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ABSTRACT 

Blood cell traits (BCTs), including white blood cells (WBCs) and platelets, are commonly 
measured in a routine blood test or hospital visit. This is because there is a well-
established relationship between BCTs and diseases that lead to death and disability. 
Most studies on diseases associated with BCTs have been observational, and therefore 
generally prone to confounding and reverse causation. Given the health burden of 
diseases observationally linked to BCTs, it is desirable to determine whether these 
relationships are causal. Mendelian randomization (MR) is a method in genetic 
epidemiology which uses people’s genetic data to provide a causal estimate between an 
exposure and an outcome. Therefore, the overarching aim of my thesis was to use MR 
to advance the knowledge on diseases associated with BCTs. To investigate this, I 
focused on three diseases, each having their own methodological challenges: Chapter 
3 – colorectal cancer (CRC); Chapter 4 & Chapter 5 – P. falciparum malaria; Chapter 
6 – deep vein thrombosis (DVT). In Chapter 3 I provided evidence that a higher 
eosinophil and lymphocyte count reduced the risk of CRC, and a follow-up MR analysis 
revealed a possible protective role for allergic disease in CRC development. In Chapter 
4 I identified a subset of UK Biobank participants that correspond to the African 
continental ancestry group, allowing me to conduct a genome-wide association study of 
neutrophil count to P. falciparum malaria in Chapter 5. Here, the MR analysis showed 
limited evidence for a causal relationship between neutrophil count and severe malaria. 
Finally, in Chapter 6 I conducted a phenome wide MR study to identify novel risk factors 
for DVT, and a follow-up analysis identified that a protein predominantly present in 
platelets, plasminogen activation inhibitor 1 (PAI-1), mediates the relationship between 
adiposity and DVT risk. 
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CHAPTER 1.  BACKGROUND  

1.1. Introduction 

The blood as a component of the human circulatory system has been written about and 

studied for a long time, going as far back as antiquity. The ancient Greek physician 

Hippocrates is accredited to developing the theory of the four-humours (a.k.a. 

Humourism) in the 3rd century BC, which stated that the human body was formed from 

four components: blood, black bile, yellow bile, and phlegm 1. Galen, another Greek 

philosopher and follower of this theory, was the first to discover pulmonary circulation in 

the 2nd century AD 2, along with proposing that imbalances in the proportion of humours 

would cause disease and mood changes 3. Analysing the blood has been an essential 

part of health care ever since. 

 

Major scientific discoveries on the blood and its composition took place predominantly 

after the Renaissance, which eventually led to the demise of Humourism by the 19 th 

century 3. In the 1600s, William Harvey was the first to discover that the circulation of 

blood was a closed system 2,4. Around the same time, the Dutch scientist Jan 

Swammerdam used a powerful microscope to view red blood cells (RBCs) for the first 

time 5, while his colleague, Antoni van Leeuwenhoek, is credited for offering the first 

description of RBCs 5. Further studies by William Hewson in the 18th century revealed 

the presence of white blood cells (WBCs) in circulation, although at that time WBCs were 

not yet identified as separate subtypes 6. Finally, almost a hundred years later, Giulio 

Bizzozero investigated the function of platelets, and described them as the third cell type 

of the blood, along with erythrocytes (RBCs) and WBCs 7.  

 

Today, we know that the blood is a mix of plasma and blood cells 8. The former is 

predominantly water (92%), along with proteins, minerals, sugars and fat, while the latter 

is formed from three major components: WBCs, platelets, and RBCs 8. This thesis is 

focused on the cells of the blood; more specifically, I will show how genetic epidemiology 

can expand the knowledge on diseases associated with blood cell traits. 
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1.2. The biology of blood cell traits 

Biologically, the blood is part of the connective tissue and develops from the mesoderm, 

the second germ layer involved in embryonal development 9. Haematopoietic stem cells 

(HSC) derive from this layer, being first produced in the aorta-gonad mesonephros region 

during early embryogenesis and finally settling in the bone marrow in the late stages of 

development 10. HSC are multipotent stem cells, with the ability of self-renewal and 

committing to specific blood cell-lineages to form mature blood cells, a process which is 

also known as haematopoiesis 11.  

 

Bone marrow is found inside the central and long bones of the human body 12,13 and 

hosts a mixture of many cell types, including HSCs and stromal cells 14. The largest 

proportion of HSCs is within the spongy trabecular bone i.e. metaphysis 12,15,16, a region 

also referred to as “red” marrow 17. This is where haematopoiesis largely takes place 

throughout adulthood 13,17. A higher proportion of adipocytes is found in the central part 

of the bone (“yellow” marrow), where haematopoietic activity is limited 18.  

 

Many transcription factors (TFs) and cytokines are involved in the process of 

haematopoiesis that leads to the eventual transition of a HSC to a mature blood cell 11. 

Assuming the classical model of haematopoiesis, HSCs first develop into two cell types: 

common myeloid progenitor (CMP) and common lymphoid progenitor (CLP) 19. The 

former leads to the development of four WBC subtypes (basophils, eosinophils, 

monocytes and neutrophils), platelets, and RBCs, while the latter develops into the fifth 

WBC subtype – lymphocytes, encompassing T-cells, B-cells, and natural killer (NK) cells 

19 (Figure 1-1). Interestingly, recent studies using single-cell RNA-Sequencing suggest 

evidence for haematopoiesis being a continuous process rather than a series of binary 

steps 11,20, further complicating the mechanistic landscape of haematopoiesis. 
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Figure 1-1. Classical model of haematopoiesis.  

Adapted from “Stem Cell Differentiation from Bone Marrow”, by BioRender.com (2023). 
Retrieved from https://app.biorender.com/biorender-templates. 

 

1.2.1. White blood cells 

There are five WBC subtypes (basophils, eosinophils, monocytes, lymphocytes and 

neutrophils): 

 

Basophils. Granulocytes (i.e. contain intracellular granules) which represent less than 

1% of the total WBCs in the blood 21, making their study difficult and were often confused 

with mast cells, which have common functions and reside in the tissues 22. Consequently, 

they were not deemed to be relevant from a biological standpoint, which had resulted in 

basophils still being an understudied WBC subtype by the early 2000s 23. However, 

basophils are now known to come from a different lineage compared to mast cells 24,25, 

and their biology and function have been studied increasingly in the past two decades 

22. 

 

Basophils typically have a diameter of 5-10µm 26, a short half-life of about 1-2 days, and 

are characterised by their polymorphonuclear cell composition surrounded by many 
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granules 21. Basophils typically have a diameter of 5-10µm 26, a short half-life of about 1-

2 days, and are characterised by their polymorphonuclear cell composition surrounded 

by many granules 21. They develop from CMPs, which then mature into granulocyte-

macrophage precursors (GMPs) and then finally into basophil precursors before 

becoming mature basophils 26,27. TF GATA-binding factor 2 28 along with stimulation by 

the cytokine interleukin 3 (IL-3) are key in the production of basophils in the bone marrow 

22. TF GATA-binding factor 2 28 along with stimulation by the cytokine interleukin 3 (IL-3) 

are key in the production of basophils in the bone marrow 22. However, the exact 

intermediary processes of haematopoiesis that lead to the development of HSCs into 

basophils are still under investigation 27.  

 

In terms of their biological function, basophils are commonly associated with the activity 

of the innate immune system 27. The basophilic granules contain molecules such as 

histamine, leukotriene C4, heparin, prostaglandins 29 and basogranulin, the latter being 

unique to this cell type 30. When activated, they cause many effects, such skin itchiness 

and allergic symptoms 31,32, vascular permeability and chemotactic activity that can 

recruit other immune cells 26. On the cell surface, basophils contain the receptor FcεRI, 

which has a high affinity for IgE, one of the five subsets of antibodies i.e. 

immunoglobulins (Ig, along with IgA, IgG, IgM, IgD) 33. Cross-linkage of IgE antibodies 

triggers an intracellular signalling cascade 33, leading to degranulation and release of its 

contents, along with production and secretion of cytokines IL-4 and IL-13 27.  

 

However, basophils can also be activated in an IgE-independent manner, outlining two 

modes of action by basophils. Here, cytokines IL-3, IL-33, complement component C5a 

and lipopolysaccharide (binding to toll-like receptor 4 TLR4), IgG and IgD activate 

basophils 27. In contrast with IgE-dependent activation, basophils do not undergo 

degranulation, but rather experience a prolonged state of activation during which they 

secrete cytokines 27. Further studies have shown that basophils also aid in adaptive 

immunity, serving as antigen-presenting cells (APCs) for T-cell differentiation into T-

helper 2 cells (Th2) 34, and cytokine secretion for B-cell production 29. All the effector 

functions of basophils outlined here aid in the clearance of pathogens and resolution of 

inflammation through type 2 immunity, such as in the case of helminths and ticks, where 

basophils play key roles for resolution of infection or for acquired immunity 31,35,36.  

 

Eosinophils. Like basophils, eosinophils are polymorphonuclear cells and are 

commonly associated with the innate immune system 37. They make up around 1-6% of 

the total WBCs in circulation 37,38 and initially their inactivation or removal was not 
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associated with detrimental physiological effects 39; therefore their biology and functions 

have also been understudied up until recently 40.  

 

In terms of their development, eosinophils are also matured from the myeloid cell lineage, 

the CMP, which then mature into GMPs 41. These then differentiate in the bone marrow 

into CD34+ eosinophil-committed progenitors 42 that present the IL-5 receptor (IL5R) on 

their cell surface, making the IL-5 cytokine critical in the maturation and recruitment of 

mature eosinophils 43. TFs C/EBP-α and GATA-1, along with the cytokine IL-33, are also 

vital components that aid the differentiation of early myeloid precursors into eosinophils 

41, while the TF protein kinase Tribbles homolog 1 (TRIB1) aids in the final stages of 

eosinophil-committed progenitors commitment to eosinophil maturation 44. 

 

Eosinophils are also implicated in IgE immunity, although this differs from basophils, and 

much is still to be discovered. For example, eosinophils only present the FcεRI receptor 

when under stress 45, as opposed to basophils, where it is present in homeostatic 

conditions as well 33,46. The low-affinity IgE receptor FcεRII is also detected in 

eosinophils, but not always 47, suggesting again that there might be IgE-dependent 

immunity at play under certain immunological scenarios. As mentioned, IL-5 is one of 

the key cytokines for eosinophil activation and recruitment 43. However, other cytokines 

such as eotaxins CCL11, CCL24 and CCL26 47, as well as granulocyte-macrophage 

colony stimulating factor (GM-CSF) and IL-3 43 are also involved in eosinophil recruitment 

and degranulation.  

 

Just like basophils, eosinophils can secrete histamine, LTs and PGs 48. Additionally, 

studies have also outlined several effector proteins specific to eosinophil degranulation: 

eosinophilic cationic protein (ECP), major basic protein (MBP), eosinophil-derived 

neurotoxin (EDN), eosinophil peroxidase (EPX) and Charcot-Leyden crystals (galectin-

10) 44. The first three are all cationic proteins capable of direct cytotoxic effects on 

pathogens, with ECP and EDN also having RNase capabilities 49. Moreover, these three 

proteins can also recruit other immune cells, activate dendritic cells (DCs) and lead to 

secretion of inflammatory cytokines 50,51. Meanwhile, EPX produces reactive oxygen 

species (ROS) that directly kills pathogens 52 and galectin-10 can induce eosinophil 

extracellular trap release (EETs) and has been found to induce a Th2 response in murine 

models 53. Eosinophils are also capable of phagocytosis, cytokine/chemokine release, 

as well as antibody mediated immunity 47. 

 

These tools allow eosinophils to fulfil many roles in immunity. For example, they are 

associated with a Th1/Th17 response and release of MBP, ECP, EDN and EETs when 
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dealing with viral, bacterial or fungal infections 47,48. Meanwhile, parasites such as 

helminths and larvae usually trigger a Th2 response 47 and lead to secretion of EPX, 

MBP and ECP that aid in the killing of the pathogens 53. Moreover, eosinophils can act 

as APCs, T-regulatory cells (Tregs) 43, and aid in the regeneration of muscle and liver 

tissue 53.  

 

Lymphocytes. These represent a cell group that have traditionally been associated with 

adaptive (acquired or long-lasting) immunity 19 and up until the 1950s-60s were thought 

to constitute one cell type 54. Three major cell types belong to the lymphoid lineage: T-

cells (thymic), B-cells (Bursal or bone marrow), and NK cells 19,55–57. The half-life of a 

lymphocyte depends on its cell type and activation status i.e. naïve or activated 58–61. For 

example, the half-life of NK cells is around 3-4 weeks 61, while for naïve T-cells it can be 

up to eight years 59.  

 

In terms of their development, lymphoid progenitors mature from HSCs, after which they 

turn into CLPs 19. Here, the CLPs can commit further to the T-cell, B-cell or NK lineage 

19. T-cell progenitors migrate from the bone marrow to the thymus, becoming thymocytes 

62. Here, they undergo a process of generating T-cell receptors (TCRs) that can bind to 

previously unencountered pathogens through immunoglobulin-like gene recombination 

63. This is followed by positive and negative selection, which keep those T-cells with the 

maximal response towards a pathogen while avoiding damaging the host 62. B-cells 

mature from progenitor and precursor B-cells in the bone marrow 64. Here, cytokines 

such as CXCL12, IL-7 and SCF, along with TFs like Early B-Cell Factor 1 and Pax5 

contribute to B-cell development and lineage commitment 64. Like T-cells, B-cells also 

undergo a process of immunoglobulin gene recombination, allowing B-cells to ultimately 

produce antibodies that can bind to almost every possible antigen 65.  

 

The lymphatic system is key to the functioning of the adaptive immune system 66. It 

contains lymph, which is derived from interstitial fluid 67, and acts as a network through 

which WBCs can activate lymphocytes in the lymph nodes by antigen or engulfed 

pathogen presentation 68. Moreover, another component of adaptive immunity is the 

major histocompatibility complex (MHC) proteins that present parts of a pathogen to T-

cells 69,70. These can be either class I, activating CD8+ T-cells and present on any 

nucleated cell, or class II, activating CD4+ T-cells and presented by APCs 69,70.  

 

T-cells can differentiate into separate T-cell subtypes: cytotoxic (CD8+) and helper 

(CD4+) 62. Cytotoxic T lymphocytes are involved in the killing of cells that might affect 

the normal functioning of the host, such as cells infected with viruses and bacteria, either 
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through direct cell-cell interactions or through the secretion of specific cytokines, such 

as interferon-γ (IFN-γ) 71. Helper T-cells also further differentiate into subtypes depending 

on a combination of specific cytokine and TF action: Th1 (IL-12, T-bet), Th2 (IL-4, GATA-

3), Th17 (IL-6, IL-23, RORγt), Th9 (TGF-β, IL-4), Th22 [IL-6, tumour necrosis factor 

(TNF)], T follicular (fh, IL-21, BCL6) and T regulatory (reg, TGFβ, Foxp3) 72–75. The first 

five listed T helper cells are involved in different aspects of immunity, and each secrete 

their specific cytokines which can shift the balance of the immune response 72,73,76. Tfh 

cells are present only in the lymphoid tissues and aid in B-cell differentiation and antigen 

affinity maturation 74. Tregs, as their name implies, are important in regulating the 

immune response of T-cells and their differentiation 73. 

 

Just like T-cells, B-cells serve many functions that ensure the functioning of the immune 

system. They are involved in the production and secretion of antibodies, serving also as 

memory cells that aid in efficient clearance of reinfection from a pathogen 77. NK cells 

are another lymphocyte subset, although they are considered to be part of the innate 

immune system 78,79. Similarly to CD8+ T-cells, they are involved in immune-mediated 

cytotoxicity, and are particularly involved in controlling and clearing viral infections 78,79. 

 

Monocytes. These mononuclear leukocytes are the largest cells in circulation (~20µm) 

80 and have a half-life of around 1-2 days 81. Traditionally, monocytes are known for their 

capacity to enter tissues and become tissue-resident macrophages 82. Therefore, despite 

representing a larger proportion of total WBCs (5-10%) than basophils and eosinophils 

80,83, monocytes have predominantly been thought of as blood intermediaries of 

macrophages80.  

 

During haematopoiesis, HSCs commit to the CMP lineage in the bone marrow 84. Studies 

suggest that here the pathways bifurcate into GMPs and monocyte-DC progenitors, and 

monocytes can arise from both these precursors 85. There are several factors involved 

in the commitment of these progenitors to differentiating into mature monocytes. General 

TFs such as PU.1 and C/EBP-α combined with the action of monocyte TFs interferon 

regulatory factor 8 (IRF8) and Krüppel-like factor 4 (KLF4) are key in the commitment of 

progenitors to the monocyte lineage 84,85.  

 

Biologically, studies looking at gene expression have outlined the presence of classical 

and non-classical monocytes, as well as a possible third intermediary monocyte type that 

has features from both subsets 86. These three monocyte subpopulations are commonly 

identified by the presence of lipopolysaccharide (CD14) and low-affinity Fcγ (CD16) 

receptors on their cell surface 87. Classical monocytes (CD14++ CD16-) 88 represent over 
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80% of monocytes 87 and are continuously differentiating, with cytokines such as IFN-γ 

or TNF-α acting as further enhancers of their differentiation process 82. Their activation 

is associated with a Th1 response, wound healing, phagocytosis, and the release of 

cytokines IL-6, IL-10 and CCL2 83,86. The role of intermediate monocytes (CD14+ CD16+) 

seems to be predominantly to act as APCs 89. Meanwhile, non-classical monocytes 

(CD14- CD16+) 88 are sometimes termed “sentinel” monocytes due to their role in 

surveillance of the endothelium and production of CD4+ T-cells 83,90. These cells do not 

usually become tissue-resident macrophages 90.   

 

Given these functions, monocytes are cells capable of performing multiple roles in 

immunity. For example, classical monocytes aid in anti-microbial activity 88, and both 

classical and non-classical monocytes have been found to combat fungal infections 83. 

Additionally, non-classical monocytes are involved in anti-viral activity 88, and 

intermediate monocytes were found to mediate the immune response in the presence of 

bacterial Staphylococcal enterotoxin 83. 

 

Neutrophils. These polymorphonuclear granulocytes measure around 10µm in size and 

represent 50-70% of the total WBCs in the blood, making them the most populous WBCs 

in circulation 91. Neutrophils typically have a half-life of 8 hours, although it has been 

reported that they can live up to 5 days in the blood 92. Like basophils and eosinophils, 

their appearance is characterised by their multinuclear core surrounded by granules that 

contain various proteins involved in immunity 93.  

 

In terms of neutrophil development, CMPs differentiate into GMPs 91, these then 

differentiate into myeloblasts, where they can either commit to the monocyte or 

granulocyte lineage 91. For the progenitor cells to become neutrophils, several factors 

work concomitantly, such as TFs C/EBPα, IRF8, and PU.1, along with the cytokines SCF, 

G-CSF and GM-CSF 94. Interestingly, studies have found that apart from their presence 

in the blood stream, neutrophils are also present in even higher numbers in the bone 

marrow, where they act as a pool of cells ready to be recruited in stress situations, such 

as infections 94. During stress, cytokines IL-1, IL-6 and GM-CSF have been found to 

prolong the lifespan of neutrophils 95. 

 

Biologically, neutrophils have three main functions: phagocytosis, granule secretion and 

neutrophil extracellular trap (NET) production 96. During phagocytosis, the neutrophil 

engulfs the microbe inside the cell in a phagosome, which can fuse to neutrophilic 

granules to release their contents on the pathogen and lead to its elimination 97. The 

granules are divided into four types: azurophilic granules, specific granules, gelatinase 
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granules and secretory vesicles 98. Azurophilic granules contain microbicidal proteins, 

such as ROS-producing myeloperoxidases 98. Specific granules contain lactoferrin and 

lipocalin 98, which have many roles, such as regulation of NETosis (NET production) and 

lymphocyte maturation, serving as chemokines or mediating cytokine release 99. 

Meanwhile, gelatinase granules have matrix metalloproteinase 9, which can lead to 

chemokine release by neutrophils 98. Secretory vesicles contain cytokine receptors and 

other plasma proteins, including components for the nicotinamide adenine dinucleotide 

phosphate oxidase enzyme, predominantly responsible for microbicidal ROS production 

in neutrophils 98,100. 

 

Discovered in 2004, neutrophil extracellular traps (NETs), as the name implies, can trap 

microbes 101. These extracellular webs are formed from DNA and neutrophilic granule 

proteins after the neutrophil undergoes programmed cell death 102. The three main 

neutrophil processes outlined here do not work independently, but in tandem. For 

example, if the size of the microbe is too large to be phagocytosed, neutrophil granules 

are migrated towards the nucleus to start the process of NETosis 103. Recent studies 

have found heterogeneous neutrophil populations, where different transcriptional profiles 

are present depending on the type of infection 104,105. 

 

Neutrophils are vital to the functioning of the innate immune system, as they are the first 

cells to arrive at the site of infection 98. They use the tools outlined above to deal with a 

vast array of pathogens, such as viruses, bacteria, fungi, which activate neutrophils 

through pattern recognition receptor that recognise the molecules associated with these 

pathogens 103. Additionally, neutrophils are also involved in the resolution of 

inflammation, where they can clear debris through phagocytosis and by releasing C-C 

chemokine receptor type 5 or NETs to soak up pro-inflammatory cytokines 106.  

 

1.2.2. Platelets 

Platelets, also known as thrombocytes, are the smallest cells in circulation, measuring 

around 2-4µm 107, and have a half-life of around 7-10 days 108.  

 

In terms of development, HSCs differentiate into CMPs, which then commit to the 

megakaryocyte-erythroid lineage 109. Here, general TFs GATA-1 and GATA-2 are 

required, along with nuclear factor‐erythroid 2, which is the most important TF in 

megakaryopoiesis i.e. megakaryocyte maturation 109. Progenitor cells in the bone 

marrow transform into megakaryocytes, which are large mononuclear cells 110 whose 

production is regulated by thrombopoietin 108. Next, early megakaryocytes undergo a 
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process called endomitosis, where the cell replicates without finishing mitosis many 

times until the DNA content reaches up to 128 times the genetic material found in a 

normal cell 111. Afterwards, megakaryocytes undergo cytoskeletal remodelling and form 

protrusions called pro-platelets 108. These cytoplasmic structures bud off and become 

platelets, leaving the megakaryocyte predominantly with only its nucleus left, platelets 

are therefore anuclear cells 112. 

 

Although small in size compared to other blood cells, platelets have many components 

that help them accomplish their functions, including three granule types: dense granules, 

α-granules, and lysosomal granules 113. The dense granules (DGs, or δ-granules) 

contain ions (e.g. Ca2+ or Mg2+), ADP, ATP, serotonin, and phosphate molecules 114,115. 

α-granules contain an large number and diversity of proteins, such as clotting factors von 

Willebrand factor (vWF) and fibrinogen, membrane protein P-selectin, both pro- and anti-

angiogenic factors, as well as multiple cytokine and chemokine types 116. Lysosomal 

granules, as the name implies, contain lysosomes, which are enzymes that can break 

down other cells or microbes 117.  

 

Functionally, platelets have traditionally been associated with blood haemostasis i.e. 

maintaining blood flow and stopping vessel leakage 118. In brief, when the blood vessel 

becomes injured, the endothelium releases vWF which anchors platelets to the 

endothelial wall and triggering the release of the intracellular granules 113,119. These then 

bind to other platelets and RBCs in circulation through release of thrombin and collagen, 

leading to their activation and eventually the formation of a thrombus that prevents 

bleeding and maintains haemostasis 120.  

 

Additionally, platelets are now known to be involved in other processes, such as 

immunity. For example, P-selectin is present on the surface of activated platelets and 

aids in the recruitment of neutrophils and monocytes, as well as in the production of pro-

inflammatory cytokines 119. Moreover, platelets have also been found to play a role in 

adaptive immunity by acting as APCs and regulating Treg production 118. 

 

1.2.3. Red blood cells 

RBCs, also known as erythrocytes, are the predominant cells found in circulation 8. As 

mentioned in Chapter 1, they were the first cells seen under a microscope 5. They 

measure 8µm in size and have the easily recognisable biconcave disk shape 121. RBCs 

have a much longer half-life than most blood cells, averaging around 120 days in 

circulation 122. 
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In terms of erythropoiesis, HSCs mature into CMPs, which then commit to the 

megakaryocyte-erythrocyte lineage through regulation by TFs PU.1 and GATA-1 94. 

Afterwards, megakaryocyte-erythrocyte progenitors commit to the erythroid lineage, 

where the erythropoietin cytokine plays an important role in further maturation of 

progenitor cells 123. These cells then undergo further steps before becoming mature 

RBCs, such as at the orthochromatic erythroblast stage, where their nucleus gets 

ejected, leading to their maturation into reticulocytes and finally into RBCs 123,124.  

 

RBCs are best known for their role in transporting oxygen from the lungs to tissues 125. 

This process is facilitated by haemoglobin, a protein which contains iron (Fe2+) ions 126. 

These iron ions have an affinity for both oxygen (O2) and carbon dioxide (CO2) molecules, 

which allows for the delivery of oxygen, while taking CO2 back to the lungs, where it is 

ultimately exhaled 125. The biconcave structure of erythrocytes maximises the surface 

area for gas exchange while ensuring their plasticity when travelling through small 

capillaries, which can be several times smaller than their size 122. 

 

At the same time, RBCs are known to have receptors that bind to cytokines or 

chemokines and regulate immune activity, such as the receptor Atypical chemokine 

receptor 1 / Duffy antigen receptor for chemokines (ACKR1/DARC) 127. 

 

1.3. The full blood count test 

Blood cells are now commonly measured as part of a routine blood test 128. However, 

measuring the constituent cells of the blood was not always a straightforward and 

affordable process. 

 

1.3.1. A history of blood cell counting 

The first recorded blood counting method was invented by the German physiologist Karl 

von Vierordt in the early 19th century 129. Other scientists gained interest in Vierordt’s 

research and built upon his discoveries, such as the Dutch researcher Antonj Cramer, 

who designed a chamber made from two spaced glass slides, allowing a diluted blood 

sample to be spread evenly between them for more efficient and replicable blood 

counting 130. Other scientists aimed to improve upon the inventions of these two 

scientists, one of them being the French histologist Louis-Charles Malassez, who is 

credited to have been the inventor of the modern haemocytometer in 1874 130,131. Further 
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improvements were made by Karl Bürker, who built a chamber on the same principles of 

Cramer and the French physician Georges Hayem 130. 

 

At the same time, scientists were able to use blood cell indices to aid in medical practice. 

Maxwell Wintrobe was an Austrian-born doctor who is considered to be one of the fathers 

of haematology and a pioneer in the field of blood counting 132. One of his most well-

known inventions was a technique to study the haematocrit i.e. the percentage that RBCs 

represent from the total blood 132. Using this method, he was able to diagnose patients 

with different diseases just by studying percentage differences in the blood constituents 

after centrifugation 129. For example, a lower haematocrit indicated anaemia, while a pale 

white segment above the dark red mature RBC sedimentation indicated leukaemia 129. 

Further studies allowed for the development of the Wintrobe indices, which are 

nowadays known as RBCs indices: mean corpuscular volume (MCV), mean corpuscular 

haemoglobin (MCH), and mean corpuscular haemoglobin concentration (MCHC) 132. 

 

However, RBCs were not the only measured blood cells. The German pathologist 

Richard Thoma observed that counting WBCs would not be possible at the dilution used 

to measure RBCs, and the presence of RBCs made the counting process difficult 130. 

Therefore, he used a custom dilution factor along with an acetic acid solution to lyse the 

RBCs, allowing him to reliably measure WBCs 133. Scientists tried to perform the counting 

of platelets as well, although such attempts were not reliable until the invention of the 

phase contrast microscope in the 1950s 134. 

 

1.3.2. The Coulter method 

As mentioned, manual counting used to be the only way to get blood cell indices, which 

was time-consuming and required a skilled professional 135. While there are many 

methods for cell cytometry used today, such as specialised flow cytometry devices, the 

most well used and reliable method to analyse BCTs (indices associated with the cells 

of the blood) during a clinic or hospital visit is a Coulter counter 131. 

 

The Coulter method was developed by the American scientist Wallace H. Coulter and 

his brother through the aid of a government project in 1953 136. The first Coulter counter 

was called “Model A” and its rudimentary appearance was strikingly different to the 

counters used today 136, and some BCTs like platelet indices were only available to 

measure automatically in the late 1970s 134.  
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The Coulter principle employs a concept in electrical engineering known as electrical 

impedance (i.e. resistance) 135. The blood sample is diluted with a solution and is pumped 

into a beaker that has a tube with a small aperture through which each cell can travel 

through 136. Two electrodes are also present in the beaker, one on the inside of the tube, 

and one on the outside 136. A vacuum is created inside the tube which pulls each cell in 

the solution through the aperture. Each cell passing through the slit produces an 

electrical resistance between the two electrodes which is directly proportional to the cell’s 

volume, making it possible for the machine to detect the type of blood cell 136 (Figure 

1-2).  

 

Modern Coulter counters have evolved greatly in the last 60 years, and models such as 

the Beckman Coulter LH750 use additional methods to analyse each BCT, such as 

radiofrequency or light scattering similar to those used in flow cytometers, being able to 

compute 20 or more BCT indices 131,137 (Table 1-1). 
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Figure 1-2. Coulter method.  

The blood cell passes through the aperture, creating electric resistance between the two electrodes, which gives an estimate of the cell’s volume. 
Along with augmentative devices introduced in modern counters, this can be used to estimate the blood cell type. Created with BioRender.com. 

https://biorender.com/
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Table 1-1. Blood cell traits as measured in a common full blood count (FBC) test. 

Blood cell trait Abbreviation Description Units 

White blood cell count WBC 

The number of white 

blood cells in the blood 109 cells/Litre 

Basophil count BAS # 

The number of basophils 

in the blood 109 cells/Litre 

Basophil percentage BAS % 

The proportion of 

basophils of the total 

WBC count Percent (%) 

Eosinophil count EOS # 

The number of 

eosinophils in the blood 109 cells/Litre 

Eosinophil percentage EOS % 

The proportion of 

eosinophils of the total 

WBC count Percent (%) 

Lymphocyte count LYM # 

The number of 

lymphocytes in the blood 109 cells/Litre 

Lymphocyte 

percentage LYM % 

The proportion of 

lymphocytes of the total 

WBC count Percent (%) 

Monocyte count MON # 

The number of 

monocytes in the blood 109 cells/Litre 

Monocyte percentage MON % 

The proportion of 

monocytes of the total 

WBC count Percent (%) 

Neutrophil count NEU # 

The number of 

neutrophils in the blood 109 cells/Litre 

Neutrophil percentage NEU % 

The proportion of 

neutrophils of the total 

WBC count Percent (%) 

Platelet count PLT # 

The number of platelets 

in the blood 109 cells/Litre 

Mean platelet volume MPV Average platelet volume 

Femtolitres 

(10-15 Litres) 

Red blood cell count RBC # 

The number of red blood 

cells in the blood 1012 cells/Litre 

Haemoglobin 

concentration HGB 

Haemoglobin mass per 

unit volume of blood grams/Decilitre 
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Blood cell trait Abbreviation Description Units 

Haematocrit HCT 

Proportion of red blood 

cells from the total blood 

volume Percent (%) 

Mean corpuscular 

volume MCV Average RBC volume 

Femtolitres 

(10-15 Litres) 

Mean corpuscular 

haemoglobin MCH 

Mass of haemoglobin per 

average RBC Picograms 

Mean corpuscular 

haemoglobin 

concentration MCHC 

Average haemoglobin 

mass per relative volume 

of RBCs in the whole 

blood sample grams/Decilitre 

Red blood cell 

distribution width RDW 

Measures the variation in 

size and volume of the 

red blood cells Percent (%) 

 

 

The introduction of Coulter counters in clinics and hospitals made the blood an easily 

accessible medium, and blood cell counters are now present in hospitals worldwide 138. 

This in turn made it attractive for scientists to investigate the relationship between BCT 

measurements and different traits, including disease 134.  

 

As part of this thesis, I will study the blood cells measured in a routine blood test, where 

they are analysed as homogeneous entities. From this point forward, whenever I will use 

the acronym BCTs, this will refer to the traits measured in a common blood test as 

presented in Table 1-1, unless specified otherwise in the text. 

 

1.4. Blood cell traits and disease 

As evidenced by the work of Max Wintrobe 132, BCTs proved to be valuable in the 

diagnosis of disease. Many more studies since then have focused on how BCTs can be 

indicative of pathological conditions. 

 

1.4.1. Blood as an accessible sample of diagnostics 

Due to the low costs and cell counters present in most hospitals, BCTs are now used in 

the diagnosis of many conditions 128. For example, a high neutrophil count can indicate 
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a bacterial infection, while a low platelet count can be used to diagnose bleeding 

disorders 128. The introduction of the MCV and RDW in the 80s allowed for a more 

accurate classification of anaemias in patients 139. Trans-ethnic studies identified that 

those of African descent were more likely to have a lower WBC count, which was termed 

and diagnosed as benign ethnic neutropenia (BEN) and its cause was unknown at the 

time 140. 

 

1.4.2. Blood cells in disease 

Much research has been done in the last couple of decades to investigate the role of 

blood cells in disease. For example, neutrophils have been extensively studied for their 

role in cancer, where they were discovered to have dual capacity for cytotoxic kil ling of 

tumour cells, as well as promoting metastasis and immune suppression 141. Eosinophils 

were identified as factors that can worsen the symptoms of asthma through secretion of 

eosinophilic granules, such as MBP 142. CD8 T-cells are known to be key factors in anti-

tumoural immunity against cancers such as metastatic melanoma 143. Meanwhile, 

platelets were identified as cells capable of producing thrombi both directly and indirectly 

144,145, and are well-known for their role in deep vein thrombosis (DVT) 146. 

