit (ReLU) ever since

AlexNet.

The final ingredient on the decoder side is the Max Pooling layer (MaxPooling2D),

this Layer reduced the dimensionality of the input image, so the model has fewer

parameters to train and so that the final feature map at the bottom of the “U”

combines maps learned from previous layers, giving it a bigger window on the image.

On the upsampling side of the “U”, Keras used a UpSampling2D layer to expand the

feature map information by doubling it and a Concatenate layer to add the spatial

information from the downsampling side of the “U”.

This U-Net architecture had pre-trained weights from ImageNet, so when using

it for this LULC segmentation, all those decoder layer weights were frozen so as not

to re-train them. Only the BatchNormalization layers were left unfrozen in order to

allow it to adjust the mean and standard deviation seen during that current batch in

both training and inference. In this way, BatchNormalization works slightly different

to Layer type classes.

In order to train U-Net for the DeepGlobe satellite images, the upsampling section

of the network was set as trainable. This means from the 1st UpSampling2D layer

until the final Softmax Layer of the U-Net, all weights are trainable. Most of these

weights that need training are filter weights on the Conv2D layers, as the network

reaching it’s output Softmax layer, the numbers of filters get smaller and smaller,

ending with 7 filters. A Softmax layer in my context is a function which will return

an array of 7 probability scores summing to 1. Each score will give the probability

that for each pixel, the label is one of ‘urban land’, ‘agriculture land’, ‘rangeland’,

‘forest land’, ‘water’, ‘barren land’ and ‘unknown’.

The entire model has 24,457,024 parameters of which 3,167,930 were trainable,

allowing me to take advantage of all the filters learned on ImageNet. Alternative fine

tuning policies may in practice lead to better optimisation of individual models, but

this is left for future optimisation work.

40



CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

3.1.3 U-Net optimizer and loss function

An Adam optimizer was selected to update the model via gradient descent after each

batch, Adam has demonstrated considerable gains in terms of training cost and per-

formance (Kingma & Ba, 2014), the optimizer updated the network based on a custom

loss function which was made up of a Dice loss and Categorical Focal Loss. Dice loss

is designed to deal with class imbalance, coming from the Dice coefficient (explained

in Section 2.3), it measures the similarity between the predicted mask and the true

mask. Categorical Focal loss tries to penalize more heavily samples which are easier

to classify, therefore making the model pay more “attention” to labels which are hard

to classify.

3.1.4 U-Net metrics

During training, after each epoch which is a full set of the batched images, I had an

opportunity to use the validation set to keep an eye on how the model was perform-

ing on new data. The most important metric to monitor was IoU as mentioned in

the Literature Review, this metric is widely used for semantic segmentation. Keras

provide a categorical accuracy and an IoU (Intersection over Union) metric which can

monitor the mean IoU of all the labels as well as monitor the IoU of each individ-

ual label. The segmentation-models library which provided the pre-trained weights

for the decoder provided a IoU score metric which was also used. There is a slight

difference in how the segmentation-models library and Keras library calculates their

IoU score which I describe in Figure 3.4 using Equation 2.1. As seen in the Figure,

the 3rd channel has zero intersection and zero union, this is a division by zero. To

handle this, the segmentation-models library treats the IoU for this channel as 1.0

and therefore artificially increases the overall IoU for all channels. For this reason

Keras’s ‘OneHotMeanIoU’ was used as it did not include empty intersections. The

3rd channel in Figure 3.4 has no union or intersection similar to “Unknown” in the

DeepGlobe dataset.
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Figure 3.4: Example calculation of an IoU, using 3 channels, depicted here as Red,

Green and Blue only for illustration (these could be water, urban and forest). The

difference between how the segmentation-models(sm) library and Keras library calcu-

late IoU is shown.

3.1.5 U-Net Image Processing and Augmentation

In order to train this U-Net architecture, firstly the images need to be processed

and prepared for model tuning. In order to be memory efficient, in Keras I created

a “Sequence” class which can perform preprocessing and batch the training samples.

Using the “Sequence” class allows for only loading into memory those images currently

required for training. To use the DeepGlobe training set, each image and corresponding

labelled mask needed to be a size which was divisible by 32, a size of 512 x 512 was

chosen based a few experiments with other values and the conclusions of Hirahara et al.

(2020) which indicated 256 x 256 performed better over a 128 x 128, the authors did

note that increasing the resolution will increase the training time, which was noted also

by this study. Another reason for 512 x 512 being chosen was due the augmentation
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performed, random cropping was to be done to each image meaning only 512 x 512 of

a total 2,448 x 2,448 was to be used for each sample.

There are two data subsets for each model trained; a validation set and a training

set. Both subsets are taken from the set of 723 images. The validation set was split into

patches, no augmentation was carried in order to match the test(which was put away

at the start of the experiment) as much as possible. The segmentation-models library

has a preprocessing function that would prepare the image, however for ResNet-34,

this simply returned the same image unprocessed.

The training set was subjected to data augmentation functions each time a new

batch was called by the model fit function using a library called Albumentations. As

indicated earlier, random cropping of the image to 512 x 512 is carried out, as well

as a 50% probability vertical flip, a 50% probability of a rotation by 90°, and finally

a 20% probability of a random brightness and contrast change as seen in Figure 3.5.

For images for which there is no clear notion of a top like this DeepGlobe dataset, the

Albumentations library recommends adding only transformations that don’t cause a

loss of information, non-rigid transformations were avoided.

Figure 3.5: Example of augmentations on image id 513968 satellite image with trans-

formations made by Albumentations; cropping, random brightness and contrast, ver-

tical flip and rotation by 90°.
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3.1.6 U-Net Mask Processing

To prepare the mask labelling image for training, the RGB format needs to be encoded

from these 3 channels into the 7 channels allowed by the Anderson Classification. The

details of these RGB encodings were already shown in Table 3.1.

One-hot encoding was used to convert each pixel of the mask into a 7 channel image

with each channel representing one segmentation label as shown below in Figure 3.6.

Figure 3.6: Each colour represents a colour in RGB space and is converted to a one-

hot encoding 7 channel image in order to be used by the model to calculate the error

gradients.

3.1.7 U-Net Training Models

Model training was carried out on Google Colab’s VM. The script would firstly down-

load the pre-trained ResNet-34 decoder by using the Segmentation Models library

(resnet34 imagenet 1000 no top.h5). 723 satellite images and corresponding masks

were divided into a training and validation set as shown in Figure 3.3–meaning each

model had 650 examples to train with and 73 for validation. These examples were

shuffled for each model.
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After the U-net model was compiled and ready to be fine-tuned to the satellite data,

the 650 training images (which go through the augmentation explained previously)

were fed in batches of 8, along with 73 full images (or 1168 patches) for validation, as

there is no augmentation applied to the validation. This meant each training epoch

would get slighty different data during each epoch, due to the augmentations.

After training was started on Colab’s Tesla P100 16GB GPU, the Keras library pro-

vided a Callback API which can perform certain actions at various stages during train-

ing. I used this callback API to save the model whenever the validation set reported

the highest one-hot mean IoU as reported by tf.keras.metrics.OneHotMeanIoU, I

also used this API to make sure training stops once this one-hot mean IoU has stopped

improving thereby saving needless excess computation.

After training, each model was saved to disk using the HDF5 file format with file

extension ‘.h5’. Each model was manually inspected to make sure that each model was

minimizing the loss function and that the training did not reach the max number of

epochs without distinguishing some labels. In Chapter 4, I will detail the distribution

of results for these models.

