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Abstract

Background: Traumatic brain injury can be caused by head impacts, but many brain injury risk estimation models are not equally accurate across

the variety of impacts that patients may undergo, and the characteristics of different types of impacts are not well studied. We investigated the

spectral characteristics of different head impact types with kinematics classification.

Methods: Data were analyzed from 3262 head impacts from lab reconstruction, American football, mixed martial arts, and publicly available car

crash data. A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types

(e.g., football, car crash, mixed martial arts). To test the classifier robustness, another 271 lab-reconstructed impacts were obtained from 5 other

instrumented mouthguards. Finally, with the classifier, type-specific, nearest-neighbor regression models were built for brain strain.

Results: The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets. The most important features in

the classification included both low- and high-frequency features, both linear acceleration features and angular velocity features. Different head

impact types had different distributions of spectral densities in low- and high-frequency ranges (e.g., the spectral densities of mixed martial arts

impacts were higher in the high-frequency range than in the low-frequency range). The type-specific regression showed a generally higher R2

value than baseline models without classification.

Conclusion: The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports,

and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation.

Keywords: Classification; Contact sports; Head impacts; Impact kinematics; Traumatic brain injury

1. Introduction

Traumatic brain injury (TBI) is a growing public health

hazard, with high mortality and morbidity; it is also a socio-

economic issue because it is enormously expensive to diagnose

and treat.1 The situation is particularly urgent for mild TBI

(mTBI), given that mTBI is notoriously underreported, diffi-

cult to diagnose, and is a predisposing factor to long-term

neurodegenerative processes.2�4 TBI/mTBI can be caused by

various types of head impacts from accidental falls, bike acci-

dents, car crashes, American football, mixed martial arts

(MMA), water polo, ice hockey, and car crashes.5�10 Here, the

types of head impacts are defined as the different sources of

impact (e.g., different contact sports).

Considering the consequences and prevalence of TBI/

mTBI, various biomechanical studies have focused on the esti-

mation of brain injury risk.11�16 Physiologically, the damage
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is thought to be caused by the inertial movement of the brain

after the head sustains a physical impact, or after rapid accele-

ration or deceleration. Therefore, metrics of brain deformation

are effective biomechanical predictors for predicting TBI/

mTBI. As a quantifier of brain deformation, brain strain is

generally recognized as a TBI/mTBI injury risk metric.12�15

To calculate brain strain, head kinematics, which can be

measured with wearable accelerometers and gyroscopes, are

the necessary input variables. However, this state-of-the-art

approach to computing brain strain (the finite element

modeling based on brain physics) is computationally costly in

terms of time and complex computational software. It typically

takes hours to model the brain strain for a single impact, which

makes it hard to use for real-time monitoring of brain injury

risks.12�14 Therefore, researchers have developed many math-

ematical models (often referred to as the brain injury criteria)

by reduced-order brain physics approximation and statistical

fitting to rapidly estimate the brain injury risk from head

kinematics.9,11,17

A recent study18 found that different head impact types tend

to have variable biomechanical characteristics, indicating that

the impact types should not be ignored when estimating the

risk of TBI/mTBI. However, the brain injury criteria were

developed based on certain types of head impacts,11,17 and

since the different kinematic features these brain injury criteria

use can weigh differently across head impact types, they

should not be used generally.18,19 Thus, it is worthwhile to

investigate the differences in the kinematics of various types

of head impacts in order to develop better risk evaluation

models adaptable to various head impact types for the detec-

tion and monitoring of TBI/mTBI. Sports-specific monitoring

and protection strategies can be developed if we understand

the differences among types of head impacts.