 

1.4.3. The FBC test for establishing risk factors for 
disease 

By leveraging the BCT indices given by the modern Coulter counter, epidemiologists 

have been able to assess how changes in BCTs affect the risk and prognosis of disease. 

In this thesis I will focus on the relationship between BCTs and disease risk, namely - 

colorectal cancer (CRC), Plasmodium falciparum (P. falciparum) malaria and DVT. More 

detail on the relationship between BCTs and each disease is covered in Chapters 4, 6 

and 7, respectively. 

 

1.4.4. BCTs as flags of a biological mechanism 

As a point of clarification, we should not think of BCTs themselves as factors that can 

directly affect disease prognosis or development. Unlike direct examples like the impact 

of a caustic agent on the skin or a carcinogen on cells, BCTs are more akin to flags of a 

particular biological mechanism, where an increase or decrease in the value of a BCT is 

associated with a biological effect. This is similar to how body mass index (BMI) is studied 

in diseases such as type 2 diabetes (T2D), where adiposity itself is not directly increasing 

the risk of e.g. diabetes, but rather increased adiposity is thought to cause changes in 
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the metabolic profile of cells, leading to increased risk of developing T2D 147. Therefore, 

understanding the biological functions of each blood cell type is important in the 

interpretation of findings, and hence the motive behind the extended biological 

background presented earlier in this chapter. 

 

1.5. The genetics evolution 

BCTs have been studied genetically through single base germline variation i.e. single-

nucleotide polymorphisms (SNP) that could be associated with a trait of interest 148,149. 

Up until the 1990s, SNPs were studied using methods that were costly and focused on 

a small section of the genome, and therefore only a small number of SNPs were 

associated with biological outcomes 148. However, major events took place in the early 

2000s that would radically transform the field of genetics as it was hitherto known. The 

completion of The Human Genome project in 2003 marked the start of many further 

initiatives to explore the genetic architecture of humans 150. Projects such as HapMap 151 

and the 1000 Genomes Project 152 were further initiatives that aimed to map genetic 

variation across global populations.  

 

The study of hundreds of thousands, or millions of SNPs in a comprehensive manner 

and how they associate with a trait is called a genome-wide association study (GWAS) 

153. In cohort studies where people aim to understand the genetic architecture of a 

particular trait, patients undergo both genotyping and a recording of baseline 

measurements (Figure 1-3) 154. GWAS have been invaluable in pushing the boundaries 

of what is known in relation to BCTs and disease. SNPs associated with BCTs could be 

mapped to novel genes and investigated through existing databanks or new methods in 

relation to auto-immune disease 155, T2D, cancers or blood disorders 156. 
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Figure 1-3. The concept of a genome-wide association study.  

Made with Biorender.com. 
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The first GWAS was performed in 2005 on age-related macular degeneration using only 86 

cases and 50 controls 157. It did not take long until scientists took this concept further and 

applied it to BCTs. Here however, the sample-sizes were already considerably larger than in 

the first GWAS 158. By the late 2000s, GWAS in up to 25,000 thousand participants had been 

done to investigate the genetic architecture of BCTs 158, outlining loci associated with traits 

such as MCV, WBC count and MPV 158. Further smaller scale studies focusing on SNPs 

associated with gene expression, a.k.a. expression quantitative trait loci (eQTLs), were useful 

in describing the transcriptional profile of WBCs during pathogenic conditions, establishing 

mechanistic pathways of immune system activation 159. 

 

However, GWAS could also provide insights into ancestry-specific effects that were previously 

unknown. One notable example is the GWAS of David Reich and colleagues in 2009, where 

they identified that the “Duffy” SNP rs2814778 was predominantly responsible for the BEN 

seen in people of African ancestry 160, outlining that the genetic architecture between 

populations could differ. This showed that performing GWAS in diverse populations is 

beneficial, as GWAS done in one population might not be translatable to other populations 153. 

 

1.5.1. Genetics and large-scale biobank studies 

The 2010s were marked by large scale initiatives that aimed to combine phenotypic and 

genotypic data. Such examples include the UK Biobank (UKBB) study in the UK 161 and the 

Million Veterans Program in the US 162. However, conducting large scale studies was not the 

only way to improve sample-sizes for novel loci discovery, as smaller consortia could pool 

their data together. One such example is the GWAS of CRC risk by Huyghe et al., where over 

60 studies pooled their data to generate a final meta-analysed dataset of over 100K CRC 

cases and controls 163.  

 

Currently, most large consortia have adopted the concept of directly genotyping a selected 

number of SNPs (e.g. 800K for UKBB 164), and imputing the remaining millions of genetic 

variants using a reference panel with whole genome sequenced (WGS) data, such as the 

1000 Genomes project 154. This allows for conducting studies in tens or hundreds of thousands 

of people in a cost-efficient manner 154. 

 

This increase in power due to large sample-sizes proved to be incredibly helpful in mapping 

the genetic architecture of traits that were not monogenic i.e. only variation in one SNP or 

gene is responsible for changes in a phenotype 153. One of these are polygenic traits, where 

multiple SNPs/genes contribute to changes in a trait 165. At the end of this spectrum are 
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complex traits, where many SNPs contribute to small changes in a trait along with the 

environment and interactions arising from genes and the environment 153. 

 

1.5.2. Blood cells as complex traits 

BCTs also belong to this category of traits, as even early GWAS identified tens of loci that 

were responsible for BCT variation 158. Further analyses with higher sample-sizes like the 

analysis of Astle et al. in UK Biobank using over 300K people of European ancestry identified 

hundreds of loci associated with BCTs 149. More recent studies like that of Chen and 

colleagues took this further, meta-analysing UKBB with other consortia to find additional novel 

loci affecting BCTs 166. These initiatives showed that genetics could greatly contribute to the 

biological knowledge of blood cells, even after decades of laboratory-based research on the 

topic. As mentioned at the start of this section, this allowed for the identification of how BCTs 

are involved in disease. 

 

1.6. Causal inference in genetic epidemiology 

The release of publicly available summary statistics for GWAS conducted using data from 

these large consortia made it accessible for genetic epidemiologists to perform analyses, 

especially with the release of centralised databases, such as the GWAS Catalog 167. Genetic 

epidemiology is a branch of epidemiology that looks at the relationship between genetics and 

disease and it aims to leverage people’s genetic data to find a causal relationship between an 

exposure and an outcome 168. 

 

1.6.1. Mendelian randomization 

One important method in genetic epidemiology is Mendelian randomization (MR), which is 

named after Gregor Mendel 169, an Austrian priest and scientist from the 19th century and now 

considered to be a major figure in the field of genetics 170. MR is most known from the popular 

article published by George Davey-Smith and Shah Ebrahim back in 2003 169. The method 

makes use of the random assignment of theoretically independent alleles at conception, under 

Mendel’s ascribed second law of genetics 169, to give causal estimates between an exposure 

and an outcome. This has been said to be analogous to a randomised controlled trial (RCT, 

discussed further in Chapter 2) in so much as the genetic variation employed in these studies 

should be effectively independent of other alleles and the environment/confounding factors 

171,172. Since then, MR has been extensively used to estimate causal relationships between 

exposures and outcome 173. 
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Given a set of assumptions, MR can be used to estimate a causal effect of an exposure (e.g. 

BMI) on an outcome (e.g. T2D) 171. This has advantages over traditional epidemiological 

approaches in the context of BCTs as risk factors for disease, which will be further explored 

in Chapter 2. However, the point of MR is not to replace existing traditional epidemiology or 

lab-based approaches, but rather to serve as a bi-directional avenue which can inform and be 

informed by these traditional approaches (Figure 1-4). 

 

MR has been valuable in addressing the difficult questions by such tradtional approaches. 

One such example is the relationship between C reactive protein (CRP), a protein produced 

by the liver and a marker of inflammation, and risk of developing coronary heart disease (CHD) 

174. Observational methods had shown that higher CRP levels were associated with an 

increase in CHD development, leading researchers to believe that CRP has a causal effect 

on CHD risk 175. Scientists from the C Reactive Protein Coronary Heart Disease Genetics 

Collaboration performed a MR analysis of CRP on CHD risk, where they did not find evidence 

of a causal effect of CRP on CHD risk 175.  

 

Another example came from a study done by Voight et al 176. Observationally, a higher high-

density cholesterol (HDL) was associated with a decrease in myocardial infarction risk 176. 

However, in their MR study of HDL to CHD risk, Voight et al. identified in their MR analysis 

that there was no evidence of a causal relationship between higher HDL levels and myocardial 

infarction risk 176. 

 

Furthermore, observational studies had previously found a negative association between 

selenium intake and prostate cancer risk 177. In a follow-up RCT by the Selenium and Vitamin 

E Cancer Prevention Trial (SELECT), selenium had shown no association with risk of 

developing prostate cancer, contrary to the initial observational studies 178. In their follow-up 

analysis of this trial, Yarmolinsky et al. conducted a MR analysis between selenium intake and 

prostate cancer risk, where they did not find any evidence of a causal effect 177, outlining the 

value of MR in testing observational studies in a more cost-effective and timely manner than 

a RCT. 

 

These examples, along with many more over the past decade, have shown that MR is a 

valuable tool in assessing causality. 
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1.6.2. Genetically proxied BCTs and Mendelian 
randomization 

The capacity for MR to detect risk factors for disease is useful when a RCT cannot be 

performed, either due to cost, practicability or ethics 172 – BCTs are included in this category, 

as for example one might not expect to give BCT altering drugs to patients. Studies using MR 

to explore the relationship between BCTs and disease have been very few, and given the 

gaps in knowledge concerning blood cell indices and disease risk, applying this method in the 

context of BCTs as risk factors is desirable for establishing an avenue for further studies. 

 

 

 

Figure 1-4. MR in the context of empirical methods used to advance the knowledge in 
biomedical research.   
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1.7. Overarching objective of thesis and aims 

The overarching objective of my thesis is to show how studying the relationship between 

genetically proxied traits that affect BCT driven diseases can improve our understanding 

of BCTs and disease aetiology. To do this, I will use Mendelian randomization (MR).  

 

I have chosen to focus on three diseases, which are also the foci of the research 

questions of my thesis, each structured in a results chapter and coming with their own 

methodological challenges: 

i. Do WBC subtype counts affect the risk of developing CRC? (Chapter 3) 

ii. Does a higher neutrophil count increase the risk of severe P. falciparum malaria? 

(Chapter 4, Chapter 5) 

iii. What are the mechanisms through which platelet BCTs could affect the risk of 

DVT? (Chapter 6) 

 

I will delve deeper into the biology of each disease and their relationship with the chosen 

BCTs in the respective results chapters. 
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CHAPTER 2.  METHODS AND DATA 
SOURCES  

Chapter summary 

The aim of this chapter is to give a broad overview of the different types of 

epidemiological studies and to describe in depth the advanced methods in genetic 

epidemiology that I have used to address the aims of my thesis, e.g., Mendelian 

randomization (MR) 169. I will then enumerate, in detail, the data sources that I have used 

to conduct the analyses in my thesis. Chapter-specific methods have been described in 

the respective results chapters.  

 

2.1. Traditional methods in epidemiology 

There are many types of study designs employed in epidemiological research, most of 

which use data available at the population level to assess the relationship between an 

exposure and an outcome with the aim of establishing a causal link between the two 179. 

These are typically ranked from the point of view of their potential to provide evidence 

for causality 180. For example, a case-report involves the study of only one case and can 

be useful in investigating a rare disorder or generating new hypotheses, but it carries 

little weight in establishing a causal relationship between an exposure and an outcome 

181. At the opposite side of the spectrum are randomised controlled trials (RCTs), which 

are considered to be the “gold standard” in establishing causality (Table 2-1) 161,180–183.  

 

Table 2-1. Traditional study designs in biomedical research. 

Each study design is ranked top-down by its ability to allude to causality. Note: this is a 

non-exhaustive list (many subtypes exist for each study design) and none are perfect, 

which is why triangulation (discussed in the previous chapter) is important. 

Study design Description Evidence 

description 

Type 

Randomised 

controlled trial 

Participants randomly 

allocated into treatment 

(exposure) and 

control/placebo groups. 

"Gold standard" in 

establishing 

causality. 

Intervention 

Very expensive and time-

consuming. 

Strict selection criteria. 
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Study design Description Evidence 

description 

Type 

Might not be 

practical/ethical e.g. 

cannot force participants 

to smoke. 

Cohort study Participants recruited first, 

after which they are 

followed and can 

eventually develop the 

outcome. 

Less susceptible to 

bias than case-

control study, 

especially if 

prospective. 

Analytic 

Can be used to study 

associations of exposures 

with diseases. 

Expensive and time-

consuming. 

Needs large sample-size 

to study rare diseases e.g. 

UK Biobank. 

Case-control study Cases recruited first, after 

which controls are 

selected to be similar in all 

traits to cases apart from 

the outcome. 

Only shows an 

association, does 

not estimate a 

causal effect. 

Analytic 

Cannot establish 

temporality between 

exposure and outcome. 

Can be used as an 

initial study to give 

evidence for 

possible causal 

factors. 

Can be used to study 

associations with (usually) 

rare disease. 

Susceptible to bias 

such as recall and 

selection bias. 

More expensive and 

lengthy than cross-

sectional studies. 
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Study design Description Evidence 

description 

Type 

Cross-sectional study Snapshot of a study 

sample at a point in time. 

Cannot establish a 

causal relationship 

due to the exposure 

and outcome being 

studied at the same 

time. 

Descriptive 

Studies individuals. 

Can assess the 

association between an 

exposure and an outcome 

Fast and cheap. 

Correlational/Ecologi

cal study 

Studies groups rather than 

individuals.  

Could provide 

evidence of 

causality, althoguh 

unable to distinguish 

if other sources 

contribute to the 

association. 

Descriptive 

Provides the correlation 

between two variables of 

interest. 

Case-series Similar to a Case-report, 

where multiple cases are 

studied. 

Slightly better than 

Case-reports. 

Descriptive 

Case-report A single case is studied. Lowest potential in 

establishing 

causality. 

Descriptive 

Patient usually has a 

certain disease 

manifestation or a 

syndrome. 

No controls. 

Does not test a 

hypothesis. 

Fast and very affordable. 

Can generate new 

hypotheses. 

 

 

Observational studies have been valuable in establishing causality in well-known cases 

such as smoking and lung cancer, hepatitis B and liver cancer 184. However, these types 
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of studies are susceptible to biases such as confounding that can either provide a false-

positive or mask a true causal effect 185.  

 

Confounding is when a variable affects both the exposure and the outcome, which then 

leads to a non-causal association to be identified between the two traits (Figure 2-1A) 

179. The confounding variable can be added as a covariate (i.e. controlled for) in the 

statistical model, although knowing all potential variables that one should adjust for is an 

almost impossible task 186. A specific type of confounding is reverse causation, where an 

association is seen between an exposure and an outcome, but this is due to the outcome 

affecting the exposure rather that the other way around (Figure 2-1B) 187.  

 

Other cases that affect association statistics exist. One is collider bias, where controlling 

for a variable that is affected by both the exposure and the outcome can introduce a 

spurious association between the two 188 (Figure 2-1C). Sampling bias is also an issue, 

where participants recruited in a study are not representative of the whole population 

and limits the generalizability of the results 188. 

 

 

Figure 2-1. Common causes of bias in observational studies.  

Confounder introducing a non-causal association between the exposure and outcome 
(A); reverse causation, where the association is due to the outcome affecting the 
exposure (B); collider bias, where both the exposure and outcome act on the collider 
variable, introducing bias if controlled for (C). 

 

As they have the greatest capacity to overcome these limitations of observational 

studies, RCTs are considered to be the “gold standard” in establishing causality 189. 

Nevertheless, they also come with some caveats (Table 2-1). More specifically, in the 

case of BCTs and disease, a RCT would most likely be an unrealistic proposition. For 

example, it would not be practical, let alone ethical, to give patients drugs that alter BCTs, 

as it would likely have detrimental health consequences. Moreover, it would be costly to 

investigate the relationship between changes in BCTs and e.g. cancer, as the study 

would have to run for many years for cancer to develop.  
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2.2. Mendelian randomization 

If one aims to study the relationship between BCTs and disease with the aim of 

establishing a causal relationship, employing novel methods is required. MR is a one 

such method in genetic epidemiology that makes use of Mendel’s 2nd ascribed law of 

genetics 169, which refers to the random allocation of alleles that takes place during 

meiosis 190. As mentioned in the previous chapter, a GWAS analysis studies the 

association between SNP allele variation and unit changes in a trait of interest 154. MR 

uses these SNPs associated with a trait to proxy for an exposure (i.e. the GWAS trait) to 

estimate a causal effect between an exposure and an outcome 169. As the alleles for the 

SNPs instrumenting an exposure are randomly assigned at conception, this makes MR 

work akin to a RCT 191 (Figure 2-2). 

 

 

In the context of existing study designs in epidemiology, MR is a relatively new method 

that under certain assumptions 192 can be used in the discovery of novel risk factors or 

for testing previously known associations 193,194. The capacity for MR to establish a causal 

relationship makes it a powerful method that can be useful when conducting a RCT is 

not possible, either due to cost, ethics, or practicability 189. As described previously, this 

is the case for blood cell traits (BCTs), making MR the next best method for causal 

inference in BCTs and disease (Figure 2-3) 171,180–183. 

Figure 2-2. MR compared with a RCT.  

In MR, the RCT equivalent of the control group is the non-effect allele, while the equivalent of the 
treatment (exposure) group is the effect allele. 
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Figure 2-3. MR in the context of biomedical study designs. 

Note that this hierarchical pyramid assumes that each study is done appropriately – there 

can be poor RCTs that would rank lower than e.g. a cohort study.  

 

MR can provide a causal estimate if and only if the following conditions are met 169,192 

(Figure 2-4):  

1) The genetic variant (G) is a valid instrument, in that it is reliably associated with the 
exposure. By valid instruments I refer to genotypes to act as instruments which 
offer properties close to those necessary for running a MR analysis. A general rule 
is a SNP with an association P-value with the exposure of < 5e-8 195.  

2) There is no independent association with the outcome, except through the 
exposure.  

3) The instrument is independent of any measured or unmeasured confounding 
factors.  
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Figure 2-4. MR assumptions.  

MR works in a similar way to a RCT, exploiting the essentially random allocation of alleles 
at conception and the independent assortment of parental variants at meiosis. MR uses 
genetic variants (G) as proxies (instruments) to investigate whether an exposure (E), is 
causally associated with an outcome (O). 

 

2.2.1. One-sample MR 

The first MR studies were conducted in a one-sample (1SMR) manner i.e. both the 

exposure and outcome data come from the same cohort, and individual-level data is 

used 196,197. In current 1SMR studies, a polygenic risk score (PRS) for each individual in 

the dataset is created by summing-up all the risk alleles (0, 1 or 2) for all k SNPs used 

as instruments for the exposure 198. Afterwards, a two-stage least-square regression 

(adjusting for other variables) is conducted between the exposure PRS and the outcome, 

estimating an effect 191.  

 

2.2.2. Two-sample MR 

With the rise in publicly available GWAS, a further development to MR was made – the 

two-sample MR (2SMR) method, where the exposure data and outcome data come from 

separate GWAS 199. Here, an additional requirement is that the participants from the 

exposure and outcome GWAS are from the same population (e.g. both datasets are from 

individuals of European ancestry) and there should not be any overlap between the two 

studies 200.  

 

The sample overlap requirement is more nuanced, however. If the exposure and 

outcome effects are estimated using the same participants, the resulting bias aligns with 

the confounded observational association 201. In contrast, when the datasets for 

exposure and outcome are entirely distinct, the bias tends towards the null, while for 

datasets with partial overlap, the bias lies somewhere between these two extremes 201. 

 

G E O
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The particularities of 2SMR give it certain advantages over 1SMR. For example, it is 

usually more accessible, statistically powerful and cost-efficient due to summary-level 

data for the exposure and outcome coming from two separate studies 197. While these 

benefits make 1SMR a more expedient method, they don't necessarily imply that 2SMR 

is less biased than 1SMR 200. In the next section I will explore the most common methods 

used in 2SMR studies.  

 

Due to its popularity, many methods have been designed for 2SMR analyses to either 

test the assumptions of MR or act as extensions to the method 200. In the next section I 

will explore the most common methods used in 2SMR studies. 

 

2.3. Common Mendelian randomization 
methods 

2.3.1. Wald ratio 

In 2SMR, the effect of one single-nucleotide polymorphism (SNP) is estimated using the 

Wald ratio (WR) method, which is the two-stage least squares 1SMR estimate when only 

one SNP is available to use as an instrument for the exposure 189. The WR is calculated 

through the formula:  

β̂𝐼𝑉 =
β̂𝐺𝑌

β̂𝐺𝑋

 ,  where: 

β̂𝐺𝑌  𝑖𝑠 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 − 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑁𝑃 − 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 or Γ 

β̂𝐺𝑋  𝑖𝑠 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 − 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑁𝑃 − 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 or γ 

 

2.3.2. Inverse-variance weighted 

The most common method used in MR when more than one SNP is available as an 

instrument is the fixed-effects inverse-variance weighted (IVW) method. It represents the 

meta-analysis of all ratio estimates (WRs) and works akin to the meta-analysis employed 

in traditional epidemiological approaches 202. The MR IVW weights each SNP by the 

inverse of the variance of the SNP-outcome association 202. This weighting is done under 

the no measurement error assumption of the SNP-exposure association 203. 

 

Given k number of SNPs used to instrument for an exposure 204: 

Γ𝑘 = βγ𝑘 

𝑊𝑘 =
1

𝜎𝛤
2   , 𝑤ℎ𝑒𝑟𝑒: 
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𝑊𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑆𝑁𝑃 𝑘 𝑎𝑛𝑑 

 𝜎𝛤
2 𝑖𝑠 𝑡ℎ𝑒 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑁𝑃 ‐ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑆𝑁𝑃 𝑘  

 

Given these, the formula for the fixed-effects IVW method is 202: 

β̂IVW =
∑ β̂𝑘

K
k=1 Wk

∑ Wk
K
k=1

  , 

 

and a visual representation of the equation is showed below in Figure 2-5. 

 

 

Figure 2-5. IVW estimate example.  

Each purple dot on the scatterplot represents a SNP used to instrument for the exposure, 
along with the zero-constrained regression line. The dotted lines represent the effect size 
and 95% confidence intervals (CIs) for both the SNP-exposure (x-axis) and SNP-
outcome (y-axis) association. Made with BioRender.com. 

 

The resulting beta (�̂�𝐼𝑉𝑊) can be exponentiated to generate an odds ratio (OR), and 

combined with the standard error (SE), can then provide the CIs, aiding in the 

interpretability of the MR results. 

 

The IVW method has the most power to detect an effect between an exposure and an 

outcome, as it assumes that all the SNPs used in the MR analysis are valid 205. This 

comes with its disadvantages, such as increased susceptibility of the MR analysis to bias 

194. There are some possible ways in which MR estimates can be biased due to invalid 

instruments 195. One common type of bias is weak-instrument bias and happens when 

the SNPs explain too little of the variance in the exposure 204,206. The conditional F-

statistic is calculated for each SNP and a rule of thumb is that a F < 10 is indicative of 
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potential weak-instrument bias 206. Another common type of bias can arise due to the 

presence of horizontal pleiotropic SNPs 207. 

 

2.3.3. Vertical and horizontal pleiotropy 

The two common forms of pleiotropy discussed in MR studies are vertical and horizontal 

pleiotropy 208. In the case of vertical pleiotropy, the SNP used to instrument for the 

exposure is acting downstream of the exposure through a biological intermediate to 

affect the outcome 194,208. This does not invalidate MR assumptions, as the SNP is still 

acting through the exposure, and is in actuality necessary for MR 197. The presence of 

vertical pleiotropy is indicated by Cochran’s Q statistic for heterogeneity applied to the 

MR method 197.  

 

On the other hand, horizontal pleiotropy is when a SNP does not act on the outcome 

through the exposure, but rather through a different biological pathway 194. The inclusion 

of one or more horizontal pleiotropic SNPs can bias the IVW MR estimate if the horizontal 

pleiotropic effect is unbalanced i.e. the sum of the pleiotropic effects don’t cancel-out in 

both directions 195. The issue of detecting and dealing with horizontal pleiotropy led to 

the development of methods to detect and correct for it. 
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Figure 2-6. Vertical and horizontal pleiotropy in MR. 

Vertical pleiotropy, where genetic proxies (SNPs – G) act only through the exposure, and 

the Exposure either affects the Outcome directly or indirectly downstream through 

another trait ‘Trait X’; this does not invalidate MR assumptions (A) . Horizontal pleiotropy, 

where genetic proxies act fully or in part through trait ‘Trait X’, which then affects the 

outcome directly or indirectly downstream through the Exposure; this does invalidate MR 

assumptions (B) . 

 

2.3.4. MR-Egger 

One such method is MR-Egger, first described by Bowden et al. 205. As was the case 

with the IVW method, MR-Egger actually has its roots in the Egger method used to 

identify small-study bias in meta-analyses described by Egger et al. 209. The MR-Egger 

assumptions 2 and 3 are the same as those in Figure 2-4, while the 1st assumption is 

replaced with a more relaxed instrument strength independent of direct effect (inSIDE) 

assumption 205. The latter states that if horizontal pleiotropic SNPs are present, these are 

equally distributed across separate biological pathways 205.  
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Unlike the IVW method, the regression intercept is not constrained to zero, but rather 

estimated as part of the analysis 210. If the intercept does equal zero, then the MR-Egger 

estimate is equivalent to that of the IVW method and suggests that horizontal pleiotropy 

is either not present or is balanced, while the opposite applies when the slope is non-

zero 210.   

 

While MR-Egger regression is valuable in assessing the presence of horizontal 

pleiotropy, the method has some limitations. For example, the power to detect an effect 

is much lower compared to the IVW method, and therefore many SNPs are required to 

proxy for the exposure for a reliable estimate 211. Moreover, the inSIDE assumption can 

be invalidated if all pleiotropic SNPs act through the same pathway 210. Therefore, 

additional sensitivity MR methods were further developed to be used in parallel with the 

IVW and MR-Egger analyses. 

 

2.3.5. Weighted median 

Another sensitivity method developed to investigate horizontal pleiotropy is the weighted 

median 204. In brief, a distribution is generated from the ratio estimates, and each ratio 

estimate contributes to this distribution based on their 𝑊𝑘 weight 204. The 50th percentile 

(median) of this distribution represents the weighted median estimate 204. Unlike MR-

Egger, the weighted median assumes that at least 50% of the weight comes from valid 

instruments 204, giving it more power to detect an effect while also being less susceptible 

to pleiotropic outliers than the IVW method 211. 

 

2.3.6. Weighted mode 

The weighted mode approach is another sensitivity MR method developed by Hartwig et 

al. 212. The same empirical distribution method as in the weighted median is applied, 

although in this case the estimator is the mode (most frequent) ratio estimate 212. Unlike 

the median-based estimator, the weighted mode can provide an estimate for an effect 

even when only a plurality (<50%, can vary) of the SNPs are valid instruments, as only 

the modal SNPs have to be valid instruments 212. While this decreases the influence of 

pleiotropic outliers on the MR result, it also means that the mode-based estimate has 

lower power compared to the IVW and weighted-based estimates 212. 
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2.3.7. MR-PRESSO 

Another sensitivity analysis is the MR Pleiotropy RESidual Sum and Outlier (MR-

PRESSO) method 207. The first test detects if there is evidence of horizontal pleiotropy 

and identifies the possible outlier pleiotropic SNPs through a residual sum of squares 

approach 207. After detection of these outliers, an IVW analysis is run again on the 

remaining SNPs, and the result is compared with the initial uncorrected MR to assess if 

these outliers influence the MR results to a large degree, which can inform if horizontal 

pleiotropy is responsible for the unadjusted effect 207. Like MR-Egger, MR-PRESSO has 

the inSIDE assumption, and that at least 50% of the SNPs are valid instruments for the 

exposure 207. 

 

2.3.8. MR-Steiger 

Another sensitivity 2SMR method is MR-Steiger, which is an extension of Steiger’s Z-

test of correlated correlations 213,214. It is suitable when conducting MR using large-scale 

GWAS summary statistics 213,214. In essence, the method assumes that the variance 

explained by the SNPs used in the MR is higher for the exposure than for the outcome 

213,214. Based on this, it can suggest if one or more SNPs used in the MR are reverse 

causal i.e. act on the outcome to affect the exposure, and eliminates those from the main 

MR analysis if that is the case 213,214. 

 

2.3.9. Multivariable MR 

Sometimes in a MR analysis, the exposure of interest is genetically correlated with other 

traits 215. For example, 30% of the SNPs used to proxy for exposure A might also be 

used to proxy for exposure B, making it more difficult to untangle the biological 

mechanism that affects an outcome. Therefore, an extension of MR is multivariable MR 

(MVMR), developed to account for the shared SNPs between two or more exposures of 

interest and to estimate their direct effect on the outcome 215,216 (Figure 2-7). This is 

useful in the study of the direct effects of e.g. WBC subtype counts on disease, as these 

are known to be genetically correlated 166. 

 

Moreover, MVMR can also be used to correct for the presence of confounders that might 

bias effect estimates. Instead of trying to estimate the direct effect of two correlated traits, 

the exposure’s estimate can be corrected by accounting for the shared genetic 

instruments with the confounder 216. 
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MVMR shares the same assumptions and limitations of univariable MR 216. There are, 

however, additional limitations and assumptions that MVMR can have in addition to 

univariable MR. For example, weak instrument bias can also take place if the proportion 

of variance explained by SNPs instrumenting for trait A also explain a high degree of the 

variance in trait B, as the remaining trait B-specific SNPs used in the MVMR might not 

be enough to give a reliable MR result 217. Additional limitations apply to each added 

exposure in the MVMR analysis, including the assumption of linear and homogeneous 

effects of the exposure on the outcome 216. 

 

In their recent publication, Sanderson et al. provide an R-package that can perform 

sensitivity analyses for MVMR as well, such as heterogeneity and conditional F-statistic 

values, which are useful in assessing the validity of the MVMR estimates 217. However, 

this requires a covariance matrix of the effect of each SNP on each exposure or a 

correlation matrix between the phenotypes, which can only be calculated from individual-

level data 217. Otherwise, the covariance is assumed to be 0 217. 

 

 

Figure 2-7. Multivariable MR schematic.  

The concept is similar to that of univariable MR. Given k number of SNPs (G) proxying 
for exposures E1, E2, and E3, MVMR can estimate the direct effect of each exposure on 
the outcome (O) of interest. 
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2.3.10. MR for mediation analyses 

Mediation analysis is a method now integrated in MR that was traditionally used in 

observational epidemiology to investigate intermediary factors that lie on the pathway 

between an exposure and an outcome, and is useful in understanding the aetiology of 

e.g. disease 218.  

 

There are two ways a mediation MR can be performed. The first one is also known as 

two-step MR, where the exposure and the mediator each use separate SNPs as proxies 

218. The second one is through MVMR, where the exposure and the mediator share a 

combined genetic instrument repertoire, and the direct effect of the exposure on the 

outcome is estimated 218. The mediation MR analysis assumes no interaction between 

the exposure and the mediator, and that there are no other pathways through which 

proxy SNPs act apart from the exposure and mediator 218. 

 

The two-step MR and MVMR approaches allow for the estimation of the indirect effect of 

the exposure on the outcome, which can be calculated using the product of coefficient 

method or the difference method 218. The product of coefficients is essentially the effect 

of the exposure-mediator MR multiplied by the meditator-outcome MR, while the 

difference is given by subtracting the direct effect of the exposure-outcome MR from the 

direct effect of exposure-outcome MVMR result 218. The indirect effect can then be used 

to calculate the proportion mediated by the mediator in the exposure-outcome 

relationship. This is only possible when the indirect and total effect are in the same 

direction and is given by the following formula: indirect effect / total effect * 100 (Figure 

2-8) 218.  

 

 

 

Figure 2-8. Two-step mediation MR schematic. 

The exposure of interest is proxied through SNPs (G), while the mediator is proxied 

through its own instruments. The effect of the exposure on the mediator is estimated (A). 

Afterwards, a MR analysis is done between the mediator and the outcome (B). Next, the 

total effect of the exposure on the outcome is estimated (C). This then allows for the 
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calculation of the indirect effect and estimation of proportion mediated by the mediator in 

the exposure-outcome causal relationship. In MVMR, the direct effect C’ is estimated, 

after which the difference method is applied to calculate the indirect effect. 

 

2.4. GWAS summary statistics 

To run a 2SMR analysis, one needs to have access to the summary statistics of both the 

exposure and outcome GWAS 219. In the previous chapter, I briefly described the concept 

of GWAS and how they are conducted. By “summary statistics”, one refers to a dataset 

which contains the minimum amount of information (non-identifiable) that can help the 

reader understand which, in which direction, and to what degree a SNP is associated 

with a particular trait 220. Most GWAS report summary statistics as a file with at least the 

following columns: the ID of the tested SNP (e.g. rs123 or 1:1231231_A_T if no rsID 

present), the chromosome number and base-pair position to which the SNP maps to, the 

effect allele (studied allele in relation to the trait), non-effect allele, effect allele frequency, 

beta coefficient of the regression, standard error, P-value, and sample-size 167.  

 

2.5. Non-MR analytical approaches 

2.5.1. Population genetics tools 

ADMIXTURE. Software designed to map individuals from a sample to a k number of 

populations given two or more reference datasets where the populations are already 

known 221,222. This allows for the estimation of the percentage ancestry compared to the 

reference datasets for each individual in the study sample 221,222. 

