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ABSTRACT Network monitoring allows network administrators to facilitate network activities and
to resolve issues in a timely fashion. Monitoring techniques in software-defined networks are either
(i) active, where probing packets are sent periodically, or (ii) passive, where traffic statistics are collected
from the network forwarding elements. The centralized nature of software-defined networking implies
the implementation of monitoring techniques imposes additional overhead on the network controller.
We propose Graph Modeling for OpenFlow Switch Monitoring (GMSM), which is a lightweight monitoring
technique. GMSM constructs a flow-graph overview using two types of asynchronous OpenFlow messages:
packet-in and flow-removed, which improvemonitoring and decisionmaking. It classifies new flows
based on the class of service. Experimental findings suggest that using GMSM leads to a decrease in network
overhead resulting from the communication between the controller and the switches, with a reduction of
5.7% and 6.7% compared to state-of-the-art approaches. GMSM reduces the controller’s CPU utilization by
more than 2% compared to other monitoring methods. Overhead reduction comes with a slight reduction of
approximately 0.17 units in the estimation accuracy of links utilization because GMSM allows the user to
monitor the network subject to a selected class of service, as opposed to having an exact view of the network
utilization.

INDEX TERMS Software-defined networking, OpenFlow, monitoring, overhead, utilization.

I. INTRODUCTION
Network monitoring is a fundamental requirement for many
networking systems. To gain a deeper insight into the
network’s traffic, a traffic monitoring system can engage in
various activities including but not limited to traffic matrix
estimation, recognising elephant flows and determining
link utilization. These activities produce reports which
are gathered using a real-time monitoring application, for
example [1], which is designed for network appliances,
and can be scheduled to run at fixed or dynamic periodic
intervals.Monitoring is beneficial for awide range of network
applications, including but not limited to security, traffic
engineering and load balancing [2].

Measurement is a separate task from monitoring [3]; the
focus of this paper is monitoring. The interaction between
monitoring and measurement functions is described using
the following example. Transmitting data from delay or
jitter sensitive applications gives rise to the need for path

The associate editor coordinating the review of this manuscript and
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latency quality measurements to ensure that service level
requirements are met. A classical example of monitoring
in this case is the Real-Time Transport Control Protocol
(RTCP), which provides feedback in the form of reports, for
the jitter sensitive Real-time Transport Protocol (RTP) [4],
helping to ensure that maximum latency thresholds for
interactive sessions are met.

The delivery of monitoring messages induces an overhead
which can be expressed as the cost associated with delivering
information about network state [3] to the monitoring
function. In this paper, we define the overhead as the
number of packets that are required to collect the statistics
from forwarding elements. Traditionally, serviceability and
bespoke operations are the main features of monitoring
approaches [5], [6], [7]. However, the decentralized nature
of traditional networking systems usually leads to a partial
view of the network. For example, the RTCP-based feed-
back described above provides information about a service
delivered on one path across the network. It does not provide
information about other services which are multiplexed over
the same resources. Emerging networking technologies such
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as cloud computing and vehicular networks require efficient
monitoring due to the increased dynamicity of the demands
placed on these networks [8]. The view provided should also
facilitate an analysis of the interaction between the different
processes which are multiplexed over the network.

Software-Defined Networking (SDN) is a promising
networking architecture for centralized management. SDN-
based monitoring has the potential to be flexible due to
the elastic nature of the SDN architecture compared to
the rigidity of traditional networks. In centrally controlled
networks like SDNs, network flows can be monitored using
an active approach, which is often also called a polling
approach. In this method, the controller regularly issues
polling messages to a predefined set of forwarding elements
to collect flow statistics. Alternatively, a passive approach
which is also known as switch pushing is used. In this case,
flow statistics are received by the controller from the node(s)
whose flow table encountered flow completions [9]. This
can be achieved by utilizing the Application Programming
Interface (API) of a southbound protocol such as the standard
OpenFlow [10] that defines the communication between the
controller and data plane elements. Both active and passive
monitoring have drawbacks that need to be considered.

Polling is a widely-used monitoring approach that involves
the SDN controller directing switches in its domain to
report their statistics using a set of controller-to-switch
messages. Using these messages, the controller can send
multiple queries to the switches. These messages have
different objectives, for instance the table_features,
port_stats and flow_monitor messages enable the
controller to obtain information about the status of flow
tables, ports and flow changes respectively. In response to
these queries, switches usually respond to the controller
with reports on the current state of the recorded statistics.
The drawback of regular querying of network forwarding
elements is that it causes a significant increase in controller
resource usage, which is quantified using an overhead score.
If the set of network switches is V = {v1, v2, . . . vn, . . .},
where the total number of switches is denoted by |V |, the
number of polling messages, p[n], that an SDN controller
needs to handle at the nth monitoring period is expressed as

p[n] =
|V |∑
n=1

s[n]+
|V |∑
n=1

r[n], (1)

where s[n] and r[n] denote the sent and received polling
messages respectively for the set of network switches
V during the nth monitoring period. Monitoring can be
performed on a subset of switches that hold active flows or
based on another predefined monitoring condition.