To study these differences, we used the kinematics of 3262

head impacts from head model (HM) simulations (2130

impacts), American football (302 college football (CF)

impacts and 53 professional football impacts), MMA (457

impacts), automobile crashworthiness tests (48 impacts), and

car racing (272 impacts). We extracted the spectral densities

of linear acceleration and angular velocity, classified these

impacts with machine learning models, and then analyzed the

most important features for classification. Finally, we used the

classification model to build type-specific regression models

of 95% maximum principal strain (MPS95), MPS95 in corpus

callosum (MPSCC95), and cumulative strain damage (CSDM)

15%, indicating the volume fraction of the brain with MPS

exceeding the threshold of 0.15)20 and compared these with a

baseline model developed from a mixture of different types of

head impacts. These metrics were chosen because previous

studies have found correlation between these tissue-level

biomechanical metrics and TBI.21�24

2. Materials and methods

2.1. Data description

To study a broad range of head impact types, we collected

kinematics from a total of 3262 head impacts from various

sources: 2130 laboratory head impacts (HM) simulated from a

validated finite element model of the Hybrid III anthropomor-

phic test dummy headform,14,25 302 CF head impacts measured

by the Stanford instrumented mouthguard (CF),15,26 457 MMA

head impacts (MMA) measured by the Stanford instrumented

mouthguard,10,27 53 reconstructed head impacts with helmet

from the National Football League (NFL),28 48 head impacts in

automobile crashworthiness tests from the National Highway

Traffic Safety Administration (NHTSA),29 and 272 recon-

structed head impacts from the National Association for Stock

Car Auto Racing (NASCAR).13

2.2. Feature extraction

We believe different head impact types have different spec-

tral characteristics, so to classify these types of head impacts,

we extracted their spectral density features. The features were

extracted from the linear acceleration and angular velocity (4

channels: 3 spatial components and the magnitude (the time-

varying resultant of the 3 spatial components); x: posterior-to-

anterior, y: left-to-right, z: superior-to-inferior) which are

directly measured by accelerometers. (Example impact kine-

matics are shown in Fig. 1).

Fast Fourier Transform was applied to each channel of the

kinematics, and the spectrum was split into windows, each

with a width of 50 Hz. We kept the first 4 windows because

the 4 windows show high classification accuracy, and

frequency higher than 200 Hz is viewed as noises in previous

studies.14,15 In each frequency window, the mean, maximum,

and median of the spectral density were extracted as the

features. A total of 96 features (2 kinematics, 4 channels, 4

spectrum windows, and 3 statistics) were extracted for each

impact. (Feature heatmap was shown in Fig. 1C). It should be

mentioned that the window width was chosen to be 50 Hz to

enable at least 3 frequency points within each time window.

The spectral feature extraction was performed with MATLAB

R2021a (MathWorks, Natick, MA, USA).

2.3. Classification algorithm and evaluation

Over the past several decades, there has been a rapid devel-

opment of machine learning technology. Machine learning tech-

nology has been used in the management of sport injury, the

comprehension of sport behavior, and the improvement of

athlete performance.12,14,30,31 In this study, to investigate the

categorization of different types of head impacts, we applied

random forest as the machine learning classification algorithm to

classify various types of head impacts. Random forest is a tree-

based ensemble learning algorithm that builds multiple decision

trees to classify the samples into different leaves via the minimi-

zation of Gini index or entropy.32�34 Random forest builds trees

with sub-samples of the dataset, adopts bootstrap aggregating

(bagging), and performs a majority vote on the output of the

trees. We chose to use random forest because it does not suffer

from overfitting based on bagging. It can also show feature

importance while not suffering from feature collinearity, which

makes it harder to interpret the feature importance of otherwise

interpretable classifiers (e.g., logistic regression). The random
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forest was implemented with the Python package scikit-learn

(Version 0.24.1; Fredericksburg, VA, USA).35 For classification,

the inputs are the 96 spectral features of the head kinematics,

and the model outputs are the types of head impacts: HM, CF,

MMA, NFL, NHTSA, NASCAR.