 

Principal component analysis. Is a statistical method designed to reduce the number 

of dimensions to a set of uncorrelated variables called principal components 223. 

Interestingly, PCs generated from genetic data have been found to correspond to 

geographical locations on a map, indicating the usefulness of PCs as measures of 

population structure 224,225. Software such as EIGENSOFT are able to take as an input 

people’s genetic data to generate PCs that are then loaded and displayed with the R and 

Python programming languages, as well as being added as covariates in GWAS to 

reduce bias due to population stratification 226–229.  

 

K-means clustering. K-means clustering is an unsupervised classification algorithm 

used in machine learning that partitions n observations into k clusters in such a way that 
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the data points within a cluster are more similar than those (outside) in another cluster 

230. This method was used in Chapter 4. 

 

Fixation index. Estimations of fixation index (Fst), which range from 0 to 1, provide a 

measure of population differentiation among populations, which describe the proportion 

of total variation at a SNP that is explained by variation between populations 231. For any 

SNP, a value of 0 would indicate that minimal variation is attributable to variation between 

populations, while a value of 1 would indicate a fixed difference i.e., the two populations 

are both invariable but for alternative alleles 231. This method was used in Chapter 4. 

 

2.5.2. GWAS software 

SNPTEST. Is a software used to run linear models for GWAS 232. In essence, it 

represents a linear regression run between the dosages of the effect allele for each SNP 

included in the model (0, 1, or 2) and a phenotype. Additional variables e.g. genetic sex, 

age, can be added as covariates in the model. 

 

META/METAL. META 232 and METAL 233 are software in statistical genetics that can take 

multiple GWAS conducted on the same trait and meta-analyse them into a single data 

table. These can either run the fixed-effects or random-effects IVW method of meta-

analysis. 

 

BOLT-LMM. Is a software designed for running GWAS through a linear mixed model 

approach. It builds a genetic relationship matrix to adjust for population relatedness that 

can bias traditional linear model GWAS analyses 234. A GRM is essentially a matrix with 

n rows and y columns, where n = number of individuals in sample and y = number of 

SNPs 235. The ny matrix contains the minor allele counts for each SNPs of each individual 

235234. Additionally, it was designed designed to be very fast when running on datasets 

with hunderds of thousands of inidivduals, such as UKBB. Like SNPTEST, it can adjust 

for covariates such as genetic sex, age and other traits of interest. All software described 

in this subsection were used in Chapter 5. 

2.6. Data sources 

2.6.1. UK Biobank 

The UK Biobank (UKBB) is an ongoing prospective cohort study conducted in the United 

Kingdom 161,164. The aim behind UKBB was the recruitment of hundreds of thousands of 

individuals to provide a centralized data source for scientists to perform biomedical 
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research that would have enough power to detect even disease risk factors with a small 

effect-size on disease development 161. Participants were recruited between the years 

2006-2010 and were 40–69 years old, as the aim of the study was to select participants 

prior to developing diseases that occur later in life, such as cancer 164.  

 

An extensive amount of data was gathered from each study participant attending UKBB 

recruitment centres throughout the UK 161,164. Here, participants answered a long list of 

questions, ranging from dietary patterns, to personality traits, to self-report disease 

status, and linkage with external datasets such as medical records was also done 164. 

One of the steps of the data collection procedures was the collection blood samples, 

which were analysed to produce information on BCTs 164. Participant blood samples were 

analysed using four Beckman Coulter LH750 instruments designed for high throughput 

screening 236, which employ the Coulter method for blood cell measurement 137 discussed 

in the previous chapter. Total white blood cell (WBC) count and WBC subtype 

percentages (%) were measured through the sampling of the blood, with absolute WBC 

subtype count derived as “WBC subtype % / 100 x total WBC“ and expressed as 109 

cells/Litre 236.  

 

Apart from gathering of phenotypic data, the genomes of the participants were 

sequenced using two arrays specifically made for the study: the UKBB Axiom Array and 

UK BiLEVE array, which were used to directly genotype around 800K SNPs 164. Further 

analyses were done, such as PC generation and multiple imputation of millions of genetic 

variants, allowing researchers to run GWAS 164. UKBB data was used across all chapters 

of my thesis. All participants provided written informed consent, and each study was 

approved by the relevant research ethics committee or institutional review board. UK 

Biobank received ethical approval from the NHS National Research Ethics Service North 

West (11/NW/0382; 16/NW/0274) and was conducted in accordance with the 

Declaration of Helsinki. Individual-level UKBB data from application ID “81499” were 

used for Chapter 3; for Chapter 4 and Chapter 5, these were provided as part of 

application ID “15825”. I am a co-investigator in both applications, which cover all the 

UKBB data I used in this thesis for each respective chapter. 

 

2.6.2. White blood cell count data 

Summary statistics for WBC count and subtypes were obtained from a recent study by 

Chen et al. as part of the “Blood Cell Consortium” (BCX) 166. These were generated 

through a meta-analysis of GWAS previously conducted in people of European, African, 

East Asian, South Asian and Hispanic-American ancestries, with a total sample-size of 
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746,667 participants 166. Genetic sex, age, age2, study-specific variables and principal 

components (PCs) 1 to 10 were used as covariates. Effect estimates were meta-

analysed by ancestry, and in a trans-ancestry setting 166. A brief description of each 

meta-analysed study is available in Appendix 1. Specific details on QC steps and 

association testing are available in the source manuscripts. This dataset was used in 

Chapter 3 and Chapter 5 237,238. All participants provided written informed consent, and 

each study included in the meta-analysis (see Appendix 1) was approved by the 

relevant research ethics committee or institutional review board 166. Summary statistics 

for WBC counts were downloaded from the following website: http://www.mhi-

humangenetics.org/en/resources/. 

 

2.6.3. Colorectal cancer data 

The GWAS summary statistics for CRC and its anatomical subtypes come from the most 

comprehensive meta-analysis of CRC risk to date 163,239. In the first stage, 45 studies part 

of the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), 

Colorectal Cancer Transdisciplinary Study (CORECT), and Colon Cancer Family 

Registry (CCFR) consortia were meta-analysed (34,869 cases and 26,783 controls) 240–

242. In the second stage, an additional 24 studies were included 163. The final sample was 

predominantly of European ancestry, with ~5% representing East Asians due to their 

similar CRC genetic architecture 243. Genetic sex, age, study-specific variables, and PCs 

were used as covariates. An overview of all consortia included in the CRC meta-analysis 

is available in Appendix 2. The summary-level GWAS data for CRC used in this study 

were made available following an application to the GECCO. This resource was used in 

Chapter 3 237. All participants provided written informed consent, and each study 

included in the meta-analysis (see Appendix 2) was approved by the relevant research 

ethics committee or institutional review board 163,239. The summary-level GWAS data on 

outcomes used in this study were made available following an application to the Genetics 

and Epidemiology of Colorectal Cancer Consortium (GECCO): 

https://www.fredhutch.org/en/research/divisions/public-health-sciences-

division/research/cancer-prevention/genetics-epidemiology-colorectal-cancer-

consortium-gecco.html. 

 

2.6.4. Allergic disease data 

Summary statistics for allergic disease were obtained from a meta-analysis of 13 GWAS 

done in people of European ancestry by Ferreira et al. 244. Cases were defined as those 

who self-reported suffering from at least one of the following: asthma, hay fever, or 

http://www.mhi-humangenetics.org/en/resources/
http://www.mhi-humangenetics.org/en/resources/
https://www.fredhutch.org/en/research/divisions/public-health-sciences-division/research/cancer-prevention/genetics-epidemiology-colorectal-cancer-consortium-gecco.html
https://www.fredhutch.org/en/research/divisions/public-health-sciences-division/research/cancer-prevention/genetics-epidemiology-colorectal-cancer-consortium-gecco.html
https://www.fredhutch.org/en/research/divisions/public-health-sciences-division/research/cancer-prevention/genetics-epidemiology-colorectal-cancer-consortium-gecco.html
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eczema – while controls were defined as those who did not report any of these afflictions. 

This resulted in a final sample-size of 360,838 (cases = 180,129, controls = 180,709). 

Included covariates and specific numbers for each meta-analysed study is available in 

Appendix 3. This dataset was used in Chapter 3 237. All participants provided written 

informed consent, and each study included in the meta-analysis (see Appendix 3) was 

approved by the relevant research ethics committee or institutional review board 244. 

Exposure summary statistics for allergic disease can be downloaded on the manuscript’s 

journal web page: https://doi.org/10.1038/ng.3985.  

 

2.6.5. Severe malaria data 

GWAS summary statistics for P. falciparum severe malaria were downloaded from a 

case-control study that spanned nine African and two Asian countries 245. In brief, 

controls samples were gathered from cord blood, and in some cases, from the general 

population. Cases were diagnosed according to WHO definitions of severe malaria 246. 

Summary statistics were made available on the following link: 

https://www.malariagen.net/sppl25/. 

 

2.6.6. MR-Base 

MR-Base is an online platform which automates the process of conducting MR analyses. 

It is also available as a standalone R package “TwoSampleMR”. The platform/package 

connects to the OpenGWAS database (see next subsection). There are two main steps 

undertaken prior to an MR analysis that the “TwoSampleMR” package automates. 

 

Genetic confounding may bias MR estimates by double counting SNPs that are in LD 

187. Therefore, the TwoSampleMR package runs the PLINK genetic software 247 to clump 

the SNPs used to proxy for the exposure. Clumping is a process in which SNPs in LD 

(based on the correlation coefficient threshold r2) over a genomic window of X kilobases 

(kb) are removed and only the SNP with the lowest GWA P-value is kept 247. The default 

clumping parameters used in MR studies are stringent (radius = 10,000 kb; r2 = 0.001; 

P-value = 5e-8) 219 and most use the 1000 Genomes (1KG) reference panel 248.  

 

Another pre-MR analysis step is harmonisation 249. The majority of GWAS present the 

effects of a SNP on a trait in relation to the allele on the forward strand 250. However, the 

allele present on the forward strand can change as reference panels get updated 250. 

This requires correction (harmonisation) so that both exposure and outcome data 

reference the same strand 250. For exposure and outcome data harmonisation, incorrect 

https://doi.org/10.1038/ng.3985
https://www.malariagen.net/sppl25/
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but unambiguous alleles are corrected, while ambiguous alleles are removed. In the case 

of palindromic SNPs (A/T or C/G), allele frequencies are used to solve ambiguities. 

These resources developed at the integrative epidemiology unit (IEU) Bristol were used 

across all chapters of this thesis.  

 

2.6.7. OpenGWAS 

OpenGWAS is an online platform which allows the user to access over 14,000 

harmonized GWAS summary statistics through a programming language (R and Python) 

interface 251. It is linked with other packages and platforms, such as the online MR-Base 

database or the TwoSampleMR R package 219, allowing for efficient and standardised 

running of MR analyses. For example, in the case of Chapter 6, the outcome deep vein 

thrombosis (DVT) was presented in OpenGWAS as as “Non-cancer illness code self-

reported: deep venous thrombosis (dvt)”. These summary results describe a GWAS of 

Europeans (6,767 cases and 330,392 controls) conducted using UK Biobank data by 

Benjamin Neale and colleagues (http://www.nealelab.is/uk-biobank). 

 

2.6.8. The 1000 Genomes Project 

Another dataset I employed was the 1000 Genomes Project (1KG), which I also 

mentioned in the previous chapter 152. The latest iteration of the project contains whole-

genome sequence (WGS) data for 2,504 individuals from five continents, each divided 

into subpopulations by the location of sampling within the continent e.g. Kenya and 

Nigeria for the African continent 248. The 1KG has been extensively used as a reference 

panel due to its valuable diverse WGS data, such as in the imputation of UKBB SNPs 248 

or removing SNPs in linkage disequilibrium (LD, i.e. correlated) prior to MR analysis to 

avoid double-counting 170. The 1KG data was used across all chapters of my thesis – 

either directly, as in the case of Chapter 4, or indirectly, in Chapters Chapter 3,Chapter 

5 and Chapter 6, where it was used as a reference panel when clumping SNPs prior to 

conducting the MR analyses.  

 

In this chapter I described the methods and data sources that were part of my thesis. 

The next four chapters encompass the results that have been generated from my work. 

The first one is Chapter 3, where I studied the relationship between circulating white 

blood cells and colorectal cancer using Mendelian randomization 169.  
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CHAPTER 3.  CIRCULATING WHITE 
BLOOD CELL TRAITS AND 

COLORECTAL CANCER RISK: A 
MENDELIAN RANDOMIZATION 

STUDY  
 

Chapter summary 

The aim of this chapter was to assess the relationship between levels of circulating white 

blood cells (WBCs) and the risk of colorectal cancer (CRC) 237 (Figure 3-1). As 

introduced in the Background (Chapter 1), studies using genetic epidemiology to study 

the causal relationship between WBC count and CRC development have not been 

explored, and most research on the topic has used traditional observational approaches 

which suffer from known limitations 191,197. Therefore, to advance our current 

understanding of how immune cells affect the development of CRC, I used univariable 

(UV) 252 and multivariable (MV) 216 two-sample Mendelian randomization (2SMR) 253. I 

will start with an introduction to CRC, its health burden and risk factors. Afterwards, the 

role of WBC count in CRC will be explored, where I will give an overview of what its 

currently known about each WBC subtype in relation to CRC, and what is lacking. I will 

discuss the use of MR to address this knowledge gap by outlining its advantages over 

observational epidemiology. Finally, I will present this study’s objective and break it down 

into smaller aims that I accomplished. The rest of the chapter follows the common paper 

format of methods, results and discussion, the latter in which I will relate my findings 

back to the literature. 
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Figure 3-1. PhD project and current chapter (3 - coloured).  

Created with BioRender.com. 
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3.1. Introduction 

Colorectal cancer (CRC) is the combined term for colon and rectal cancer 254. It accounts 

for over 10% of cancer cases worldwide and is the second leading cause of cancer-

related deaths globally 255–257. Overall, the number of CRC cases is rising 258, and in 2020 

alone, 1.93 million people were diagnosed with CRC and over 940,000 died as a result 

of the disease 258. As living standards and lifestyle patterns in developing countries 

continue to become more Westernised it is estimated that the number of CRC cases will 

continue to grow by over 60% through 2035 259. Given current challenges, and the 

estimation that 50% of CRC cases may be preventable 260, focus on identifying novel risk 

factors, and subsequent prophylactic and treatment options is warranted to limit the 

future healthcare burden of this disease. 

 

Biologically, the colorectum is divided into anatomical subsites: the cecum, ascending 

and transverse colon, which form the proximal colon subsite, the descending and 

sigmoid colon, representing the distal colon subsite, and the rectum 261,262 (Figure 3-2). 

In most cases, CRC develops in the proximal (right side) colon 263 and comes with an 

increased mortality risk compared to left-sided CRCs 264.  
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Figure 3-2. Anatomy of the colon and rectum.  

Adapted from “Colon Callout (Layout)”, by BioRender.com (2022). Retrieved from 
https://app.biorender.com/biorender-templates. 

 

3.1.1. CRC aetiology 

CRC is multifactorial in nature, meaning a combination of environmental and genetic 

factors contribute to disease development 265–267. Notable modifiable risk factors stated 

in the latest World Cancer Research Fund (WCRF) report were high body mass index 

(BMI), red meat and alcohol consumption 268. Complex traits, such as type 2 diabetes 

(T2D) and chronic inflammation, have also been cited as established as risk factors for 

CRC 259,269. Along with established hereditary conditions, such as familial adenomatous 

polyposis (FAP) 270 and Lynch syndrome 271, common genetic variants associated with 
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CRC have also been identified by genome-wide association studies (GWAS) 272. Early 

efforts by Tomlinson et al. in 2007 led to the first known GWAS of CRC, finding one 

single-nucleotide polymorphism (SNP) associated with disease risk: rs6983267, mapped 

to the 8q24.21 locus and the CCAT2 gene, a SNP which had been previously associated 

with prostate and general cancer risk 273. The need for increased statistical power to 

detect genetic associations led to the creation of consortia with larger sample-sizes, 

designed either specifically for the study of CRC, such as the Colon Cancer Family 

Registry (CCFR) 274, or for general healthcare research, such as UK Biobank (UKBB) 

161,164. Eleven years after the first CRC GWAS, the latest iteration of these combined 

efforts was a comprehensive analysis by Huyghe et al. in over 120,000 individuals, which 

identified 40 novel independent single nucleotide polymorphisms (SNPs) associated with 

CRC risk and brought the total number of variants associated with CRC risk to 150 163.  

 

3.1.2. CRC and immunity 

Inflammatory activity is a risk factor for CRC and has predominantly been linked to WBCs 

275. Indeed, immune cells are implicated in tumour surveillance 275 and are one of the 

constituents of the CRC tumour microenvironment (TME) 276. The role of blood cells, 

such as WBCs, in CRC biology has been studied extensively over the past decades, the 

result of which has been to identify inflammation markers for both CRC- and CRC-

associated cells, as well as establishing prognostic factors, such as neutrophil-to-

lymphocyte ratio (NLR) 277.  

 

Historically, WBCs have been studied for their role in the functioning of the innate and 

adaptive immune systems 278. WBCs are now commonly measured in routine blood tests 

and are divided into five subtypes: basophils, eosinophils, lymphocytes, monocytes and 

neutrophils 278. Moreover, they have been found to play a role in disease risk, severity, 

and progression. For example, an increase in eosinophil count has been associated with 

lower disease odds and increased neutrophil count with higher odds of general disease 

279–284. Importantly, observational studies have found a relationship between WBC count 

variation and CRC risk and mortality 285–292. While their counts are correlated to a degree 

both phenotypically and genetically 149,166, WBC subtypes have different effector 

functions 293, making it desirable for them to be studied separately to establish the 

different biological pathways through which they might act to affect CRC development.  
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3.1.3. WBC count and CRC 

While in this project I aimed to assess the relationship between WBC count and the risk 

of CRC, the number of studies looking at WBC count and CRC risk have been limited in 

comparison to those looking at WBC count and CRC prognosis. Therefore, I have also 

included what is known about WBC count and CRC mortality, as it might give some 

indication on the possible ways that WBC count could be associated with a biological 

mechanism that prevents or causes CRC. Studies analysing WBC count trends over time 

prior to CRC diagnosis have been included here as well, as they may explain the findings 

of studies exploring risk, which have predominantly been done a year or less prior to 

CRC diagnosis. More general information about WBCs and their biological relevance is 

available in the background chapter (Chapter 1). 

 

Basophils: 

Understudied for a long time due to their low numbers in circulation, basophils are now 

known to be involved in IgE-mediated immunity and in regulating the function of the 

adaptive immune system 294. They differentiate in the bone marrow from granulocyte-

macrophage progenitors through action of IL-3, the principal cytokine involved in this 

WBC’s production 295.  

 

The role of basophil count in CRC has been studied in relation to both CRC prognosis 

and risk. On CRC risk, Goshen et al. looked at WBC count quintiles in 56,485 individuals 

(1,755 cases, 54,730 controls) from an Israeli population between 30 and 180 days prior 

to CRC diagnosis 291. In this cohort study, they used the bottom quantile as reference 

and compared it to the top quintile, finding a 40% increased odds of CRC diagnosis for 

men and 19% for women in the top quintile for basophil count 291. Using data from the 

UK health improvement database (THIN, cases = 4,929, controls = 11,311), the analysis 

of Boursi et al. pointed towards, but did not show association for, a positive relationship 

between basophil count and CRC diagnosed between 6 to 12 months prior to blood 

sampling 292.  

 

With regards to CRC prognosis, a study following CRC patients over a ten year period 

(N=569) found that a low basophil count was associated with a lower CRC overall and 

disease-free survival 283. Similarly, in their study looking at preoperative CRC patients, 

Liu et al. (N=1,029) showed that a low basophil count was associated with an increase 

in CRC mortality 294. A higher basophil count was associated with increased overall 

survival in Wu et al.’s study done on 153 CRC patients from China 286, showing that 

increased basophil count was also associated with reduced mortality.  
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From a biological perspective, basophils have been associated with the TME 32,296, and 

were shown to aid in recruiting cytotoxic CD8+ T-cells to the tumour site to aid in the 

clearance of cancer cells 297. Therefore, basophil count could act both as a flag for 

improved adaptive system activity and work concomitantly with other immune cells for 

CRC tumour clearance.  

 

Overall, the studies presented here show an apparent contrast between basophil count 

in relation to CRC risk vs. survival. One explanation might be that under homeostatic 

conditions, basophils act through a biological pathway that promotes carcinogenesis, 

while after the growth of the tumour, basophils switch to a predominantly anti-

tumourigenic role. For example, cytokines IL-3 and IL-13 are associated with activity of 

blood basophils, known to induce a Th2 pro-tumourigenic response 298,299. At the same 

time, current studies looking at CRC risk have used a short time window between blood 

sampling and CRC diagnosis, making it possible that the associations observed are due 

to production of basophils in response to the presence of cancer rather than a causal 

effect by basophils on CRC development. However, while these findings point to a 

possible detrimental effect by basophils on CRC risk, the limited number and scope of 

current studies have not established a clear role of basophil count in CRC aetiology.  

 

 

Eosinophils:  

Similarly to basophils, eosinophils are best known for their role in IgE-mediated immunity 

and allergy severity, such as hay fever and asthma 300, a key cytokine in the process of 

differentiation is IL-5 32. Eosinophils also have eosinophil-specific molecules that are 

used to perform effector functions, such as eosinophil cationic protein (ECP) and 

eosinophil-derived neurotoxin (EDN) 301.  

 

With regards to CRC risk, Goshen et al. showed a 62% and 103% percent increase in 

relative risk for CRC when comparing the bottom to top quintile in eosinophil count in 

men and women, respectively 291. When studied 6 to 12 months prior to diagnosis, 

eosinophil count displayed no association with CRC odds in Boursi et al.’s study 292. 

However, these two studies employed a short time window (1-12 months) between blood 

sampling and diagnosis, and the results could indicate increased eosinophil production 

in response to cancer. A more comprehensive study aimed specifically at eosinophil 

count was conducted by Prizment et al. using data from the atherosclerosis risk in 

communities (ARIC) cohort 300. Here, 15,792 people were followed between the years 

1987 to 2006, a timeframe during which 242 incident CRC cases developed 300. 
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Eosinophil count was split into tertiles and the trend was studied in relation to CRC risk, 

which showed a negative association between eosinophil count and CRC risk for colon 

cancer, but not for rectal cancer 300. This trend was also apparent when accounting 

for education, body mass index, smoking status, pack-years of smoking, alcohol use, 

diabetes, fibrinogen, and total WBC count 300. Importantly, analysing only those who 

developed CRC at least 5 to 10 years after blood sampling showed the same negative 

association 300.  

 

Looking at count trends in blood samples from 16,668 Israeli individuals, Rosman et al. 

showed a linear increase in eosinophil count in the years (7 years to 3 months) preceding 

a CRC diagnosis 289. Virdee et al. conducted a study in 939,949 people living in the UK 

and compared the trends in WBC count between those who ended up developing CRC 

(cases = 17,408) and those who did not (controls = 922,541). Here, eosinophil count was 

lower at baseline in those aged 50 who ended up developing CRC versus those who did 

not, and increased slowly over time until diagnosis 302. 

 

In terms of prognosis of CRC, Wei et al. showed that a low eosinophil count was 

associated with decreased overall and disease-free CRC survival 283, while Wu et al. did 

not find any association 286. Using data from 381 Austrian patients diagnosed with CRC, 

Harbaum et al. found a positive association between peri-tumoural eosinophil count and 

disease-free survival 303. Similarly, Väyrynen et al. used a machine learning method to 

scan stained sections of CRC samples from 934 US patients and showed a positive 

association between eosinophil density and cancer-specific survival 304. When 

comparing patients with colorectal polyps and controls in a sample of 1,799 individuals 

from China, Feng et al. found a higher eosinophil count present in those with polyps 305.  

 

A number of laboratory studies have investigated the role of eosinophils in CRC that 

could explain these results. For example, Legrand et al. studied the effect of eosinophils 

on intestinal carcinoma cells (Colo-205), and identified EDN, ECP, and granzyme A 

mediated killing of CRC cells 306. In two subsequent studies, eosinophils were found to 

display antitumour effects with the aid of cytokines IL-18 (Colo-205) and IL-33 (CT26) 

307,308. Moreover, eosinophils have been found to act directly in eliminating tumour cells 

through the aid of IFN-γ, even without action by CD8+ T-cells 309. While the current 

literature indicates that eosinophil count might be protective against CRC development, 

the causal relationship between eosinophil count and CRC remains to be established. 

 

 

Lymphocytes:  
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Lymphocytes are represented by both B and T-cells and are critical for the functioning of 

the adaptive immune system 310. In terms of CRC risk, the analysis by Wu et al. in 426 

individuals who had their blood sampled at CRC diagnosis (CRC = 162, colorectal polyp 

= 132, controls = 108) outlined a lower lymphocyte count in CRC vs. control patients, but 

not in pre-cancerous polyps vs. controls 311. Similarly, Goshen et al. found lower odds of 

CRC diagnosis when comparing the top vs. bottom quintile for lymphocyte count when 

blood sample was taken between 30 to 180 days prior to CRC diagnosis 291. Boursi et 

al. analysed the relationship between lymphocyte count [adjusted for haematocrit (HCT), 

mean corpuscular volume (MCV) and NLR] and CRC odds 6 to 12 months prior to 

diagnosis 292. Here however, they showed that lymphocyte count was associated with 

increased CRC odds 292. Interestingly, in the same study by Virdee et al. outlined above, 

lymphocyte count was lower 9 years prior to CRC diagnosis in those aged 50 compared 

to healthy controls 302.  

 

While NLR is one of the best prognostic markers for CRC 277, absolute lymphocyte count 

has also been associated with CRC prognosis. In their study of 95 Chinese patients with 

CRC, Yang et al. found that a low lymphocyte count was associated with decreased 

progression-free and overall survival 312. Similarly, Tanio et al. showed a negative 

association between low lymphocyte count and overall survival in their analysis of 361 

pre-operative Japanese patients with CRC 313.  

 

Biologically, tumour-infiltrating lymphocytes (TILs) represent a component of the TME 

275, and their numbers have been associated with improved CRC survival 284. Indeed, 

natural killer (NK) and CD8+ T-cells are known to lead to the destruction of cancer cells 

through cytotoxic activity 314,315. Similarly, B-cells are hypothesised to be involved in 

supporting a favourable outcome in CRC due to release of anti-tumourigenic cytokines, 

or through acting as antigen presenting cells (APCs) 316. At the same time, when looking 

at 125 CRC samples from a French hospital, Th1 helper cells were associated with 

improved CRC survival, and Th17 with worse prognosis 317.  

 

Given the current knowledge on the relationship between lymphocytes and cancer, 

lymphocyte count may display a protective effect against CRC development. However, 

most studies looking at lymphocyte count and CRC have only analysed this relationship 

up to a year prior to diagnosis, and a causal relationship has not been established.  

 

 

Monocytes:  
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Monocytes are mononuclear phagocytes which play many roles in immunity, as well as 

being able to differentiate into tissue-resident macrophages 318. Monocytes have been 

studied in relation to CRC risk. When sampling participants at diagnosis, Wu et al. 

identified a higher monocyte count in those with CRC compared to controls, but not in 

those with benign polyps compared to controls 286. The analysis by Goshen et al. showed 

higher odds of CRC diagnosis when comparing the top vs. bottom quintile for monocyte 

count (30 to 180 days prior to diagnosis) 291. Similarly, Boursi et al.’s study found 

increased odds of CRC diagnosis per 1-SD increase in monocyte count (6-12 months 

prior to diagnosis) 292. Looking at WBC trends, Virdee et al. reported a higher monocyte 

count in men 9 years prior to CRC diagnosis compared to healthy controls, but not in 

women 302.  

 

Monocytes have also been linked to CRC survival. Tanio et al. reported higher mortality 

in those CRC patients with high monocyte count 313. A more comprehensive analysis on 

the relationship between monocyte count and CRC mortality was assessed in a 

systematic review and meta-analysis by Shu et al., which included the aforementioned 

study 319. Here, the pooled data showed a positive relationship between higher monocyte 

count and worse CRC overall and progression-free survival 319.  

 

From a biological perspective, monocytes can differentiate into tumour-associated 

macrophages (TAMs) 320, a process that takes place with the help of cytokines such as 

CCL2 321. Shibutani et al. conducted a study in 168 pre-operative CRC patients, where 

they investigated the relationship between monocyte count and TAM density using blood 

and immunohistochemical samples 322. Here, monocyte count was positively associated 

with the density of TAMs in the CRC TME, and the density of TAMs was associated with 

worse CRC prognosis 322. More generally, monocytes have been associated with a 

number of factors detrimental to CRC development, such as their inefficient killing of 

cancer cells, reduction of CD8+ T-cell numbers in the TME, and release of angiogenetic 

factors 323.  

 

In contrast to lymphocyte count, current epidemiological and laboratory studies indicate 

that monocyte count could have a detrimental effect on CRC development.  

 

 

Neutrophils:  

Neutrophils are the first cells to arrive at the site of infection and form a critical part of the 

innate immunity 324. Neutrophil count has been studied in terms of CRC risk. In their 

sampling at diagnosis study, Wu et al. found a higher neutrophil count mean in those 
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with CRC vs. controls, and in pre-cancerous polyps vs. controls 286. Goshen et al. 

reported increased odds of CRC diagnosis when comparing the top vs. bottom quintile 

for neutrophil count 291. When patients were sampled 6 to 12 months prior to diagnosis, 

neutrophil count was associated with a 24% increase in CRC odds in Boursi et al.’s 

analysis 292.  

 

Looking at trends, Virdee et al. report a lower neutrophil count in patients 9 years prior 

to CRC across all age groups, which rose sharply 2-3 years prior to CRC diagnosis 302. 

Neutrophil count has been studied is relation to CRC survival. The review by Yamamoto 

et al. assessing studies between 2008 to 2021 found that in most cases, a higher NLR 

was associated with worse CRC survival 325. In terms of absolute counts, a study done 

by Wyatt et al. in 508 patients undergoing CRC elective resection showed a negative 

association between circulating neutrophils and CRC prognosis 287.   

 

There have been studies looking at the biological significance of neutrophils in CRC that 

could explain agreement between neutrophil count in the context of CRC risk and 

mortality. As an example, in a CRC murine model, Saurer et al. show that neutrophils 

carrying the triggering receptor expressed on myeloid cells-1 (TREM-1) could be 

implicated in CRC development 326. Similarly, tumour-associated neutrophils (TANs) 

have generally been described as detrimental in cancer through multiple mechanisms 

327, one example being neutrophil extracellular trap (NET) shielding of cancer cells 

against CD8+ lymphocytes 328. On the other hand, neutrophils have been found to act 

concomitantly with CD8+ T-cells to improve survival in CRC patients, although this effect 

was linked predominantly to action of CD8+ T-cells alone 329.  

 

As in the case of monocyte count, the evidence for neutrophil count seems suggest a 

pro-tumourigenic role in CRC development. 

 

3.1.4. Risk factor heterogeneity in CRC 

Overall, the combined evidence shows that variation in WBC count could affect the risk 

of CRC, and that the possible effect could be different depending on the WBC subtype. 

Additionally, risk factors for, and the degree to which risk factors are associated with 

CRC, have been found to vary by the anatomical subsite of the disease 254,330,331. For 

example, age, type 2 diabetes, ancestry, height and body mass index (BMI) are 

examples of risk factors which present heterogenous associations with CRC risk 254,330. 

These kinds of differences are also evident with sex, where males are more likely to 

develop left-sided cancers than females 254,332,333.  
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This apparent heterogeneity in CRC risk has not only been presented in observational 

settings, as recent GWAS have found that the genetic architecture of CRC development 

differs by its anatomical subsite, indicating that distinct genes are involved depending on 

the location of the primary tumour 163,239,242. For example, the MLH1 gene involved in 

DNA mismatch repair has been linked to proximal colon cancer risk, while the KLF14 

gene involved in TGFβ signalling was found to be linked to distal cancer risk 239. This 

heterogeneity was also apparent in GWAS of CRC mortality, where a number of SNPs 

were associated with proximal colon and distal colon cancer survival, but not with rectal 

cancer survival 334.  

 

Given these findings, one might be inclined to study how a trait, such as WBC count, 

affects the risk of CRC stratified by genetic sex and by the anatomical location of where 

the primary tumour formed inside the colorectum.  

 

3.1.5. Current limitations on WBC count and the risk 
of CRC 

As evidenced from the research referenced above, observational studies have 

accounted for the majority of epidemiological studies on CRC, which suffer from 

particular limitations (Chapter 2). The large increase in the number of GWAS on CRC 

risk has been simultaneous with advances in the field of genetic epidemiology 163,335, 

making it more accessible for research to investigate risk factors for CRC in a MR 

framework. As mentioned in Chapter 2, in two-sample MR (2SMR), the summary 

statistics for the exposure and the outcome come from different samples 191,197,208,335. 

Univariable (UV) MR is used to estimate the total effect of a single exposure on an 

outcome 218, whereas multivariable (MV) MR is able to estimate the direct effect of 

multiple exposures by adjusting for their shared proxy instruments 218.  

 

3.1.6. What can MR add in the context of WBC count 
and CRC risk? 

MR has several advantages over observational studies in the context of WBC count and 

CRC: 

• Unmeasured confounding – confounders can be a source of bias in statistical 

analyses 253, and unmeasured confounding is a particular weak feature of most 

observational studies 194. For example, people with higher neutrophil count could 

be affected by an unknown variable that also increases the risk of CRC, providing 



  59 

evidence for an association with, but not a causal relationship to CRC. MR could 

overcome this issue due to its similarity to randomized control trials (RCTs), as 

alleles are randomly allocated at conception 172. 