3.2 Phase 2: Apply Ensemble

Phase 2 of this experiment used the models saved from phase 1. There were two

approaches to ensembling investigated. The first was based on the bagging ensemble,

all models from phase 1 are averaged at inference time. The second is based on

a boosting approach, all models from phase 1 are trained in a new model where I

created a weighted average layer in Keras, this allows the best models to have more

say on the final result.

The first ensemble (referred to as ‘average’) simply pooled together the prediction

for every pixel on a test image and returned the ARGMAX5 result of the average of all

those models as shown in Figure 3.7. This model required no training. This average

only ensemble model is implemented again using TensorFlow and Keras, the Average

5Returns the indices of the maximum values along an axis.
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class in Keras takes as input a list of patches which are produced by the models, and

returns a single image as output also of the same shape.

Figure 3.7: Illustration of Ensemble 1: simple average of all models. (D) Models from

phase 1. (E) Ensemble

The second ensemble (referred to ‘weighted’) was trained, the training found a set

of weights for each model which gave the maximum one-hot mean IoU score. During

this training, only the ‘WeightedAverage’ Layer was set to trainable, while the rest

of the model was frozen. In this boosting approach, the training will try to allocate

weights to each ‘weak’ learner so that learners which give a good classification result

are assigned a higher weight.

Figure 3.8: Illustration of Ensemble 2: weighted average of all models. (D) Models

from phase 1. (E) Ensemble. The sum of the weights must be normalised so that they

add up to 1.

46



CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

3.3 Statistical Tests

In order to satisfy the research hypothesis, I needed to determine whether there was a

statistically significant relationship between a single model from phase 1 (also known

as the base model) and an ensemble method from phase 2.

I have stated that the Null hypothesis is that there is no significant difference

between the base U-Net model and an ensemble model approach. The alternative

hypothesis is that there will be a statistically significant difference in terms of an

IoU score. In order not to contaminate the final t-test result, the test set which

was put aside at the beginning of this chapter was only used for finding these group

distributions and was not used to decide which model from the collection would be

chosen as the best for comparison. The method used to select this best stand-alone

model is described next. Before using this ‘put away’ test set, the two base models

needed to be selected from the pool of 64 models. A random sample of 160 images

was chosen from the complete training set of 723 images in order to select a model

with the best mIoU (‘base max’) and average mIoU (‘base avg’). An illustration of

how both base models were selected is shown in Figure 3.9.

Figure 3.9: Illustration of method used to select both base models which were lated

used to test the research hypothesis.
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The first base model (‘base max’) was the one which reported the max mIoU score

for this random set was chosen for comparison, this way the alternative hypothesis

would be more difficult to prove, since the model selected for comparison was above

the average. Futhermore, the computational time required to generate this pool of

models is as large as the ensemble, but the inference time of the single will be much

faster so if the effect is not large, this comparison would not be practical. This was

an important metric to understand according to Minaee et al. (2021) when evaluating

models and comparing them.

The second base model (‘base avg’) was chosen by finding the model which had

the closest mIoU to the mean of all the models. This single model would simulate a

training of one model, which has a short training period and also a short inference

time.

To quantitatively analyse the data gathered from the 2 distributions (distribution 1

being the single U-net, distribution 2 being the ensemble), a paired student t-test was

chosen to calculate the probability of obtaining the observed difference between the

two distributions and telling us whether the observed difference is due to chance or is

real. For both distributions, the results were shown to follow the normal distribution

as we will see in Chapter 4.

The 2 distributions were created by splitting the test dataset which was put aside at

the beginning of this Chapter. The test set contains 80 full 2,448 x 2,448 images, there

are 16 patches in each image (using a 512 x 512 size patch). To fill these distributions

with IoU metrics, the test images were firstly split into patches, secondly shuffled and

thirdly divided into 40 test sets. Each of the 40 test sets were evaluated by all saved

models; ‘base max’, ‘base avg’, ‘average’ and ‘weighted’.

Figure 3.10 below describes the process to compare models to test the research

hypothesis.
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Figure 3.10: Illustration of the statistical test to accept or reject the Null hypothesis

using a split of the test data. The non-ensemble model could be chosen by average or

maximum mIoU and the ensemble method could be an average or a weighted average

method.

The statistical test produced a test statistic and a p value, the p value gave the

probability of obtaining the result of the null hypothesis, remembering that the null

hypothesis for this study is that there is no effect visible on the mIoU score of the test

data when using ensemble methods.

A significance level(alpha) of 5% was chosen for the t-test, meaning the risk of

rejecting a true null hypothesis that I am willing to take is 5%.
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Chapter 4

Results, Evaluation and Discussion

This chapter presents the key results from the experiments described in the previous

chapter. The chapter is divided into the following sections; Phase 1, Phase 2 and

Statistical Tests. Phase 1 reports the results from training the semantic segmentation

U-Net models on the satellite images and how the two base models were selected. Phase

2 details the evaluation of the two ensemble methods on the test set and compares

their performance using a statistical test in order to uncover the model which performs

best. The Statistical Test section addresses the main hypothesis of this research, that

an ensemble approach has a positive effect on the mean intersection over union metric

for LULC classification of satellite images. The chapter concludes with a reiteration

of the research questions and a discussion into how the findings address those research

questions, including any shortcomings found during the work

4.1 Phase 1

4.1.1 U-Net Models

The U-Net models were trained on Google Colabs GPU to speed up training. 64

models in total were trained, each separately on training sets which were randomly

sampled. During training, each epoch took about 300 seconds, the average number of

epochs over all the models was 26.7 with a standard deviation of 3.4. Figure 4.1 is an
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example of the training of one model, similar results are seen for all models.

(a) (b)

(c) (d)

(e)

Figure 4.1: Model training metrics for model ‘10 05 2022 10 06 52’. (a) Mean one-

hot IoU for all labels. (b) Categorical accuracy for all labels, provided by Keras’s

CategoricalAccuracy. (c) Dice loss + Categorical Focal Loss (d) IoU per label on train

set. (d) IoU per label on validation set.
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Range land and barren land tend to be the most difficult to identify in the images,

agriculture land and urban land tend to show the highest IoU scores. There is a

big imbalance in the data set in terms of LULC classifications as seen in Figure 3.1.

Looking into the dataset at classifications such as barren land, there are example of

poor labelling in the data, for example Figure 4.2 shows an area of Land predicted to

be barren land by a model but labelled as unknown in the ground truth.

Figure 4.2: Example of a 512 x 512 image with ground truth labelling the pixels as

Unknown, but the U-Net model labels this as barren land.

Below in Figure 4.3, an image and a real segmentation mask of agricultural land is

shown, however the model ‘10 05 2022 10 06 52’ could not determine it to be agricul-

tural because the identifying features were perhaps outside the receptive field for the

model.

Figure 4.3: Example of a 512 x 512 image with ground truth labelling the pixels

as agricultural land, the model incorrectly predicts the centre to be barren land, a

possible sign of a small receptive field, whereby the model is looking too local.
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4.1.2 Choosing Base Models

After these 64 models were trained, the models needed to be evaluated to find a base

model that can be used for comparison in the research hypothesis. Two base models

will be found in this analysis, the first was the strongest model and the second was

the model which gave an average result on the 160 random images from the entire

training dataset.