To validate the feasibility of classifying different types of head

impacts, we randomly partitioned the entire dataset of 3262

impacts into 80% training set and 20% test set with stratified

sampling over 1000 repeats (1000 experiments with different

random seeds in the training/test set partitions to enable random-

ness in the modeling process and test model robustness). The

hyperparameters of the classifier (the number of decision trees

and maximum depth of each tree) were tuned in a 5-fold cross

validation on the training set by optimizing the classification

accuracy. The test data were used to evaluate the classification

model performance after the models were finalized.

The classification problem in this study follows a multi-class

classification protocol: an impact is classified into 1 of the 6 cate-

gories (HM, CF, MMA, NFL, NHTSA, NASCAR). To assess the

classification performance, and to assess whether the classifier was

biased toward certain classes, the multi-class classification accu-

racy (percentage of correct predictions in all test samples, e.g., an

MMA impact is predicted as an MMA impact) and 3 binary

classification metrics were used: the mean precision, the mean

recall, and the mean area under the receiver operating character-

istic curve (AUROC) of the 20% test impacts. Even though this is

a multi-class classification problem, these binary classification

metrics were investigated and averaged to evaluate the model

performance without biasing toward the majority class (the largest

dataset, HM). As the precision (e.g., correct MMA predictions

divided by all predicted MMA impacts), recall (e.g., correct MMA

predictions divided by all MMA impacts), and AUROC are binary

classification metrics, we averaged the 3 metrics after calculating

them on the respective classification of each type of head impact

(e.g., MMA vs. non-MMA, CF vs. non-CF) to reflect the overall

binary classification performance across all impact types.

2.4. Important feature analysis

As previous studies found significantly different perfor-

mance of brain injury risk estimation models across head

impact types, with the classification model we can interpret

the most important features for kinematics classification to

find the different spectral characteristics intrinsic to different

types of head impact kinematics. The importance of a feature

is calculated by the normalized total reduction of the

Fig. 1. Example kinematics of the 6 types of head impacts and visualization of the 6 datasets used in this study with heatmap. (A) The magnitude of linear accele-

ration at the brain center of gravity, (B) the magnitude of angular velocity, and (C) the heatmap of features of all samples. CF = college football; HM = head

model; MMA =mixed martial arts; NASCAR =National Association for Stock Car Auto Racing car crash impacts; NFL = National Football League;

NHTSA = National Highway Traffic Safety Administration car crash impacts.

ML-based head impact subtyping 621



classification criterion (Gini index or entropy) brought by a

feature.32,33 To ensure the robustness of the result, we

recorded the normalized feature importance in the

modeling of random forest classifiers over the 1000

repeats. In each repeat, the feature importance was calcu-

lated on the 80% training data. Next, the mean feature

importance was calculated and ranked. Finally, we did an

additional validation of the features by picking up the top

5, 10, and 20 important features and modeling the random

forest classifiers with the same 4 metrics calculated.