• Reverse causation – as evidenced previously, most studies investigating WBC 

count and CRC risk have had a short time window between blood sampling and 

CRC diagnosis. This makes it hard to determine whether e.g. a rise in neutrophil 

count is associated with increased odds of CRC diagnosis, or if the presence of 

CRC led to this increase in WBC count. MR could overcome this, as the genetic 

proxies used to instrument for WBC count are assigned at conception, well before 

the development of a colorectal tumour 172.  

• Practicability – a RCT would be the best method in traditional epidemiology to 

give evidence of causality between WBC count and CRC risk. However, in this 

context, it would be practically impossible to run a RCT due to several intertwined 

limitations: ethical (can we give WBC count altering drugs to participants?), 

practical (are there WBC altering drugs available for healthy people?), time and 

cost related. Summary statistics from GWAS done on WBC count (ethical-

exposure) and CRC risk (ethical-outcome) are readily available (time) and can 

be analysed in a 2SMR framework with ease on a computer (cost), having the 

capacity to overcome the issues of running a RCT. 

• Causality – while observational studies can be done when RCTs are not feasible, 

these only establish the presence of an association between an exposure and an 

outcome 336. As the aim here is to establish a causal relationship between WBC 

count and CRC risk, a MR analysis would be the best suited method to do so. 

• Additionally, MVMR has an advantage over UVMR – it can account for the shared 

genetic instruments of two or more exposures to estimate the direct effect of each 

exposure on the outcome 216. In the context of WBC count, this can be useful, as 

there is overlap in the genetic architecture of the five WBC subtype counts 149,166. 

For example, some of the SNPs used to instrument for lymphocyte count are 

likely to also instrument for neutrophil count, and in a UVMR context this poses 

challenges in untangling the direct biological effect of each subtype. Therefore, 

adding all five WBC counts into a MVMR analysis would allow me to contrast with 

the UVMR analysis to establish a specific biological mechanism through which 

WBC count affects CRC development.  

 

3.1.7. Main study objective 

Given the advantages of MR and its potential to fill a gap in our knowledge, my 

overarching aim was to explore the role of circulating levels of WBCs in CRC 
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development using state of the art methods in genetic epidemiology, namely UV and MV 

MR, exemplifying how genetically predicted full blood count measures can aid in the 

understanding of disease aetiology. 

 

3.1.8. Study aims 

I have divided this chapter’s main objective into four aims that I plan to address: 

1) Investigate if variation in WBC count affects the risk of developing CRC, and 

which WBC subtypes contribute to this link 

2) Assess if there is a WBC subtype-specific effect on CRC risk, independent of the 

counts of the other WBC subtypes 

3) Interpret the MR results in comparison with an observational analysis looking at 

WBC count and CRC risk 

4) Triangulate these findings to discuss possible biological mechanisms and assess 

how these could be taken forward in a follow-up analysis 

 

3.2. Methods 

3.2.1. Study design 

I assessed the relationship between circulating WBCs and CRC odds using both genetic 

epidemiologic and observational methods. First, a UVMR analysis was undertaken to 

estimate the effect of WBC subtype counts on CRC (Aim 1), followed by a MVMR 

analysis where the direct effect of each WBC subtype count was estimated by adding all 

five WBC subtypes into the model (Aim 2) (Figure 3-3A). STROBE-MR guidelines were 

followed (Appendix 4) 337. Afterwards, I ran the largest cohort study between WBCs and 

CRC to date to compare with the MR estimates (Figure 3-3B, Aim 3). Here, subtype 

specific WBC counts were first studied individually, and then by adding them together 

into the model. Cohort STROBE guidelines were followed (Appendix 5). For these 

analyses, units were interpreted as odds ratio (ORs) for CRC per a normalized standard 

deviation (1-SD) increase in WBC count. Finally, a MR analysis between allergic disease 

and CRC was done after results analysis (Figure 3-3C, Aim 4). Here, analyses were 

interpreted as a OR increase in CRC per 1-log OR increase in allergic disease. 
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Figure 3-3. Study design of the project. 

 

3.2.2. WBC count GWAS data 

As mentioned in Chapter 2, GWAS summary statistics contain the minimum amount of 

information that can help the reader understand which, in which direction, and to what 

degree a SNP is associated with a particular trait 220.  

 

Summary statistics for WBC count and each subtypes were obtained from a recent study 

by Chen et al. as part of the “Blood Cell Consortium” (BCX) 166 (Chapter 2). For the 

purposes of this project, I used the meta-analysed data for those people of European 

ancestry, which were predominantly from UKBB (N=~562,243) 166. This was done so that 

the exposure and outcome samples were of similar ancestry composition in order to 

prevent bias of MR estimates arising from residual population structure 338,339. These 

instruments were available as sex-combined only. A brief description of each meta-

analysed study is available in Appendix 1.  
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3.2.3. CRC GWAS data 

The GWAS summary statistics for CRC and its anatomical subtypes come from the most 

comprehensive meta-analysis of CRC risk to date 163 (Chapter 2). For this project, to 

avoid bias due to sample overlap with the exposure in two-sample MR 196, UKBB 

participants were excluded, resulting in a final sample-size of 98,815 (52,775 cases and 

45,940 controls). The final sample was predominantly of European ancestry, with 5.36% 

representing East Asians, these were included due to their similar CRC genetic 

architecture 243. An overview of all consortia included in the CRC meta-analysis is 

available in Appendix 2, and a breakdown of the sample-size for each CRC summary 

statistics is presented in Table 3-1. The summary-level GWAS data for CRC used in this 

study were made available following an application to the Genetics and Epidemiology of 

Colorectal Cancer Consortium (GECCO). These instruments were available as sex-

combined for the CRC anatomical subsites data. For overall CRC, instruments were 

available as sex-combined and sex-specific (male/female). 

 

Table 3-1. Description of CRC cases and controls by anatomical subsite 

Colorectal cancer type N Cases N Controls 

Overall CRC 52775 45940 

Overall CRC, female 24594 23936 

Overall CRC, male 28271 22351 

Colon cancer 28736 43099 

Proximal colon cancer 14416 43099 

Distal colon cancer 12879 43099 

Rectal cancer 14150 43099 

 

 

3.2.4. Allergic disease GWAS data 

Summary statistics for allergic disease were obtained from a meta-analysis of 13 GWAS 

done in people of European ancestry, with a final sample-size of 360,838 (cases = 

180,129, controls = 180,709) 244 (Chapter 2). Included covariates and specific numbers 

for each meta-analysed study is available in Appendix 3. These instruments were 

available as sex-combined only. 
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3.2.5. Genetic data processing 

To select for valid MR instruments, I processed the summary statistics for the exposures 

using the “TwoSampleMR” R package 213,219 prior to running the analyses. The exposure 

SNPs were linkage disequilibrium (LD) clumped (r2=0.001, window=10Mb, P-value 

threshold=5e-8) to avoid can violate the MR SNP independence assumption and lead to 

double counting and instrument strength overestimation 187 (Chapter 2). This was done 

with the integrated PLINK v1.9 function “clump_data()” 247 using the 1000 Genomes 

European dataset 152,248 as a reference panel. Following this step, the exposure and 

outcome datasets were “harmonised” i.e. had their effect alleles placed on the same 

reference strand 250 (Chapter 2).  

 

3.2.6. Univariable MR analysis of WBC counts on CRC 
risk 

I undertook the primary UVMR analysis using the inverse-variance weighted (IVW) 

method, which is the fixed-effects meta-analysis of the estimated effect of all exposure 

SNPs on the CRC outcome 202. Conditional F-statistics were calculated to detect for weak 

instrument bias 206 for each exposure SNP using previously described methodology 340. 

Several sensitivity analyses were undertaken to compare with the main IVW estimates. 

The presence of vertical pleiotropy i.e. when a trait is downstream of the genetic variant 

but on the same biological pathway as the exposure 195, was measured using Cochran’s 

Q heterogeneity test 341. Horizontal pleiotropy, when a SNP or more act through a 

different pathway to the exposure 195, can violate one of the main MR assumptions. A 

number of sensitivity MR analyses were undertaken to suggest horizontal pleiotropy: 

MR-Egger (where the regression intercept is not constrained to zero) 205, Weighted 

median (the median of all SNP ratio estimates, where each ratio is weighted by the 

inverse of the variance) 204, Weighted mode (assumes that the most frequent estimate in 

a set of instruments is zero) 212 and MR-PRESSO (detects individual SNPs that might 

contribute to horizontal pleiotropy and generates a new IVW estimate where those SNP 

outliers are removed) 207. The direction of the causal relationship between WBC traits 

and CRC was tested using the MR Steiger method, which uses Steiger’s test to test the 

difference between the Pearson correlations of genetic variants with both the exposure 

and outcome 213. More information on these methods is available in Chapter 2. 
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3.2.7. Multivariable MR analysis of WBC counts on 
CRC risk 

As done in the UVMR analysis, I used the IVW method for the MVMR approach. First, a 

pair-wise analysis between all five WBC subtype counts was done, where the proportion 

of variance explained for SNPs used to instrument a WBC trait was estimated in the 

other four WBC subtypes using previously described methodology 340. The direct effect 

of each WBC subtype was estimated by adding in all five WBC subtypes into the MVMR 

model. P-values were adjusted using a False Discovery Rate method for 35 independent 

tests i.e. 5 WBC subtypes x 7 CRC outcomes 342. Bias arising from weak instruments 

was also assessed here. This was done using methodology described by Sanderson et 

al., where a generalized version of Cochran’s Q was employed to evaluate instrument 

strength 216. Standard Cochran’s Q statistic 341 was calculated to detect the presence of 

heterogeneity. For those traits with an F-statistic <10, a follow-up MVMR analysis was 

done accounting for the presence of weak instruments. All functions are available as part 

of the “MVMR” R package (https://wspiller.github.io/MVMR/).  

 

3.2.8. UK Biobank phenotypic data 

Specific details about the UK Biobank study are available in Chapter 2. The blood 

sampling date variable was split into year, month, day, and minutes (passed since the 

start of the day of the appointment visit). Additional variables were gathered: recruitment 

centre, sampling device ID, age, genetic sex, principal components 1 to 10 (geographical 

structure 226), BMI, Townsend deprivation index (socioeconomic status 343), smoking and 

alcohol drinker status (self-report questionnaire – UKBB codes 20116 and 20117). CRC 

cases were identified through hospital inpatient records coded to the 10 th version of the 

International Classification of Disease (ICD-10). 

 

3.2.9. Filtering and selection criteria 

The UK Biobank dataset underwent a series of steps prior to further analyses. Withdrawn 

participants and those of non-European ancestry were excluded. Viable controls and 

incident CRC cases were defined using methodology previously described by Burrows 

et al. 344 (Table 3-2). Here however, incident CRC cases were defined as those 

diagnosed at least one year after blood sampling. Participants with no WBC 

measurement data and/or sampling date were removed, as were those known to be 

pregnant, with chronic conditions (e.g. HIV, blood cancers, thalassaemia), or undergoing 

erythropoietin treatment (as done in Astle et al. 149 and Chen et al. 166), given the effects 

of these traits on WBC measurements. Those with acute conditions (e.g. upper 
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respiratory infections) diagnosed less than 3 months prior to blood sampling were also 

excluded. Finally, missing values in “Townsend Deprivation Index”, “Body mass index”, 

“Smoking status” and “Alcohol drinker status” variables were removed. 
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Table 3-2. Selection criteria for cases and controls in the cohort analysis. 

Cases 

Selection  ICD10 - UKBB code 41270 ICD10 C18.0-C18.9; C19; C20 

Inclusions Behaviour of tumour - UKBB code 40012 Malignant, primary site 

Malignant, microinvasive 

Malignant, metastatic site 

Malignant, uncertain whether primary 

or metastatic site 

White blood cell acquisition date - UKBB code 30002 CRC diagnosed at least 12 months 

after blood sample taken 

Exclusions ICD10 - UKBB code 41270 All D codes 

Behaviour of tumour - UKBB code 40012 Benign 

Uncertain whether benign or malignant 

Carcinoma in situ 

Controls 

Inclusions All eligible participants not defined as cases   

Exclusions ICD10 - UKBB code 41270 Any C and D code 

Self-report cancer - UKBB code 20001 Any cancer 

Any site-specific cancer 
    

Data items available at https://biobank.ndph.ox.ac.uk/showcase/ 
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3.2.10. Descriptive analysis of phenotypic data 

A descriptive analysis was undertaken prior to the observational analysis. First, a 

phenotypic correlation matrix between each WBC subtype was generated using a 

Spearman’s rank test. Univariable, analysis of variance (ANOVA) type I and ANOVA type 

II models were then used to calculate the variance explained in WBC count by the 

following covariates: UKBB assessment centre, blood sampling device ID, sample year, 

sample month, sample day, minutes passed in sample day, sex, age, principal 

components 1 to 10, BMI, Townsend deprivation index, smoking status and alcohol 

drinker status. 

 

3.2.11. Observational analysis between WBC count and 
CRC 

Following the descriptive analyses, an observational analysis was undertaken between 

circulating WBCs and incident CRC. WBC count values were log-transformed, after 

which they were adjusted for the following covariates: sex, age, age2, PCs 1 to 10, as by 

Chen et al 166. The resulting residuals were rank-inverse normal transformed and then 

used in a logistic regression on CRC incidence. This main observational analysis was 

termed “Model 1”, which was the minimally adjusted model. A separate analysis was 

also done, the fully adjusted “Model 2”, where BMI, Townsend DI, smoker status and 

alcohol drinker status were added as additional covariates, as these were shown to 

explain some of the variation in WBC count. Following this, another pair of analyses were 

run, where all five WBC subtype counts were added together into the model. Analyses 

where each WBC trait was studied individually were termed as “univariable”, while those 

where they were added together were termed as “multivariable”. For all analyses, units 

were interpreted as odds ratio (ORs) for CRC per normalized standard deviation (1-SD) 

increase in WBC count.  

 

3.2.12. Working environment 

All analyses were performed with R version 4.1.2 (Bird Hippie) 345 in a Linux environment 

supported by the University of Bristol’s Advanced Computing Research Centre (ACRC). 

Genetic data preparation, as well as the UVMR analyses, were done with the 

“TwoSampleMR” R package 213,219. The MVMR analyses were done with “MVMR” R 

package 217.  
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3.3. Results 

3.3.1. Univariable MR between WBC count and CRC 

Prior to running the UVMR analysis, the average F-statistic for each WBC trait was 

calculated. This is used to detect the presence of weak instrument bias, which can give 

unreliable MR estimates and is indicated by an average F-statistic < 10 206. For overall 

CRC, the average F-statistic was 64.48 (basophil count), 124.72 (eosinophil count), 

105.85 (lymphocyte count), 147.44 (monocyte count) and 98.84 (neutrophil count), 

indicating strong instruments for MR analyses (Table 3-3). 

 

Table 3-3. F-statistics for the overall CRC outcome. 

WBC subtype count CRC type Avg. F-stat No. SNPs1 

Basophil Overall 64.48 171 

Eosinophil Overall 124.72 396 

Lymphocyte Overall 105.85 444 

Monocyte Overall 147.44 477 

Neutrophil Overall 98.84 387 

1Number of SNPs instrumenting for the trait after PLINK clumping 

 

After computing the average F-statistic, I conducted the UVMR analysis. Here, the main 

MR analysis was done using the IVW method (Chapter 2), which has the most power to 

detect the presence of an effect, but is also the most liable to being biased by horizontal 

pleiotropy 204. Therefore, the IVW analysis was followed by four sensitivity analyses 

which have less statistical power, but are commonly used to detect horizontal pleiotropy 

in MR 204,205,207,212. In MR it is more important to identify consistency in the direction of 

the effect between the IVW method and the sensitivity methods rather than comparing 

their P-values 346. Agreement in direction and effect estimates between one or more MR 

methods provides evidence that there is a causal effect between the exposure and 

outcome.  

 

The IVW method showed evidence of a protective effect for basophil count (OR: 0.88, 

95% CI: 0.78-0.99, P-value: 0.037) on overall CRC odds. This was also true for the MR-

PRESSO method (OR: 0.9, 95% CI: 0.81-0.99, P-value: 0.039) for overall CRC, showing 

a similar result to the IVW method when eliminating SNPs that might display horizontal 

pleiotropy, strengthening the result. Similarly, the weighted median method pointed to a 

protective effect in male CRC (OR: 0.81, 95% CI: 0.67-0.99, P-value: 0.037) (Figure 3-4, 

Appendix 6). For eosinophil count, the IVW method showed evidence of a protective 

effect for overall (OR: 0.93, 95% CI: 0.88-0.98, P-value: 0.012) and female (OR: 0.91, 
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95% CI: 0.85-0.99, P-value: 0.021) CRC odds. These results were supported by the MR-

Egger, weighted median and MR-PRESSO methods for overall CRC, by MR-Egger and 

MR-PRESSO methods for female CRC, and by MR-Egger for male CRC (Figure 3-4, 

Appendix 6, further description of sensitivity analyses results below).  
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Figure 3-4. Univariable MR analysis of WBC count on overall CRC, and stratified by genetic sex.  

WBC traits are separated into rows on the X-axis. Each column is an analysis looking at overall, male-specific, and female-specific CRC. The 
estimated effect given by each method is presented on the Y-axis. Point estimates are filled where the P < 0.05. Results are interpreted as ORs 
(95% CI) for CRC per 1-SD normalized increment in WBC count. 



  71 

Because risk factors for CRC can vary depending on the anatomical subsite of tumour 

development, I next considered whether altered levels of circulating WBCs impact risk 

of CRC differently by subsite. The univariable IVW method showed evidence for a 

protective effect of basophil count on colon (OR: 0.85, 95% CI: 0.74-0.98, P-value: 0.022) 

and distal colon (OR: 0.82, 95% CI: 0.70-0.97, P-value: 0.019) cancers (Figure 3-5, 

Appendix 6). For eosinophil count, the main IVW analysis gave evidence of a protective 

effect for colon (OR: 0.90, 95% CI: 0.84-0.96, P-value: 0.001), proximal colon (OR: 0.89, 

95% CI: 0.82-0.96, P-value: 0.003) and distal colon (OR: 0.89, 95% CI: 0.82-0.97, P-

value: 0.007) cancers (Figure 3-5, Appendix 6). These results were generally supported 

by sensitivity analyses (further information on sensitivity analyses below).  
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Figure 3-5. Univariable MR analysis of WBC count on overall CRC, and stratified by CRC subsite.  

WBC traits are separated into rows on the X-axis. Each column is an analysis looking at overall, colon-, proximal-, distal-, and rectal-specific 
CRC. The estimated effect given by each method is presented on the Y-axis. Point estimates are filled where the P < 0.05. Results are interpreted 
as ORs (95% CI) for CRC per 1-SD normalized increment in WBC count. 
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Additional analyses were performed to study the presence of vertical and horizontal 

pleiotropy in the UVMR analysis. Cochran’s heterogeneity test provided evidence for the 

presence of vertical pleiotropy in all but one (basophil count-male CRC, PHET=0.104) 

WBC trait-CRC pair (Table 3-4). This suggests that some of the SNPs instrumenting for 

the count of a WBC subtype might also act on other traits downstream on the same 

biological pathway to affect CRC risk, which is expected for complex traits such as WBC 

count and does not invalidate the MR results 347. Following this, the MR-Egger intercept 

test for horizontal pleiotropy was undertaken. Here, evidence for this type of pleiotropy 

was suggested for eosinophil count and colon (PPLT=0.018), distal colon (PPLT=0.015) 

cancers, and female (PPLT=0.049), male (PPLT=0.041) and overall (PPLT=0.015) CRCs, 

indicating that the main IVW method might be unreliable due to violation of MR 

assumptions. However, the sensitivity analyses generally gave estimates that were in 

agreement with the main IVW method (Figure 3-4, Appendix 6), which would not be the 

case if horizontal pleiotropy was the main driver behind the effect seen in the IVW 

analysis. Therefore, I wanted to investigate whether horizontal pleiotropic SNPs were 

responsible for the effect seen in the IVW analysis. To do this, I ran an MR-PRESSO 

analysis, which can identify the presence of SNPs responsible for horizontal pleiotropy 

(outliers) and re-run an IVW MR analysis without them, to compare with the unadjusted 

(main) IVW MR method 207. Outlier SNPs were identified in all but one WBC trait-CRC 

pair (basophil count to male CRC, PPRESSO=0.13) (Table 3-5). However, there was no 

evidence that the removal of these outliers contributed to a notable shift in the point 

estimates (Table 3-5), providing evidence that the estimates of the main IVW MR 

analysis for eosinophil count are reliable.  

 

Table 3-4. UVMR Cochran’s Q and MR-Egger intercept sensitivity analyses. 

Exposure Outcome Het P 
Ple 

intercept 
Ple P 

Steiger 

Correct 

direction 

Steiger P 

Basophil Colon 1.37E-10 0.00052582 0.88721 TRUE < 2.22e-16 

Basophil Distal 2.15E-05 0.00060567 0.88963 TRUE < 2.22e-16 

Basophil Female 5.27E-07 < 2.22e-16 0.53026 TRUE < 2.22e-16 

Basophil Male 0.1043086 0.00174581 0.61188 TRUE < 2.22e-16 

Basophil Overall 3.65E-13 < 2.22e-16 0.92721 TRUE < 2.22e-16 

Basophil Proximal 8.54E-08 0.0032254 0.46441 TRUE < 2.22e-16 

Basophil Rectal 0.0002336 0.00025644 0.95194 TRUE < 2.22e-16 

Eosinophil Colon 1.39E-15 0.00448397 0.01819 TRUE < 2.22e-16 

Eosinophil Distal 1.77E-08 0.00558396 0.01513 TRUE < 2.22e-16 
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Eosinophil Female 2.93E-10 0.00420644 0.04975 TRUE < 2.22e-16 

Eosinophil Male 8.01E-06 0.00409192 0.04108 TRUE < 2.22e-16 

Eosinophil Overall < 2.22e-16 0.00395443 0.01536 TRUE < 2.22e-16 

Eosinophil Proximal 1.34E-10 0.00266324 0.24554 TRUE < 2.22e-16 

Eosinophil Rectal 0.0103057 0.00292038 0.16374 TRUE < 2.22e-16 

Lymphocyte Colon 3.36E-14 0.00147868 0.40159 TRUE < 2.22e-16 

Lymphocyte Distal 2.76E-07 0.00099121 0.6442 TRUE < 2.22e-16 

Lymphocyte Female 7.71E-11 0.00501015 0.01609 TRUE < 2.22e-16 

Lymphocyte Male 1.21E-06 < 2.22e-16 0.70971 TRUE < 2.22e-16 

Lymphocyte Overall < 2.22e-16 0.00206385 0.18727 TRUE < 2.22e-16 

Lymphocyte Proximal 1.50E-09 0.00295324 0.16271 TRUE < 2.22e-16 

Lymphocyte Rectal 1.99E-05 0.00265733 0.20589 TRUE < 2.22e-16 

Monocyte Colon < 2.22e-16 < 2.22e-16 0.95013 TRUE < 2.22e-16 

Monocyte Distal 2.19E-11 < 2.22e-16 0.64084 TRUE < 2.22e-16 

Monocyte Female 3.06E-08 0.00069274 0.66554 TRUE < 2.22e-16 

Monocyte Male 2.14E-06 < 2.22e-16 0.23622 TRUE < 2.22e-16 

Monocyte Overall < 2.22e-16 < 2.22e-16 0.93759 TRUE < 2.22e-16 

Monocyte Proximal 6.77E-11 < 2.22e-16 0.65344 TRUE < 2.22e-16 

Monocyte Rectal 6.91E-10 < 2.22e-16 0.58219 TRUE < 2.22e-16 

Neutrophil Colon < 2.22e-16 < 2.22e-16 0.91815 TRUE < 2.22e-16 

Neutrophil Distal < 2.22e-16 < 2.22e-16 0.3202 TRUE < 2.22e-16 

Neutrophil Female 4.21E-11 < 2.22e-16 0.86017 TRUE < 2.22e-16 

Neutrophil Male 1.35E-12 < 2.22e-16 0.11737 TRUE < 2.22e-16 

Neutrophil Overall < 2.22e-16 < 2.22e-16 0.39846 TRUE < 2.22e-16 

Neutrophil Proximal 1.84E-12 0.003245 0.17042 TRUE < 2.22e-16 

Neutrophil Rectal 9.61E-10 < 2.22e-16 0.61914 TRUE < 2.22e-16 

 

 

Table 3-5. MR-PRESSO summary.  

Global P-value indicates the presence of horizontal-pleiotropic SNPs, while the Distortion 
P-value shows whether there is evidence for a difference between the outlier-adjusted 
IVW MR and the unadjusted (main) IVW MR. 

Exposure Outcome Beta SE P-

value 

Global P-

value 

Distortion 

P-value 

No 

SNPs 

N 

outliers 

Basophil Colon -0.14 0.06 0.02 <3.33e-4 0.57 173 4 

Basophil Distal -0.15 0.07 0.03 <3.33e-4 0.41 174 3 

Basophil Female -0.03 0.07 0.64 <3.33e-4 0.2 174 4 
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Basophil Male       0.13   173 0 

Basophil Overall -0.11 0.05 0.04 <3.33e-4 0.59 171 4 

Basophil Proximal -0.09 0.08 0.23 <3.33e-4 0.28 174 3 

Basophil Rectal -0.09 0.08 0.25 <3.33e-4 0.87 176 1 

Eosinophil Colon -0.11 0.03 0 <3.33e-4 0.93 397 5 

Eosinophil Distal -0.1 0.04 0.01 <3.33e-4 0.8 397 5 

Eosinophil Female -0.07 0.04 0.08 <3.33e-4 0.42 393 3 

Eosinophil Male -0.07 0.03 0.05 <3.33e-4 0.75 398 3 

Eosinophil Overall -0.07 0.03 0.02 <3.33e-4 0.69 396 7 

Eosinophil Proximal -0.09 0.04 0.02 <3.33e-4 0.41 392 3 

Eosinophil Rectal       0.01   393 1 

Lymphocyte Colon -0.03 0.03 0.39 <3.33e-4 0.39 453 5 

Lymphocyte Distal -0.06 0.04 0.18 <3.33e-4 0.31 449 4 

Lymphocyte Female -0.02 0.04 0.67 <3.33e-4 0.23 443 5 

Lymphocyte Male -0.02 0.04 0.64 <3.33e-4 0.34 444 2 

Lymphocyte Overall -0.05 0.03 0.1 <3.33e-4 0.59 444 8 

Lymphocyte Proximal -0.01 0.04 0.81 <3.33e-4 0.15 455 3 

Lymphocyte Rectal -0.08 0.04 0.05 <3.33e-4 0.94 452 1 

Monocyte Colon -0.02 0.03 0.57 <3.33e-4 0.24 484 5 

Monocyte Distal -0.01 0.04 0.69 <3.33e-4 0.17 479 4 

Monocyte Female -0.02 0.03 0.46 <3.33e-4 0.99 477 4 

Monocyte Male -0.05 0.03 0.09 <3.33e-4 0.99 480 2 

Monocyte Overall -0.04 0.02 0.14 <3.33e-4 0.32 477 6 

Monocyte Proximal -0.04 0.03 0.2 <3.33e-4 0.98 487 5 

Monocyte Rectal -0.03 0.04 0.48 <3.33e-4 0.27 484 2 

Neutrophil Colon -0.05 0.04 0.17 <3.33e-4 0.96 390 8 

Neutrophil Distal -0.06 0.05 0.19 <3.33e-4 0.75 398 6 

Neutrophil Female -0.03 0.04 0.52 <3.33e-4 0.87 390 5 

Neutrophil Male -0.02 0.04 0.68 <3.33e-4 0.17 391 5 

Neutrophil Overall -0.01 0.03 0.66 <3.33e-4 0.37 387 10 

Neutrophil Proximal -0.04 0.05 0.35 <3.33e-4 0.21 382 5 

Neutrophil Rectal 0.02 0.05 0.61 <3.33e-4 0.98 396 4 
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3.3.2. Multivariable MR between WBC count and CRC 

After the UVMR analysis, I conducted a MVMR analysis. As mentioned in the 

introduction, the counts of each WBC are correlated to a degree with each other, 

genetically and phenotypically 149,166. In a UVMR setting, this makes it more difficult to 

establish what is driving an identified effect i.e. is eosinophil count alone reducing the 

risk of CRC? Therefore, the MVMR analysis was done to identify if the count of a specific 

WBC subtype is influencing the risk of CRC, allowing me to pinpoint a more specific 

biological pathway.  

 

Prior to running the MVMR analysis, I assessed whether adjusting between the 

instruments of all five WBC subtype counts would be feasible i.e. not lead to weak 

instrument bias 217, making the MVMR results unreliable. For example, if the proportion 

of variance explained by SNPs instrumenting for trait A explain a similar amount of 

variance in trait B, adding both A and B in a MVMR analysis might lead to weak 

instrument bias for the trait A estimate, as the analysis would adjust for almost all SNPs 

used to instrument for trait A. 

 

Therefore, I calculated the proportion of variance explained for the SNPs used to 

instrument for basophil count in the other four WBC subtype counts. This was done in a 

pair-wise manner for the other four WBC subtypes. Here, only the SNPs used to 

instrument for basophil count explained a similar proportion of variance to another WBC 

count (2.44% vs. 2.39% when instrumenting neutrophil count) (Table 3-6). The overall 

results indicated that statistical power is not detrimentally diminished by adding all five 

WBC subtype counts in the MVMR analysis. 

 

Table 3-6. Pair-wise analysis of estimated proportion of variance explained for each 
WBC subtype count. 

 
Basophil Eosinophil Lymphocyte Monocyte Neutrophil 

Basophil 2.44 1.44 2.26 2.03 2.39 

Eosinophil 0.52 10.43 1.49 3.47 1.59 

Lymphocyte 0.75 1.73 9.04 2.73 1.97 

Monocyte 0.85 2.52 3.00 13.57 2.99 

Neutrophil 0.80 2.15 2.24 4.65 7.42 

      
Blue cells are the proportion of variance explained by the MR SNPs instrumenting for the 

trait in column 1. 
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Basophil Eosinophil Lymphocyte Monocyte Neutrophil 

The other cells represent the proportion of variance explained by the SNPs instrumenting 

for the WBC trait in column 1 inside each WBC trait from row 1. 

 

 

Therefore, the MVMR analysis was done by adding all five WBC traits into the model. 

Here, the MVMR IVW method estimated a protective effect of eosinophil count on overall 

(OR: 0.88, 95% CI: 0.80-0.97, P-value: 0.011) and female CRC (OR: 0.83, 95% CI: 0.73-

0.94, P-value: 0.004) (Figure 3-6). This effect was more pronounced than in the UVMR 

analysis (OR: 0.88 vs. 0.93), suggesting that eosinophil count specifically reduces the 

risk of CRC. Similarly, lymphocyte count was estimated to have a protective effect on 

overall (OR: 0.84, 95% CI: 0.76-0.93, P-value: 0.0007) and female CRC (OR: 0.76, 95% 

CI: 0.67-0.86, P-value: 6.46E-05) (Figure 3-6). While the UVMR analysis was pointing 

towards a protective effect of lymphocyte count on CRC risk, the MVMR analysis showed 

a strong protective effect (OR: 0.84 vs. 0.94), suggesting a lymphocyte-specific action 

that protects against CRC development. 
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Figure 3-6. Multivariable MR analysis of WBC count on overall CRC, and stratified by genetic sex.  

WBC subtypes are separated into rows on the X-axis. Each column is an analysis looking at overall, male-specific, and female-specific CRC. 
The estimated effect given by each method is presented on the Y-axis. Point estimates are filled where the P < 0.05. Results are interpreted as 
ORs (95% CI) for CRC per 1-SD normalized increment in WBC count. 
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Eosinophil count was estimated to have a direct protective effect on colon cancer (OR: 

0.84, 95% CI: 0.75-0.94, P-value: 0.002), proximal colon cancer (OR: 0.92, 95% CI: 0.85-

1.00, P-value: 0.042) and distal colon cancer (OR: 0.88, 95% CI: 0.74-1.00, P-value: 

0.049) anatomical subsites (Figure 3-7, Appendix 7). Similar to the overall and sex-

specific analyses, the MVMR analysis pointed towards an increased protective effect by 

eosinophil count on colon cancer compared to the UVMR analysis. Like the UVMR 

analysis, there was no evidence for an effect on rectal cancer by eosinophil count, 

suggesting a CRC subsite-specific effect. Lymphocyte count was estimated to have a 

direct protective effect on colon (OR: 0.85, 95% CI: 0.76-0.96, P-value: 0.007), distal 

colon (OR: 0.77, 95% CI: 0.67-0.88, P-value: 0.0001) and rectal (OR: 0.86, 95% CI: 0.75-

0.98, P-value: 0.022) cancer anatomical subsites (Figure 3-7, Appendix 7). Unlike 

eosinophil count, lymphocyte count was shown to be protective across all CRC 

anatomical subsites, suggesting a more systemic role in reducing the risk of CRC. 

 

Following the MVMR analysis, I applied a Benjamini-Hochberg (a.k.a. False Discovery 

Rate) 342 multiple hypotheses testing correction to the results. This was not done in the 

case of the UVMR analysis, as the genetic correlation between the WBC traits might 

have masked an effect which would have been detected in the MVMR analysis when 

adjusting between the WBC traits e.g. lymphocyte count protecting against CRC. 

Following multiple testing correction adjusting for 35 indepdendent tests in the MVMR 

analysis, only eosinophil count on distal CRC and lymphocyte count on rectal CRC had 

P-values >0.05 compared to the uncorrected results, adding evidence for the robustness 

of the MVMR results (Appendix 7).  
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Figure 3-7. Multivariable MR analysis of WBC count on overall, and by subsite CRC.  