Inference took on average 78.2 seconds to evaluate the 160 sample images on a

Dell OptiPlex 5040 with an i5-6500 CPU @ 3.20GHz in order to find the best model

to choose for comparison. Below is a histogram (Figure 4.4) of that sample test set

for each of the models showing the mIoU score (M = 0.534, SD = 0.035). This mean

score is not important, only the distribution is interesting as it suggests each model is

classifying the images differently.

Figure 4.4: In order to find the base models, all models were evaluated on a sample of

160 images, this is the histogram of those models.
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Figure 4.5: All the models stacked vertically sorted by mIoU, note the differences

between models for LULC labels such as ‘Urban Land’, ‘forest land’ or ‘Barren Land’

54



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

one-hot mIoU urban land agriculture land rangeland forest land water barren land

name

17 05 2022 08 29 54 0.588658 0.705544 0.819414 0.404692 0.784299 0.780707 0.625949

16 05 2022 22 43 50 0.585234 0.701949 0.815242 0.392973 0.774620 0.814029 0.597823

10 05 2022 17 48 13 0.572695 0.712100 0.814956 0.373251 0.724915 0.794473 0.589171

04 05 2022 15 53 41 0.570572 0.680878 0.830271 0.366442 0.728061 0.800582 0.587771

04 05 2022 10 20 05 0.570104 0.700735 0.825532 0.373503 0.750537 0.778792 0.561630

10 05 2022 00 42 26 0.567812 0.698342 0.823781 0.383553 0.727410 0.774283 0.567315

17 05 2022 19 00 42 0.567747 0.720394 0.810108 0.365464 0.656823 0.784826 0.636614

10 05 2022 10 06 52 0.565446 0.707801 0.817192 0.337859 0.781462 0.800904 0.512905

04 05 2022 13 31 29 0.563826 0.714180 0.838799 0.359373 0.720672 0.775943 0.537818

18 05 2022 11 05 04 0.560473 0.719233 0.825496 0.342427 0.721027 0.791292 0.523834

07 05 2022 23 04 07 0.560160 0.713423 0.833312 0.328841 0.721867 0.805791 0.517888

17 05 2022 11 15 35 0.559083 0.724208 0.832857 0.353974 0.711515 0.773757 0.517272

05 05 2022 04 11 14 0.556463 0.705605 0.816232 0.333772 0.695220 0.785903 0.558509

04 05 2022 21 00 41 0.556007 0.704008 0.793892 0.298216 0.737922 0.795956 0.562055

07 05 2022 15 15 30 0.554349 0.711155 0.803825 0.304066 0.768886 0.776957 0.515554

10 05 2022 15 27 39 0.554306 0.713396 0.814748 0.331041 0.716009 0.782452 0.522495

18 05 2022 03 43 22 0.554175 0.725014 0.816633 0.281701 0.713110 0.785541 0.557227

10 05 2022 12 51 56 0.553570 0.719477 0.794450 0.292391 0.775739 0.782912 0.510020

06 05 2022 23 50 36 0.552412 0.687827 0.785261 0.315610 0.723740 0.800812 0.553630

06 05 2022 16 12 57 0.552232 0.723311 0.821838 0.351396 0.736860 0.772437 0.459784

Table 4.1: Results for top 20 models evaluated on 160 random samples from the 723

image training set. ‘17 05 2022 08 29 54’ will be the base model.

From Table 4.1, model ‘17 05 2022 08 29 54’ was taken as the first base model to

be used for comparison against the ensemble methods. This was referred to as the

‘base max’ model and a summary of the Keras structure is shown in the Appendix

A.0.2. The second base model (‘30 04 2022 01 28 23’) will be the closest to average

according to this 160 random sample test and this model was referred to as ‘base avg’,

details on how this model is selected will be shown below.

Next, the test set which was put away from the beginning was used by each of these

model to produce distributions. This test set was divied into 40 subsets as described

in Chapter 3. Figure 4.6 below shows the proportions of each label in terms of pixels

counts, it matches the imbalance seen also in the training set.

55



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

Figure 4.6: The test set containing 80 images which put away from the beginning

which was split into 40 subsets. The barchart shows the pixel count for each LULC

label.

Base Model (‘base max’)

Inference for this ‘base max’ model took on average 16.88 seconds to evaluate one of

the 40 test sets on a Dell OptiPlex 5040 with an i5-6500 CPU @ 3.20GHz. Below is a

histogram (Figure 4.7) that shows the spread of test results (M = 0.487, SD = 0.070).

Figure 4.7: The ‘base max’ model results for 40 test sets of 32 patches.
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Base Model (‘base avg’)

To find the ‘base avg’, the model was the closed mIoU was chosen using python com-

mand shown in Figure 4.8 and the results are shown in Table 4.2.

> df_close_to_mean = model_results_df.iloc[

(model_results_df[’onehot_mean_iou’]-0.534).abs().argsort()[:1]

]

Figure 4.8: Find the closest model to the average for all 64 models on the random test

set.

name 30 04 2022 01 28 23

loss 0.593985

categorical accuracy 0.809373

onehot mean iou 0.533991

iou 0 0.596772

iou 1 0.787853

iou 2 0.292681

iou 3 0.702586

iou 4 0.791186

iou 5 0.566859

iou 6 0.0

sm iou score 0.714951

Table 4.2: Model ‘30 04 2022 01 28 23’ with the closest to average mIoU value. Model

is entitled ‘base avg’. In this Table, all the metric which were recorded during eval-

uation are shown. ‘onehot mean iou’ is the metric used for selection. ‘sm iou score’

comes from the segmentation-models Python library, which is calculated differently as

explained in Chapter 3.

Inference for this ‘base avg’ model took on average 22 seconds to evaluate one of

the 40 test sets on a Dell OptiPlex 5040 with an i5-6500 CPU @ 3.20GHz. Below is a

histogram (Figure 4.7) that shows the spread of test results (M = 0.432, SD = 0.068).
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Figure 4.9: The ‘base avg’ model results for 40 test sets of 32 patches.

4.2 Phase 2

4.2.1 Average Ensemble

Inference for the ‘average‘ ensemble took on average 572.55 seconds to evaluate one of

the 40 test sets on a Dell OptiPlex 5040 with an i5-6500 CPU @ 3.20GHz. Below is a

histogram (Figure 4.4) of those tests showing the mIoU score for each(M = 0.495, SD

= 0.073).

Figure 4.10: The ‘average’ ensemble model results for 40 test sets of 32 patches.
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4.2.2 Weighted Average Ensemble

In order to train a weighted model, the first attempt was to use all 64 models trained

from phase 1, however the memory resources required for such an effort were not

possible on average desktop PC such as the Dell Optiplex described above, more than

30 GB of RAM is required to met the demand of training the weights on the final

WeightedAverage Layer.

The second attempt was to lower the total number of U-Net models connected to

the WeightedAverage Layer, the top 20 models as seen from the random sample of

160 images. This attempt however could not find any other optimum other than given

each model as equal proportion or weight in the final classification as shown in Figure

4.11, meaning the result would match the ensemble using only average.

Figure 4.11: Training a weighted average ensemble model using the top 20 U-Net

models from phase 1. Because the models were so similar, the training could not find

a better configuration other than an equal proportion for each model.