2.5. Brain strain regression with classification

Upon verifying the feasibility of kinematics classification,

we built type-specific brain injury risk evaluation models with

the classifier to demonstrate an application of the kinematics

classification. Rather than build a risk evaluation model for the

mixture of all different head impact types, we chose the type-

specific model to address the previously observed hardship of

estimating brain injury risks across different head impact types

with a single model.18

We used the 4 datasets with the most impacts (HM, CF, MMA,

and NASCAR) and performed a k-nearest neighbor (KNN) regres-

sion of MPS95, MPSCC95, and CSDM on the kinematics after

partitioning the dataset into 80% training data and 20% test data

with 20 repeats (20 experiments with different random seeds in

the dataset partition process to test the model robustness under

randomness). The 20% test data were unseen in both the classifica-

tion model and regression model training datasets. We used these 3

metrics because strain-based metrics that directly summarize the

brain deformation have shown superior injury predictability.21�24

KNN was used, as it did not require strong distribution and model

assumptions. In the regression, the k-nearest training impacts of a

test impact were found based on Euclidean distance. The MPS95/

MPSCC95/CSDM prediction for the test impact is the averaged

MPS95/MPSCC95/CSDM of the k-nearest training impacts. The

hyperparameter k was tuned via a 5-fold cross-validation on the

80% training data while optimizing the root mean squared error

(RMSE). To prevent any data leakage, the testing set was held out

until the final evaluation stage of the type-specific regression

strategy. Here, besides the spectral densities, we included the time-

peaks of the linear acceleration and angular velocity (4 channels

for each). We selected kinematics that are directly measurable by

sensors, and we used the time-peaks of the angular velocity

because they have been shown to correlate well with MPS95 and

are incorporated in the designs of many brain injury criteria.36,37

The ground-truth MPS95/MPSCC95/CSDM values were given by

the Kungliga Tekniska H€ogskolan (KTH) model, which is a vali-

dated finite element model.38

Different from the classification models, the inputs of the

regression models are the 104 kinematics features (which

include the 96 spectral features used for head impact type clas-

sification and the 8 temporal features used for the regression)

and the outputs are the MPS95/MPSCC95/CSDM. Classifica-

tion results are used in the regression to classify a particular

impact into a head impact type for type-specific regression

models.

The baseline regression accuracy was determined using the

80% training data to build a KNN model and the 20% test data

to assess the model coefficient of determination (R2). Different

from the baseline model, the classification-regression model

first built a classifier on the 80% training data and then built

KNN models for each type of head impact. In the testing

stage, the impacts were classified into one of the types of head

impacts in the training set and then the MPS95/MPSCC95/

CSDM associated with the test impact was calculated by the

type-specific KNN regression model. Because most impacts

were from the dataset HM, directly calculating the RMSE and

R2 would have led to biased estimates of regression accuracy.

Therefore, for the test impacts, we calculated the RMSE and

R2 based on the ground-truth types of head impacts (HM, CF,

MMA, NASCAR) and took an average over the 4 types to

avoid the influence exerted by the majority dataset. Finally,

Wilcoxon signed-rank tests were done to test statistical signifi-

cance on R2 and RMSE as the Shapiro�Wilk test rejected the

data normality assumption.

2.6. Validation of the classifier on different instrumented

mouthguards

To estimate the influence of instrumented mouthguard types on

the classifier, we applied the classifier to 271 head impacts collected

by 5 different mouthguards in the lab:39 Stanford Instrumented

Customized/Boiling-and-Bite, Prevent Customized/Boiling-and-

Bite, Sports & Wellbeing Analytics (SWA) Customized. We

analyzed 54 impacts for each mouthguard (55 for SWA Custom-

ized mouthguards).

3. Results

First, we performed kinematics classification based on the 96

features with a random forest algorithm (model input: 96 spectral

features of the kinematics; model output: type of head impact).

The accuracy, mean precision, mean recall, and mean AUROC

are shown in Fig. 2 A�D. The medians of (a) classification accu-

racy, (b) mean precision, (c) mean recall, and (d) mean AUROC

were above 0.95, 0.93, 0.85, and 0.92, respectively, which

demonstrates the feasibility of classifying different types of head

impacts. (Example confusion matrices showing correct and incor-

rect predictions are visualized in Fig. 3).

Based on the classifier, we extracted the top 20/10/5 most

important features over the 1000 repeats of random dataset

partitions. The features and their definitions are listed in

Table 1. The 20 most important features included both angular

velocity features and linear acceleration features. The different

frequency ranges were determined to be important in the clas-

sification: 6 of the 10 most important features were in the low-

frequency range (0�50 Hz), including the mean and median

spectral density of the resultant angular velocity, the y-axis

angular velocity, and the resultant linear acceleration. Among

the other top 10 most important features, there were 3 in the

high-frequency range (150�200 Hz) from the y-axis and z-axis

linear acceleration. Among the top 20 features, there were

9 angular velocity features (7 from the magnitude and 2 from the

spatial components) and 11 linear acceleration features (2 from
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the magnitude and 9 from the spatial components), which showed

that for both measured kinematics, the magnitudes and the kine-

matic were informative components in the classification.