WBC subtypes are separated into rows on the X-axis. Each column is an analysis looking at overall, colon-, proximal-, distal-, and rectal-specific 
cancer. The estimated effect given by each method is presented on the Y-axis. Point estimates are filled where the P < 0.05. Results are 
interpreted as ORs (95% CI) for CRC per 1-SD normalized increment in WBC count. 
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I undertook several sensitivity analyses to assess heterogeneity and the presence of 

weak instruments in the MVMR analysis. There was evidence of heterogeneity (vertical 

pleiotropy) in all WBC trait-CRC pairs (Table 3-7), as in the UVMR analysis, showing 

that the SNPs proxying specifically for a WBC subtype count also act on other traits 

downstream on the same biological pathway to affect CRC risk, which does not invalidate 

MR assumptions. The instrument strength analysis given by the conditional F-statistic 

showed evidence of weak instruments (F<10) for basophil count (Table 3-7). Based on 

these results, an additional MVMR analysis was run adjusting for weak instruments for 

basophil count (overall CRC ORWeak: 1.3; male CRC ORWeak: 1.2; female CRC ORWeak: 

1.7; colon cancer ORWeak: 1.5; proximal colon cancer ORWeak: 1.5; distal colon cancer 

ORWeak: 1.5; rectal cancer ORWeak: 1.6) on CRC (Table 3-7). This pointed towards a 

detrimental effect of basophil count on CRC risk, although these effect estimates did not 

have confidence intervals. 

 

Table 3-7. MVMR sensitivity analyses summary. 

Exposure Outcome Fstat Weak Het P-value OR weak OR IVW 

Basophil Colon 4.7 Yes 3.37E-14 1.5 1.1 

Basophil Distal 4.8 Yes 5.88E-07 1.5 1.3 

Basophil Female 4.7 Yes 2.72E-07 1.7 1.3 

Basophil Male 4.8 Yes 1.55E-05 1.2 0.99 

Basophil Overall 4.8 Yes < 2.22e-16 1.3 1.2 

Basophil Proximal 4.8 Yes 8.48E-09 1.5 1.1 

Basophil Rectal 4.8 Yes 0.0011561 1.6 1.1 

Eosinophil Colon 20 No 3.37E-14   0.84 

Eosinophil Distal 20 No 5.88E-07   0.88 

Eosinophil Female 20 No 2.72E-07   0.83 

Eosinophil Male 19 No 1.55E-05   0.92 

Eosinophil Overall 19 No < 2.22e-16   0.88 

Eosinophil Proximal 19 No 8.48E-09   0.79 

Eosinophil Rectal 19 No 0.0011561   0.95 

Lymphocyte Colon 18 No 3.37E-14   0.85 

Lymphocyte Distal 18 No 5.88E-07   0.77 

Lymphocyte Female 17 No 2.72E-07   0.76 

Lymphocyte Male 17 No 1.55E-05   0.94 

Lymphocyte Overall 17 No < 2.22e-16   0.84 

Lymphocyte Proximal 18 No 8.48E-09   0.89 

Lymphocyte Rectal 17 No 0.0011561   0.86 
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Exposure Outcome Fstat Weak Het P-value OR weak OR IVW 

Monocyte Colon 27 No 3.37E-14   1 

Monocyte Distal 26 No 5.88E-07   0.99 

Monocyte Female 24 No 2.72E-07   1 

Monocyte Male 27 No 1.55E-05   0.94 

Monocyte Overall 29 No < 2.22e-16   0.97 

Monocyte Proximal 24 No 8.48E-09   1 

Monocyte Rectal 30 No 0.0011561   0.92 

Neutrophil Colon 19 No 3.37E-14   0.94 

Neutrophil Distal 22 No 5.88E-07   1 

Neutrophil Female 20 No 2.72E-07   1 

Neutrophil Male 22 No 1.55E-05   0.94 

Neutrophil Overall 20 No < 2.22e-16   0.95 

Neutrophil Proximal 23 No 8.48E-09   0.9 

Neutrophil Rectal 21 No 0.0011561   0.97 

 

 

3.3.3. Phenotypic data preparation for observational 
analysis 

After performing the MR analyses, I aimed to investigate the relationship between WBC 

count and CRC risk using traditional epidemiology and individual-level data from UKBB. 

This was done to compare and contrast with the MR analysis and to illustrate the 

advantages of MR over observational analyses in relation to the overarching study 

objective.  

 

The first step prior to running an observational analysis is the filtering of participants, 

which also involves designating them as cases or controls. This is done either because 

of missing data, or due to particular health traits that might affect the results of the 

statistical analysis. For example, as mentioned in the methods section, some participants 

were removed if they did not have WBC count data, or if they had an illness known to 

affect WBC count. The number of missing values for BMI, alcohol drinker status, smoking 

status and Townsend DI was very low. The largest number was for the participants who 

preferred not to answer in the smoking status self-report questionnaire (N=1,145; 0.34% 

of total sample) (Table 3-8). Prior to analysis, those with either “missing” or “prefer not 

to answer” values in these variables were removed. 
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Table 3-8. Participants with missing data. 

Variable Level Count Percent 

Body mass index Not missing 338,841 99.6923 

  Missing 1,046 0.307749 

Alcohol drinker status Missing 209 0.061491 

  Not Missing 339,335 99.8376 

  Prefer not to answer 343 0.100916 

Smoking status Missing 209 0.061491 

  Not Missing 338,533 99.6016 

  Prefer not to answer 1,145 0.336877 

Townsend Depravation Index Not missing 339,464 99.8755 

  Missing 423 0.124453 

 

336,816 participants remained after passing the filtering and selection criteria (Figure 

3-8). I then aimed to provide descriptive statistics about the sample that I would run the 

observational analysis on. This was done to compare with previous observational studies 

of WBC count in UKBB and to help with the interpretability of findings. Moreover, it can 

show if there are notable differences in traits (e.g. BMI, smoking status) between cases 

and controls, which can then be further investigated in relation to how they might affect 

variation in WBC count, and if their inclusion as covariates in an observational model is 

warranted. 
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Figure 3-8. Flowchart describing the filtering and selection criteria for the observational 
analysis. 

 

There were 332,773 controls and 4,043 incident CRC cases in the study sample. When 

split by genetic sex, there were 46% male controls and 57% male cases. Those with 

CRC were more likely to be male (57% vs. 46%), had a higher average age (60.7 vs. 
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55.8 years), slightly higher BMI (28.0 vs. 27.4 kg/m2) and were more likely to have been 

cigarette smokers in the past (46% vs. 55% never smokers and 44% vs. 34% pervious 

smokers) (Table 3-9). 

 

Table 3-9. Descriptive statistics of UK Biobank study sample. 

Characteristic Control, N = 332,7731 Case, N = 4,0431 P-value2 

Sex     <0.001 

Female 178,144 / 332,773 (54%) 1,727 / 4,043 (43%)   

Male 154,629 / 332,773 (46%) 2,316 / 4,043 (57%)   

Age (years) 55.794 (8.062) 60.663 (6.593) <0.001 

Body mass index 27.366 (4.750) 27.954 (4.660) <0.001 

Smoking status     <0.001 

Never 183,987 / 332,773 (55%) 1,861 / 4,043 (46%)   

Previous 114,349 / 332,773 (34%) 1,790 / 4,043 (44%)   

Current 34,437 / 332,773 (10%) 392 / 4,043 (9.7%)   

Alcohol drinker status     0.7 

Never 10,655 / 332,773 (3.2%) 122 / 4,043 (3.0%)   

Previous 10,982 / 332,773 (3.3%) 140 / 4,043 (3.5%)   

Current 311,136 / 332,773 (93%) 3,781 / 4,043 (94%)   

Townsend deprivation index -1.440 (3.002) -1.560 (2.982) 0.005 

Basophil count 0.034 (0.051) 0.034 (0.056) 0.8 

Eosinophil count 0.174 (0.137) 0.176 (0.131) 0.5 

Lymphocyte count 1.939 (0.625) 1.933 (0.613) 0.4 

Monocyte count 0.475 (0.200) 0.498 (0.177) <0.001 

Neutrophil count 4.224 (1.385) 4.350 (1.424) <0.001 

Overall WBC count 6.852 (1.745) 6.998 (1.772) <0.001 

1n / N (%); Mean (SD) 
2Pearson's Chi-squared test; Wilcoxon rank sum test 

 

 

Afterwards, I studied the descriptive statistics of WBC count. This was done to show how 

the WBC counts in the study sample compare with the general population, and if there 

are deviations from normal parameters e.g. if basophil count percentage of total WBC 

count is larger than 1% in the study sample. As a percentage of the total WBC count 

based on the median values, basophils accounted for 0.3%, eosinophils for 2.11%, 

lymphocytes for 28.16%, monocytes for 6.78%, and neutrophils for 60.39% (Table 3-10). 

 

Table 3-10. Descriptive statistics of WBC count. Units are 109 cells/Litre 

Trait Mean SD Median MAD1 Min Max Range Skew 

Basophil count 0.03 0.05 0.02 0.03 0 2.6 2.6 10.01 
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Trait Mean SD Median MAD1 Min Max Range Skew 

Eosinophil count 0.17 0.14 0.14 0.09 0 9.6 9.6 5.62 

Lymphocyte count 1.94 0.62 1.87 0.55 0 79.99 79.99 8.55 

Monocyte count 0.48 0.2 0.45 0.15 0 12.26 12.26 8.89 

Neutrophil count 4.23 1.39 4.01 1.2 0 25.1 25.1 1.15 

Overall WBC count 6.85 1.75 6.64 1.57 0 101.9 101.9 1.45 

1Median absolute deviation 
       

 

 

Furthermore, I aimed to study the correlation indices between each WBC subtype count, 

to compare with previous studies and assess and notable differences which might affect 

the interpretability of the results in relation to the MR analyses. Therefore, I generated a 

pair-wise correlation matrix between each WBC subtype. Here, low correlation (R = 0.1 

to 0.3) was observed (Figure 3-9), suggesting that all five WBC subtypes could be added 

in a multivariable observational model, although this would not be as effective as the 

MVMR method in outlining which WBCs drive the associations with CRC risk.  
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Figure 3-9. Pair-wise correlation matrix.  

The total WBC count and WBC subtype counts were analysed between each other using 
Spearman correlation. WBC traits are on the X and Y axes. The number inside each 
square represents the correlation coefficient between the studied traits for each WBC 
trait pair. 

 

I explored the variance explained by several variables on WBC count with the aim of 

adding them as covariates in the fully adjusted “Model 2”. This was done through an 

ANOVA type II approach, where I investigated the variance explained by each variable 

on WBC count after adjusting for all other variables. 

 

In the main ANOVA type II analysis, geographical structure (PCs 1 to 10) had little effect 

on WBC count variation. Batch variables (e.g. blood sample device and sampling date), 

Townsend DI, and alcohol drinker status explained some of the variance in WBC count 
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(0% to 0.66%). Depending on the WBC subtype, genetic sex explained between 0.23% 

to 2.93% of the variance. This was also true for BMI, which explained between 0.14% to 

3.75% of the variance, and smoking status, with values between 0.44% and 5.56% 

(Figure 3-10).  
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Figure 3-10. Variance explained by variables on WBC count.  

Univariable, type I ANOVA and type II ANOVA were run to determine the variance 
explained on overall WBC count, as well as each WBC subtype count, which are 
represented as separate facets in the figure. Studied variables were ordered top-down 
on the Y-axis, which is the way the type I ANOVA was run. The X-axis represents the 
variance explained (%) on WBC count for the corresponding variable for each analysis 
type. 

 

3.3.4. Observational analysis between WBC count and 
CRC 

After filtering participants and investigating the sample data through descriptive statistics, 

I proceeded to run the observational analysis. Here, the main analysis was represented 

by “Model 1”, which used the same covariates as the GWAS of WBC count that I 

employed in the MR analysis 166. This was done because my aim was to compare the 

observational approach with the MR analysis. However, the analysis of variance 

conducted above pointed to several variables explaining some of the variance in WBC 

count, which could affect the observational findings if unadjusted for. Therefore, as a 

secondary analysis, I added those variables in the fully adjusted “Model 2”. 

 

In the main analysis, “Model 1” (the minimally adjusted model), basophil count was 

positively associated with CRC odds (OR: 1.06, 95% CI: 1.02-1.09, P-value: 0.0005), as 

was monocyte count (OR: 1.05, 95% CI: 1.02-1.08, P-value: 0.003) and neutrophil count 

(OR: 1.09, 95% CI: 1.06-1.13, P-value: 1.94E-08) (Appendix 8, Figure 3-11). For male 

CRC, neutrophil count (OR: 1.08, 95% CI: 1.04-1.13, P-value: 0.0002) was associated 

with increased odds of CRC. By contrast, eosinophil count was associated with a lower 

odds of male CRC (OR: 0.96, 95% CI: 0.92-1.00, P-value: 0.048). For female CRC, 

monocyte (OR: 1.06, 95% CI: 1.01-1.11, P-value: 0.012) and neutrophil (OR: 1.07, 95% 

CI: 1.02-1.12, P-value: 0.006) counts were associated with an increase in CRC odds. 

The results of “Model 2” largely coincided with those of “Model 1”, though here effect 

sizes for basophil count, monocyte count and neutrophil count shifted slightly towards 

the null. This was the opposite for eosinophil count, where there was a more pronounced 

negative association than in the minimally adjusted model (overall CRC OR: 0.96, 95% 

CI: 0.93-0.99, P-value: 0.022), possibly due to increased predictive ability by the model 

to give a more accurate result following adjustment for the additional covariates 

(Appendix 8, Figure 3-11). While there was no evidence of an association between 

lymphocyte count and CRC risk here, the “Model 2” effect sizes slightly shifted from the 

null towards decreased CRC risk. 
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Figure 3-11. Univariable observational analysis between WBC count and CRC risk.  

WBC subtypes are separated into rows on the X-axis. Each column is an analysis looking at overall, male-specific, and female-specific CRC. The 
effect sizes from each model are presented on the Y-axis. Point estimates were filled where the P-value was less than 0.05. Results are interpreted 
as ORs (95% CI) for CRC per 1-SD normalized increment in WBC count. 
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Following the univariable approach, observational associations were re-computed by 

adding all five WBC subtype counts together. Once again, the aim was to compare the 

multivariable observational analysis with the MR approach, and “Model 1” represented 

the main analysis. I previously studied the correlation indices of WBC count and showed 

that they are correlated to a small degree, making it possible for me to study the 

association of e.g. basophil count on CRC risk, adjusting for the counts of the other four 

WBC subtypes, plus the other model covariates. 

 

In the minimally adjusted “Model 1”, eosinophil count (OR: 0.96, 95% CI: 0.93-0.99, P-

value: 0.009) was associated with lower overall CRC odds, while basophil count (OR: 

1.04, 95% CI: 1.01-1.08, P-value: 0.008) and neutrophil count (OR: 1.08, 95% CI: 1.05-

1.12, P-value: 1.92E-06) were associated with an increase in overall CRC odds (Figure 

3-12, Appendix 9). For male CRC, eosinophil count was associated with lower odds of 

the disease (OR: 0.96, 95% CI: 0.93-0.99, P-value: 0.009), while neutrophil count was 

associated with higher disease odds for both male (OR: 1.08, 95% CI: 1.04-1.13, P-

value: 0.0003) and female CRC (OR: 1.05, 95% CI: 1.00-1.13, P-value: 0.046). As was 

the case in the univariable analysis, these results largely coincided with those from the 

fully adjusted “Model 2” analyses (Figure 3-12, Appendix 9). Similarly, the effect sizes 

shifted to the left, towards the estimates of the MR analysis. 
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Figure 3-12. Multivariable observational analysis between WBC count and CRC risk.  

WBC subtypes are separated into rows on the X-axis. Each column is an analysis looking at overall, male-specific, and female-specific CRC. 
The effect sizes from each model are presented on the Y-axis. Point estimates are filled where the P < 0.05. Results are interpreted as ORs (95% 
CI) for CRC per 1-SD normalized increment in WBC count. 
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3.3.5. Univariable MR analysis between allergic 
disease and CRC 

Given the consistency between the UVMR, MVMR, and observational analyses for 

eosinophil count and given their established role in allergic disease, I conducted a follow-

up analysis investigating the effect of allergic disease on CRC. The average conditional 

F-statistic for the allergic disease instrument was 72.49, indicating strong instruments. In 

the MR analysis, the IVW method demonstrated evidence for a protective effect of 

allergic disease on overall CRC (OR: 0.89, 95% CI: 0.82-0.96, P-value: 0.003) (Figure 

3-13). The sensitivity analyses were largely in agreement with the IVW method. No 

pleiotropic SNP were suggested by the MR-PRESSO method for the male CRC 

outcome, and here the MR-Egger had a point estimate in the other direction compared 

to the other methods, although there was no evidence of an effect (Figure 3-13). As was 

the case with eosinophil count, this protective effect was displayed on colon, proximal 

colon, and distal colon cancers only (Figure 3-14, Appendix 10, Table 3-11). 

 

Given than both eosinophil count and allergic disease had a protective effect on CRC 

development in the MR analysis, I decided to investigate the proportion mediated by 

allergic disease using two-step MR 218. Using the two-step MR products method, allergic 

disease was estimated to mediate 35.39% of the eosinophil count to CRC risk 

relationship. 
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Figure 3-13. UVMR analysis between allergic disease and CRC risk.  

Allergic disease is presented on the X-axis. The estimated effect is presented on the Y-axis. Point estimates are filled where the P < 0.05. Results 
are interpreted as ORs (95% CI) for CRC per 1-log(OR) increase in allergic disease. 
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Figure 3-14. UVMR analysis between allergic disease and CRC risk.  

Allergic disease is presented on the X-axis. The estimated effect is presented on the Y-axis. Each column is an analysis looking at overall, colon-
, proximal-, distal-, and rectal-specific cancer. Point estimates are filled where the P < 0.05. Results are interpreted as ORs (95% CI) for CRC 
per 1-log(OR) increase in allergic disease. 
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Table 3-11. Sensitivity analysis for the UVMR analysis between allergic disease and CRC. 

Exposure Outcome Het P Ple intercept Ple P Correct direction Steiger P 

Allergic disease Colon 1.38E-10 0.0048721 0.447312 TRUE < 2.22e-16 

Allergic disease Distal 0.00012526 0.0022242 0.755872 TRUE < 2.22e-16 

Allergic disease Female 5.50E-07 0.0132032 0.066381 TRUE < 2.22e-16 

Allergic disease Male 0.05966146 < 2.22e-16 0.030156 TRUE < 2.22e-16 

Allergic disease Overall 4.09E-13 0.002755 0.623224 TRUE < 2.22e-16 

Allergic disease Proximal 6.52E-08 0.0066116 0.385825 TRUE < 2.22e-16 

Allergic disease Rectal 0.00035543 < 2.22e-16 0.964617 TRUE < 2.22e-16 
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3.4. Discussion 

In this project I studied the relationship between the five circulating WBC subtypes and 

CRC risk through a combined genetic epidemiologic and observational framework.  

 

Firstly, I want to address the potential issues with running the MVMR analysis. To 

address the potential issue of weak instrument bias 217, I estimated the proportion of 

variance explained by each WBC subtype count in the other four subtypes. Here, only 

data available on basophil count gave the suggestion that it might be affected by this 

type of bias, and I prepared for this by running a sensitivity MVMR analysis designed to 

adjust for it. Moreover, I tried to assess if the MVMR analysis could be compared to the 

observational analysis. The genetic correlation between WBC counts is greater than their 

phenotypic correlation 149,166,348, which can be explained due to environmental effects, 

some of which are unknown 348. In the analyses taken prior to running the observational 

methods, I studied the phenotypic correlation between the counts of each WBC subtype. 

The corelation indices were low, similar to those of Welsh et al., where they studied the 

link between circulating WBCs and the risk of cardiovascular disease odds and mortality 

using UK Biobank 282. Given the low correlations, the MVMR estimates might be better 

compared to the observational results rather than the UVMR analysis. 

 

The study design was chosen to concomitantly address the four aims I laid out in the 

introduction which relate back to the overarching objective. First, I used UVMR to assess 

the relationship between WBC count and CRC risk (Aim 1). The MVMR analysis allowed 

me to identify if these effects, or lack thereof, were influenced by the known correlations 

between the WBC subtype counts (Aim 2). Afterwards, an observational analysis was 

done to augment the MR analysis, which aided in the interpretation of the findings (Aim 

3). Therefore, the study design was useful, as it not only identified which WBC subtype 

counts affect CRC risk, but also which effects were present, or masked, due to the known 

genetic overlap between WBC counts. Moreover, the observational analysis was helpful 

in assessing what the MR results mean, and how MR can be advantageous in the study 

of blood cell traits on human disease. Finally, the combination between these three 

approaches aided in the discussion of the results in the context of a possible biological 

mechanism that could explain my findings. Taking this forward, the consistent evidence 

for eosinophil count prompted me to run a MR analysis between allergic disease and 

CRC (Aim 4). 
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The rest of the descriptive statistics I generated prior to the observational analysis are in 

line with other observational studies that have previously leveraged UK Biobank’s 

phenotypic data. This is helpful, as it can be assumed that the results generated here 

are not due to an artifact such as human error. For example, the WBC parameters are 

comparable to those from a study in UK Biobank looking at the association between 

WBC count and blood pressure 281. Seasonality has been found to influence WBC 

variation even when adjusting for factors such as age, sex, BMI, socioeconomic status, 

alcohol drinker status and smoking status 349, a finding that was confirmed by the analysis 

of variance I conducted here. 

 

The UVMR analysis suggested a protective effect by basophil count in the main IVW 

approach, although the sensitivity analyses showed little evidence of an effect. In 

addition, the MVMR analysis did not show evidence of a direct effect by basophil count 

on CRC odds. In contrast to the UVMR analysis, the observational approach showed a 

positive association between basophil count and CRC risk, although this association 

trended towards the null in the multivariable models. A previous study showed higher 

basophil count associated increased lung cancer odds 279 (quartile Q4 HR: 1.22 vs. CRC 

RR: 1.06), supporting the observational findings in my analysis. Similarly, increased 

basophil count 1-6 and 6-12 months prior to CRC diagnosis has been previously 

reported, although the latter study found no evidence of an association 291,292. Compared 

side-by-side, basophil count shows a diminishing effect size the longer the gap between 

blood sampling and CRC diagnosis. This trend towards no effect by basophil count is 

similar to what the MVMR analysis showed, providing evidence that basophil count might 

not affect CRC development. However, biologically, peripheral blood basophils have the 

capacity to infiltrate tissues 350 and their activity has been associated with cytokines IL-4 

and IL-13, which have been shown to induce a pro-tumorigenic Th2 response 298,299. 

Recently, a higher basophil count has also been associated with accumulation of M2 

macrophages that promote a pro-tumorigenic environment 351. Although previous studies 

looking at pre-treatment CRC have associated a low basophil count with worse CRC 

severity and prognosis 283,294, this could be a marker of poor overall immune system 

function rather than a basophil biologically-driven response. 

 

These previous findings contrast with what I found in the UVMR analysis, which showed 

a protective effect by basophil count. However, the genetic correlation between basophil 

count and eosinophil count is 0.5 166, which is far greater than the 0.1 value I found in my 

phenotypic correlation analysis. This exemplifies the point I have made above, where 

the MVMR analysis could be more representative of both observational methods. Indeed, 

the point estimates between the MVMR analysis and the cohort analysis were more 
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similar than the UVMR estimates. Moreover, in the MVMR analysis, eosinophil count 

was still estimated to have a protective effect on CRC risk, while basophil count was not. 

This means that it is likely that the effect seen for basophil count in the UVMR analysis 

is driven by eosinophil count, due to their high genetic correlation. In essence, MVMR 

was particularly useful here by overcoming the issues of both UVMR due to correlated 

instruments, and observational studies due to issues of confounding and reverse 

causation. Overall, the combined evidence across analyses suggest that basophil count 

does not influence the development of CRC.  

 

Next, I studied the role of eosinophil count in CRC development. The UVMR analysis 

displayed a protective effect by the main IVW method, supported by most sensitivity 

analyses. The MVMR results were more pronounced than the UVMR analysis, further 

strengthening the evidence that eosinophil count plays a role in CRC development, 

independent of other WBC types. Similarly, the observational univariable analysis also 

showed a negative association between eosinophil count and CRC odds, and the 

strength of this association increased in the multivariable models.  

 

Eosinophil count has been investigated in previous studies which support their protective 

effect in cancers. A negative association was previously reported between increasing 

eosinophil count and lung cancer diagnosed >1-year post blood sampling 279. A similar 

study in UKBB showed increased prostate cancer odds per 1-SD increase in the trait 

(OR 0.96 vs. 0.93 for CRC in my analysis) 280. A MR analysis done in UKBB to assess 

the effect of WBC traits on endometrial and cervical polyps found a protective effect by 

eosinophil count, both in the UVMR analysis (OR 0.88 vs. 0.93 for CRC in my analysis), 

and after adjusting for each WBC subtype count in a pair-wise MVMR setting (ORs 

between 0.84-0.86 vs. 0.88 for CRC in my analysis) 352. In support of my findings, 

Prizment et al. identified a negative association between eosinophil count and colon 

cancer odds, but no association with rectal cancer odds 300. This diminishing effect seen 

further from the start of the colon could be due to eosinophil numbers depending on the 

colorectal subsites, as eosinophil count and activity is the highest in the cecum and 

ascending colon and lowest in the rectum 301,353.  

 

As trends, those who developed CRC tended to have lower eosinophil count, which rose 

up until the time of diagnosis, which has been attributed to increased eosinophil 

recruitment to the tumour microenvironment 289,354. As mentioned in the introduction, 

eosinophil count was higher 1-6 and 6-12 months prior to CRC diagnosis, with no 

evidence of an association in the latter case 291,292. This indicates that higher eosinophil 

count might have resulted from the presence of cancer rather than vice-versa. In the 
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observational analysis I undertook here, I studied only those participants who developed 

CRC at least 1-year between blood sampling and diagnosis, aiming not to restrict the 

number of cases to such a degree that it would greatly diminish statistical power, but at 

the same time limit the possibility of reverse causation. Given my findings and what is 

known about eosinophil count risk and trends, the results indicate a trend towards a lower 

risk of CRC with increasing time gap between blood sampling and CRC diagnosis, 

consistent with the MR results, which provides evidence for their protective effect in CRC 

development. 

 

Eosinophils have also been investigated in relation to cancer survival. Increased 

eosinophil recruitment to the CRC tumour site was associated with better survival, even 

when adjusting for the effects of CD8+ T-cells 288. This independent anti-tumoral effect in 

CRC cells was also observed in vitro 309, and eosinophil-specific granule secretion of 

granzyme A has been linked with the killing of CRC cells 306. Moreover, eosinophil density 

in the tumour microenvironment has been associated with an increase in E-cadherin, a 

protein that links cancer cells together and hampers their metastatic potential 355.  

 

Eosinophils are well known for their role in allergies, including asthma and allergic rhinitis 

356, and previous MR analyses have reported a causal effect of eosinophil count on 

allergic disease 149,357. It might therefore be expected for there to be a link between 

allergies and CRC risk. Indeed, a systematic review looking at the relationship between 

allergies and cancer suggested a reduced risk of CRC in those with allergic diseases 358. 

In a follow-up MR analysis, I discovered that allergic disease is protective against overall 

CRC development, across all anatomical subsites except the rectum, which was 

consistent with the eosinophil count results. In their letter to the editor, Yuan et al. 

showcase an MR analysis between allergic disease and three cancers: oesophageal, 

gastric, and colorectal 359. Here, they used the same instruments to proxy for allergic 

disease that I used in my analysis and found a protective effect by allergy on CRC 

(overall CRC OR: 0.91 CI: 0.83-0.99 vs. OR: 0.93 CI: 0.88-0.98 in my study) 359. At the 

same time, a recent MR study did not find an effect of allergic disease on breast and 

prostate cancer risk 360, suggesting a specific anti-tumorigenic effect by allergies on CRC 

development. Overall, the findings generated in my study provide evidence that 

eosinophil count plays a protective role against CRC. 

 

The findings relating to eosinophil count could be a helpful steppingstone for future 

studies that could explore a mechanistic effect on CRC. For example, the GTEx 

database 361 could be used to extract expression quantitative trait loci (eQTLs) that map 

to genes associated with eosinophil effector proteins (e.g. RNASE2 encoding EDN) 306. 
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This could be then used in an MR for a more mechanistic approach to assess how 

eosinophils could reduce the risk of CRC. Protein quantitate trait loci (pQTL) data 362 

could also be used to directly investigate circulating eosinophil proteins on CRC risk, 

although such datasets are more sparse in comparison. Regarding allergic disease, the 

role of eosinophils could be explored through a RNA-Seq laboratory analysis 363. Here, 

samples from healthy controls and from those with allergic disease could be taken and 

analysed, outlining differences in gene expression between eosinophils in healthy and 

affected individuals. Highlighted genes could then be studied further in relation to CRC 

development. 

 

Returning to the results, the next WBC studied was lymphocyte count. There was limited 

evidence for a protective effect of lymphocyte count on overall CRC in the UVMR. 

Interestingly, the MVMR estimates indicated lower ORs for CRC across all anatomical 

subsites and female CRC. The observational analysis showed no evidence for an 

association between lymphocyte count and CRC odds in the univariable models, while 

the multivariable fully adjusted “Model 2” indicated that there may be a negative 

association with the disease. Employing MVMR was again useful here, as it aided in 

identifying an effect specific to lymphocytes that was not identified in the main UVMR 

analysis. The genetic correlation between the counts of lymphocytes with monocytes 

and neutrophils, both which were not found to have an effect on CRC risk, might be 

responsible for this pull towards the null in the UVMR analysis.  

 

Tumour-infiltrating lymphocytes (TILs) are lymphocytes which infiltrate the tumour 

environment and help combat tumour growth through direct action and recruitment of 

other immune cells 284. These include CD8+ T-cells and CD20+ B-cells that have been 

shown to reduce tumour growth and promote cytotoxic effects on tumour cells, both in 

tandem and independently 364. High levels of TILs has been associated with better CRC 

overall and disease-free survival 284,313. Interestingly, while an increase in CD3+ and CD8+ 

T-cells was associated with better prognosis in right-sided CRC, an increase in FoxP3+ 

T-cells was associated with improved prognosis in rectal CRC 365, indicating separate 

biological mechanisms of lymphocyte action depending on the CRC primary tumour 

anatomical subsite. The most likely explanation for the MR findings in terms of CRC risk, 

given the consistency across the results and anatomical subsites, is the known role in 

surveillance by T-cells and NK cells to detect and destroy potentially cancerous cells 

366,367. While lymphocyte count was higher 1-12 months prior to CRC diagnosis 291,292, 

this most likely indicates production and recruitment of lymphocytes to the site of pre-

cancerous or non-detectable tumours. Overall, my findings, along with those from the 
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current literature, indicate that elevated lymphocyte count protect against the 

development of CRC. 

 

As in the case for eosinophil count, future studies could further untangle the biological 

mechanism through which lymphocytes might prevent CRC development. For example, 

the counts of a specific lymphocyte type e.g. CD8+ T-cells and NK cells could be studied 

in relation to CRC risk. Another possibility is to use multiple trait colocalization, a method 

which can leverage QTL data to provide evidence for the lymphocyte subpopulation that 

is driving the effect seen in my MR analysis 368. This can also be used for eosinophil 

count, to find genetic variants that colocalize between a particular eosinophil population, 

eosinophil count, and allergic disease, establishing a clearer mechanistic view.  

 

Next, I studied monocyte count, where both the UVMR and MVMR analyses showed 

little evidence for an effect. However, monocyte count was associated with increased 

overall and female CRC odds in the observational analysis. Neutrophil count, however, 

was strongly association with CRC odds in both the univariable and multivariable 

observational models but again there was little supporting evidence from the MR 

analyses. Two other observational analyses in UKBB reported a positive association 

between monocyte and neutrophil count, and cardiovascular disease and lung cancer 

odds 279,282. Interestingly, another UKBB study looking at WBC count and blood pressure 

found neutrophil count to be the strongest association with blood pressure in the 

observational analysis 281. However, similarly to what I found in my study, their UVMR 

and MVMR analyses did not show evidence for an effect by monocyte nor neutrophil 

count, which the authors attribute to residual confounding, reverse causation or an acute 

effect influencing WBC count in the observational model 281.  

 

3.4.1. Limitations 

Finally, there were a number of limitations in my study. Firstly, sex-specific WBC count 

instruments were not available for use in the MR analysis, and therefore sex-combined 

WBC count data was used even in the sex-specific CRC MR analysis. A general 

observation around the analyses I conducted was the difference in results in the sex-

specific CRC. These differences make sense, as the immune systems of men and 

women are different in their activity, efficiency, and WBC count distributions 369,370. 

Women, for example, have been shown to have a more active and efficient immune 

system 371–373, although this comes with an increase in autoimmune conditions 370. 

Interestingly, associations in my observational analyses were different to those from the 

MR analysis. For example, an increase in lymphocyte count indicated a reduced risk in 
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men and no evidence in women, while the MR analysis showed evidence for a reduced 

CRC risk in women and only indicated a protective effect in men. In support of the 

lymphocyte count MR results, CD4+ and CD8+ T-cell activity and ability to enter tumour 

tissues has been identified to be better in women than in men 374. This indicates that the 

MVMR analysis could better assess the direct effect by lymphocyte count, given the 

ability to adjust for genetic correlation, rather than an observational study affected by 

confounding. Moreover, the observational analyses might have had reduced accuracy in 

comparison to the MR analyses, given the difference in tested cases (N=1,727) 

compared to the MR approach (N=24,594).  