The third attempt was to take a random sample of 4 models from the pool of 64

U-Net models available. The training took about 200 seconds on a training set of

100 random images from the training set. It was trained for 6 epochs, there was no

improvement in mIoU or model loss during this time as seen in Figure 4.12. This

trained model is equivalent to an average of four models.
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(a) (b)

Figure 4.12: Training a weighted average ensemble model using 4 model sampled at

random.

Inference for the ‘weighted’ model took on average 40 seconds to evaluate one of

the 40 test sets on the same i5-6500 CPU. Below is a histogram (Figure 4.13) of that

sample test set for each of the models showing the mIoU score (M = 0.479, SD =

0.072).

Figure 4.13: Results from the 40 test sets for the ‘weighted’ average model which uses

4 models combined.
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> tf.nn.softmax(w_ensemble_model.get_weights()[-1]).numpy()

array([[[0.2411845 , 0.25571018, 0.25089592, 0.2522094 ]]],

dtype=float32)

Figure 4.14: A softmax representation of the weights on the final layer of the ‘weighted’

average ensemble. The proportions are almost equal.

Sample predictions are enclosed in the Appendix under section A.0.1.

4.3 Statistical Tests

Restating the statistical hypothesis used to test the effect of the ensemble approach:

• Null hypothesis: If data augmentation and an ensembling technique are used

during training then the testing IoU score of a LULC semantic segmentation

model is not statistically significantly different from the testing IoU score of a

model with data augmentation and without an ensembling technique.

• Alternative hypothesis: If data augmentation and an ensembling technique

are used during training then the testing IoU score of a LULC semantic segmen-

tation model is statistically significantly different from the testing IoU score of

a model with data augmentation and without an ensembling technique.

In summary, the null hypothesis is that ensembles won’t help considerably, that

there is no effect. As discussed in Chapter 3, a paired student t-test was used to test

for this effect. The paired student t-test comes with a few assumptions which the

needed to be confirmed in the data.

The first assumption is that there are no significant outliers in the distribution

and the second is that the distribution is ‘Normal’. To complete this, I calculated

the standardised score for the IoU variable and counted what percentage are outside

an acceptable range. I chose the 97.5th percentile point as a cut off point, this is

approximately 1.96 standard deviations from mean and 95% of the data should lie
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between 1.96 of the mean each way for a standard normal distribution. For the second

assumption, I determined the distribution to be normal by inspecting the skew and

kurtosis of each distribution.

I inspected the distribution from the results above, those being the base model(‘base max’),

the second base model based on the closest to mean(‘base avg’), the average model(‘average’)

and the weighted average model(‘weighted’). A table to summarize the results is shown

below.

Model sample size M SD outside +/- 1.96 SD skew kurtosis

base max 40 0.487 0.070 0.05 -0.175 4.294

base avg 40 0.432 0.068 0.07 -0.556 3.271

average 40 0.495 0.074 0.05 -0.430 4.276

weighted 40 0.479 0.073 0.05 -0.348 4.247

Table 4.3: Summary of the four distributions. M stands for mean, SD stands for

standard deviation, outside +/- 1.96 SD is the proportion of test sets which returned

a result whihc was more than 1.96 standard deviations from the mean.

From Table 4.3, we saw the skewness of each distribution is concentrated on the

right tail, the value is not large(<1), the kurtosis for the three distributions was greater

than 3 and can be called leptokurtic, meaning it is highly concentrated around the

mean. Visible inspection of Figure 4.17 confirms this high kurtosis. The base model

has the highest kurtosis which would be expected, since the model is not generalizing

like the average or weighted models.
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(a) ‘base max’ model (b) ‘average’ model

(c) ‘base avg’ model (d) ‘weighted’ average

Figure 4.15: Q-Q plot for each model on the 40 test sets.

To test my data matched that of a normal distribution, a Shapiro Wilk test was

performed on all three distributions, all returning a p-value larger than 0.05 (0.23, 0.23,

0.49 and 0.705 for base max, base avg, average and weighted respectively), the Shapiro

Wilk test is a statistical test used to check if a variable like mIoU follows a normal

distribution. The null hypothesis states that the variable is normally distributed,

this is not rejected by my tests, so for the purposes of a t-test, I did consider each

distribution to be treated as a normal distribution.

4.3.1 Compare ensemble models

Before conducting the research hypothesis t-test, I needed to determine which ensemble

model was giving the best results and since I had two distributions I could make a

paired t-test to compare. The null hypothesis is that there is not a difference and the
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alternative is that weighted produces a higher mIoU score.

As stated in Chapter 3, the significance level(alpha) was set to 0.05 or 5% for these

experiments.

A Paired samples t-test was conducted to determine the effect of using a weighted

average in an average ensemble approach. The results indicate there is significant

difference between a simple ‘average’ model (M=0.495; SD=0.074) and ‘weighted’

average model (M=0.479; SD=0.073); [t(39) = -8.88, p <0.001].

The 95% confidence interval of the difference between the means ranged from [-

0.021 to -0.013] and it indicated a difference between the means of the samples. I,

therefore, reject the null hypothesis that there is no difference between the means and

conclude that there is a difference. The difference is negative suggesting the ‘average’

model has a mean difference of 0.017 more than the ‘weighted’.

Paired t-test

data: w_ensemble and ensemble

t = -8.8838, df = 39, p-value = 6.537e-11

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.02066541 -0.01300032

sample estimates:

mean of the differences

-0.01683287

Figure 4.16: T-test from R’s stats library (R Core Team, 2013), to determine the effect

of using a weighted average vs an average ensemble approach.

Visually inspecting the kernel density estimation (KDE) plot in Figure 4.17 below

would support this statistic also.
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Figure 4.17: Kernel density estimation (KDE) plot for all 4 model distributions.

In the next section it will be shown how the ‘average’ model compared against the

two base models (‘base max’ and ‘base avg’) and finally test the research hypothesis.

4.3.2 Research Hypothesis

Reporting Average Ensemble and Max Base Model T-test

A Paired samples t-test was conducted to determine the effect of using an average

ensemble approach on a LULC semantic segmentation task. The results indicate a

significant difference between the mIoU score of the best model from a group of mod-

els without an ensemble (M=0.487; SD=0.070) and the mIoU score with an average

ensemble (M=0.495; SD=0.074); [t(39) = 2.0912, p = .04306].

The 95% confidence interval of the difference between the means ranged from

[0.0002 to 0.0163] and did indicate a difference between the means of the samples. I,

therefore, reject the null hypothesis that there is no difference between the means and

conclude that there is an effect of using an average ensemble on the mIoU score of this

LULC semantic segmentation task. The effect is positive and the means increased by

0.0083.
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Paired t-test

data: ensemble and base

t = 2.0913, df = 39, p-value = 0.04306

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.0002717852 0.0162913785

sample estimates:

mean of the differences

0.008281582

Figure 4.18: T-test from R’s stats library (R Core Team, 2013), to determine the effect

of using an average ensemble approach.

T dof alternative p-val CI95% cohen-d BF10 power

T-test 2.091324 39 two-sided 0.043061 [0.0, 0.02] 0.114826 1.206 0.109189

Table 4.4: Results of T-Test from Python’s Pingouin Library (Vallat, 2018), conducted

to determine if there is an effect to using an average ensemble approach. dof is the

degrees of freedom, BF10 stands for the Bayes Factor, cohen-d is the Cohen d effect

size and power is the achieved power of the test (1 - type II error).