The switch pushing approach depends on flow arrivals
and completions [11]. This approach only depends on
the switch-controller packet_in and flow_removed
messages. When a new packet arrives, the switch triggers a
packet_in message that notifies the controller to install
a new forwarding rule that matches the new flow and a

new path is established. Usually, the installed rules have
an associated timeout flag, which indicates its expiration
time. Rule expiration can be soft, in which the rule is
removed when it becomes idle, or hard, in which the rule is
removed after a predefined timeout. When the timeout of an
installed flow entry expires, the flow_removed message
is triggered. Flow arrival and completion messages are used
to gather information about the size and duration of flows.
They are matched against entries which can be obtained
from the network forwarding elements. The disadvantage
of switch pushing is that it may not provide instantaneous
reports about existing flows. This is because monitoring data
gathered this way does not capture the true state when flows
are in operation.When the frequency of gathering monitoring
reports from all network appliances is high, good information
about the network state can be acquired and an informative
network analysis can be performed. However, this will incur
a high overhead on the network which has negative impacts
on resources such as the controller’s CPU utilization.

In this paper, a new SDN monitoring system, called
GMSM, is introduced. The prototype system provides a
visual presentation that integrates the information collected
via monitoring, which helps the user to decide which data
plane elements should be included in future monitoring.
The object of the GMSM approach is to reduce controller
overhead while maintaining a high level of information about
the state of data plane appliances.

GMSM differs from the state-of-the-art methods for its
capability of running a non-blind monitoring. This is done
by classifying the class of service for the incoming flows and
to be modelled as a graph to provide an additional privilege
for the network managers.

This paper is organised as follows. In Section II SDNmon-
itoring techniques are presented and discussed. In Section III,
we introduce GMSM. Performance evaluation results are
presented in Section IV. Suggestions for future work
directions are made in the context of the main results of this
paper, in Section VI.

II. RELATED WORK
NetFlow [5], sFlow [6] and JFlow [7] are the leading
flow based network monitoring solutions in traditional IP
networks. Both NetFlow and JFlow are proprietary solutions
and licensing costs are a barrier to their uptake. sFlow is not
widely deployed.

Given the recent surge of interest in SDN and QoS-routing
technologies, network monitoring has received considerable
attention. The authors in [12] presented OpenTM as an SDN
traffic matrix estimator. OpenTM gathers the traffic statistics
for each active flow by sending status request messages at
regular intervals. These active flows are detected according
to the routing information available in the network controller.

In their work on a low-cost monitoring technique for
SDNs, the authors of [13] proposed CeMon. CeMon polls
the statistics from a set of target switches. This set is
established by determining the active flows in the network.
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TABLE 1. Flow statistics reporting methods are categorized as: PP (Periodic-Polling), AP (Adaptive-Periodic), SP (Switch-Pushing) and H (Hybrid).

The main motivation is to reduce the communication cost
by generating a cost effective polling scheme. In their work
on an OpenFlow-based low-overhead and high-accuracy
framework, the authors of [14] proposed OpenLh. OpenLh
reduces the network overhead by adopting an adaptive
periodic polling algorithm that works based on the change
rate of the future flows.

FlowSense is a link utilization monitoring solution that
incurs low overhead [11]. It uses two key OpenFlow
messages, packet-in and flow-removed, which are
automatically generated by switches upon the arrival or
termination of flows. The authors claim that it imposes
no overhead on the SDN controller because it does not
use a periodic polling approach. PayLess, an SDN query-
based real-time monitoring framework which was introduced
in [15], adopts an adaptive scheduling polling approach
that reduces the network controller overhead. It provides a
RESTful API that enables other SDN applications to take
advantage of monitoring data.

In [16], the authors presented the Elastic Polling Scheme
(EPS), which functions as a real-time polling system for
software-defined data center networks. The goal of EPS is to
monitor the network accurately and efficiently, with minimal
controller involvement. The experimental results showed that
EPS is capable of reducing overhead more effectively than
CeMon and PayLess. Another cost-optimized flow statistics
collection process for SDN called CO-FSC was introduced
in [17]. CO-FSC relies on wild card requests that are sent by
the controller to collect partial flow statistics from a set of
target switches. Only flows that match the wild card rule are
collected, improvingmonitoring by reducing both the utilized
bandwidth and processing delay. IPro, an intelligent probing
system for SDN monitoring, was introduced in [18], which
tunes the probing intervals of its monitoring approach using
a reinforcement learning algorithm so that the monitoring
overhead is reduced. APAM is a lightweight active-port aware
approach to monitoring introduced in [19], which identifies
the active ports first and then adjusts the polling interval based
on the utilization of each active port.