 

Another explanation is that of sex heterogeneity in instruments used to measure for WBC 

count is affecting the MR results. Only sex-combined summary statistics for WBC count 

were available to use in my analysis. These were adjusted for sex, but if there are sex-

specific mechanisms through which WBCs act to reduce or increase the risk of CRC, this 

does not eliminate the potential for sex-combined exposures to bias MR estimates. Three 

separate MR commentaries do point out this issue 200,375,376, and Gao et al. show that 

there are differences in MR estimates when studying the relationship between combined 

and sex-specific BMI instruments on sex-specific outcomes i.e. breast and prostate 

cancers 377. 

 

Indeed, there are sex-specific differences in CRC incidence (overall and by site) 378, 

metabolic activity 379, modifiable risk factors 378, and genetic architecture 380. For example, 

the role of sex hormones e.g. oestrogen in eosinophil activity has been documented, 

although the mechanisms through which they act to affect eosinophils, and particularly 

in cancer, is currently unknown 381. Given this, the MR results for WBC count and allergic 

disease on sex-specific CRC risk should be interpreted with this in mind. A future 

analysis could be done to explore the effect of sex-specific WBC count on sex-specific 

CRC. The smaller sample-size would likely diminish the number of SNPs used in an MR 

analysis, leading to a loss in precision, but at the same time could point to a more 

accurate result. 

 

Secondly, only baseline blood measurements were available for conducting the 

observational analysis. This assumes that WBC counts were constant and did not allow 

for establishing of a relationship between a trend in WBC count and its relationship to 

CRC odds. Nevertheless, baseline WBC count measurements have been previously 

been shown to be associated with disease risk 279–282,382, making this study into CRC 

development a worthwhile endeavour.  
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Thirdly, while there was evidence from the MVMR analyses that lymphocyte count had 

a protective effect on CRC, it is not known if this is the result of increasing levels of T-

cells, B-cells, NK cells, or all of them combined. Furthermore, the analyses here did not 

study a specific population of WBC cell subtypes, such as CD8+ T lymphocytes or 

CD11b+ eosinophils, both which have been found to present specific anti-tumour effects 

in laboratory-based studies 284,308.  

 

Fourthly, the MVMR method used here may not be reliable when investigating traits with 

very weak instruments 217. This was the case for basophil count, as the F-statistic was 

estimated to be between 4.7 and 4.8 (Table 3-7). Therefore, despite pointing to an 

increased detrimental effect compared to the main MVMR analysis, ORs derived from 

the weak-MVMR analysis should be interpreted with this in mind. 

 

Finally, generally MR, including the analyses done here, assume that the level of 

exposure is constant over time 184 and that the causal effect is linear and homogeneous 

383. While differences between WBC count in people are thought to be stable through life 

384, it is not known how an acute rise in the levels of a certain WBC subtype might lead 

to CRC tumourigenesis. Therefore, my analyses should be interpreted as looking at how 

lifetime differences between the counts of WBCs affect the risk of CRC. 

 

3.4.2. Conclusion 

In summary, through a combined MR and observational analysis, the results here 

suggest that the biological consequences of having elevated circulating levels of 

eosinophils and lymphocytes protect against colorectal cancer development, implicating 

these cell types and their biological roles in this process. Additionally, a follow-up MR 

analysis suggested a protective signal detected when assessing allergic disease, which 

were – as anticipated – similar to the eosinophil count findings. Nevertheless, additional 

research is needed to disentangle the biological mechanisms and pinpoint a specific 

pathway through which these WBC subtypes act to reduce the odds of developing CRC, 

including sex-specific cases.  

 

In this chapter I used particular methodological approaches to study the relationship 

between WBCs and CRC, a disease of global significance 265. In Chapter 5 I have 

studied the role of  neutrophil count in P. falciparum severe malaria 385, another disease 

of global significance and one that presented a different set of methodological 

challenges. Principally, the need to identify people in UK Biobank of the African 
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continental ancestry group. This work is presented in Chapter 4, preceding the study 

presented in Chapter 5.  
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CHAPTER 4.  A FRAMEWORK FOR 
RESEARCH INTO CONTINENTAL 
ANCESTRY GROUPS OF THE UK 

BIOBANK  
 

Chapter summary 

In this chapter I present my study undertaken on the non-White British populations in UK 

Biobank (UKBB) 164 which has been published in “BMC Human Genomics” 238. The main 

aim was to identify UKBB participants that correspond to the African continental ancestry 

group (CAG), although those corresponding to the European, South-Asian and East 

Asian CAGs were also identified due to the identical methodological framework (Figure 

4-1). The work presented here was a prerequisite for Chapter 5, where I generated a 

genome-wide association study (GWAS) of neutrophil count in people of African 

ancestry, allowing me to conduct a Mendelian randomization (MR) analysis 169 between 

neutrophil count and Plasmodium falciparum (P. falciparum) severe malaria.  
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Figure 4-1. PhD project and current chapter (4 - coloured).  

Created with Microsoft PowerPoint and BioRender.com. 
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4.1. Introduction 

As the research community strives to understand the genetic architecture of disease 347, it has 

increasingly realised the necessity of inclusion and diversity – of ethnically, ancestrally, 

environmentally, and geographically diverse populations 386–389. Not simply to enhance 

knowledge about health and disease, but to ensure health equity. As alluded to in Chapter 1, 

epidemiological studies including GWAS have been overwhelmingly conducted in European 

populations 386.  

 

4.1.1. Current studies in diverse populations 

Funding efforts and studies including the Human Heredity and Health in Africa (H3Africa) 

Initiative 390, the Population Architecture using Genomics and Epidemiology (PAGE) 

Consortium 391, Trans-Omics for Precision Medicine Consortium 392, Hispanic Community 

Health Study / Study of Latinos (SOL) 393, and the All of Us Research Program 394 are making 

concerted efforts to include and increase the number of under-represented populations in 

genomic epidemiology studies. More recent initiatives have focused on improving the 

understanding of genetic variation across ancestries using large-scale approaches, such as 

the Million Veterans Program 162 in the US, BioBank Japan (BBJ) 395 and UKBB 161,164.  

 

4.1.2. UK Biobank 

The UKBB project has phenotypic and genomic data from a prospective cohort of 

approximately 500,000 individuals from across the United Kingdom (see Chapter 2) 161,164. It 

has become an outstanding resource for studies of health and disease, and genetic diversity 

within the United Kingdom. While it is made up of around 430,000 “white British ancestry” 

individuals, as defined by UKBB, it also contains a wealth of diversity from other self-described 

ethnicities (~78,000) 164. This is a resource that should be utilized to help expand inclusion 

and diversity in epidemiological studies. The Pan-UK Biobank, or the Pan-ancestry genetic 

analysis of the UKBB, has leveraged the diversity present in UKBB and is freely providing 

GWAS summary statistics for over seven thousand phenotypes in six continental ancestry 

groups (https://pan.ukbb.broadinstitute.org). Studies and public resources like Pan-UK 

Biobank are vital to the goal of increasing under-represented populations and the larger goal 

of describing and understanding the genetic architecture of phenotypic traits and disease.  
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4.1.3. Current limitations 

One of the aims of my thesis is to explore the relationship between neutrophil count and the 

severity of P. falciparum malaria using MR analysis. The most at-hand approach would be to 

use the summary statistics for neutrophil count generated from the UKBB European sample 

of ~400,000 people, as described in studies such as Astle et al. 149. However, one of the 

requirements of two-sample MR (2SMR) is that the exposure and outcome datasets come 

from the same underlying population (Chapter 2) 200. Indeed, the genetic architecture between 

ancestral populations can differ due to linkage disequilibrium (LD) block size or allele 

frequency differences 396–398, and this applies to traits such as blood cell traits (BCTs, including 

neutrophil count) 166,399,400. This makes it unlikely that using SNP instruments for neutrophil 

count from an European GWAS would yield reliable MR results with the outcome data coming 

from an African ancestry GWAS of severe malaria caused by P. falciparum 245.  

 

However, there has been limited information on intra-population structure in the Pan-UK 

Biobank, which would be valuable given that, for example, Africa harbours more genetic 

diversity than any other continent 401. Moreover, the GWAS models were run in a non-specific 

manner (e.g. same covariates used across traits) without taking into account the biological 

particularities of a trait such as BCTs. These might bias association effect-sizes and in turn 

could then have a downstream effect on post-hoc analyses, such as MR 339,402–404.  

 

Therefore, a description of the continental diversity and population structure present in the 

non-white British participants of UKBB, specifically the African CAG, would aid me in 

conducting a GWAS of neutrophil count and run a MR analysis. More broadly, this would aid 

future study designs, methodological choice(s) and ultimately improve the understanding of 

how genotype influences phenotype. 

 

4.1.4. Main study objective 

Given these challenges, my main objective was to identify a relatively homogenous group of 

individuals corresponding to the African CAG that would approach a population consistent 

with a Hardy-Weinberg equilibrium (HWE) model (i.e. homogeneous) 168 and is resultantly 

more appropriate for many of the assumptions built into many of the methods used in genomic 

epidemiology studies, such as MR 405,406. Given the identical methodological approach to 

complete this objective, I also expanded my work to find individuals from the non-white British 

segment of UKBB that correspond to the European (EUR), South-Asian (SAS) and East-Asian 

(EAS) CAGs. Nevertheless, the prime focus will be the AFR CAG, as this is the dataset that I 

will use in Chapter 5.  
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4.1.5. Study aims 

I have divided this chapter’s main objective into three separate aims I will try to address: 

1) Identify individuals from UKBB that could be assigned to the AFR CAG i.e. would be 
similar to a population sampled on the African continent 

2) Describe the AFR CAG in the context of its population structure and identification of 
homogeneous clusters within this CAG 

3) Assess the reliability of the methods to ensure that the AFR CAG dataset can be 
used in Chapter 6 for conducting a GWAS 

 

As a final note, genetic “ancestry” groups identified within my study refer to groups of 

individuals with a shared genetic ancestry and demographic history. I define "ancestry” here 

as genetic ancestry or the complex inheritance of one’s genetic material, but in practice I will 

be using methodologies that use genetic similarity to identify groups of individuals with high 

genetic affinity or likeness 407.  

 

4.2. Methods 

4.2.1. Study design 

Public data from the 1000 Genomes Project (1KG) 152 was used to provide reference 

populations from four CAGs – namely, AFR, EUR, SAS and EAS. First, an ADMIXTURE 

analysis was done to assign non-white British UKBB participants into one of the four CAGs 

(Aim 1). Next, I performed a principal component analysis (PCA, see Chapter 2 for details) 

to study the degree of population structure and identified homogeneous sub-clusters within 

each CAG (Aim 2). Afterwards, I assessed the reliability of the data by comparing it with the 

1KG reference panel (Aim 3) (Figure 4-2). The groups and clusters identified here are used 

as discrete units, but ancestry does not have decisive boundaries and is a continuum 408–411. 

Therefore, the use of discrete units is an analytical simplification. 
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Figure 4-2. Study design of the chapter. 

 

4.2.2. UK Biobank genetic data 

I used the directly genotyped SNP data from UKBB (N=784,256 SNPs) (see Chapter 2 for 

more details). It includes data for a total of 78,661 individuals identified by UKBB as “non-

white British” participants – my analyses were restricted to this subset. In addition to genotypic 

data, I also acquired several variables of interest (self-reported ancestry, country of birth) data 

for this subset of individuals. 365 exclusions were made when filtering those with sex 

chromosome mismatch and/or aneuploidy, and outliers with high genetic heterozygosity (HWE 

test P-value < 0.0001) and missing rates (>0.015, refers to the proportion of missing SNP 

information for an individual as a proportion of all genotyped SNPs) 412.  

 

4.2.3. 1000 Genomes data 

We used genetic data (v5a.20130502) from phase three of the 1KG, which includes data from 

5 1KG described super-populations [Europe (EUR), East Asia (EAS), South Asia (SAS), Africa 

(AFR), and the Americas (AMR)] to provide reference populations for admixture analyses and 
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population structure inferences (413 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). Our analyses 

did not include populations from the AMR superpopulation. This is to maintain a simplified 

analysis that avoided the complicating factors of the potentially recent admixture events that 

occurred in the Americas, such those from the European colonial period 414. Included in our 

analyses are five populations from 1KG super-population label: (AFR), also known as the 

continental Africa ancestry group (1) Yoruba in Ibadan, Nigeria (YRI); (2) Luhya in Webuye, 

Kenya (LWK); (3) Gambian in Western Division, The Gambia - Mandinka (GWD); (4) Mende 

in Sierra Leone (MSL) and (5) Esan in Nigeria (ESN). Five populations from the super-

population label EUR or the European CAG: (1) Utah residents with Northern and Western 

European ancestry (CEU); (2) Toscani in Italia (TSI); (3) British in England and Scotland 

(GBR); (4) Finnish in Finland (FIN) and (5) Iberian populations in Spain (IBS). Five populations 

from the super-population label SAS or the South Asian CAG: (1) Gujarati Indian in Houston, 

Texas (GIH); (2) Punjabi in Lahore, Pakistan (PJL); (3) Bengali in Bangladesh (BEB); (4) Sri 

Lankan Tamil in the UK (STU) and (5) Indian Telugu in the UK (ITU). Finally, five populations 

from the super-population label EAS or the East Asian CAG: (1) Han Chinese in Beijing, China 

(CHB); (2) Japanese in Tokyo, Japan (JPT); (3) Han Chinese South (CHS); (4) Chinese Dai 

in Xishuangbanna, China (CDX) and (5) Kinh in Ho Chi Minh City, Vietnam (KHV). 

 

4.2.4. Merging UK Biobank and 1000 Genomes 

The directly genotyped data from UKBB was used to identify SNPs with the same SNP 

identifier (RefSNP ID) present in the 1KG data set. I identified a total of 718,711 SNPs with 

the same ID and extracted them from both data sets using PLINK v2.0, after which the two 

datasets were merged. After removing problematic SNPs (e.g. multi-allelic, duplicate) in the 

merge step, a total of 718,487 SNPs remained. 

 

4.2.5. Linkage disequilibrium pruning 

SNPs are in linkage disequilibrium (LD) when the probability of an allele in SNP A is correlated 

to another allele in SNP B i.e. they are not random 415. This is shown by the r2 correlation 

factor, and a cut-off r2 value is used to state that two or more SNPs are in LD with each other 

415. In programs such as PLINK, the top SNP with the highest minor allele frequency (MAF) in 

an LD block (i.e. many SNPs in LD over a genomic region) is kept, with the other SNPs being 

pruned/excluded 416. Pruning is done in genetic analyses to speed-up the computational time 

for an analysis (as multiple SNPs in LD can be represented by the top SNP) 221 or to get more 

accurate results from a PCA by avoiding potential bias of eigenvectors towards high LD 

regions 223. Prior to ancestry estimation, I reduced the merged data to a set of independent 

SNPs based on LD estimates using the PLINK v2.0 function and parameters “--indep-pairwise 
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50 10 0.025”, indicating an r2 threshold of 0.025, a window size of 50 kilobases (kb) and a 

window step size of 10 kb. In addition, 24 previously identified genomic regions with extensive 

linkage disequilibrium were also excluded 398,417. A total of 30,320 SNPs remained following 

LD pruning.  

 

4.2.6. Estimating African, European, South Asian, and 
East Asian ancestry 

We included four 1KG populations as reference populations in a supervised ADMIXTURE 

(v1.3.0) analysis. They were (1) British in England and Scotland (GBR), of the EUR ancestry 

superpopulation, (2) Yoruba in Ibadan, Nigeria (YRI), of the AFR superpopulation, (3) Indian 

Telugu in the UK (ITU), of the SAS superpopulation, and (4) Han Chinese South (CHS), of the 

EAS superpopulation. These singular population samples were chosen to broadly represent 

each of their four respective continental (superpopulation) ancestry groups. The supervised 

ADMIXTURE analysis provides, for each UKBB sample, a proportion of ancestry for each of 

the four reference populations. Those individuals with at least 80% of their ancestry attributed 

to one CAG were carried forward into further analyses. 

 

4.2.7. Derivation of continental principal components 

Afterwards, I performed a PCA analysis to determine the degree of population structure in the 

African and three other CAGs (see Chapter 2). First, I identified unrelated individuals in each 

CAG and the 1KG datasets using all 718,487 SNPs in the overlapping data set. This was done 

with the PLINK (v1.9) function --rel-cutoff, and a minor allele frequency (MAF) filter of 0.05 (--

maf 0.05) was applied. Second, for each CAG and using all (1KG + UKBB) unrelated 

individuals assigned to the CAG, a list of approximately 40 thousand LD independent SNPs 

were identified using the PLINK (v2.0) function --indep-pairwise 50 10 0.025 (--indep-pairwise 

50 10 0.02 for AFR and --indep-pairwise 50 10 0.05 for SAS) along with a MAF filter of 0.01, 

and the exclusion of the 24 previously identified genomic regions with extensive linkage 

disequilibrium 398,417.  

 

Third, new PLINK files including only the LD independent SNPs identified in step two were 

subsequently generated. I used the smartrel package from the EIGENSOFT 

(https://github.com/DReichLab/EIG) software to generate a new list of related individual pairs, 

after which I produced a list of related individuals to exclude from the PCA 226,228. An exception 

in this step was made for the European CAG, as its sample-size was too large to run smartrel. 

Instead, the list of unrelated individuals generated from step one was used. Finally, smartpca 
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of the EIGENSOFT package was used to estimate principal components (PC) using only 

unrelated UKBB samples.  

 

Related and 1KG samples were subsequently projected upon these PCs by smartpca. I 

excluded sample outliers from the PC analysis by smartpca with the following parameters: 

using 10 PCs to identify outliers (numoutlierevec), at six standard deviations (SD) from the 

mean (outliersigmathresh), and with 5 outlier removal iterations (numoutlieriter). Appendix 11 

provides numbers for each of these steps, for each CAG. The EUR CAG was treated uniquely 

due to its larger sample-size. I ran smartpca twice as described above, once with 

“fastmode=NO” and then with “fastmode=YES”. The former provided estimates of the 

eigenvalues but not the eigenvectors, while the latter provided eigenvectors but not 

eigenvalues. 

 

4.2.8. K-means clustering of principal components 

Due to the large degree of population structure seen in the PCA of the CAGs, I conducted a 

K-means clustering analysis 418 with the aim of dividing each CAG into clusters that would 

resemble more homogeneous sub-groups (K-pops).  

 

However, how does one know how many clusters to divide a dataset into? While this process 

is arbitrary in the end, there are multiple methods that can estimate the appropriate number 

of k clusters to use in a dataset. One such method is called the Silhouette analysis, which 

determines how well each data point lies within its cluster, and computes an average value of 

that value 419. This can be done over k clusters to identify which cluster has the largest average 

silhouette width 419. The K-means clustering analysis will also aid in Chapter 5 to assess the 

reliability of SNPs associated with neutrophil count in my GWAS. 

 

For each CAG, I estimated the variance explained by each principal component (PC) by 

dividing the eigenvalue of each PC by the sum of all eigenvalues. To identify the number of 

top PCs I generated a scree plot, using the variance explained estimates, and visually 

identified the elbow or valley in each plot. I then used the top PCs in an unsupervised K-means 

clustering analysis (k set from 2 to 20; using the function “kmeans()” from the R stats package) 

to identify clusters of UKBB individuals that maximize between cluster sums of squares and 

minimize within cluster sums of squares. Afterwards, an optimum number of clusters (k) was 

identified by silhouette analysis 419.  
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4.2.9. Correspondence analysis 

Next, I aimed to assess the validity of the K-means clustering analysis. One would expect that 

if the PCs are indicative of population structure 226, then the K-means clustering algorithm 

should theoretically provide clusters that represent geographical regions. To test this, I used 

the self-report country of birth and K-means cluster data to perform a correspondence analysis 

(CA). A CA is similar to a PCA, although it simplifies a large dataset to inform on patterns 

between rows and columns 420 – in this case between K-pops and COB. 

 

Each UKBB study participants’ COB information matched with United Nations (UN) defined 

geographic regions (Appendix 12) to assign a region of birth (ROB) for each participant. To 

determine if the K-means population clusters have any relationship with an individual’s COB 

or ROB, I performed CAs using the function “ca()” from the R package “ca”, for each CAG 421. 

In addition, a chi-square test was performed on the contingency table used in the 

correspondence analysis. Any COB or ROB with fewer than 10 observations was excluded 

and individuals for which COB information was not available were also excluded. 

 

4.2.10. Population differentiation among K-means 
population clusters 

Afterwards, I computed the population differentiation value a.k.a. fixation index (Fst) between 

each CAG 422. For each CAG, I took the best K-means population clusters, as defined by the 

silhouette analysis, and re-ran smartpca. However, on this run I had smartpca provide for only 

an estimation of the average Fst for each pair of populations in the data set, including 1KG 

populations and UKBB K-means clusters. This was done with the inclusion of the paramaters 

“fstonly” and “phylipoutname” 423, the latter of which provides a distance matrix of mean Fst 

values between populations. For the African CAG specifically, I calculated the mean and 

maximum Fst value in a pair-wise manner between each K-means cluster to better understand 

the intrapopulation variability and detect outliers or large differences between K-pops. 

 

4.2.11. Description of working environment 

All analyses were performed in a Linux environment supported by the University of Bristol’s 

Advanced Computing Research Centre (ACRC) using the following publicly available software 

packages: PLINK v1.9 and v2.0 247,416, ADMIXTURE v1.3.0 222,424, and EIGENSOFT v8.0.0 

226,228. Scripts, analyses, and figures were run and generated in the R environment using 

version 3.6.2 on the ACRC computer clusters and version 4.0.2 (Taking Off Again) on local 

computers 345. 
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4.3. Results 

4.3.1. Estimations of continental ancestry 

We included each of the 78,296 UKBB “non-white British” individuals in a supervised 

ADMIXTURE analysis to estimate a proportion of ancestry to each of African (AFR), European 

(EUR), South Asian (SAS), and East Asian (EAS) continental ancestry groups (Figure 4-3). 

The proportion of continental ancestry is further illustrated for each individual within the context 

of UKBB population structure on principal components (PC) one and two as provided by the 

UKBB (Figure 4-4). AFR ancestry (Figure 4-4A) runs largely parallel with PC1, the major axis 

of variation. EUR ancestry runs at a roughly 135-degree angle (Figure 4-4B) along PC1 and 

PC2, while SAS (Figure 4-4C) and EAS (Figure 4-4D) ancestry run, largely, along PC2.  

 

 

Figure 4-3. ADMIXTURE analysis.  

The x-axis is each non-white British participant of UKBB, while the y-axis indicates the % 
continental ancestry by using the 1KG dataset as reference. 
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Figure 4-4. PCA of UKBB non-European samples.  

Ancestry proportions on UKBB PCs: Continental African (A), European (B), South Asian 
(C), and East Asian (D) ancestry proportions placed on principal components one and 
two supplied by the UK Biobank. 

 

Of the approximately 78,000 UKBB samples included in the ADMIXTURE analysis 

50,685, 6,653, 2,782, and 2,364 individuals had 80% or more of their ancestry attributed 

to the EUR, AFR, SAS, and EAS continental super-populations respectively. I carried 

these individuals into further analyses of population structure within these CAGs. The 

80% threshold was chosen to allow some error in the broader continental classification 

while also placing a limit on the complex structure and admixture evaluated in these 
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subsets. A total of 15,812 “non-white British” UKBB study participants were not included 

in any of the four CAGs, given the methods and cut-offs used here. 

 

I zoomed in on the African CAG sample and explored the degree of population admixture 

in the AFR CAG dataset using the data generated by the ADMIXTURE and PCA 

analyses. East Asian and South Asian ancestry did not seem to follow a pattern on the 

PC1 and PC2 plane, and the median admixture was only around 2% (Figure 4-5). On 

the other hand, the degree of European vs. African admixture followed a linear pattern 

on the PC2 axis, indicating structured admixture (Figure 4-5). More information on PCs 

for all CAGs is available in Appendix 13. 

 

 

Figure 4-5. Admixture in the AFR CAG sample.  
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Ancestry proportions on UKBB PCs: European (A), East Asian (B), South Asian (C), and 
African (D) ancestry proportions placed on principal components one and two from the 
ADMIXTURE analysis. 

 

4.3.2. Population structure within continental regions 

To evaluate the level of population structure among the UKBB CAGs, I first re-estimated 

PCs for each CAG, while also projecting individuals from 1KG populations from each 

super-population respectively onto the newly derived PCs (Figure 4-6, Appendix 11). 

For each CAG there was considerable overlap between UKBB individuals and 1KG 

populations, providing some context for the diversity that is present within the UKBB. For 

example, in the AFR CAG, PC1 distinguishes West African from East African 1KG 

populations, while PC2 distinguishes among populations of West Africa (Figure 4-6). In 

the EUR continental ancestry group, the PCs and 1KG populations illustrate a strong 

North-South axis along PC2, with a similar but less distinctive trend on PC1 (Appendix 

14).  
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Figure 4-6. UKBB AFR CAG sample with 1KG African sub-populations projected on PCA plot.  

PC1 on PCs 2-7 (A-F) with variance explained. GWD = Gambian in Western Division – Mandinka; MSL = Mende in Sierra Leone; YRI = Yoruba 
in Ibadan, Nigeria; ESN = Esan in Nigeria; LWK = Luhya in Webuye, Kenya; UKBB = African CAG identified in my study. 
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4.3.3. K-means clustering of PCs 

Given that many population genetics and epidemiological analyses, such as GWAS, 

depend on limited population structure, a common desire is to have a relatively 

homogeneous population sample for these analyses 154. As such, I used an the K-means 

unsupervised algorithm to identify groups of individuals that approach HWE population 

assumptions 168.  

 

To do so I performed a K-means analysis on the top PCs from each CAG to identify ‘K’ 

subclusters/groups. An optimum number of K-clusters was determined by a silhouette 

analysis. For the African CAG I identified seven K-clusters (Figure 4-7), and two, four 

and three for the EUR, SAS and EAS CAGs respectively (Appendix 15). A k of six 

(second best fit) was used for the EUR CAG instead of two to better inform on the 

structure present in this sample. 
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Figure 4-7. K-means clustering on the AFR CAG sample.  

Scree-plot outlining the variance explained by the top 20 PCs (A). Silhouette analysis to determine the optimal K-cluster number (B). K-means 
clusters K1-K7 coloured on the PC1~PC2 plane (C). 
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4.3.4. Country of birth 

To evaluate the informativeness of these K-clusters, I mapped onto the PCs the African 

CAG individuals’ COB and ROB data (Figure 4-8), along with the other three CAGs. 

These figures further illustrate the diversity and structure present in the sample. Each 

CAG presents an observable degree of population structure, and ROB data illustrate 

non-specific associations between CAGs and ROB. Nevertheless, ROB data illustrates 

structure across principal components for each CAG. To assess if there is a correlation 

among the K-clusters identified above and the self-reported place of birth data i.e. test 

the reliability of K-means approach, I performed a CA for each CAG. The analyses 

indicate a correlation between K-means clusters and the ROB the African CAG (Dim1 

53.29%, Dim2 41.88%, Figure 4-8) and the EUR (Dim1 58.25%, Dim2 28.67%), SAS 

(Dim1 80.00%, Dim2 18.2%), EAS (Dim1 92.11%, Dim2 7.89%) CAGs (Appendix 16). 

When COB was used instead of ROB, an attenuated but correlated structure remained: 

AFR (Dim1 28.32%, Dim2 25.02%, Figure 4-8), EUR (Dim1 40.43%, Dim2 31.89%), 

SAS (Dim1 61.60%, Dim2 25.31%), EAS (Dim1 50.49%, Dim2 49.51%) (Appendix 16). 
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Figure 4-8. Correspondence analysis.  

K-means clusters were studied in the context of their reliability of identifying 
homogeneous groups in the structured AFR CAG dataset. This was done using ROB 
data (A), where the first two dimensions explained most variance, and COB data (B-D), 
where the first four dimensions explained most variance. 

 

4.3.5. Population differentiation 

An evaluation of the degree of population differentiation within each CAG was performed 

by estimating Fst between each pair of K-cluster groups and 1KG populations. All single-

nucleotide polymorphisms (SNPs) that were included in each CAG’s principal 

component analysis were used here. An average, minimum, and maximum estimate was 

used to summarize the distribution of estimates between pairs (Figure 4-9). Relative to 

the population differentiation observed in the 1KG sample populations I observed a small 
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degree of population differentiation among AFR and EUR K-means clusters and larger 

average estimates among SAS and EAS groups. Among the UKBB samples, average 

Fst estimates indicate that the EAS CAG has the largest amount of population 

differentiation with an average Fst of 0.0133. This is followed by SAS with an average 

estimate of 0.0092, EUR with 0.0037, and finally AFR with the smallest average estimate 

of 0.003.  

 

 

Figure 4-9. Population differentiation.  

Fst values between sub-populations of 1KG (A) and the K-clusters from UKBB (B). The 
X-axis indicates the studied CAG, while the Y-axis displays the minimum, average, and 
maximum Fst value. 

 

Finally, I performed a closer inspection of the AFR CAG sample, where I studied the K-

pops in the AFR CAG in a pair-wise manner in terms of their average and maximum Fst 

values. Here, the average Fst values ranged between 0.0004 and 0.0061, while the 

maximum value (SNP with highest Fst value) was 0.67 (Figure 4-10).  
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Figure 4-10. Intrapopulation Fst analysis for the African CAG.  

The Fst value was estimated between each Kpop. In this case, I presented the Fst values 
as percentages due to the low values in some of the pair-wise results. 

 

4.4. Discussion 

Here I present an analytical pipeline to identify participants of the UKBB study with 

diverse and under-represented ancestries to be used in genomic epidemiology studies. 

While cohort studies centred in diverse geographic locations are essential for elucidating 

the effect of environment and genotype on disease, the diversity present in deeply 

phenotyped studies such as the UKBB should be utilized where possible. While in my 

thesis I focused on the African CAG specifically, the methodological likeness allowed me 

to present a description of some of the diversity present in the UKBB. 
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In summary, we assigned individuals to CAGs (Aim 1), after which I illustrated the 

structure present among individuals within each CAG and identified unsupervised 

clusters (groups of individuals) within each CAG (Aim 2). I then demonstrated that those 

clusters have an affinity to regions and countries of birth – i.e. the K-means clusters are 

consistent with geographic structure and isolation by distance models 425,426 (Aim 3). 

Notably, each CAG presents extensive structure, inconsistent with a randomly mating 

population, but rather with the sampling of unique, geographically distant populations. In 

particular, East Asian, South Asian, and African CAGs have isolated, or discontinuous 

groups of individuals in the UKBB sample, exemplified in the K-means clustering analysis  

410,411.  

 

In contrast with the Pan-UKBB approach, I have carefully studied the genetic admixture 

present within the African CAG. More importantly, the methods I presented here provide 

an approach to identify subsets of individuals to help broaden, inform, and improve the 

relevance of genetic epidemiological studies, such as the GWAS of neutrophil count I 

will run on the AFR CAG in the next chapter. This will serve as an example of how the 

data generated here can be used to improve the understanding of how BCTs can affect 

the risk of disease associated with non-European populations (Figure 4-11). 

 

 

Figure 4-11. AFR CAG usage example.  

Suppose one might want to use Mendelian randomization to study the relationship 
between neutrophil count and severe malaria caused by P. Falciparum (as I plan to in 
Chapter 6). Using summary statistics from a neutrophil count GWAS using individuals 
with European ancestry (A) may affect estimates due to geographic structure (Ancestry 
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+ Demography + Environment). This can be overcome by running a GWAS in people of 
African ancestry (B). 

 

Throughout the paper whenever ancestry is mentioned, I am referring to “genetic 

ancestry”, or individuals who share a demographic history 407,427,428. They should, at the 

population level, share a history of mutation, genetic drift, recombination, migration, 

natural selection, environment, and culture (niche construction 429). As a product, they 

should have different genetic variants, allele frequencies, and patterns of LD across their 

genomes 248,430,431. 

 

The need to perform analyses like association studies, separately in unique ancestral 

populations, largely comes from the need to avoid correlations between phenotype and 

genetic ancestry, or differences in allele frequencies among populations – i.e. population 

structure or population stratification 407,432,433. For example, if a disease (or 

environmentally influenced trait) is more frequent in ancestral population ‘A’ than it is in 

‘B’ and your association analysis pools these ancestral populations together you may 

erroneously identify any allele that is more frequent in population ‘A’ as a genetic variant 

associated with the disease. To avoid these confounding issues, analyses are commonly 

limited to relatively homogenous populations 428.  

 

In GWAS, the aim is to derive accurate unbiased effect estimates for a genetic variant 

on a trait. However, the task becomes increasingly challenging, as variation in genetic 

ancestry comes with different allele frequencies, genetic backgrounds and environments 

434. Methods such as the inclusion of relatedness matrixes and principal components 

226,228,234,435 are used to account for cryptic relatedness and undetected fine-scale 

population stratification. In addition, they are also used to account for correlations 

between phenotype and genetic ancestry 227,436. However, is the inclusion of relatedness 

matrixes or principal components enough to control the structure present in the CAGs 

presented here? Or would smaller (K-means clusters) more homogenous populations be 

better suited to epidemiological analyses, like GWAS? As the Pan-UKBB study did not 

address this question, I aimed to generate these clusters myself to further assess (in 

Chapter 5) the reliability of a GWAS of neutrophil count in the AFR CAG sample in the 

context of performing a MR analysis between neutrophil count and P. falciparum severe 

malaria. 