According to Sawilowsky (2009), a cohen-d effect of 0.11 is very small. Further-

more, note the power of the t-test, 0.11 is very low. This value ranges from 0 to

1, the lower this value the higher the probability of making a type II error on the

null hypothesis. Moreover, the BF10 value of 1.21 reported by Pingouin’s Library is

interpreted as “Not worth more than a bare mention” according to Wei et al. (2022).

Reporting Average Ensemble and Average Base Model T-test

A Paired samples t-test was conducted to determine the effect of using an average

ensemble approach on a LULC semantic segmentation task. The results indicate a
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significant difference between the mIoU score on an average model without an ensemble

(M=0.432; SD=0.068) and the mIoU score with an averaged ensemble (M=0.495;

SD=0.074); [t(39) = 12.61, p <0.001].

The 95% confidence interval of the difference between the means ranged from [0.053

to 0.074] and did indicate a difference between the means of the samples. I, therefore,

reject the null hypothesis that there is no difference between the means and conclude

that there is an effect of using an average ensemble on the mIoU score of this LULC

semantic segmentation task. The effect is positive and the means increased by 0.0636.

Paired t-test

data: ensemble and base

t = 12.609, df = 39, p-value = 2.457e-15

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.05340081 0.07380764

sample estimates:

mean of the differences

0.06360422

Figure 4.19: T-test from R’s stats library (R Core Team, 2013), to determine the effect

of using an average ensemble approach.

T dof alternative p-val CI95% cohen-d BF10 power

T-test -12.608689 39 two-sided 2.456895e-15 [-0.07, -0.05] 0.890699 2.66e+12 0.999792

Table 4.5: Results of T-Test from Python’s Pingouin Library (Vallat, 2018), conducted

to determine if there is an effect to using an average ensemble approach. dof is the

degrees of freedom, BF10 stands for the Bayes Factor, cohen-d is the Cohen d effect

size and power is the achieved power of the test (1 - type II error).

According to Sawilowsky (2009), a cohen-d effect of 0.89 is considered large to very

large. Furthermore, note the power of the t-test, 0.99 is very high. This value ranges
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from 0 to 1, the lower this value the higher the probability of making a type II error on

the null hypothesis. Moreover, the BF10 value of 2.6 trillion reported by Pingouin’s

Library is interpreted as “Very Strong” according to Wei et al. (2022).

4.4 Discussion

This research has stated the importance of mIoU accuracy when classifying LULC

satellite images. There are many architectures developed over the years to solve the

problem of semantic segmentation and applying them to LULC classification, the

literature has shown there has been minimal use of the ensemble technique in other

to maximize the mIoU of the segmentation by grouping these many architectures and

turning many weak models into a strong model.

The U-Net model training highlighted some inconsistencies in the labelling of the

dataset, there are many examples of the U-Net models predicting barren land when

the actual ground truth label reported the land as barren land. There also existed

a lot of confusion between barren land and range land, even with human vision, the

differences between barren and range are difficult to determine and finally there were

examples of segmentation masks predicted where it looks like the model didn’t have

a big enough receptive field, there were agricultural fields where inside the field, the

model determined it to be barren as the size of the field was too large for the receptive

field. Perhaps this is an area where an architecture with a more global sense such as

a transformer could preform better.

There was also a successful use of transfer learning in this experiment, the weights

pre-trained on ImageNet proved useful for semantic segmentation of satellite images,

this greatly increased the computational cost of training, however it didn’t allow the

final U-net models to be as broad in their range, which would have widened the

differences between the ensembles weak learners.

There was evidence that the patience setting for the early stopping mechanism was

too large on the training of the U-Net models, training could have been faster if the

parameter in the callback API was set to a lower value, it was set to 15, when analysis
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of the validation plots would indicate this number was not required.

In the Introduction Chapter, I introduced the research questions; 1) to find out

which ensemble methods performs the best, 2) can this ensemble method perform

better than a single stand-alone model?, 3) to what extend can it perform better?, 4)

is the ensemble method better than the best single model from a group of models?

and 5) to what extend is that better?

The reason for using two base models, is that an average chosen from the U-Net

group of models simulates the training of one random model, whereas a selected max

IoU score model needs all models to be fully trained first and so requires the same

training time as an ensemble but has a quicker inference time.

To answer the first research question, when a comparison was done between the two

ensemble approaches, the results show that a simple ensemble has performed better

than a weighted ensemble model. This is clear from the t-test which showed there

existed a mean difference of 0.17 between the models. The ‘average’ model used all 64

models to produce a pixel label during evaluation whereas due to hardware limits, the

‘weighted’ model used just 4 models. The training of these 4 models was unsuccessful

since the weights of these models did not diverge far from equal proportions.

The training of the individual models were already using a lot of generalizing

techniques such as augmentation, so each model carried a lot of equal knowledge, this

meant that the training of ‘weighted’ model did not determine that one model should

carry far more weight than another.

To answer the second research question, I need to see what the distribution of all

models was and select an average model from the group. This selection process relied

on the random evaluation set of 160 images which was done at random on the full 723

images. A different selection of 160 images could have resulted in a different average

model being selected.

The two distributions; ‘base avg’ model and ‘average’ model were compared side by

side in KDE plot, visually the impact of an ensemble was clear, moving the distribution

of the mIoU score up by 0.06 on average across all the test sets. The t-test confirmed

this, with a large to very large cohen-d effect, a very high test power and a BF10 value
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described as very strong, this addresses the 3rd research question.

The fourth research question asks a question about large inference time required

by an ensemble approach, essentially is it worth it? The training time required by an

ensemble is almost the same as that required to pick the best of a bunch of models.

The results show each model took about 300 seconds per epoch and there was about

26.7 epoch on average. With the limitation, that these figures are very much specific

to each GPU or CPU hardware setup, for my setup, a 4 core CPU took 78.2 seconds

per model to evaluate 160 satellite images.

300 seconds × 26.7 epochs × 64 models = 512, 640 seconds (142.4 hours)

78.2 seconds × 64 models = 5, 005 seconds (1.39 hours)

512, 640 + 5, 005 = 517, 645 seconds (143.8 hours)

That’s 143.8 hours to train and select the best model and 1.39 hours less to train

for an ensemble, not much of a difference. However, the real difference is the inference

time, 573 seconds to evaluate 32 patches(2 images) with an ensemble versus about

17 seconds for a single model. GPU parallelization could help reduce that difference.

There is at least an order of magnitude in the difference. It should be said that the

length of time spent training could be decreased by training the models in parallel,

this is an advantage of this type of bagging ensemble approach. Another advantage

to this bagging method is that the ensemble model could be updated easily when new

labelled data is available, by simply training new models and adding them.

The answer to the fourth research question about whether an ensemble of a group

can be better than the best from a group, it is important to keep into account the

inference time. The results from the t-test for the best base model and the ensemble

show a p-value of 0.43, which is close to 5%, meaning 5% of the time we would see no

difference in the means. The cohen-d and Bayes Factor confirm this result indicating

the result is “Not worth more than a bare mention”. There is not strong enough

evidence to suggest using an ensemble instead of taking the best model from the pool

of U-Nets, especially since the inference time is an order of magnitude larger. However,

as the test data drifts further from the training data, this effect could increase, in this
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experiment the test and training data do not diverge greatly.

The firth research question asks what extend is an ensemble better than the best

selected single base model? From the evidence we have, the conclusion would be that

it is not showing any difference worth the effort.