In their paper [20], the authors introduced a new SDN
adaptive monitoring technique called the information COn-
fidence index COllection (COCO). COCO aims to reduce
the communication overhead while collecting statistics. Their
experimental results showed that with the proposed method
the exchanged polling messages can be reduced by 55-70%
compared to the periodic polling. The authors of [21]
proposed MWCC, which is a multi-path weighted closeness
centrality-based approach for flow statistics collection.
MWCC reduces the monitoring overhead by ranking the
network forwarding elements based on the state of the
underlay topology. The top k-ranked elements are selected
in the statistics collection process. Preliminary work, in [22],
on formulating the problem of selecting the nodes involved in
the statistics collection process, consisted of expressing the
problem as an integer linear program. Low Cost Monitoring
(LCM) was proposed as a heuristic solution to address the
problem of minimizing both the monitoring cost and the
reporting delay.

Several studies have used SDN visualization as a part of
monitoring. The authors in [23] proposed Opimom, which
is a transparent monitoring system for SDNs that imposes
some overhead on performance. Opimon is controller API
independent, which makes it compatible with any OpenFlow
network. A web interface presents a real-time network
visualization. The authors in [24] presented an approach
for monitoring the resource consumption periodically. This
was achieved by monitoring the idle and active forwarding
rules. They visualized the collected information and made
it available for the network administrator via a Model-View
Template (MVY). The authors of [25] presented Open-
Flow@Trans Eurasia Information Network (OF@TEIN).
By utilizing sFlow-RT, a wide network visibility was
provided.

In Table 1, we summarize these solutions, highlighting
their objectives under the headings: link utilization, overhead
reduction, bandwidth minimization and traffic matrix estima-
tion. Table 1 shows the incorporated visualization as well as
the nature of the reporting frequency.
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FIGURE 1. Motivating example for GMSM: The underlying network’s components, routers and hosts, are illustrated in the lowest layer. During
the three epochs illustrated, different types of traffic are delivered, ICMP (black dashed lines), VoIP (green dashed lines), and finally, video
(red dashed lines). GMSM constructs a graph of the active traffic flows using packet-in and flow-removed OpenFlow messages. This flow
graph abstraction that represents the ongoing traffic flows and the CoS is illustrated in the middle layer for the three epochs. The monitoring
policy that determines how the flow graph is constructed is illustrated in the top layer.

Research interest in SDN monitoring is growing. Many
of the contributions so far have focused on reducing the
overhead. In this paper, we aim to reduce the overhead of
statistics monitoring, whilst also providing an abstraction
layer from which monitoring decisions regarding remedial
actions can be made. These contributions are summarized as
follows.
• We propose a new network model that allows the SDN
controller to classify the incoming traffic and to provide
filtered information to GMSM.

• Our aim in designing GMSM is to lower the network
overhead which is caused by monitoring while ensuring
that the monitoring process is not performed blindly.
Therefore, we perform real-time statistics monitoring
in a manner which is correlated with the traffic types
observed.

• We provide an open-source implementation of the
GMSM framework and algorithm.We test the efficiency
of GMSM and provide evidence that GMSM improves
SDN-based monitoring.

III. PROPOSED METHOD: GMSM
Previous SDN monitoring studies attempted to reduce over-
head by optimizing the polling intervals used for monitoring.
Polling was conducted blindly. The Class of Services (CoS)
and the current graph of the traffic flows was not known.
We construct a flow graph abstraction to represent the
ongoing traffic flow and the CoS being delivered using
packet-in and flow-removed OpenFlow messages as
follows. Elements can be added to the flow graph when a
new flow arrives. When a matching forwarding rule does
not exist an OpenFlow packet-in message is sent to the
controller requesting a path setup. Elements can be removed

from the flow graph when a traffic flow terminates and the
forwarding rule expires. The concerned switches generate
flow-removed messages informing the controller about
the flow table updates. It is not necessary for there to be a
one-to-one mapping between the constructed graph and the
underlay network topology. Constructing the flow graph with
information about the CoS of applications running on the
network is of benefit. The first k packets of each flow are
classified as they arrive, to identify its CoS. The CoS of each
flow is mapped in the flow graph so that an overview of the
traffic type that is delivered over each link in the network is
available.