The distribution of the 6 datasets on the top 5 features is

shown in Fig. 4 and the distribution on the other 5 of the

top 10 features is shown in Fig. 5. For the top 5 features

from the low-frequency range (0�50 Hz), the MMA

impacts had the lowest spectral densities, while NHTSA/

HM/NFL impacts had higher spectral densities in this

range; the CF/NASCAR impacts generally had spectral

Fig. 2. Classification performance metrics of the random forest classifier and the MPS95/MPSCC95/CSDM regression accuracy with/without kinematics classifi-

cation. The (A) accuracy, (B) mean precision, (C) mean recall, and (D) mean AUROC of the classification based on different numbers of features over 1000

random dataset partitions. (E) The prediction results of 271 lab-reconstructed football-like impacts measured by 5 different instrumented mouthguards. The mean

regression R2 of (F) MPS95, (G) MPSCC95, and (H) CSDM. 1000 random train-test partitions were done in the regression. * p < 0.05, Wilcoxon signed-rank test.

AUROC = area under the receiver operating characteristic curve; CF = on-field college football impacts; CSDM = cumulative strain damage; HM = head model

simulated impacts without helmet; MMA = on-field mixed martial arts impacts; MPS95 = 95% maximum principal strain; MPSCC95 = 95% maximum principal

strain in corpus callosum; NASCAR =National Association for Stock Car Auto Racing car crash impacts; NFL = lab-reconstructed National Football League

impacts with helmet; NHTSA = National Highway Traffic Safety Administration car crash impacts; SWA = Sports & Wellbeing Analytics.

ML-based head impact subtyping 623



densities higher than MMA impacts and lower than

NHTSA/HM/NFL impacts. On the contrary, in the high-

frequency range (100�200 Hz) (Fig. 5), the MMA impacts

had higher spectral densities, while NHTSA/HM impacts

had lower spectral densities (Fig. 4).

The classification performance on the 20, 10, and 5 most

important features is shown in Fig. 2 A�D: there was a general

performance decline as the feature number decreased, while

the classifier based on the top 10 features still showed high

classification performance with medians of (a) classification

accuracy, (b) mean precision, (c) mean recall, and (d) mean

AUROC above 0.94, 0.88, 0.80, and 0.90, respectively. These

results demonstrate the feasibility of the kinematics classifica-

tion with the subsets of most important features.

To further validate that the classifier’s performance did not

rely heavily on the type of instrumented mouthguard and did not

overfit the specific mouthguards we used to collect the impact

kinematics, we performed the classification of 271 lab impacts

collected by different mouthguards. Results are shown in Fig. 2E.

All the impacts were classified into football-like types, and most

of them were HM/NFL impacts, which used the same metho-

dology to generate head impacts as these 271 impacts.

Finally, to test whether classification could improve brain

injury risk estimation, we built the KNN regression models for

MPS95/MPSCC95/CSDM with and without classification.

Fig. 2F�H show the test R2 averaged over 4 datasets (model

input: 104 kinematics features; model output: MPS95/

MPSCC95/CSDM). The regression models with classification

were significantly more accurate in the MPSCC95 and CSDM

regressions (p < 0.05) and similarly accurate in the MPS95

regression (p > 0.1). The results, in terms of RMSE, are

reported in Table 2, where similar findings are shown:

averaged across the 4 types of head impacts, the regression

models with classification were significantly more accurate in

terms of MPSCC95 regression (p < 0.01) and CSDM regres-

sion (p < 0.05) while there was no statistical significance in

terms of MPS95 regression (p > 0.1).