The findings here did meet my expectations, there is evidence that an ensemble of

U-Net models that use a simple average can give better performance than an average

single U-Net. These findings agree with previous research discussed in the Literature

Review such as Nigam et al. (2018) and Tapper et al. (2020) in terms of preventing

overfitting and proving the benefits of an ensemble. The challenges presented by using

an ensemble agree with those mentioned in Benbriqa et al. (2021), that is the high

time-cost of this solution and the difficulty in choosing members of the ensemble.

The weighted ensemble approach did not prove to be a success, this could be due

the use of augmentation, using augmentation prevents a model from overfitting too

much, if many of these weak learner U-Net model are generalizing quite well, then

there is no success is trying to identify the strengths and weakness of each. Moreover,

the computer resources required to train a large weighted ensemble have proven to

be considerable, this could be an explanation for the lack of literature on the topic of

weighted ensembles in the semantic segmentation of satellite images.

The results show that a weighted ensemble approach might be good for an image

classifcation task where there is only one or two prediction required, but in a semantic

segmentation task, an output needs to have 512 x 512 predictions. Without augmen-

tation there has been improvements shown in the medical imaging domain when using

a weighted ensemble approach such Dang et al. (2021). So possibly, the generalising

of individual models is weakening the impact of a weighted approach.
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Conclusion

This chapter will explain the outcomes inferred in this research. A brief overview of

the research is given, followed by a summary of the problem definition, after that the

experiment design and evaluation is detailed and finally there are few suggestions for

future work in this area.

5.1 Research Overview

This research aimed to identify an ensemble approach which could improve the mean

intersection over union(mIoU) metric for a pixel labelling problem known as seman-

tic segmentation. Semantic segmentation is critical in the area of Land Use Land

Cover(LULC) for guiding land management, land planning and sustainable develop-

ment.

An ensemble approach consists of pooling together the predictions of many models

to produce better predictions and in doing so, better mIoU scores. There has been

many CNN model architectures developed over the years which have become deeper

and deeper with the help of residual connections to solve these semantic segmentation

problems.A popular architecture called U-Net was chosen in this research to predict

labels for a dataset from the DeepGlobe 2018 Land Cover Classification Challenge.

This research addresses a need to understand how much an ensemble approach

can effect the mIoU, the literature provided detailed evidence of its use in the medical
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imaging area. Pre-trained ResNet-34 decoder weights were utilized to transfer learning

from an ImageNet dataset and apply it to a satellite segmentation task.

Two ensemble methods were designed, one by using a simple average of 64 models

and another by using a weighted average of 4 models. These ensembles were tested

to find out which performed better, and that ensemble method was then compared

against the performance of a single U-Net model.The results focus not only on the

mIoU comparisons but also the computational effort of the ensemble approach which

is an important consideration.

5.2 Problem Definition

The benefits to applying an ensemble approach to the semantic segmentation of satel-

lite imagery is not well understood. Lots of research exists applying many of the

state-of-the-art architectures such as DeepLabv3+, U-Net or SegNet to satellite seg-

mentation problems and achieving significant results. There is a penalty to applying

an ensemble in terms of computational time, to make an ensemble solution practical,

this needs to be also taken into consideration.

The problem is posed by asking the following question: Can independently trained

well-performing models pooled together produce significantly better results than a

single model for a semantic segmentation of the DeepGlobe LULC dataset?

5.3 Design/Experimentation, Evaluation & Results

The dataset taken from the DeepGlobe 2018 Land Cover Classification Challenge was

used to evaluate the impact of an ensemble approach. The data was split into a test

set and training set, with the training set, 64 U-Net models were trained using a

ResNet-34 decoder with pre-trained weights from ImageNet.

The ensembles were built using these U-Net models, the first ensemble used a

simple average of the 64 models, the second ensemble used just 4 U-Net models but

trained a new Keras Layer called WeightedAverage to find the optimum weight for
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each U-Net model. Both these ensembles were evaluated with the test set, a weighted

ensemble approach did not improve the mIoU score when compared to a simple average

ensemble.

Two base models were selected by taking an average U-Net model and a U-net

model which performs the best on the train set. Both models were compared to the

average ensemble method using a Student’s t-test. The results of an average ensemble

gave a statistically significant greater mIoU than a single average U-Net model, the

Cohen-d effect was found to be very large and power of the test was very high. This

finding confirmed our main alternative hypothesis for this study, that an ensemble will

outperform any average single model.

There was very small effect found when comparing an average ensemble model to

the best performing model from a pool of models. However, the computational time

was an order of magnitude higher for an ensemble in comparison to a single model.

This result was surprising and indicates that there is a benefit in training many models

and choosing the best one rather than using on ensemble which has a much longer

inference time, it could also suggest that each model is generalising and is not looking

at slightly different aspects but the similar aspects due to the use of augmentations.

This results could also be suggesting that ensemble with pre-trained weights can’t be

as independently different from each other as an ensemble approach would like them

to be.

So in summary, this research clearly illustrates the benefits of an ensemble approach

in comparison to a single training of a model, but it also raises the question whether

it is better to select the best model in a pool rather than do an ensemble because of

the impact an ensemble has on the inference time.

5.4 Contributions and impact

This research clearly identified and quantified the effect of using an average ensemble

approach to solve the semantic segmentation of satellite images.

Importantly, the results of this research provide evidence that pooling together
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single independently trained models and averaging them has a very large effect on the

mean intersection over union metric in the area of satellite imaging just it has shown

in the area of medical imaging (Shah & Madabushi, 2021; Shimizu et al., 2008).

The results are consistent with ensemble studies in the area of LULC semantic

segmentations (Marmanis et al., 2016; Tapper et al., 2020), this research however

goes further to quantify the effect of an ensemble in comparison to a single model,

demonstrating a mean difference of 0.17 in terms of the mean class intersection over

union for a 7 classes LULC satellite imagery dataset.

In addition, it is now clear that a weighted ensemble approach using very well gen-

eralised independent models is not a better approach than a simple averaged ensemble.

Training the weights applied to each model in a pool did not have a positive effect on

the mIoU metric.

Studies which have used an ensemble approach have failed to mention the disad-

vantage an ensemble has at inference time, a single model was shown to be at least

on order of magnitude faster than an ensemble. Taking in account this computation

at inference, this research has provided evidence that there is no benefit to using an

ensemble if many models are trained and the best performing model is used.

Studies have shown a weighted ensemble approach is more accurate in an image

classifcation problem (Cheng et al., 2020; Harangi et al., 2018) however when applied

to an image segmentation problem, those benefits are not as clear.

5.5 Future Work & recommendations

An area of difficulty in using the ensemble approach to semantic segmentation is de-

veloping many independent models, in this research 64 models were training similarly,

albeit with augmentation that changes the training input. There are more methods

which could be used to give a more diverse set of models, such as using different archi-

tectures or decoder backbones as seen in Cheng et al. (2020) and T. Zhou et al. (2021)

for image classification. The more each model finds a local solution, the greater the

ensemble. Each DCNN architecture has its own strength and weakness which can be
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taken as an advantage in an ensemble approach. If an ensemble of different backbones

with different pre-trained weights were utilized, the diversity of the ensemble would

be greater and thus the power of the ensemble could be greater.

Model selection was not considered in this study, Ganaie et al. (2021) writes “Find-

ing a criterion for model selection in ensemble deep learning should be an important

target for researchers in the next few years.” The authors stress there has been little

attention paid to this topic. In this research the high number of models in the ensem-

ble has lead to extremely high inference times, an interesting research question which

could look asked is–what is the minimum number of models which could be utilized

withouth dropping the performance significantly?