Fig. 1 depicts a network with 6 nodes and 7 links, which
serves as a toy example that illustrates the construction of
a flow graph in GMSM. The figure is divided into three
layers. The bottom layer represents the physical data plane
appliances along with the existing flows being transmitted
over the network. This layer includes all the network
elements, constructed based on the global view of the SDN
controller. The middle layer represents the flow graph that
GMSM constructs based on existing active flows, classified
by their Class of Service (CoS). In this layer, the inactive
elements are eliminated from the network graph. The top
layer represents the management of monitoring information,
which is defined as a network policy in which the network
administrator decides the events of interest to be captured
during the monitoring polling process. In this layer, single or
combined CoS events can be created so that the polling will
be more focused on the predefined monitoring policy rather
than considering all events.

We illustrate three different epochs, during which the
network supports different CoS applications. During epoch 1,
only one Internet Control Message Protocol (ICMP) flow
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passes through the network via the path (v1, v2, v5). During
epoch 2, the network starts carrying a newVoice over Internet
Protocol (VoIP) flow over the path (v1, v2, v4, v6). Finally,
during epoch 3, a new VideoLAN Client (VLC) streaming
flow starts. It is delivered over the path (v1, v2, v4). Fig. 1 also
shows the status of the flow graph at each epoch, including
nodes and links with CoS details. To reduce the overhead
associated with collecting flow statistics, the information in
the flow graph is used during monitoring. For example, the
flow graph can be used as an estimator for outage hot spot
areas, where particular attention is given to critical services
that require high QoS.

A. NETWORK MODEL
The network is modeled as an undirected graph, G, [26].
The graph, G, is composed of a set of vertices and a set
of edges, G = (V ,E). The vertex-set, V , represents the
finite set of switches, {v1, . . . , vn} in the network, where vi
is the i-th switch. The edge-set, E , represents the finite set
of bidirectional links that connects the switches. The set of
all edges in the graph is a subset of the set of all possible
pairs of vertices, E ⊆ V × V . A path Pij is a route between
the two switches, vi and vj. We call vi and vj the source and
destination switches of the path, Pij. The path Pij is defined
as the sequence of vertices traversed in order to get from vi
to vj. For example, the path (vi, vp, vq, vj) consists of four
vertices and three edges, {vi, vp}, {vp, vq} and {vq, vj}. Pairs
of vertices in a path are members of the edge-set, {vi, vi+1} ∈
E,∀1 ⩽ i < j. The path, Pij, is a simple path if all of its
switches are distinct. We assume that flows traverse simple
paths. The cost associated with traversing the path, Pij, is the
sum of the cost of its constituent edges, that is C(Pij) =∑
{vi,vi+1}∈Pij

C({vi, vi+1}). The edge cost can be any additive
metric such as the hop count, delay or usage. The shortest
path from vi to vj is the path with the smallest cost out of
all possible paths from vi to vj. The set of traffic classes is
CoS = {c1, c2, . . . , cn}, for example, VoIP, ICMP or Video.
Each edge in a path is mapped to one or more CoS items
according to an one-to-many function f : E 7→ CoS.

B. GMSM FRAMEWORK AND ALGORITHM
The architecture for GMSM is illustrated in Fig. 2. The
GMSM framework is implemented as an SDN northbound
application. Pseudo-code for GMSM is listed in Alg. 1.
It details how low overhead, integrated-view monitoring is
achieved. In addition to the management layer that allows
the network operator to define the monitoring policies and
to configure the network, the architecture is composed of
three main components, the Network Controller, a Topology
Discovery component and the GMSM component, which
carry out the following functions:

1) Network Controller: The controller is the network brain
where decision making and intelligence is located. We use
the POX controller as it facilitates fast prototyping [27]. The
standard OpenFlow protocol is used as a southbound API
for establishing the communication between the data and

FIGURE 2. Architecture of the proposed framework and its components:
the primary contribution of this paper is the GMSM block. Openflow is
used on the southbound interface and POX APIs are used on the north
bound interface.

Algorithm 1 GMSM
▷ Input : Network topology, G(V ,E). Initialize the

empty flow graph, G1(V ,E) = ∅
▷ Constructing Flow Graph G1 :

1 foreach packet_in do
2 Pij = Dijkstra(vi, vj) ∥ capture k packets from vi
3 Classify the CoS of the k packets
4 for each {vi, vi+1} ∈ Pij do
5 if ∄{vi, vi+1} ∈ G1 then
6 G1← [{vi, vi+1}, data = CoS]
7 else
8 {vi, vi+1} ←[ data = CoS

9 foreach flow_removed do
10 Detect terminated flows P̄ij
11 for each {vi, vi+1} ∈ P̄ij do
12 data = data− CoS
13 if data(vi, vi+1) = ∅ then
14 G1 = G1 − {vi, vi+1}

▷ Monitoring :
15 foreach [(vi, vi+1) ∈ G1] ∧ [(vi, vi+1) ⩾ Threshold]

do
16 Send stats_request every n seconds

control planes, whereas the set of POX APIs is used on the
northbound interface to develop network control applications.