4. Discussion

4.1. Contribution

In this study, we demonstrated that the machine learning

classification model based on the spectral densities of head

impact kinematics showed high classification performance in

Fig. 3. The example confusion matrices of the classification based on 4 different numbers of features. The confusion matrices for (A) all 96 features, (B) the top 20

features, (C) the top 10 features, and (D) the top 5 features.
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categorizing different types of head impacts. With the classifi-

cation, brain strain metrics regression accuracy was shown to

be non-inferior to building a single model across impact types.

In this study, the MMA and CF impacts were measured by the

Stanford instrumented mouthguard, while the HM-simulated

impacts and NHTSA impacts were both simulated with the

Hybrid III anthropomorphic test dummy headform. Our addi-

tional validation on 271 lab-reconstructed impacts measured

by 5 other mouthguards also showed that most predictions

were HM/NFL impacts (football-like impacts simulated/recon-

structed with dummy heads). The results showed that the

model was generally successful is classifying different types

of head impacts. For the football-like impacts, the classifier

can categorize them according to measurement by different

types of instrumented mouthguards.

As for the research contributions, first, the analysis of the most

important features in the classification enables better under-

standing of the differences among head impact types. For

instance, the NHTSA impacts have higher spectral densities in

low-frequencies and lower spectral densities in high-frequencies,

while the MMA impacts have lower spectral densities in low-

frequencies and higher spectral densities in high-frequencies. Via

the classification algorithm, we can investigate the key features

that may determine the impact types and the sports and visualize

the distribution of spectral densities. In our previous study, we

found that different kinematic factors (e.g., angular velocity,

angular acceleration) have different predictive power with respect

to brain strain across the variety of head impacts.19 For example,

angular velocity features tend to be more predictive in MMA

impacts, while angular acceleration tends to be more predictive

in football impacts. Other researchers have shown that for short-

duration impacts, the peak resultant angular velocity is better

correlated with brain strain, while for long-duration impacts, the

peak resultant angular acceleration is better correlated with brain

strain.40 Even though the definition of long/short duration for an

impact is not defined for on-field impacts, in this study, after

analyzing the frequency components of different types of

features, the MMA impacts show more high-frequency compo-

nents and, thus, are closer to being considered short-duration

impacts. This fact may be able to explain our previous observa-

tion that the angular velocity features better predict brain strain

for MMA impacts.19

Second, we built a classifier for different types of head impacts

and trained the model on the entire publicly available dataset. As

previous studies revealed issues of generalizability of brain strain

estimation models across different head impact types,18 this study

has shown that the classifier can aid in the development of type-

specific brain injury risk estimation models capable of higher

accuracy with respect to brain strain regression. As classification

is based on noisy patterns defined by humans (i.e., sports), the

categorizations may not capture the intrinsic dynamics character-

istics for different types of sports. However, this noisy categoriza-

tion of patterns works in the improvement of risk estimation

accuracy. For example, a new impact from American football

event needs to be evaluated; the classification-regression may

classify it as NASCAR based on its spectral density fingerprint.

This reflects an overall improvement in the accuracy and perfor-

mance of risk estimation models.

Third, as data from laboratory impacts are relatively easier

to obtain than on-field data, in the future, researchers can use

deep learning technique models, such as generative adversarial

networks, to augment data and conduct domain adaptation to

generate more simulated on-field impacts. The kinematics

classifier can be used as a discriminator for the evaluation of

simulated impacts.

Furthermore, as our validation experiments across different

mouthguards have shown, the classifier successfully distinguishes

between lab-reconstructed football-like impacts and on-field CF

impacts, which indicates that the football-like impacts generated

on the dummy head by a pneumatic impactor still cannot fully

capture the characteristics of on-field CF impacts. Therefore, this

classifier can be applied to evaluate the quality of dummy head

impact reconstruction/simulation systems.