As mentioned in the literative review chapter, transformer based architectures

based on the Vision Transformer (Dosovitskiy et al., 2020) are becoming the state-of-

the-art approach in the semantic segmentation domain. They don’t use convolutions

and can capture more contextual informational. A key comparison would be between

a transformer based approach such as the Segmenter (Strudel et al., 2021) and the

ensemble approach, does a single transformer outperform an ensemble?
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Appendix A

Additional content

A.0.1 Example model predictions

Figure A.1: Sample 1, Model ‘average’ ensemble

Figure A.2: Sample 1, Model ‘base avg’
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Figure A.3: Sample 1, Model ‘base max’

Figure A.4: Sample 2, Model ‘average’ ensemble

Figure A.5: Sample 2, Model ‘base avg’
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Figure A.6: Sample 2, Model ‘base max’

Figure A.7: Sample 3, Model ‘average’ ensemble

Figure A.8: Sample 3, Model ‘base avg’
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Figure A.9: Sample 3, Model ‘base max’

Figure A.10: Sample 4, Model ‘average’ ensemble

Figure A.11: Sample 4, Model ‘base avg’
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Figure A.12: Sample 4, Model ‘base max’

A.0.2 Example structure of U-Net Keras model ‘base max’
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layer.name layer. class trainable count params filters kernel size

data InputLayer True 0

bn data BatchNormalization True 9

zero padding2d 136 ZeroPadding2D False 0

conv0 Conv2D False 9408 64 (7, 7)

bn0 BatchNormalization True 256

relu0 Activation False 0

zero padding2d 137 ZeroPadding2D False 0

pooling0 MaxPooling2D False 0

stage1 unit1 bn1 BatchNormalization True 256

stage1 unit1 relu1 Activation False 0

zero padding2d 138 ZeroPadding2D False 0

stage1 unit1 conv1 Conv2D False 36864 64 (3, 3)

stage1 unit1 bn2 BatchNormalization True 256

stage1 unit1 relu2 Activation False 0

zero padding2d 139 ZeroPadding2D False 0

stage1 unit1 conv2 Conv2D False 36864 64 (3, 3)

stage1 unit1 sc Conv2D False 4096 64 (1, 1)

add 64 Add False 0

stage1 unit2 bn1 BatchNormalization True 256

stage1 unit2 relu1 Activation False 0

zero padding2d 140 ZeroPadding2D False 0

stage1 unit2 conv1 Conv2D False 36864 64 (3, 3)

stage1 unit2 bn2 BatchNormalization True 256

stage1 unit2 relu2 Activation False 0

zero padding2d 141 ZeroPadding2D False 0

stage1 unit2 conv2 Conv2D False 36864 64 (3, 3)

add 65 Add False 0

stage1 unit3 bn1 BatchNormalization True 256

Table A.1: Model ’base max’ structure in Keras. Part 1
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layer.name layer. class trainable count params filters kernel size

stage1 unit3 relu1 Activation False 0

zero padding2d 142 ZeroPadding2D False 0

stage1 unit3 conv1 Conv2D False 36864 filters:64 (3, 3)

stage1 unit3 bn2 BatchNormalization True 256

stage1 unit3 relu2 Activation False 0

zero padding2d 143 ZeroPadding2D False 0

stage1 unit3 conv2 Conv2D False 36864 64 (3, 3)

add 66 Add False 0

stage2 unit1 bn1 BatchNormalization True 256

stage2 unit1 relu1 Activation False 0

zero padding2d 144 ZeroPadding2D False 0

stage2 unit1 conv1 Conv2D False 73728 128 (3, 3)

stage2 unit1 bn2 BatchNormalization True 512

stage2 unit1 relu2 Activation False 0

zero padding2d 145 ZeroPadding2D False 0

stage2 unit1 conv2 Conv2D False 147456 128 (3, 3)

stage2 unit1 sc Conv2D False 8192 128 (1, 1)

add 67 Add False 0

stage2 unit2 bn1 BatchNormalization True 512

stage2 unit2 relu1 Activation False 0

zero padding2d 146 ZeroPadding2D False 0

stage2 unit2 conv1 Conv2D False 147456 128 (3, 3)

stage2 unit2 bn2 BatchNormalization True 512

stage2 unit2 relu2 Activation False 0

zero padding2d 147 ZeroPadding2D False 0

stage2 unit2 conv2 Conv2D False 147456 128 (3, 3)

add 68 Add False 0

stage2 unit3 bn1 BatchNormalization True 512

stage2 unit3 relu1 Activation False 0

zero padding2d 148 ZeroPadding2D False 0

stage2 unit3 conv1 Conv2D False 147456 128 (3, 3)

Table A.2: Model ’base max’ structure in Keras. Part 2
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layer.name layer. class trainable count params filters kernel size

stage2 unit3 bn2 BatchNormalization True 512

stage2 unit3 relu2 Activation False 0

zero padding2d 149 ZeroPadding2D False 0

stage2 unit3 conv2 Conv2D False 147456 128 (3, 3)

add 69 Add False 0

stage2 unit4 bn1 BatchNormalization True 512

stage2 unit4 relu1 Activation False 0

zero padding2d 150 ZeroPadding2D False 0

stage2 unit4 conv1 Conv2D False 147456 128 (3, 3)

stage2 unit4 bn2 BatchNormalization True 512

stage2 unit4 relu2 Activation False 0

zero padding2d 151 ZeroPadding2D False 0

stage2 unit4 conv2 Conv2D False 147456 128 (3, 3)

add 70 Add False 0

stage3 unit1 bn1 BatchNormalization True 512

stage3 unit1 relu1 Activation False 0

zero padding2d 152 ZeroPadding2D False 0

stage3 unit1 conv1 Conv2D False 294912 256 (3, 3)

stage3 unit1 bn2 BatchNormalization True 1024

stage3 unit1 relu2 Activation False 0

zero padding2d 153 ZeroPadding2D False 0

stage3 unit1 conv2 Conv2D False 589824 256 (3, 3)

stage3 unit1 sc Conv2D False 32768 256 (1, 1)

add 71 Add False 0

stage3 unit2 bn1 BatchNormalization True 1024

Table A.3: Model ’base max’ structure in Keras. Part 3
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layer.name layer. class trainable count params filters kernel size

stage3 unit2 relu1 Activation False 0

zero padding2d 154 ZeroPadding2D False 0

stage3 unit2 conv1 Conv2D False 589824 256 (3, 3)

stage3 unit2 bn2 BatchNormalization True 1024

stage3 unit2 relu2 Activation False 0

zero padding2d 155 ZeroPadding2D False 0

stage3 unit2 conv2 Conv2D False 589824 256 (3, 3)

add 72 Add False 0

stage3 unit3 bn1 BatchNormalization True 1024

stage3 unit3 relu1 Activation False 0

zero padding2d 156 ZeroPadding2D False 0

stage3 unit3 conv1 Conv2D False 589824 256 (3, 3)

stage3 unit3 bn2 BatchNormalization True 1024

stage3 unit3 relu2 Activation False 0

zero padding2d 157 ZeroPadding2D False 0

stage3 unit3 conv2 Conv2D False 589824 256 (3, 3)