2) Topology Discovery Module: This component is
responsible for discovering the underlying network topology
information so that such information will be available for
other applications. The standard POX discovery module is
used [28].We use NetworkX [29] to represent andmanipulate
the network topology as a graph.

3) GMSM Module: The GMSM protocol is used to
construct a flow graph that: (i) determines the CoS on each
link in G; and (ii) polls the statistics from a certain set of
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FIGURE 3. Monitoring algorithms are evaluated using the Abilene
topology with |V | = 12 switches, v1, . . . v12, |E | = 15 edges and hosts
H1, . . . H6.

switches that are defined by the monitoring policy of the
network’s administrator.

We continue by describing the pseudo-code for GMSM
in Alg. 1. GMSM consists of three phases of operation,
a packet_in driven phase, a flow_removed phase
and finally, a polling phase. The worst case computational
complexity of Dijkstra’s algorithm bounds the computational
complexity of Alg. 1. Using a Fibonnaci heap the worst case
computational complexity for the entire graph G is O(|E| +
|V |log(|V |)).
Lines 2-12 describe the initial switch pushing phase of

GMSM. GMSM constructs the flow graph, which is denoted
G1, using incoming packet_in requests. The shortest
path between the source and destination of new flows is
determined using Dijkstra’s algorithm. GMSM gathers k
packets from each new flow for the purpose of classification.
We use k = 2 packets in this classification step. Terminated
flows are denoted P̄ij.
In lines 13-21, the flow graph, G1, is updated by removing

flows that have been terminated, P̄ij, along with each
terminated flow’s associated CoS information. The operation,
G1 = G1−{vi, vi+1}, indicates how the link {vi, vi+1}, which
is a component of the terminated flow, P̄ij, is removed from
the flow graph G1.
The polling phase is described in lines 22-24. In the

polling phase GMSM sends requests to switches whose links
are carrying a CoS that meets or exceeds the threshold.
The threshold is a service specific value which is set by
the manager. Examples for a video delivery application
include the count of active flows, delay or jitter threshold.
The threshold is compared with a measurement of the
service on the link, {vi, vi+1}, which is denoted m(vi, vi+1).
When m(vi, vi+1) quantifies the number of active RTP
flows, it returns an integer value which is compared with
the threshold. This process is described in lines 22-24.
The threshold is set by the network administrator using the
system prototype. In this paper, we selected the Real-time
Transport Protocol (RTP) as the CoS. The threshold was
tuned empirically by evaluating the number of active RTP
flows on a link.

Graph modelling in GMSM incurs no additional overhead.
This is because GMSM relies on the procedure of path
computation to update the graph when there is a new

TABLE 2. Experimental Specifications.

arrival request. It relies on G1, which is constructed
and updated in response to two event-types: (i) a new
arrival request; and (ii) traffic termination. It relies on
switch pushing when a certain types of traffic in the CoS
terminate. GMSM’s graph modeling provides an important,
interactive overview layer for existing services that are of
interest to the network operators. GMSM makes switch
querying non-blind in the network monitoring process.
The implementation code for GMSM is available on GitHub
(https://github.com/Ali00/GMSM).

IV. EXPERIMENTAL SETUP AND DESIGN
Our hypothesis is that GMSM, which is a hybrid active
flow polling algorithm, outperforms active flow and polling
monitoring techniques in terms of the network overhead.
We compare GMSM with two benchmark approaches: an
implementation of the OpenTM [12] approach and a periodic
fixed-polling approach in which all switches are queried. We
investigate the sensitivity of flows to different background
traffic types. We then evaluate GMSM using two metrics:
(1) the controller’s overhead and (2) the estimated links
utilization.