Another potential application of this study is that the kine-

matics-classification-based type-specific regression of the strain-

based metrics (MPS95/MPSCC95/CSDM) may help researchers

rapidly estimate strain-based metrics. Previous studies have

shown that these strain-based metrics are good predictors of

mTBI and associated pathologies (a summary of the research can

be found in the review41). For example, Wu et al.24 found 50%

concussion thresholds of 0.270 for MPS95 and 0.477 for CSDM

with human data, and Hajiaghamemar et al.23 found a 50%

axonal injury threshold of 0.286 for MPS95 in a large animal

model. To obtain these strain-based metrics, conventional

state-of-the-art finite element models can take 7�8 h to

simulate a single impact14 (e.g., using a 16 GB RAM, Intel

Core i7-6800 K CPU). However, with the rapid estimator

discussed in this study, the computational time per impact

can be dramatically reduced to within 10 s (e.g., using an

Table 1

The ranking and definitions of the top 20 most important features in kine-

matics classification and the mean normalized importance values over 1000

random dataset partitions.

Ranking Meaning Mean normalized

importance

1 jvj: median spectral density in (0, 50 Hz) 0.094

2 vy: median spectral density in (0, 50 Hz) 0.062

3 jvj: mean spectral density in (0, 50 Hz) 0.056

4 jaj: median spectral density in (0, 50 Hz) 0.036

5 vy: mean spectral density in (0, 50 Hz) 0.031

6 az: max spectral density in (150, 200 Hz) 0.023

7 az: max spectral density in (100, 150 Hz) 0.022

8 jaj: mean spectral density in (0, 50 Hz) 0.021

9 ay: max spectral density in (150, 200 Hz) 0.020

10 az: mean spectral density in (150, 200 Hz) 0.019

11 jvj: max spectral density in (0, 50 Hz) 0.019

12 jvj: median spectral density in (150, 200 Hz) 0.019

13 jvj: median spectral density in (50, 100 Hz) 0.019

14 jvj: mean spectral density in (50, 100 Hz) 0.017

15 ax: mean spectral density in (0, 50 Hz) 0.016

16 az: max spectral density in (150, 200 Hz) 0.016

17 jvj: max spectral density in (50, 100 Hz) 0.015

18 az: mean spectral density in (100, 150 Hz) 0.015

19 az: max spectral density in (100, 150 Hz) 0.015

20 ax: median spectral density in (0, 50 Hz) 0.015
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8 GB RAM, Intel Core i5-6300 U CPU). Therefore, the

classification-based strain-metrics regression models can be

further applied in the field of TBI research.

4.2. Limitations

As for the study’s limitations, first, to test that our classifier

does not rely heavily on the types of instrumented

mouthguards, we used only football-like impacts measured by

5 mouthguards. In the future, more MMA impacts and

NHTSA impacts measured by different devices can be

collected and used to test the model’s sensitivity to measure-

ment devices on impacts other than football impacts. Second,

to enable the classifier to be more accurate and broader in its

applications, more data from diverse types of head impacts

should be collected and modeled. Additionally, we used the

Fig. 4. The distribution of the 6 datasets on the top 5 most important features for classification. The data distribution in (A) the median spectral density in (0, 50 Hz)

of the resultant angular velocity, (B) the median spectral density in (0, 50 Hz) of the y-axis angular velocity, (C) the mean spectral density in (0, 50 Hz) of

the resultant angular velocity, (D) the median spectral density in (0, 50 Hz) of the resultant linear acceleration, and (E) the mean spectral density in (0, 50 Hz) of

the y-axis angular velocity. CF = on-field college football impacts; HM = head model simulated impacts without helmet; MMA = on-field mixed martial arts

impacts; NASCAR =National Association for Stock Car Auto Racing car crash impacts; NFL = lab-reconstructed National Football League impacts with helmet;

NHTSA = National Highway Traffic Safety Administration car crash impacts.
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KTH model as the validated model for calculating brain strain,

which is limited when compared to the recently developed

state-of-the-art finite element HMs.42�44 For example, the

KTH model does not model the gyri or sulci, which have

been shown to have significant influences on FEHM

behavior. In the future, FEHMs can be applied to validate

the results.