add 73 Add False 0

stage3 unit4 bn1 BatchNormalization True 1024

stage3 unit4 relu1 Activation False 0

zero padding2d 158 ZeroPadding2D False 0

stage3 unit4 conv1 Conv2D False 589824 256 (3, 3)

stage3 unit4 bn2 BatchNormalization True 1024

stage3 unit4 relu2 Activation False 0

zero padding2d 159 ZeroPadding2D False 0

stage3 unit4 conv2 Conv2D False 589824 256 (3, 3)

add 74 Add False 0

stage3 unit5 bn1 BatchNormalization True 1024

stage3 unit5 relu1 Activation False 0

zero padding2d 160 ZeroPadding2D False 0

Table A.4: Model ’base max’ structure in Keras. Part 4
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layer.name layer. class trainable count params filters kernel size

stage3 unit5 conv1 Conv2D False 589824 256 (3, 3)

stage3 unit5 bn2 BatchNormalization True 1024

stage3 unit5 relu2 Activation False 0

zero padding2d 161 ZeroPadding2D False 0

stage3 unit5 conv2 Conv2D False 589824 256 (3, 3)

add 75 Add False 0

stage3 unit6 bn1 BatchNormalization True 1024

stage3 unit6 relu1 Activation False 0

zero padding2d 162 ZeroPadding2D False 0

stage3 unit6 conv1 Conv2D False 589824 256 (3, 3)

stage3 unit6 bn2 BatchNormalization True 1024

stage3 unit6 relu2 Activation False 0

zero padding2d 163 ZeroPadding2D False 0

stage3 unit6 conv2 Conv2D False 589824 256 (3, 3)

add 76 Add False 0

stage4 unit1 bn1 BatchNormalization True 1024

stage4 unit1 relu1 Activation False 0

zero padding2d 164 ZeroPadding2D False 0

stage4 unit1 conv1 Conv2D False 1179648 512 (3, 3)

stage4 unit1 bn2 BatchNormalization True 2048

stage4 unit1 relu2 Activation False 0

zero padding2d 165 ZeroPadding2D False 0

stage4 unit1 conv2 Conv2D False 2359296 512 (3, 3)

stage4 unit1 sc Conv2D False 131072 512 (1, 1)

add 77 Add False 0

stage4 unit2 bn1 BatchNormalization True 2048

stage4 unit2 relu1 Activation False 0

zero padding2d 166 ZeroPadding2D False 0

stage4 unit2 conv1 Conv2D False 2359296 512 (3, 3)

stage4 unit2 bn2 BatchNormalization True 2048

Table A.5: Model ’base max’ structure in Keras. Part 5
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layer.name layer. class trainable count params filters kernel size

stage4 unit2 relu2 Activation False 0

zero padding2d 167 ZeroPadding2D False 0

stage4 unit2 conv2 Conv2D False 2359296 512 (3, 3)

add 78 Add False 0

stage4 unit3 bn1 BatchNormalization True 2048

stage4 unit3 relu1 Activation False 0

zero padding2d 168 ZeroPadding2D False 0

stage4 unit3 conv1 Conv2D False 2359296 512 (3, 3)

stage4 unit3 bn2 BatchNormalization True 2048

stage4 unit3 relu2 Activation False 0

zero padding2d 169 ZeroPadding2D False 0

stage4 unit3 conv2 Conv2D False 2359296 512 (3, 3)

add 79 Add False 0

bn1 BatchNormalization True 2048

relu1 Activation False 0

decoder stage0 upsam UpSampling2D True 0 size: (2, 2)

decoder stage0 conca Concatenate True 0

decoder stage0a conv Conv2D True 1769472 filters:256 (3, 3)

decoder stage0a bn BatchNormalization True 1024

decoder stage0a relu Activation True 0

decoder stage0b conv Conv2D True 589824 filters:256 (3, 3)

decoder stage0b bn BatchNormalization True 1024

decoder stage0b relu Activation True 0

decoder stage1 upsam UpSampling2D True 0 size: (2, 2)

decoder stage1 conca Concatenate True 0

decoder stage1a conv Conv2D True 442368 filters:128 (3, 3)

decoder stage1a bn BatchNormalization True 512

decoder stage1a relu Activation True 0

decoder stage1b conv Conv2D True 147456 filters:128 (3, 3)

decoder stage1b bn BatchNormalization True 512

decoder stage1b relu Activation True 0

Table A.6: Model ’base max’ structure in Keras. Part 6
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layer.name layer. class trainable count params filters kernel size

decoder stage2 upsam UpSampling2D True 0 size: (2, 2)

decoder stage2 conca Concatenate True 0

decoder stage2a conv Conv2D True 110592 filters:64 (3, 3)

decoder stage2a bn BatchNormalization True 256

decoder stage2a relu Activation True 0

decoder stage2b conv Conv2D True 36864 filters:64 (3, 3)

decoder stage2b bn BatchNormalization True 256

decoder stage2b relu Activation True 0

decoder stage3 upsam UpSampling2D True 0 size: (2, 2)

decoder stage3 conca Concatenate True 0

decoder stage3a conv Conv2D True 36864 filters:32 (3, 3)

decoder stage3a bn BatchNormalization True 128

decoder stage3a relu Activation True 0

decoder stage3b conv Conv2D True 9216 filters:32 (3, 3)

decoder stage3b bn BatchNormalization True 128

decoder stage3b relu Activation True 0

decoder stage4 upsam UpSampling2D True 0 size: (2, 2)

decoder stage4a conv Conv2D True 4608 filters:16 (3, 3)

decoder stage4a bn BatchNormalization True 64

decoder stage4a relu Activation True 0

decoder stage4b conv Conv2D True 2304 filters:16 (3, 3)

decoder stage4b bn BatchNormalization True 64

decoder stage4b relu Activation True 0

final conv Conv2D True 1015 7 (3, 3)

softmax Activation True 0

Table A.7: Model ’base max’ structure in Keras

A.0.3 Source Code

GitLab: https://gitlab.com/brendankent/mythesiscode

101

https://gitlab.com/brendankent/mythesiscode

	Ensemble Approach to the Semantic Segmentation of Satellite Images
	Declaration
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Research problem
	Research aim
	Research hypothesis

	Research Methodologies
	Scope and Limitations
	Document Outline

	Literature Review
	Introduction
	Semantic segmentation
	Semantic segmentation metrics
	Semantic segmentation model comparisons
	Semantic segmentation on satellite data

	Ensembling Methods
	Bagging (bootstrap aggregating)
	Boosting
	Stacking
	Ensemble Methods applied to Semantic Segmentation

	Conclusion

	Experiment Design and Methodology
	Phase 1: Model creation
	Split dataset and choose architecture
	U-Net architecture
	U-Net optimizer and loss function
	U-Net metrics
	U-Net Image Processing and Augmentation
	U-Net Mask Processing
	U-Net Training Models

	Phase 2: Apply Ensemble
	Statistical Tests

	Results, Evaluation and Discussion
	Phase 1
	U-Net Models
	Choosing Base Models

	Phase 2
	Average Ensemble
	Weighted Average Ensemble

	Statistical Tests
	Compare ensemble models
	Research Hypothesis

	Discussion

	Conclusion
	Research Overview
	Problem Definition
	Design/Experimentation, Evaluation & Results
	Contributions and impact
	Future Work & recommendations

	Bibliography
	Additional content
	Example model predictions
	Example structure of U-Net Keras model `base_max'
	Source Code