We used a real-world network topology called Abilene
from the Survivable fixed telecommunication Network
Design library (SNDlib) [30], which is illustrated in Fig. 3.
The link capacity was set to 8 Mbps. Six clients were
added to the original topology, H1, . . .H6, to inject and
receive traffic. Three types of CoS were used to evaluate our
hypothesis. The CoS used were VLC streaming, VoIP and
ICMP. To stream video we used VLC servers to stream the
‘‘Big Buck Bunny’’ MPEG-4 video, which is approximately
10 min. long, using the RTP [4] between H1 and H2. The
H.264 video compression standard for high-definition digital
video was used. The open-source SIPp [31], which is a
performance testing tool for the Session Initiation Protocol
(SIP), was utilized to generate Internet telephony calls
VoIP between H3 and H4. The Distributed Internet Traffic
Generator (D-ITG) [32] was used to generate ICMP traffic,
a non-RTP type of flow, in the network between the clients
H5 and H6. The inter-departure time of ICMP was set to a
constant rate of 1000 packets per second with a packet size of
512 B. We emulated the network using Mininet [33]. Mininet
is a widely used emulation system for emulating SDN
architectures in various experimental scenarios as well as to
evaluate and prototype new protocols and applications [34].
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FIGURE 4. Evaluation of two different CoS flows: video and ICMP.
Information is captured from the {v2, v6} link of the Abilene topology. The
video and ICMP flow traverse a common path (v1, v2, v6, v8, v7, v9). This
figure shows that one CoS, video, is significantly affected by the addition
of a second flow compared to ICMP.

In the emulation environment, we employed two servers; one
acted as the OpenFlow controller and the other simulated
the network topology. For each server, we used Ubuntu
v.14.04 LTS with Intel Core-i5 CPU and 8GB RAM. Table 2
specifies the parameters used in the experiments.

A. PRELIMINARY EVALUATION
Since RTP flows are more sensitive to networking incidents
such as delay or jitter, we focused on this class of traffic as
a first scenario and determined a suitable GMSMmonitoring
threshold.

Two live VLC streams were launched over one single
common path of 8 Mbps link capacity. The experiment lasted
for 10 min. The first video started at time 0 min. and ended
at time 10 min. The second video started at time 5 min. and
ended at time 10 min. Fig. 4(a) shows the bit rate of both
videos. The bit rate of the second video is affected by the
presence of the first video stream, which is observed by its
lower bit rate. This results in a lower quality of delivery for
the second video. On average, the bit rate of first video is
0.5 Mbps for the first 5 min. and 0.49 Mbps for the rest of
the experiment. The average bit rate of the second video is
0.42 Mbps. This 8% difference affected the video quality.

Another experiment was conducted to see how ICMP
traffic interfered with other ICMP traffic, to complement
the VLC scenario described above. The ICMP experiment

FIGURE 5. Quantifying overhead: the total number of invoked OpenFlow
messages are 2578, 2735 and 2764 messages for GMSM, OpenTM and
periodic monitoring respectively.

FIGURE 6. The count of OpenFlow stats request/reply packets per 1s is
illustrated as a function of time. In this experiment the monitoring
function gathers monitoring reports at 10 s intervals. The symbol, □,
represents the stats_request and the symbol, ♢, represents
stats_reply. GMSM reduces the overhead by reducing the number of
switches that participate in the monitoring process.

ran for approximately 2 min. The first ICMP flow, which is
labelled Receiver 1 in Fig. 4(b), ran for 2 min. The second
ICMP, which is labelled Receiver 2, started after 1 min and
ran for approximately 1 min. Fig. 4(b) shows the bit rate
of both flows. On average, the bit rate of the two ICMP
flows are approximately equal, 0.48 Mbps. Compared to the
video bit rate, the ICMP bit rate was not significantly affected
by the other flow. We conclude that RTP flows require a
greater priority than ICMP flows as their quality of delivery
is significantly affected when the bit rate is reduced [35].
Consequently, we set the GMSM threshold to be 2 or more
RTP flows on a link.

To estimate the overhead and network utilization for the
three monitoring schemes, we ran additional experiments for
approximately 3 min. At time 0 min, only the video stream
had started; at time 1 min, the VoIP flow started and at time
2 min, the ICMP flow had started. All flows terminated at the
same time. This mix of traffic types allows us to investigate
monitoring an application such as video which has strict QoS
requirements in the presence of traffic types which do not
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have the same requirements. GMSM’s application-oriented
threshold makes it particularly suitable for this.

V. EXPERIMENTAL RESULTS
This section presents the simulation results that evaluate
the performance of the proposed GMSM framework. The
evaluation aims to determine two key performance indicators.
Firstly, we quantified the network overhead with respect
to the volume of query messages and its impact on CPU
utilization. Secondly, we evaluated the impact of the collected
statistics on network analysis efficiency.

A. QUANTIFYING NETWORK OVERHEAD
Since we defined the overhead as the amount of openflow
messages that generated to gather various statistics from the
OpenFlow switches, this means that to assess the network
overhead, we first quantified the volume of OpenFlow
messages that were generated due to monitoring events.
Fig. 5 shows all OpenFlow generated messages during one
experiment. We examined the OpenFlow messages by type,
stats_request and stats_reply, in Fig. 6. GMSM
outperformed both periodic polling and OpenTMmethods by
reducing the number of the generated OpenFlow messages.