Another limitation of this study is that due to the difficulties

of collecting head impact data in real-world scenarios, the

quantity and diversity of the datasets used in this study are

limited. Among the 3262 impacts observed in this study, 2130

were collected by laboratory simulation. Additionally, we only

considered American football impacts (355), MMA impacts

(457), car crashworthiness test impacts (48), and racing car

Fig. 5. The distribution of 6 datasets on the sixth-to-tenth most important features for classification. The data distribution in (A) the max spectral density in (150,

200 Hz) of the z-axis linear acceleration, (B) the max spectral density in (100, 150 Hz) of the z-axis linear acceleration, (C) the mean spectral density in (0, 50 Hz)

of the resultant linear acceleration, (D) the max spectral density in (150, 200 Hz) of the y-axis linear acceleration, and (E) the mean spectral density in (150,

200 Hz) of the z-axis linear acceleration. CF = on-field college football impacts; HM = head model simulated impacts without helmet; MMA= on-field mixed

martial arts impacts; NASCAR =National Association for Stock Car Auto Racing car crash impacts; NFL = lab-reconstructed National Football League impacts

with helmet; NHTSA = National Highway Traffic Safety Administration car crash impacts.
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impacts (272). While American football and MMA bear high

concussion-incidence rates, the worldwide participation rate in

these sports is low compared to soccer, for example. In the

future, more data will be collected to classify the head impact

kinematics of other sports where players bear a moderate to

high risk of concussion, including soccer, rugby, water polo,

and ice hockey.8,45,46 The current impact datasets will also be

enlarged to be more representative of the distribution for each

type of head impact with respect to different player positions

within a single sport (e.g., line vs. skill positions in American

football).47

Finally, this study obeys the definitions of the classes

according to human definitions of impact types, which are

based on the sources of impacts (e.g., CF impacts, MMA

impacts, car crash impacts, etc.). In future research, alternative

classifications could be used to "soft label” head impacts. That

is, an unknown impact could be described in terms of the prob-

ability of each head impact type. For example, an impact could

be labeled as 10% MMA, 40% HM, and 50% CF. The weights

would then be used to investigate the characteristics of the

unknown head impact. One potential approach for the regres-

sion between head kinematics and brain strain is to weight the

regression output given by the type-specific regression models

according to the probability of soft-labeling classification. The

difficulty of this regression is that the conditional probabilities

of head impact types given the kinematics should not be

directly transferred to brain strain because of the high nonline-

arity of the brain�skull system. Based on previous exploration

of the brain-skull system,11,19 we believe that the conditional

probabilities of head impact type given the kinematics should

be amended to the weights on brain strain. Additionally, kine-

matics clustering,48 which finds the impact clusters by

breaking from human-defined impact types, may also be able

to determine impact partitions according to characteristics

intrinsic to the kinematics features. These impact partitions

may better fit the data, potentially leading to the further

improvement of type-specific modeling of brain strain.

5. Conclusion

In this study, we performed the classification of different

types of head impacts and demonstrated the feasibility of clas-

sification with high accuracy based on the spectral density of

measurable head kinematics (i.e., linear acceleration and

angular velocity). The important features for head impact clas-

sification included both low-frequency and high-frequency

ranges of both linear acceleration and angular velocity. The

classifier was also validated on 5 instrumented mouthguards to

test the model performance across different types of mouth-

guard measurement devices. Finally, this study exhibited non-

inferior accuracy in the regression of brain strain with classifi-

cation of different types of head impact as opposed to a single

model for the mixture of all types of impacts together. The

classification also reveals the difference between types of head

impacts in the frequency domain. The classifier is publicly

available for researchers to build better type-specific estima-

tion models for brain injury risk.

Data availability

The datasets, classification model, feature extraction code,

example kinematics file, and a user introduction are posted at

https://github.com/xzhan96-stf/kinematics_classifier.
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