 

The problems introduced by population stratification persist even in populations like the 

“white British” subset of the UKBB, where individual genetic variants and polygenic 

scores for individual traits can retain correlations with geography, even after correcting 
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for population structure 402,404. Moreover, when sampling populations across Europe, 

where genetic ancestry is known to mirror geography 421,437 effect estimates appear to 

retain a bias introduced by population structure 438,439. This is also the case when meta-

analysing independently run GWASs 440. These fine scale issues exemplify some of the 

reasons for performing separate epidemiological analysis like GWAS for populations with 

deeper population differentiations, i.e. unique ancestries, demographic histories, and 

environments. Other challenges and opportunities of population structure in biobank 

scale data are discussed further in Lawson et al. 339. 

 

The complications of population stratification and opportunities for improving health 

outcomes for a broader segment of the population, even at the continental level, are 

precisely why a description of the structure within each CAG was provided here. 

However, the structure present within the CAGs I defined here might also be too great 

to be properly accounted for with common methodologies, hence the K-means clustering 

approach. At the very least, careful consideration is warranted when interpreting results 

where CAGs are used - because structure matters 403. Other techniques like uniform 

manifold approximation and projection 441 or more explicit leveraging of self-described 

ethnicity could help improve the identification of homogenous groups. Self-described 

ethnicity is not a synonym for genetic ancestry though, as it is a sociocultural construct 

442, although it would help inform cultural, social, and other environmental influences 

associated with a “population” on phenotypes and disease 428.   

 

4.4.1. Limitations 

The methods employed here have several limitations. First, a single 1KG population was 

used to represent each of four continental ancestry groups evaluated – Africa, Europe, 

South Asia, and East Asia. One population is a poor proxy for all the variation present in 

a vast geographical area, such as a continent. However, as the 1KG project does not 

have optimal population coverage 248, including more or all the 1KG populations of a 

CAG would still poorly represent all the variation present and would complicate the 

assignment of individuals to a single ancestry group. Future studies performing whole-

genome sequencing on a specific landmass such as Africa will contribute greatly to 

mapping the global human genome variation 387. 

 

Second, our analyses were limited to four (sub-)continental ancestry groups, to the 

exclusion of the Americas (AMR, a 1KG superpopulation). Populations from the 

Americas often have a large and varying amount of recent admixture from various 

European and African populations 248,414,443–446. As such, including an AMR population in 
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the ADMIXTURE analysis, as a reference population, could confound the genetic 

ancestries being estimated. However, while we limit this study to a few, broad, well 

characterized CAGs, the approach presented here can be generalised to other specific 

ancestries. 

 

Third, I note that these estimates were derived from SNPs with a European 

ascertainment and as such they may not coincide with analyses using an unbiased set 

of genetic variants. The UKBB Axiom array used to genotype all UKBB participants was 

designed to optimize imputation of a European population while also including genetic 

variants previously associated with disease and other phenotypic traits derived from 

studies primarily conducted in European populations 161,164. Given this, the genomic data 

used here will have an ascertainment bias 447 that would affect allele frequency 

distributions, estimates of LD and diversity and divergence within and among 

populations. Each of these may influence estimations of Fst, PC estimates and the 

inferences made from them 448,449. Specific study designs 229,450 have been made to 

remove ascertainment bias in genotype arrays so that unbiased inferences could be 

made for a wider range of genetic ancestries, but this was not available here. 

 

Fourth, the principal components illustrated and used in the unsupervised K-means 

clustering analyses were derived from the UKBB participants only and resultantly 

represents the diversity and genetic ancestry found in that data set. The inclusion or use 

of other public data sets with more numerous sample populations, that better represent 

regional, or continental diversity, will provide alternative patterns of structure.  

 

Fifth, I was limited by the reference population used in the analyses. While the 1KG data 

set shall remain an essential reference panel for broad analyses like those conducted 

here, researchers with specific continental or geographically specific research questions 

could strengthen and refine the observations made here by including other 

geographically specific data sets.  

 

Finally, the unsupervised K-means clustering analysis is dependent upon the number of 

PCs included in it. Here the number of PCs chosen did have an element of subjectivity. 

While analytical methods are available to select a number of informative PCs 423, I did 

not implement such methods here. Nevertheless, given that the K-means algorithm 

weights each PC equally, I tried to limit the PCs included to only those with the largest 

proportions of variance explained and not necessarily all that are analytically estimated 

to be informative. Nevertheless, I was unable to determine with certainty whether the 

population clusters generated here met the desired Hardy-Weinburg Equilibrium criteria. 
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4.4.2. Conclusion 

The approach presented here demonstrates a method to leverage the deeply 

phenotyped and widely used UKBB data set to help improve the inclusion and equity of 

epidemiological studies for under-represented populations. While the methods 

presented here do not describe a perfect solution to identify populations, I hope that they 

provide an avenue to leverage the diverse data available in UKBB and a methodological 

platform to improve and build upon. Given the thousands of individuals present in the 

genetic ancestry groups identified here, the UKBB data set will prove insightful for studies 

of health and disease not only for the Chapter 5 of my thesis, but also for future studies 

in populations beyond the British Isles. 

 

In this chapter I outlined an approach to associate people in large-scale mixed ancestry 

datasets to specific CAGs. Having identified 6,653 people of African ancestry in UK 

Biobank, I then focused on one of my thesis aims – using MR 169 to study the relationship 

between BCTs and disease, namely neutrophil count and P. falciparum severe malaria. 
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CHAPTER 5.  NEUTROPHIL COUNT 
AND P. FALCIPARUM  SEVERE 

MALARIA  
 

Chapter summary 

The aim of this chapter was to assess the causal link between circulating neutrophils and 

severe malaria caused by P. falciparum. As mentioned in the background (Chapter 1), 

genetic epidemiology studies on neutrophil count and severe malaria have been sparse, 

and none have been done using genetic data from people of African ancestry. Therefore 

I used univariable (UV) 252 two-sample Mendelian randomization (2SMR) 253 to advance 

the current understanding of how neutrophil count affects the severity of P. falciparum 

malaria. This required conducting a GWAS of neutrophil count in people of African 

ancestry for appropriate consideration of population structure in data with the aim of 

generating reliable allocation/use of genetic associations as MR instruments. To do this, 

I used the African continental ancestry group (CAG) from UK Biobank (UKBB) which I 

generated in Chapter 4 (Figure 5-1).  
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Figure 5-1. PhD project and current chapter (5 - coloured).  

Created with Microsoft PowerPoint and BioRender.com. 
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5.1. Introduction 

Malaria is a mosquito-transmitted disease that annually affects approximately 215 million 

people 385,451 and has been the biggest cause of childhood deaths over the past 5000 

years 452. Malaria is caused by protozoan parasites belonging to the Plasmodium genus 

385 and represents the deadliest disease in human history 453. 

 

Unlike bacteria and viruses, protozoans are unicellular eukaryotes that belong to the 

Protista Kingdom. Over 65,000 species of protozoans have been identified 454, some of 

them in the most extreme environments on Earth, such as the permafrost of Russia 455 

or industrial acid main drainage systems 456. Protozoans have been studied most 

extensively due to their role in human pathogenesis, the most notable species being 

Leishmania 457, Trypanosoma cruzi 458, Toxoplasma gondii 459, and lastly, Plasmodium, 

responsible for malaria 385. Plasmodium is an obligate parasite, meaning that it cannot 

complete its normal life cycle without being parasitic to its host 460. In most cases, it enters 

its host through the Anopheles mosquito 461, although zoonotic infections have also been 

reported 462.  

 

5.1.1. Plasmodium species 

There are five notable Plasmodium species which are known to cause malaria in 

humans: Plasmodium malariae (P. malariae), Plasmodium ovale (P. ovale), Plasmodium 

knowlesi (P. knowlesi), Plasmodium vivax (P. vivax) and Plasmodium falciparum (P. 

falciparum) 463. 

 

P. malariae is endemic in sub-Saharan Africa, south-east Asia (SEA) and the Western 

Pacific 464. It rarely leads to severe manifestations of malaria, and its prevalence in a 

recent meta-analysis was estimated at 3% 464. P. ovale is one of the first Plasmodium 

species identified to infect humans and is present in sub-Saharan Africa, SEA and 

Western Pacific 465. However, its pooled prevalence was estimated at 0.03% in a recent 

meta-analysis 465 and it predominantly causes benign tertian malaria as opposed to 

severe disease 466. P. knowlesi was first found in patients misdiagnosed with P. malariae 

467. It is usually present only in SEA areas habituated by monkeys, which represent the 

natural vector of P. knowlesi 467. In endemic regions, it had a pooled prevalence of 19%, 

and its infection has been sometimes linked with more severe manifestations of malaria 

than P. falciparum 467. P. vivax is the most widespread Plasmodium species 468. It is 

found in both South and Central America, as well as SEA and the Western Pacific, with 
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little prevalence in sub-Saharan Africa 468. While it has been historically linked to mild 

disease, severe malaria caused by P. vivax is of increasing concern as registered cases 

are growing annually 469. Finally, P. falciparum is endemic in the same geographical 

areas as P. malariae, and cases of co-infection have been reported 464. However, P. 

falciparum is by far the most life-threatening disease out of all those caused by 

Plasmodium species, and accounts for over 90% of the global malaria deaths 451,470, and 

is therefore the disease that I will focus on in this chapter. 

 

5.1.2. The life cycle of P. falciparum 

Plasmodium’s life cycle involves both a host and a vector, which in this case is the 

Anopheles mosquito 471. The mosquito bites the host when it feeds and releases 

sporozoites in the dermis, which then travel through the lymph and blood to the liver 472. 

Here, the sporozoites cross the liver sinusoid and infect hepatocytes 473. They then 

multiply thousands of times in a process called schizogony 474. The resulting parasites, 

merozoites, enter the bloodstream and detect erythrocytes (red blood cells, RBCs) 

through a complex called apicomplexan and then infect them 475. In P. falciparum, 

merozoites enter erythrocytes through ligands called glycophorins 476,477, while in P. vivax 

the Duffy surface antigen is used 478. A small number of these merozoites become 

gametocytes and leave (i.e. egress) the RBCs 479, which are necessary for sexual 

reproduction of Plasmodium 480. Next, an intracellular trophozoite is formed, in which the 

merozoites multiply many times through asexual schizogony to form a schizont 481. 

Merozoites can then egress the erythrocytes and repeat the cycle of infection 482, which 

happens every 48 hours for P. falciparum and P. vivax, but does vary by the Plasmodium 

species 463 (Figure 5-2).  

 

Interestingly, parasitised RBCs have been found to have an internal clock through which 

they are able to rupture at the same time to cause malarial fever 483, showing that even 

after decades of research, much is still being uncovered on P. falciparum pathogenesis. 

Furthermore, the aforementioned gametocytes are taken by a mosquito during its 

feeding process and reach its gut 463. Sensing the new environment, gametocytes 

transform into gametes and fuse to ultimately form motile ookinetes that cross the 

epithelial cells of the gut to form oocysts 484,485. After many sporozoites are produced 

through mitosis, the oocysts rupture, releasing the sporozoites into the haemolymph, 

which subsequently reach the mosquito’s salivary glands 486,487. This final event marks 

the end of a cycle for the Plasmodium parasite, which is then able to infect another host 

(Figure 5-2). 
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Figure 5-2. Plasmodium falciparum life cycle.  

Adapted from “Malaria Transmission Cycle”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates. 
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5.1.3. The health burden of P. falciparum 

P. falciparum malaria causes approximately 400,000 deaths each year, primarily in 

African children under the age of five 385. The majority of P. falciparum malaria cases 

consist of uncomplicated febrile illness, however a portion of nonimmune infected 

individuals succumb to severe malaria (SM), which can manifest as cerebral malaria 

(CM), severe malaria anaemia (SMA), acute respiratory distress or kidney injury 246,488. 

Plasmodium resides and proliferates in RBCs and pathology is triggered by 

cytoadherence of infected RBCs (iRBCs) to microcapillary endothelia in different organs, 

which can lead to vascular obstruction 488. Inflammation plays a key role in both 

facilitating iRBC sequestration 489 and in tissue damage 488,490,491.  In cerebral malaria, 

the deadliest form of the disease, iRBCs sequester in the neurovasculature, provoking 

blood brain barrier permeabilization, vascular leak and brain swelling 488.  

 

Given the health burden of P. falciparum malaria, the World Health Organisation (WHO) 

has setup a plan for 2030 to reduce the number of malaria cases by 90% 492. However, 

while the attempts in the last decades have shown promising results, the global malaria 

incidence since 2015 has seen a reduction of only 2% 493. Given the current efforts to 

accomplish WHO’s 2030 goal, it is desirable to use novel methods to identify new risk 

factors for P. falciparum severe malaria and therefore potential therapeutic strategies. 

 

Malaria has been affecting humans for thousands of years 452, and it is estimated that it 

may have been a health burden 40,000 years ago 470. As such, it has exerted the 

strongest known selective pressure on the human genome and has resulted in the 

selection of various polymorphisms that confer Plasmodium tolerance or resistance. 

Among the most prominent examples are haemoglobin S (Hbs; sickle cell trait) 494 and 

alpha-thalassemia variants 495, both of which are common in malaria endemic regions 

despite causing disease in the homozygous state 452. The HbS polymorphism in the 

heterozygous state confers the greatest protection (effect size >80%; 452,476). The 

heritability of SM is estimated to be around 30% 496,497 but the cumulative effect of the 

above mentioned variants is thought to only be 2% 452,496, suggesting that polygenic 

interactions may account for a large part of the missing heritability of this complex 

disease. 

 

The genomic revolution in the past 25 years has allowed researchers to investigate the 

genetic mechanisms of complex traits using sample-sizes of thousands of people 498. In 

the last decade, this further reduction in costs and advances in technology has led to the 

generation of consortia with hundreds of thousands of participants, such as UK Biobank 
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(UKBB) 161,164. Naturally, this has come with an increase in the number of genetic studies 

aiming to decipher the biology of malaria, both in relation to the Plasmodium 499–501 and 

human genomes 245,502. One topic of interest has been genetic polymorphisms and how 

they affect the risk of severe malaria in susceptible populations, which have been finding 

increasingly more loci associated with severity of the disease 245. 

 

5.1.4. Neutrophil count and severe malaria 

Interestingly, individuals living in malaria-endemic regions, as well as those descended 

from them, often have reduced numbers of neutrophils in their circulation 503. This 

heritable phenomenon is called ‘benign ethnic neutropenia’ (BEN) and is distinct from 

life-threatening severe neutropenia 503. BEN is prominent in South Mediterranean, Middle 

Eastern, sub-Saharan African and West Indies populations 503. BEN is estimated to occur 

in 25-50% of Africans 140,503,504 and 10.7% of Arabs 505 but in less than 1% of people of 

European ancestry living in the Americas 506. Neutrophils are essential for immune 

defence against bacteria and fungi 507, however BEN does not lead to significantly 

greater susceptibility to infection in the United States 503.  

 

Nevertheless, it remains curious that selection for lower neutrophil counts occurred in 

sub-Saharan Africa, a region associated with a high infectious disease burden. This 

observation is partly explained by the finding that in populations of African and Yemenite 

Jewish ancestry, BEN is strongly associated with a polymorphism in the Duffy antigen 

receptor for chemokines (DARC) gene, which encodes the Fy/Duffy antigen, a surface 

receptor utilized by P. vivax to invade RBCs 160. This variant, called rs2814778, abolishes 

expression of DARC on RBCs and contributes to low prevalence of P. vivax in sub-

Saharan Africa, where the polymorphism is found at levels close to fixation 452. DARC, in 

addition to serving as one of the entry points for P. vivax, controls circulating levels of 

chemokines 508, which also regulate blood neutrophil numbers 508. While other familial 

conditions affecting relative neutrophil count have been documented, it is unclear to what 

extent other polymorphisms contribute to neutrophil count variation in individuals living 

in malaria endemic regions 509. 

 

Several observational studies have assessed the link between neutrophils and disease 

severity. In their study of P. falciparum malaria patients (mild = 47, severe = 8), Kho et 

al. found increased neutrophil extracellular trap (NET) count in those with severe malaria 

510. Additionally, Wolfswinkel et al. recorded the white blood cell (WBC) count of patients 

(N=440) with P. falciparum malaria 24 hours post-diagnosis and identified a higher 

neutrophil count in those with severe manifestations of the disease 511. Similarly, Berens-
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Riha et al. found that a higher neutrophil-to-lymphocyte ratio (NLR) and neutrophil count 

were both associated with increased parasitaemia and severity of P. falciparum malaria 

512. 

 

Biologically, neutrophils have recently been shown to have a detrimental role in malaria, 

promoting pathogenesis by enhancing sequestration of iRBCs in NETs 489 and 

contributing to inflammatory tissue damage 491,513,514. A gene expression study found that 

genes encoding for neutrophil granule proteins were highly expressed in those with 

severe malaria 515, and the neutrophil chemokines CXCL1 and CXCL8 were also highly 

present in severe manifestations of the disease 513. Genetic studies in sub-Saharan 

Africa found associations with severe malaria in genetic polymorphisms at the genes that 

encode for receptors that neutrophils use for phagocytosis (Fcγ II/III) 516,517. On the other 

hand, neutrophils have also been suggested to participate in removal of iRBCs and in 

shaping the Plasmodium antigenic repertoire 518. Overall, there is no consensus on 

whether severe malaria increases neutrophil count, if a higher neutrophil count increases 

the risk of developing a severe manifestation of the disease, or if they are simply 

associated and are not causally linked in either direction.  

 

5.1.5. What can MR add in the context of neutrophils 
and severe malaria? 

These studies raise the possibility that neutrophil count in malaria endemic regions may 

modulate severity of P. falciparum malaria. However, observational studies, such as the 

ones referenced above, are prone to confounding and reverse causation (Chapter 2) 

169,191,519. It is therefore essential to employ additional methods, such as those in genetic 

epidemiology and population genetics, to study the link between neutrophil count and P. 

falciparum SM, which can aid with our understanding of how BCTs affect disease. Band 

et al. from the Malaria Genomic Epidemiology Network (MalariaGEN) has been the only 

study to date to conduct a MR study between neutrophil count and P. falciparum severe 

malaria 245. However, they used instruments for neutrophil count that were generated 

from Astle et al.’s GWAS in Europeans from UKBB 149. Two-sample MR assumes that 

the exposure and outcome datasets come from the same underlying population 200. In 

addition, the genetic architecture of BCTs is known to differ between those of African vs. 

European ancestry 166,396,399. As discussed in Chapter 4, generating African ancestry-

specific instruments for neutrophil count is important for assessing the causal 

relationship between neutrophil count and SM in a reliable MR framework. 
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5.1.6. Current GWAS of neutrophil count 

Recent efforts have resulted in the generation of hundreds of GWAS using UKBB non-

European participants for many traits in a hypothesis-free manner 

(https://pan.ukbb.broadinstitute.org/). However, the same covariates were used for each 

trait, and the impact of population structure was not studied, which represent a potential 

limitation in having reliable instruments for a MR analysis 337. In addition to this, a recent 

study by Chen et al. has also used people of non-European ancestry in UKBB as part of 

their project to perform trans-ancestry GWAS of blood cell traits (BCTs) 166. However, I 

have shown in Chapter 4 that people in the African continental ancestry groups (CAGs) 

of UKBB display strong population structure 238. Would therefore running a GWAS of a 

complex trait such as neutrophil count result in associations that could be linked to a 

biological mechanism, or would the GWAS associations be a product of residual 

population structure? In order to answer these questions, a more thorough investigation 

of the sampled dataset is warranted. This becomes even more important when aiming 

to conduct causal inference analyses in genetic epidemiology, such as two-sample 

Mendelian randomization 169,252.  

 

5.1.7. Main study objective 

The overarching objective of the work described in this chapter was to assess the 

relationship between neutrophil count and severe P. falciparum malaria, which posed 

specific methodological challenges in studying the relationship between blood cell traits 

and disease. 

 

5.1.8. Study aims 

I have divided this chapter’s main objective into three separate aims I will try to address: 

1) Perform a GWAS of neutrophil count in people of African ancestry 
2) Identify SNPs from the GWAS that can be reliable instruments for neutrophil 

count in a MR analysis 
3) Conduct a MR analysis between neutrophil count and P. falciparum severe 

malaria 
 

5.2. Methods 

5.2.1. Study design 

The UK Biobank African CAG from Chapter 4 was used to conduct a GWAS of neutrophil 

count (Aim 1). This was then followed by sensitivity and post-hoc analyses to assess the 
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reliability of the findings (Aim 2). Finally, I conducted a MR analysis between neutrophil 

count and severe malaria 245 (Aim 3) and interpreted the results (Aim 4) (Figure 5-3). 
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Figure 5-3. Study design of the project.  

6,653 people representing the UKBB CAG underwent PCA outlier and neutrophil count data filtering, resulting in a final sample  of 5,976. The 
main analysis was a GWAS of neutrophil count run with BOLT-LMM. This was the dataset based on which other post-hoc analyses were 
conducted. Finally, a MR analysis was performed between neutrophil count and severe malaria caused by P. falciparum using data from 
MalariaGEN. 
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5.2.2. UK Biobank genetic data 

UK Biobank’s “non-white” British data was studied previously in Chapter 4, where 6,653 

people corresponded to the African CAG, of which 6,504 remained (5,989 unrelated; 515 

related) after filtering for principal component analysis (PCA) outliers 238. These were 

further assigned into seven clusters based on a K-means clustering algorithm (K1=527; 

K2=1,177; K3=1,176; K4=1,001; K5=1,206; K6=862; K7=184; see Chapter 4 for more 

information) 238. This dataset (N=6,504) included both directly genotyped (N=784,256) 

and imputed (N=29,363,284) SNPs filtered with a minor allele count of at least 20. More 

details on the UK Biobank dataset are found in Chapter 2. 

 

5.2.3. UK Biobank phenotypic data 

Haematological samples were analysed using four Beckman Coulter LH750 instruments 

236. Total white blood cell (WBC) count and neutrophil percentage (%) were measured 

through the Coulter method (see Chapter 2), with neutrophil count derived as “neutrophil 

% / 100 x total WBC“ and expressed as 109 cells/Litre 236. This is the neutrophil count 

data that I am using in this project. Afterwards, I split the date variable into year, month, 

day, and minutes (passed since the start of the day of the appointment visit), while the 

neutrophil count measurement variable was log-transformed into a variable named 

“nc_log”, which was used as the default neutrophil count variable throughout the study. 

Other variables that were used in the main analyses were: age, genetic sex, blood 

sample device ID, UKBB assessment centre and principal components (PCs) 1 to 100, 

which were generated in Chapter 4 with EIGENSOFT 226,228. Filtering was done based 

on the selection criteria described by Astle et al. 149 and Chen et al. 166. Briefly, individuals 

with disorders/diseases that could affect blood counts (e.g. HIV, leukaemia, congenital 

anaemias, cirrhosis) were removed, bringing the final sample size to 5,976. This dataset 

is referred to as “AFR_CAG” throughout the chapter. 

 

5.2.4. Pre-GWAS investigative analyses 

Descriptive analyses of nc_log were performed. To study the amount of potential 

population admixture in the AFR_CAG that could affect the test statistics from a GWAS, 

an analysis was conducted in R on the Duffy SNP rs2814778 160 for each Kpop. The 

preponderance of the Duffy SNP rs2814778 allele distribution was outlined in a PCA plot 

(PC1~PC2), and its association with nc_log in the AFR_CAG dataset was studied with 

and without PCs. Tracy-Widom statistics 226 were computed to estimate the number of 

PCs that are significant i.e. that could be added into the GWAS as covariates. Finally, a 
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power calculation was done assuming a linear model GWAS on the AFR_CAG sample 

to discuss if there would be enough power to detect a signal. 

 

5.2.5. BOLT-LMM GWAS 

BOLT-LMM was used as the software to run the primary (main) GWAS. Before running 

BOLT-LMM, linkage disequilibrium (LD) scores were generated from the directly 

genotyped dataset (binary-ped PLINK format) that are required by BOLT-LMM to 

calibrate the test statistics. This was done with the LDSC package using the following 

command: 

python ldsc.py --bfile $bed_file --l2 --ld-wind-cm 1 –out mergedAll.l2.ldscore.gz 

 

After preparing the phenotypic data to match the desired input, BOLT-LMM was run on 

AFR_CAG adjusting for age, genetic sex, UKBB assessment centre, blood sampling 

device, sampling year, sampling month, sampling day, minutes passed in sampling day 

and the first 100 principal components (PCs). 

 

5.2.6. SNPTEST and META GWAS 

To test whether the effect estimates from the BOLT-LMM GWAS were biased due to 

residual population structure that would characterise a population from the African CAG, 

a number of “sensitivity” GWAS were conducted. This was done with SNPTEST using a 

linear model algorithm 520,521, with 16 GWAS conducted as follows: 8 GWAS were run on 

each K-means cluster (Kpop) + the whole sample with the same parameters as in the 

BOLT-LMM run, and another 8 in the same manner, but with rs2814778 as an additional 

covariate. To minimise the chance of errors and to reduce the time needed to run each 

GWAS, a linear model was first conducted in R using the command “lm(nc_log ~ 

my_covariates)”. The residuals were then pulled with the “residuals()” function and 16 

GWAS were run on AFR_CAG with SNPTEST. The Kpop GWAS were then meta-

analysed with META 522 under an inverse-variance method based on a fixed-effects 

model. The result were two meta-analyses: one without accounting for the Duffy SNP 

rs2814778 called “META-WOD”, and one where the Duffy SNP was included as a 

covariate, called “META-WD”. 

 

5.2.7. Conditional & joint association analysis 

GCTA-COJO 523,524 was employed to identify independent signals from the BOLT-LMM 

GWAS, as well as detect any possible secondary signals arising from a stepwise 
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selection model. SNPs which are close together are usually in LD i.e. their alleles are 

not random, but correlated 525. Before running GCTA-COJO, genetic variants with an 

INFO score < 0.3 were filtered out of the AFR_CAG dataset with QCTOOL. PLINK was 

then used on this resulting output to filter out related individuals. Following this step, 

GCTA-COJO was run on the AFR_CAG filtered dataset to identify causal SNPs. These 

were referred to as “index” in the text. Plots similar to those generated by LocusZoom 

526,527 were created in R with the “LocusZooms” package 528. 

 

5.2.8. Post-GWAS sensitivity analyses 

Summary statistics for a meta-analysis of neutrophil count in people of African ancestry 

were downloaded 166 (http://www.mhi-humangenetics.org/en/category/general/), and 

SNPs passing the GWAS significance threshold (P<5e-8) were filtered in. These variants 

were then clumped with PLINK default parameters (--clump-p1=5e-8, --clump-r2=0.5, --

clump-kb=250), and their dosage data was pulled out from the AFR_CAG genetic 

dataset. A linear model in R was conducted on each variant (N=13,139) using the same 

parameters that Chen et al. 166 used in their GWAS. Another linear model was run with 

the same parameters as in the BOLT-LMM run. 

 

From this latter run, the top 10 associations were kept and were used to conduct two 

sets of linear models in each Kpop of the AFR_CAG – Set 1, similar to how BOLT-LMM 

was conducted, and Set 2, similar to how SNPTEST/META were conducted: 

 Set 1: lm(nc_log ~ SNP_dosage + covariates) 

Set 2: lm(residuals ~ SNP_dosage),  

residuals = residuals from a linear model conducted on nc_log adjusting for GWAS 

covariates. 

 

The Kpop results were then meta-analysed in R. The top 10 associations were also 

pulled from the BOLT-LMM and Chen et al. 166 summary statistics, and a forest plot was 

generated with the SNP effect estimates for comparison.  

 

5.2.9. Genomic inflation 

The genomic inflation factor lambda (λ) 529 was calculated for the BOLT-LMM and 

SNPTEST meta-analysis runs. This was complemented by generating quantile-quantile 

(QQ) 530 to investigate any early deviation of the expected P-values from the observed. 

Additionally, a Manhattan plot 530 was generated to highlight the BOLT-LMM index SNPs, 
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and two more plots were created to mirror the BOLT-LMM signals with those from a 

GWAS of neutrophil count in people of African 166 and European 149 ancestry. 

 

5.2.10. PLINK clumping 

After GCTA-COJO, I used PLINK to perform clumping with three different thresholds. 

The first two represent the thresholds for defining independent SNPs in the well-known 

online platform Functional Mapping and Annotation (FUMA) 531, while the latter being the 

clumping conditions usually set for conducting a Mendelian randomization analysis 

532,533. 

1. --clump-p1=5e-8, --clump-r2=0.6, --clump-kb=250 
2. --clump-p1=5e-8, --clump-r2=0.1, --clump-kb=250 
3. --clump-p1=5e-8, --clump-r2=0.001, --clump-kb=10000 

 

The “bioconductor" R package was used to connect to dbSNP 534 and map genes for the 

clumps in step 1, which included those in steps 2 and 3. 

 

5.2.11. Characterization of functional loci 

A query was placed through the variant effect predictor (VEP) 535 and FUMA 531 on the 

SNPs in the AFR_CAG filtered dataset. A further, broader literature search was 

conducted on the index and MR clumping SNPs using Ensembl 536, GeneCards 537, 

GWAS Catalog 167, The Human Protein Atlas 538, and the Genotype-Tissue Expression 

(GTEx) project 361.  

 

5.2.12. Heritability analysis 

An analysis was conducted with GCTA to estimate the proportion of variance in 

neutrophil count explained by all genetic variants present in the filtered AFR_CAG 

dataset 539. First, a power calculation was done to assess whether the sample-size of 

unrelated people with neutrophil count data (N=5509) would be enough to detect genetic 

covariance 540. Default power calculation parameters were used: α = 0.05, h2 = 0.3, var 

π = 2e-5; α = P-value significance threshold, h2 = combined genetic heritability for the 

trait, var π = variance of the off-diagonal elements of a genetic relationship matrix (GRM) 

540. Afterwards, a GRM was generated from the whole filtered AFR_CAG with the 

following command. UKBB phenotypic data was then used to run GCTA-GREML, with 

and without adjusting for the Duffy SNP rs2814778. Yang et al. propose a way for 

estimating heritability while accounting for potential LD bias 541. In brief, segment-based 

LD scoring was done on each chromosome. SNPs were stratified in R by LD scores in 
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four groups for each chromosome 542, yielding 88 SNP groups in total. A GRM was 

generated for each SNP group, and GCTA-GREML was run similarly to the previous run. 

 

5.2.13. P. falciparum severe malaria genetic data 

GWAS summary statistics for severe malaria were downloaded from a case-control 

study that spanned nine African and two Asian countries 245. In brief, controls samples 

were gathered from cord blood, and in some cases, from the general population. Cases 

were diagnosed according to WHO definitions of severe malaria 246 and were categorised 

according to CM, SMA and other severe malaria (OTHER) symptoms (Table 5-1). The 

majority of the RSIDs in the MalariaGEN dataset used older identifiers, and some of them 

had the “kgp” prefix that comes with the Illumina-HumanOmni2.5M array. Ideally, in a 

two-sample MR setting, the two samples would have a perfect match in the available 

genetic variants. It is desirable to at least maximise the number of matching variants to 

test. Therefore, RSID information for the MalariaGEN variants was updated in R by using 

the filtered AFR_CAG dataset (PLINK .bim file) as a reference panel. 

 

Table 5-1. Description of MalariaGEN cases and controls by country. 

Country Cases Controls Total 

Gambia           2,461            2,518            4,979  

Mali              259               163               422  

Burkina Faso              711               583            1,294  

Ghana              391               315               706  

Nigeria              112                 21               133  

Cameroon              583               634            1,217  

Malawi           1,161            1,310            2,471  

Tanzania              410               388               798  

Kenya           1,529            1,539            3,068  

TOTAL           7,617            7,471          15,088  

 

 

5.2.14. Meta-analysis of severe malaria African 
populations 

Summary statistics for severe malaria and its sub-phenotypes were generated from a 

meta-analysis which included individuals from two non-African countries – Vietnam and 

Papua New Guinea. The inclusion of SNP effect sizes from GWAS conducted in 

heterogenous population might bias MR estimates 339. Therefore, per-population 
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summary statistics were downloaded (https://www.malariagen.net/sppl25/) for each 

African country in the study and a meta-analysis was conducted on them using METAL 

233,543,544 with the command “metal config.txt” and the following configuration: 

“TRACKPOSITIONS ON”, “SCHEME STDERR”, “AVERAGEFREQ ON” and 

“MINMAXFREQ ON”.  

 

5.2.15. Mendelian randomization analysis 

The “TwoSampleMR” R package 213,219 was used to perform the MR analyses. The two 

datasets were harmonised i.e. orientated on the same strand and if SNPs were not found 

in the outcome dataset, SNP proxies would be searched for. A bi-directional MR analysis 

was conducted, where the effect of neutrophil count on overall severe malaria, along with 

the three sub-phenotypes was estimated and vice-versa. The main analysis was 

conducted using an IVW model 202. Additionally, a sensitivity MR analysis was conducted 

to outline the effect estimates of each SNP on the desired outcome, with IVW and MR-

Egger 173,205 estimates where the number of instruments was larger than two and three, 

respectively. MR methods are described in Chapter 2.  