The generated OpenFlow messages also served as an
indicator of the usage of controller resources such as
the CPU. To determine the controller’s CPU utilization, the
standard linux tool, vmstat, was employed to observe the
POX controller machine. It collected and logged summary
information about resource usage such as CPU and memory.
vmstat reported the CPU idle time percentage in 1 second
intervals. The CPU utilization was calculated by subtracting
the percentage of time the CPU was idle from 100%. POX’s
CPU utilization was assessed at 1 second intervals during
the experiments. Fig. 7 shows the controller CPU utilization
for the three monitoring schemes. On average, the periodic
scheme accounted for 21.6% of CPU usage, while the
OpenTM and GMSM schemes accounted for 21.2% and
18.9% of the CPU respectively. It can be clearly seen that
GMSM can lower the network overhead by the means of
(i) the OpenFlow messages and (ii) the usage of controller’s
CPU.

B. NETWORK ANALYSIS CAPACITY
The monitoring schemes used to report network performance
can vary, and as a result, the knowledge gained by the
SDN controller will differ depending on the information
provided by each scheme. Having access to a greater amount
of information allows for a deeper understanding of the
network status, thus enabling more precise network analysis.
We use the bandwidth utilization as a metric to evaluate
the effectiveness of each monitoring scheme in providing
accurate network analysis. To accomplish this we compare
the accuracy of the network utilization estimated using
GMSM with the periodic polling and OpenTM methods.
At each timestamp, we look at the network utilization of
all links whose end switches participated in the monitoring

FIGURE 7. POX’s CPU utilization when GMSM, Periodic and OpenTM are
used for monitoring. GMSM reduces CPU utilization by 2.7 % and 2.3 %
compared to the periodic and OpenTM monitoring.

FIGURE 8. Network utilization estimated using GMSM, Period and
OpenTM during a 60s interval.

function. The network utilization, u(t), at timestamp t is
defined as:

u(t) =

∑
link capacity

Total network capacity
. (2)

Fig. 8 shows the estimated network utilization during a
1 min. interval, based on the utilization of the links captured
in Fig. 9. Periodic polling (red line in Fig. 9) has the
highest estimation accuracy because it uses all switches. The
accuracy of the OpenTM method (black line in Fig. 9) is
within 6.38 × 10−6 units of the periodic polling method on
average. The red time series closely overlaps the black time
series. The OpenTM monitoring scheme only ignores those
switches whose flow tables are empty and so the difference
is small.

A more detailed analysis of the difference is pre-
sented in Fig. 9, which illustrates the utilization of
every link in Fig. 3 for a 60 second period during one
experimental trial. In this scenario seven links, {v5, v6},
{v10, v9}, {v11, v12}, {v5, v11}, {v4, v5}, {v1, v3} and {v3, v4},
are not carrying ICMP, VoIP or VLC traffic but still
carry some periodic Link Layer Discovery Protocol (LLDP)
packets. These links are monitored by periodic polling but
not by the OpenTM approach. The time series resulting
from the OpenTM approach are a close approximation of the
time series for the periodic polling approach. The bandwidth
consumption of the unused seven links are illustrated in
subfigures (f) to (I) in Fig. 9. These links are not used by
the routing algorithm to deliver traffic. LLDP packets are
generated periodically by the OpenFlow Discovery Module.
The difference between these seven time series arises due
to the way that the OpenFlow Discovery Module issues
discover packets. The utilized bandwidth of the seven links
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FIGURE 9. Abilene links utilization, which is estimated using bandwidth (Mbps), for 60 s, when the three types of traffic are in operation.

that are not used is small, which accounts for the difference
between the OpenTM and periodic polling methods and
also the size of this difference. Links that carry more than
one RTP flow have a higher BW utilization compared to
links which carry a smaller number of RTP flows, or no
RTP flows. Subfigures (f) to (I) in Fig. 3 are illustrated
to demonstrate the short-comings of the periodic approach:
monitoring links that do not carry traffic classes relevant to
the network manager offers little utility, particularly when
monitoring imposes additional overhead and CPU usage
burdens. Regarding the GMSM monitoring approach, the
resulting time series are similar to those of a sub-set of
links, {v2, v6}, {v6, v8}, {v8, v7}, the links that are involved in
GMSM monitoring. Consequently, the bandwidth of 3 links
(4 switches) are estimated by GMSM. GMSM does not have
a global view about the bandwidth utilization of the entired

network. This behaviour is expected as the network manager
controls the type of monitoring performed.

GMSM’s network utilization estimate has the lowest accu-
racy. The average difference in accuracy between GMSM and
period polling and the OpenTM method are 0.168459 and
0.168452 units respectively. In summary, GMSM provides
a monitoring overhead reduction which comes at the cost
of accuracy in the network utilization. Given that the user
defines what critically important traffic is, via a threshold
parameter, they also get to decide what level of information
about all traffic on the network via a utilization score is
sufficient. The ability to be able to specify and justify what
is critically important via a sensitivity threshold allows the
network manager to determine the type of monitoring they
want, and the loss in accuracy that they can tolerate for a given
CoS sensitivity.
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FIGURE 10. The number of switches participating in monitoring is
illustrated as time evolves. GMSM queries the smallest number of
switches compared to periodic and OpenTM monitoring.

C. DISCUSSION
We present an analysis of the experimental results obtained
from the different monitoring schemes compared in this
paper. Additionally, we propose use cases where GMSM is
an appropriate monitoring solution. GMSM outperformed
the periodic and OpenTM monitoring schemes in terms of
reducing the overhead and CPU utilization. This reduction
resulted from the way that GMSM minimized the number of
switches that were included in the monitoring process. Only
links that met the threshold were considered. Fig. 10 shows
the number of switches that are monitored by each method.
GMSM outperformed the periodic polling and OpenTM
approaches.

The main disadvantage of GMSM is that it provides the
controller with less information compared to the periodic and
OpenTM schemes. This impacts the capability of network
analysis functions that use the data resulting frommonitoring.
One benefit of GMSM is that it gives the network operator
the ability to be able to select what types of events should
be included in the monitoring process. Therefore, they can
setup GMSM in a way that makes sure that all the required
information about the events of interest will be reported
and analysed with high accuracy. In term of applicability,
there are a number of use case scenarios where GMSM
is a suitable solution. For instance, GMSM can be used
as part of a system that enhances QoS while maintaining
low overhead, in scenarios where the network operators are
familiar with the classes of sensitive traffic being transmitted
over their networks. Two examples where this is the case
are (i) a multi-cost routing strategies that deal with the
problem of meeting the service level agreements of different
classes of tenant [36] and (ii) microgrid integration systems,
where control system packets are delivered over a shared
communications medium and have to compete with other
traffic in home networks [37]. It is worth mentioning that the
current implementation of GMSM follows the out-of-band
SDN architecture. Hence, comparing GMSM with in-band
approaches such those in [38] is not a valid case. Similarly,
there are a wide range of network modelling and monitoring
applications using machine learning techniques such as those
presented in [39]. We will consider some machine learning
techniques to improve the traffic classification of GMSM
towards further enhancement.

Finally, in environments where the network scale is large,
techniques like periodic polling could cause great overhead

on the network controller [40]. In this type of network a
better approach is to specify the events of interest and to
have GMSMfilter-out what needs to bemonitored rather than
monitoring all possible events.

VI. CONCLUSION
In this paper, we presented an SDN statistics monitoring
system that exposed a traffic CoS sensitivity threshold to
the network manager via a graphical visualization called
GMSM. It differs fromfixed polling andOpenTMmonitoring
methods by allowing the network administrator to determine
the events of monitoring interest. A prototype was designed,
implemented and evaluated using simulation experiments on
a real-world network topology. Subsequently, we used two
metrics to assess the efficacy of the proposed approach.
The first metric used assessed the SDN controller overhead,
by estimating the frequency of messages exchanged between
the controller and the data plane switches, as well as the level
of utilization of the Controller’s CPU. The second metric
used to evaluate GMSM assessed its ability to estimate links
utilization. This metric served as a criterion for assessing the
accuracy of network analysis.

Experimental findings showed that GMSM lowered the
overhead by reducing the number of switches that partic-
ipated in the monitoring process. This reduction can be
interpreted as follows. GMSM concentrated on switches
that facilitated crucial network traffic. The network manager
determined the level of criticality for various types of
traffic based on a set sensitivity threshold. One implication
of GMSM’s monitoring approach is that it reduced the
controller-switch communication by 5.7 % and 6.7 %
compared to OpenTM and periodic monitoring. A second
implication of GMSM’s approach was that the CPU uti-
lization was reduced by 2.7 % and 2.3 % compared to the
periodic and OpenTM monitoring approaches respectively.
Our findings also indicated that compared to GMSM,
the average difference in links utilization accuracy were
0.168459 and 0.168452 units for the periodic and OpenTM
approaches respectively. GMSM successfully achieved an
overhead reduction and a trade-off was observed in terms
of accuracy of utilization estimates, which represents a
limitation of the monitoring scheme.

GMSM demonstrates considerable promise, therefore,
we will explore the levels of monitoring granularity possible
via GMSM, by classifying additional CoS such as online
games in future work and by incorporating machine learning
to adapt polling intervals. Additionally, we will evaluate the
deployment of GMSM in environments where the reduction
of monitoring overhead is the crucial requirement for network
managers.
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