 

5.2.16. GWAS with additional covariates 

Several analyses were conducted to investigate and describe the phenotypic data in the 

AFR_CAG dataset. Descriptive statistics for neutrophil count were generated to provide 

information on the sample that the GWAS were run on. Missing data for additional 

variables were investigated, and an analysis was conducted to test whether missing data 

in each of these variables showed evidence of affecting neutrophil count. Moreover, a 

univariable, multivariable ANOVA type II and multivariable ANOVA type III were 

conducted to assess the variance explained by environmental, multifactorial and 

immutable (e.g. place of birth) variables. Following the results from the descriptive 

analyses, another GWAS was run in BOLT-LMM. “Genetic sex”, “time since last 

menstruation” and “menopause” variables were combined in a single discrete variable 

called “menstrual_status” and was created as follows: males, quartiles 1-4 of days since 

last menstruation, menopause, had hysterectomy. The covariates used in this run were 

sampling device, sample year, sample month, sample day, minutes passed in sample 

day, UN region of birth, K-means cluster, smoking status, alcohol drinker status, 

“menstrual_status”, age, body mass index and PCs 1 to 100. 669 individuals were filtered 

out for missing values and/or preferred not to answer in these variables, bringing the 

sample-size to 5,310. 
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5.2.17. Description of working environment 

All analyses were performed in a Linux environment supported by the University of 

Bristol’s Advanced Computing Research Centre (ACRC) using the following publicly 

available software packages: PLINK v1.9 and v2.0 247,416, QCTOOL v2.0.7 

(https://www.well.ox.ac.uk/~gav/qctool/), LDSC v1.0.1 545, SNPTEST v2.5.4 520,521, 

BOLT-LMM v2.3.6 435, META v1.7 522, METAL v2011-03-25 233,543,544, and GCTA v1.94.0 

523. All other scripts, analyses, and figures were run and generated in the R environment 

using version 4.1.2 (Bird Hippie) 345 and Python environment using version 3.7.7 546 on 

the ACRC computer clusters. 

 

5.3. Results 

5.3.1. Analysis of study sample 

Several steps were undertaken prior to running the GWAS. First, I investigated the 

descriptive statistics of the sample that I wanted to perform the GWAS on. This was done 

to assess the study population characteristics and to aid in conducting and interpreting 

the GWA and MR results. 

 

5,976 out of 6,504 individuals in AFR_CAG remained after filtering for missing data and 

traits affecting blood cells. The mean value for neutrophil count was 2.9 x 109 cells/Litre, 

as expected this was lower compared to a European sample (4.21 x 109 cells/Litre) 149,166. 

The individuals in the GWAS sample had a larger proportion of females (57%) and was 

of a higher mean age (39 vs. 58.1 years) 547 and slightly higher body mass index (BMI) 

(27,6 vs. 29.8 kg/m2) 548 than the general UK population (Table 5-2).  

 

Table 5-2. Description of GWAS sample. 

Characteristic N = 5,9761 

Neutrophil count (10^9 

cells/Litre) 
2.9 (1.2) 

Genetic sex   

Female 3,399 / 5,976 (57%) 

Male 2,577 / 5,976 (43%) 

Age (years) 51.8 (8.1) 

BMI (kg/m^2) 29.8 (5.3) 

K-means cluster   

K1 519 / 5,976 (8.7%) 
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Characteristic N = 5,9761 

K2 1,142 / 5,976 (19%) 

K3 1,150 / 5,976 (19%) 

K4 967 / 5,976 (16%) 

K5 1,174 / 5,976 (20%) 

K6 841 / 5,976 (14%) 

K7 183 / 5,976 (3.1%) 

1Mean (SD); n / N (%)   

 

 

Next, I aimed to assess if neutrophil count was normally distributed because most 

genomic association tests assume that a quantitative traits, such as neutrophil count, 

have properties consistent with this 549. Therefore, I performed a Shapiro-Wilk test on the 

neutrophil count variable, which can provide evidence for the presence of a non-normal 

distribution 550,551. This is given by the W-statistic of the Shapiro-Wilk test, where a W = 

1 is used as an indicator of a normal distribution. 

 

The untransformed neutrophil count variable had a W-statistic of 0.95, indicating a slight 

deviation from normality. After applying a natural log-transformation, nc_log (log of 

neutrophil count) there was strong evidence for a normal distribution (Shapiro–Wilk W = 

0.999). Indeed, the median and mean values of the transformed variable were equal, 

and the histogram appeared to be normally distributed (Figure 5-4A). Given these 

results, I decided to use this transformed nc_log variable in the GWAS. There was some 

variation in nc_log between each K-means cluster (Kpop) (Figure 5-4B), although this 

was low, with the median hovering around 1. 

 

 



  153 

 

Figure 5-4. Neutrophil count variation in the GWAS sample.  

Histogram outlining the distribution of neutrophil count levels is shown in the whole 
AFR_CAG population (A), along with representative boxplots describing neutrophil count 
variation by K-means cluster sample (B). 

 

As mentioned previously, GWAS are usually done using individuals of a similar genetic 

background to avoid SNP-Trait associations that are biased or are false-positives due to 

a confounding effect by ancestry 552. However, even in white British individuals from 

UKBB, latent population structure can still affect SNP effect sizes, which requires 

adjusting for PCs 402. The analyses in Chapter 4 indicated prominent population structure 

in the AFR CAG, given by the estimated 7 Kpops and ADMIXTURE analysis 238. 

Therefore, I investigated the number of PCs that should be added into the GWAS to 

control for population structure. 

 



  154 

First, I used the Tracy-Widom statistic from the EIGENSOFT package 226, which provides 

a quantitative estimate of the PCs that might be added as covariates. This analysis 

indicated over 100 significant PCs. However, there is no exact way to establish how 

many PCs should be added into a GWAS, although an unnecessary number of PCs can 

lead to a reduction in power, while too little might bias GWAS effect sizes due to residual 

population structure 339. Previous studies have added 40 to 100 PCs in their UKBB GWA 

analyses 402,404,436, and inclusion of the first 100 PCs was found useful in adjusting for the 

effect of population structure in rare SNPs 553.  

 

I next aimed to study if including the first 100 PCs as covariates would be sensible, or 

whether they would lead to over correction and lead to false negative results 554. As a 

test, I picked the rs284778 to study because of its well-known association with lower 

neutrophil count from the T allele, which is most common in Africans 160,166. Moreover, 

the T allele is predominantly absent in Europeans 508, making it a SNP particularly liable 

to bias in a African-European admixed population. In the previous chapter (Chapter 4), 

I showed that K-means clusters K5 and K6 mostly overlap the Caribbean and Northern 

Europe regions using ‘self-report place of birth’ data from UK Biobank 238, indicating 

population admixture. Indeed, the highest degree of heterozygosity for the rs2814778 

SNP was within these two Kpops (Figure 5-5) 160.  
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Figure 5-5. Scatterplot of rs2814778 genotype on PC1~PC2 plane.  

Grey dots are the CC genotype, which is most common in those of African ancestry, blue 
are the TC genotype, while red is the TT genotype, most common in Europeans. 

 

Next, I ran a linear model in R to establish the effect on rs2814778 on neutrophil count 

when adding the first 100 PCs as covariates. Each Kpop was investigated separately 

and showed similar point estimates (Figure 5-6). The confidence intervals (CIs) of Kpop 

K7 were large, but this was due to only one T allele being present in the cluster. While 

not necessarily generalisable to all SNPs, this result was encouraging as evidence of an 

association was still present after adjusting for 100 PCs. The findings in Chapter 4 and 

the example shown here, along with previous studies outlining the rich genomic diversity 

in sub-Saharan Africa 397,555, prompted me to use the first 100 PCs as covariates. 
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Figure 5-6. Forest plot of rs2814778 association with log neutrophil count in each Kpop. 

Results for the model in R adjusting for sex, age, assessment centre, batch and PCs 
1:100. Effect sizes are displayed with 95% CIs. 

 

Finally, I conducted a power calculation. Statistical power is the probability that the null 

hypothesis (that there is no association) is false 556,557. Sample-size is an important factor 

in GWAS 556,557, and the higher the sample-size, the higher the power to detect SNPs 

which explain a smaller proportion of the variance (heritability) in a particular trait 540.  

 

Therefore, my aim was to establish how liable the AFR_CAG sample would be to false 

negatives. Statistical power for association testing of all SNPs on neutrophil count was 

assessed at different values of heritability (h2) in the AFR_CAG dataset (N=5,976). The 

calculation indicated over 80% power when the h2 would be between 0.7-1.0% for 
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neutrophil count (Figure 5-7). This means that the sample-size is large enough to detect 

SNPs which have a medium to large effect but might be prone for false negatives for 

SNPs which only contribute little to neutrophil count variation. However, this calculation 

was done assuming a GWAS run with a traditional linear model. 

 

 

Figure 5-7. Power calculation of a GWAS AFR_CAG sample.  

The x-axis indicates the sample-size, while the y-axis is the statistical power of an 
association test. Each curved line shows how power varies by sample-size at different 
degrees of the variance explained by all the SNPs on neutrophil count (0.01, 0.0075, 
0.005, 0.0025). A black horizontal line is fixed at Power=80%, and a red vertical line is 
drawn at the GWAS sample size of 5,976. 

 

5.3.2. Genome-wide association study 

Given the results from the investigative analyses, I decided to use BOLT-LMM for the 

main GWAS, which employs a linear-mixed model algorithm for conducting association 

testing 435. It has been used extensively due to its ability to attempt to account for 

population structure when running GWAS, particularly in people of European ancestry in 

UK Biobank 234. Moreover, BOLT-LMM has been shown to lead to an increase in power 

compared to linear models 435.  
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However, it is unknown how well BOLT-LMM performs in non-European populations due 

to the nature of SNPs and the lineages that derive them to lead to differences in LD or 

allele frequencies 558. To ensure that the BOLT-LMM results are reliable, I also aimed to 

conduct two additional GWAS using a standard linear model. Therefore, three GWAS 

were performed on the AFR_CAG sample: the main one with BOLT-LMM, and two with 

SNPTEST/META, with (META-WD) and without (META-WOD) including rs2814778 as 

a covariate. META-WD was conducted to serve as a negative control. 

 

I performed three additional filtering steps prior to running the post-hoc analyses. This 

was done to add evidence to the reliability of the GWAS results. As mentioned in Chapter 

2, most UKBB SNPs were imputed based on ~800K directly genotyped SNPs, and the 

imputation software provided an “INFO” score 164, which indicates the quality of the 

imputation 559. I picked an INFO score threshold of 0.3, as it gives the best balance 

between data quality and quantity. Another filtering process was a Hardy-Weinberg 

equilibrium (HWE) test, which is usually used to find SNPs with poor genotyping 525. 

Finally, related individuals from the dataset were removed, resulting in 5,509 unrelated 

people in the filtered AFR_CAG dataset. SNPs with a minor allele count of less than 17 

(corresponding to the new sample-size from 20) were removed. 23,530,028 SNPs 

remained after filtering by INFO score, HWE test and minor allele count. 

 

This AFR_CAG filtered sample was taken forward for further analyses. The BOLT-LMM 

GWAS run was treated as the main analysis. Here, 704 genetic variants passed the 

GWAS significance threshold of P<5e-8. Most of these signals were in chromosome 1, 

in the proximity of rs2814778, which had the lowest P-value across the genome (2.7E-

87) (Figure 5-8). The META-WOD GWAS had 373 variants passing the threshold, while 

the META-WD GWAS had 31 significant SNPs, evidencing that most of the identified top 

signals in META-WOD were likely in LD with rs2814778. 

 

Next, I aimed to identify which SNPs might causally associate with neutrophil count. To 

do this, I used a conservative GCTA-COJO approach 524, which yielded 10 index SNPs:  

rs12747038, rs138163369, rs140048432, rs144109344, rs183362544, rs186218882, 

rs2814778, rs28734019, rs527921556, rs530475031, rs557482905, rs558204720 

(Figure 5-8, Table 5-3). Genomic location context of each index SNP is available in 

Appendix 17, Appendix 18 and Appendix 19. 
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Figure 5-8. Manhattan plot of neutrophil count GWAS.  

The x-axis is the base-pair position inside each chromosome, while the y-axis is the -log of the association P-value. A GWAS significance line is 
drawn to correspond to P=5e-8 on the -log(P) axis (A). Index SNPs from the GCTA-COJO run are highlighted in green. QQ-Plot of observed vs. 
expected P-values for each SNP, along with the genomic inflation factor on the top-left (B). 
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Table 5-3. GCTA-COJO index SNPs. 

CHR SNP BETA.BOLT SE.BOLT P.BOLT BETA.META-WOD BETA.META-WD N.META Nr.K.META 

1 rs2814778 0.43 0.02 2.66E-87 0.28 0 5,793 6 

2 rs144109344 -0.12 0.02 3.12E-10 -0.06 -0.06 5,976 7 

12 rs530475031 0.73 0.12 3.16E-09 0.47 0.46 4,952 5 

1 rs12747038 -0.22 0.04 3.89E-09 -0.13 -0.08 5,976 7 

6 rs527921556 0.4 0.07 4.48E-09 0.33 0.31 5,793 6 

5 rs557482905 0.55 0.1 5.79E-09 0.42 0.38 3,778 4 

9 rs140048432 -0.33 0.06 1.11E-08 -0.25 -0.25 5,976 7 

2 rs183362544 0.61 0.11 1.27E-08 0.28 0.28 2,717 4 

16 rs558204720 0.52 0.09 1.67E-08 0.37 0.33 1,486 2 

1 rs28734019 -0.65 0.12 2.89E-08 -0.53 -0.5 4,124 4 

 

 



  161 

The effect sizes of the BOLT-LMM index SNPs were compared with the ones from 

SNPTEST/META GWAS. Direction was consistent and effect sizes were similar between 

the three GWAS, with those generated from the BOLT-LMM run being slightly larger, 

most likely due to the improved power of the linear-mixed model (Figure 5-9). As 

expected, the META-WD effect size for the rs2814778 SNP was zero when in its 

inclusion as a covariate, suggesting no errors in the R linear model prior to integration 

into SNPTEST/META.  

 

 

Figure 5-9. Effect estimates of the index SNPs.  
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The beta coefficient for each index SNP is displayed along with 95% CIs. These are 
displayed for the BOLT-LMM, META-WOD and META-WD GWAS. 

 

Next, a sensitivity analysis was done to check that the GWAS results were not affected 

by human error and/or software bugs. I used 10 independent SNPs from the Chen et al. 

study 166 and compared their effect sizes in AFR_CAG dataset across the different 

methods I employed. There was consistency of directionality and effect sizes between 

all approaches, including with those from the Chen study (Figure 5-10). This indicates 

that the R scripts and software runs were not affected by technical artifacts. 

 

 

Figure 5-10. Sensitivity analysis of methods.  

The effect sizes of the top 10 SNPs that were replicated from Chen et al. (beige) in the 
AFR_CAG dataset were plotted for the following analyses: BOLT-LMM (red), meta-
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analysis of Kpops using R (green), meta-analysis of Kpops using residuals in R (blue), 
association test using the whole AFR_CAG sample in R (pink). 

 

Furthermore, I investigated the association statistics of the index SNPs in each Kpop. 

This was done to detect discrepancies in directionality and effect sizes, which could 

indicate residual population structure or a SNP association with a specific Kpop. Overall, 

there was agreement in direction, and some variation in effect sizes was detected across 

Kpops (Figure 5-11).  
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Figure 5-11. Forest plot of index SNPs by K-means cluster.  

The effect-size of each BOLT index SNP was compared to that from SNPTEST/META, 
by-Kpop runs and Chen et al GWAS. Effect-sizes for each SNP across GWAS are 
present in the respective boxes of the figure. The x-axis indicates the effect-size (beta 
coefficient) of each SNP with 95% CIs, while the y-axis is the type of GWAS (indicated 
by the figure legend colouring). Some effect sizes were not displayed, either due to a low 
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minor allele count in the case of the Kpop GWAS, or due to not being present in the 
summary statistics, in the case of the Chen GWAS. Non-signif. WD = adjusting for 
rs2814778; WOD = without adjusting for rs2814778. 

 

The GCTA-COJO analysis was also run on the two SNPTEST/META GWAS. The 

META-WOD analysis identified rs2814778, rs138163369 and rs570518709 as index 

SNPs. Similarly, the META-WD analysis identified rs138163369 and rs570518709. 

These two latter SNPs were not identified as index SNPs in the BOLT-LMM analysis, but 

their P-values were similar (rs138163369 – 4.90E-08, 2.28E-08, 1.22E-08; rs570518709 

– 8.10E-08, 1.07E-09, 3.03E-09) (Table 5-4). 
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Table 5-4. GCTA-COJO independent SNPs between all three GWAS.  

GWAS are BOLT-LMM, META-WOD, META-WD on neutrophil count. 

SNP Shared by BETA.BOLT P.BOLT P.META-WOD P.META-WD 

rs12747038 BOLT -0.22 3.90E-09 9.31E-06 0.00290611 

rs138163369 META-WD|META-WOD 0.53 4.90E-08 2.28E-08 1.22E-08 

rs140048432 BOLT -0.33 1.10E-08 9.78E-07 3.56E-07 

rs144109344 BOLT -0.12 3.10E-10 1.47E-06 9.45E-07 

rs183362544 BOLT 0.61 1.30E-08 2.26E-05 1.39E-05 

rs186218882 META-WD 0.55 1.50E-06 6.80E-08 1.91E-08 

rs2814778 BOLT|META-WOD 0.43 2.70E-87 3.53E-60 0.999999 

rs28734019 BOLT -0.65 2.90E-08 9.57E-07 1.11E-06 

rs527921556 BOLT 0.40 4.50E-09 6.92E-08 1.17E-07 

rs530475031 BOLT 0.73 3.20E-09 1.07E-05 8.44E-06 

rs557482905 BOLT 0.55 5.80E-09 3.03E-07 2.83E-06 

rs558204720 BOLT 0.52 1.70E-08 5.22E-06 2.14E-05 

rs570518709 META-WD|META-WOD 0.73 8.10E-08 1.07E-09 3.03E-09 
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As another sensitivity analysis to test the reliability of the BOLT-LMM results, the effect 

sizes of all GCTA-COJO SNPs were compared in pair-wise manner across the three 

GWAS. A regression line was fit through the scatter plots, showing a large degree of 

correlation between the BOLT-LMM effect sizes and the SNPTEST/META runs (META-

WOD R2 = 0.91, META-WD R2 = 0.93) (Figure 5-12).  

 

 

Figure 5-12. Scatter plot of GCTA-COJO effect sizes.  

Comparison of effect sizes of all GCTA-COJO independent signals of BOLT-LMM with 
META-WOD (A), BOLT-LMM with META-WD (B) and META-WOD with META-WD (C). 

 

Afterwards, I calculated the genomic inflation for the three GWAS. This was done to 

assess if the inflation seen in the main GWAS was predominantly due to population 

structure, technical errors or from polygenicity i.e. multiple independent SNPs associated 

with neutrophil count 529. The GC inflation factor λ was lower in the SNPTEST/META 

GWAS runs (1.016, 1.013) compared the BOLT-LMM run (Table 5-5). Moreover, the 

QQ-plot of the BOLT-LMM and META-WOD GWAS were similar and did not display an 

early deviation from the expected P-value, indicating no systemic bias in association 

statistics 560 (Figure 5-13). The lower λ in the SNPTEST/META runs combined with the 

QQ-plot results indicate that the higher inflation in the BOLT-LMM GWAS is most likely 

due to polygenicity i.e. detection of increased top loci (SNPs) across the genome 

compared with the linear models, increasing the evidence that the main GWAS results 

are reliable. 

 

Table 5-5. Genomic control of all three GWAS. 

GWAS type GC lambda 

BOLT 1.047 
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META-WOD 1.016 

META-WD 1.013 

 

 

 

Figure 5-13. QQ-Plots of all three GWAS. 

The X-axis is the expected P-value (-log) and the Y-axis represents the observed P-

value (-log). 

 

A common step in GWAS is the identification of independent SNPs through clumping i.e. 

SNPs with the lowest P-value in a particular genomic window 525. This is generally less 

conservative than the COJO approach 561, but is useful in understanding the genetic 

architecture of the studied trait 154. Two PLINK clumping analyses were performed on 

the filtered AFR_CAG summary statistics using the same clumping parameters on the 
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well-known FUMA platform 531. Here, 193 SNPs were identified as loci at the relaxed 

threshold of r2=0.6, 73 independent loci at the stringent threshold of r2=0.1 (Appendix 

20). Finally, 12 top loci were identified at r2=0.001 and a 10Mb window, which are the 

very conservative MR clumping parameters 532,533. 

 

Furthermore, a FUMA analysis was run on the filtered AFR_CAG dataset for the top loci 

(r2=0.1). This was done to visualise which genomic locations are affecting neutrophil 

count and if they are more likely to have a particular genetic function compared to the 

whole genome i.e. functional variants 562. Seventeen genomic risk loci were identified 

(Figure 5-14). The ANNOVAR analysis 563 showed evidence for changes in genetic 

function enrichment relative to all SNPs in the reference panel – intronic [-log(E) = 0.678, 

P = 5.91e-11], non-coding intronic RNA [-log(E) = 1.42, P = 2.05e-4], upstream of gene 

[-log(E) = 2.59, P = 3.06e-4], three prime untranslated region (UTR3) [-log(E) = 2.57, P 

= 4.86e-4], downstream of gene [-log(E) = 2.02, P = 1.38e-2], exonic [-log(E) = 1.73, P 

= 4.86e-2], non-coding exonic RNA [-log(E) = 1.82, P = 3.68e-2] (Figure 5-14).  

 

Next, I investigated if the independent SNPs in the main GWAS were present in the 

GWAS Catalog 167, as I aimed to see if they have been previously associated with WBC 

count or immunity. Here, SNPs predominantly showed associations with white blood cell 

count variation, further improving the reliability of the GWAS (Appendix 21).  
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Figure 5-14. Description of genomic risk loci.  

FUMA analysis results for SNPs passing the GWAS significance threshold in the BOLT-
LMM filtered GWAS. 

 

The AFR_CAG GWAS was contrasted with a neutrophil count GWAS in Africans from 

Chen et al. 166, where a quantitative analysis, 81.71% of the GWAS significant SNPs 

from Chen et al. were replicated (using the same covariates) in the AFR_CAG dataset 

(P<0.05) (Table 5-6). The Manhattan plots also visually showed a good degree of 

overlap (Figure 5-15). As Similarly, the AFR_CAG GWAS was compared with one done 

in Europeans from Astle et al. 149, highlighting the difference in the genetic architecture 

of neutrophil count between Africans and Europeans and displaying the difference in 

signal strength when conducting GWAS in hundreds of thousands of people compared 

to ~6000, as was the case with the AFR_CAG sample (Figure 5-16). Finally, SNPs that 

were top loci at r2=0.1 were investigated in the Astle and Chen summary statistics, as 
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well as in the GWAS Catalog. Nineteen genetic variants were not present in these two 

datasets, 7 of which were index SNPs (Table 5-7).  

 

Table 5-6. Replication analysis of Chen independent loci. 

Summary P-value no PC covariates P-value with PC1:10 as covariates 

N SNPs 13139 13139 

Min 2.47E-158 6.53E-130 

1st Quartile 2.20E-07 3.61E-05 

Median 0.000124486 0.00225415 

Mean 0.013520426 0.043460521 

3rd Quartile 0.003708045 0.027477984 

Max 0.936191471 0.997954198 

Percentage P < 

0.05 92.97% 81.71% 
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Figure 5-15. Comparison of GWAS results for neutrophil count in Africans.  

Manhattan plot of BOLT-LMM neutrophil count GWAS from my study (top) mirrored with another Manhattan plot generated using summary 
statistics from a GWAS of neutrophil count done in people of African ancestry 166. 
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Figure 5-16. Comparison of GWAS results for neutrophil count in Europeans.  

Manhattan plot of BOLT-LMM neutrophil count GWAS from my study (top) mirrored with another Manhattan plot generated by a GWAS of 
neutrophil count done in people of European ancestry in UK Biobank 149. 
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Table 5-7. Top loci not found in Astle or Chen.  

Only independent SNPs clumped at r = 0.1 are shown. 

SNP CHR BP (GRCh37) r0.001 lead? cojo_index In Astle/Chen? Nearest gene Type 

rs28734019 1 90800573 Yes Yes No RNU6-695P Intergenic 

rs61823703 1 159542164 No No No OR10AE1P Intergenic 

rs539456851 1 158731459 No No No OR6N1 Intergenic 

rs371178711 1 158186653 No No No RP11-404O13.5 Intergenic 

rs146677619 1 158995984 No No No IFI16 Intronic 

rs11576058 1 161111446 No No No UFC1 Intergenic 

1:158777618_CT_C 1 158777618 No No No OR10AA1P Downstream 

rs183362544 2 97045902 Yes Yes No NCAPH Intergenic 

rs11422063 1 159799599 No No No SLAMF8 Intronic 

rs112483667 1 151651180 No No No SNX27 Intronic 

rs12406899 1 157540651 No No No FCRL4 Intergenic 

rs1103805 1 158924741 No No No PYHIN1 Intronic 

rs557482905 5 80629499 Yes Yes No ACOT12 Intronic 

rs527921556 6 160605701 Yes Yes No SLC22A2 Intronic 

rs10096834 8 116281087 Yes No No TRPS1 Intergenic 

rs140048432 9 17700893 Yes Yes No SH3GL2 Intronic 

rs530475031 12 48810860 Yes Yes No C12orf54 Intronic 

rs558204720 16 59472815 Yes Yes No LOC105371298 Intronic 

rs138163369 18 6492075 Yes No No CTD-2124B20.2 Intergenic 
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5.3.3. Heritability analysis 

A heritability analysis was conducted with GCTA-GREML to estimate the variance 

explained by the genetic component on neutrophil count. Without adjusting for 

rs2814778, the genetic variance was estimated at 0.101 (10.1%) (SE = 0.018), and the 

phenotypic variance at 0.133 (13.3%) (SE = 0.003) with an analysis P-value of 2.29e-09. 

When adjusting for the Duffy SNP, the genetic variance was estimated at 0.050 (5%) 

(SE = 0.017), twice as low as in the previous analysis, and the phenotypic variance was 

estimated at 0.123 (12.3%) (SE = 0.002), with the analysis P-value of 1.36E-03 (Table 

5-8).  

 

Table 5-8. Estimated heritability of neutrophil count. 

Source Variance.WOD SE.WOD Variance.WD SE.WD 

V(G) 0.101 0.018 0.050 0.017 

V(e) 0.032 0.017 0.073 0.017 

Vp 0.133 0.003 0.123 0.002 

V(G)/Vp 0.761647 0.132462 0.406716 0.135124 

P-value 2.29E-09 
 

1.36E-03 
 

N 5509 
 

5509 
 

V(G) = genetic variance 
   

V(e) = environmental variance 
   

Vp = total variance 
   

V(G)/Vp = proportion of genetic variance from total variance 
 

 

 

A second run of GREML was done by stratifying on LD regions for each chromosome to 

account for potential LD bias. This was not successful, as the standard errors when 

estimating heritability were too high.  

 

5.3.4. Descriptive analyses of neutrophil count 

Next, I aimed to assess if the index SNPs were still associated with neutrophil count 

when conditioning on variables such as BMI and smoking status. This was done to 

investigate the reliability of the index SNPs in the context of their relationship with 

neutrophil count. Moreover, I wanted to assess if including PCs was indeed accounting 

for possible population structure. 

 



  176 

First, the descriptive statistics of the AFR_CAG dataset were studied with these 

additional variables (Table 5-9). 

 

Table 5-9. Detailed descriptive statistics. 

Characteristic N = 5,9761 

Menopause status   

Male 2,600 / 5,976 (44%) 

Prefer not to answer 45 / 5,976 (0.8%) 

No 1,279 / 5,976 (21%) 

Hysterectomy 365 / 5,976 (6.1%) 

Not sure - other 208 / 5,976 (3.5%) 

Yes 1,479 / 5,976 (25%) 

BMI (kg/m^2) 29.8 (5.3) 

Missing 100 

Smoking status   

Prefer not to answer 57 / 5,937 (1.0%) 

Never 4,361 / 5,937 (73%) 

Previous 897 / 5,937 (15%) 

Current 622 / 5,937 (10%) 

Missing 39 

Alcohol drinker status   

Prefer not to answer 50 / 5,937 (0.8%) 

Never 1,112 / 5,937 (19%) 

Previous 349 / 5,937 (5.9%) 

Current 4,426 / 5,937 (75%) 

Missing 39 

1Mean (SD); n / N (%)   

 

 

Several variables had missing data or had values assigned as “prefer not to answer” / 

“not sure” in the case of self-reported traits. There was no evidence of a difference in 

neutrophil count between these data types and those that were kept in the dataset (Table 

5-10). 5,310 individuals remained in the dataset after filtering out these data types. 

 

Table 5-10. Association between excluded variable data and neutrophil count. 

Exposure Type BETA SE P-value N 

Body mass index Missing 0.04 0.04 0.29 100 
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UN region of birth Missing 0.00 0.03 0.89 138 

Alcohol drinker status Missing -0.06 0.06 0.30 39 

Alcohol drinker status Prefer not to answer -0.02 0.05 0.75 50 

Menopause Missing -0.09 0.08 0.23 23 

Menopause Not sure 0.05 0.03 0.08 208 

Menopause Prefer not to answer 0.05 0.06 0.42 45 

Smoking status Missing -0.06 0.06 0.31 39 

Smoking status Prefer not to answer 0.03 0.05 0.58 57 

 

Next, the variance explained by each variable was studied. This was done to assess 

which variables might be added into a sensitivity GWAS. Several traits still explained a 

notable amount of variance in neutrophil count even in the type III ANOVA analysis. 

These were sample year (0.15%), sample month (0.29%), menopause (0.49%), self-

reported UN region of birth (0.37%), assessment centre (0.40%), BMI (0.15%), smoking 

status (%1.58) and the rs2814778 SNP (9.56%) (Figure 5-17).  
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Figure 5-17. Variance explained on neutrophil count by traits. 
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5.3.5. BOLT-LMM run with additional covariates 

The ANOVA results showed that the main GWAS results might have been affected to a 

degree by the variables listed in Figure 5-17, and that the PCs might have not captured 

the whole population structure present in the AFR_CAG sample. Therefore, to assess 

the reliability of the main GWAS, a sensitivity BOLT-LMM GWAS was done with six 

additional covariates on 5,310 individuals: UN region of birth, K-means cluster, smoking 

status, alcohol drinker status, menstrual status and BMI. The association statistics of this 

sensitivity run and the main BOLT-LMM GWAS run were compared, showing very similar 

results (Table 5-11). This provided evidence that the effect of these additional variables 

on the main GWAS were modest, and that the PCs added into the model largely 

counteracted the effects of population structure. 
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Table 5-11. Comparison between main BOLT-LMM and BOLT-LMM with additional covariates. 

SNP CHR BP (GRCh37) BETA.BOLT SE.BOLT P.BOLT BETA.sensitivity SE.sensitivity P.sensitivity 

rs28734019 1 90800573 -0.65 0.12 2.90E-08 -0.70 0.12 1.40E-08 

rs12747038 1 146651428 -0.22 0.04 3.90E-09 -0.24 0.04 1.30E-09 

rs2814778 1 159174683 0.43 0.02 2.70E-87 0.49 0.02 1.40E-90 

rs183362544 2 97045902 0.61 0.11 1.30E-08 0.63 0.12 3.10E-07 

rs144109344 2 136787730 -0.12 0.02 3.10E-10 -0.13 0.02 2.30E-10 

rs557482905 5 80629499 0.55 0.10 5.80E-09 0.59 0.10 6.00E-09 

rs527921556 6 160605701 0.40 0.07 4.50E-09 0.48 0.07 1.30E-10 

rs10096834 8 116281087 0.04 0.01 2.30E-08 0.04 0.01 1.60E-08 

rs140048432 9 17700893 -0.33 0.06 1.10E-08 -0.35 0.06 4.70E-08 

rs530475031 12 48810860 0.73 0.12 3.20E-09 0.84 0.13 3.30E-10 

rs558204720 16 59472815 0.52 0.09 1.70E-08 0.55 0.10 8.60E-08 

rs138163369 18 6492075 0.53 0.10 4.90E-08 0.59 0.11 2.60E-08 
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5.3.6. Mendelian randomization 

Finally, after establishing the reliability of the GWAS through several post-hoc and 

sensitivity analyses, I conducted the MR analysis. Here, a bi-directional MR was done 

between neutrophil count and SM. For the latter, I used summary statistics from the 

MalariaGEN 245. Only 3 SNPs were available to proxy for neutrophil count after data 

harmonization with the malaria dataset. For SM as an exposure, 7 SNPs were available 

for overall SM, 2 for CM and 3 for other SM.  

 

There was little evidence of an effect of neutrophil count on overall severe malaria (IVW 

OR: 1.03, 95% CI: 0.98 to 1.07; P = 0.24), CM (IVW OR: 1.00, 95% CI: 0.94 to 1.06; P 

= 0.98), SMA (IVW OR: 1.08, 95% CI: 0.99 to 1.18; P = 0.08) and OTHER SM (IVW OR: 

1.03, 95% CI: 0.98 to 1.09; P = 0.26), although the effect estimates were trending 

towards an increased risk of severity (Figure 5-18, Table 5-12). Similarly, there was little 

evidence of an effect of overall severe malaria (IVW OR: 2.03, 95% CI: 0.70 to 5.84; P = 

0.19), CM (IVW OR: 2.14, 95% CI: 0.70 to 6.57; P = 0.18) and OTHER SM (IVW OR: 

2.08, 95% CI: 0.59 to 7.34; P = 0.25) on neutrophil count. However, there was a direction 

agreement in effect estimates towards neutrophil count increase (Figure 5-18, Table 

5-12). There were no SNPs instrumenting for SMA which passed the GWAS significance 

threshold, and therefore could not be analysed. 
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Figure 5-18. Bi-directional Mendelian randomization.  

Forest plot of the IVW MR analysis with neutrophil count as an exposure (A) and severe 
malaria as an exposure (B). Overall severe malaria and its sub-phenotypes are listed on 
the y-axis, with the effect estimates on the x-axis. In the first instance, the MR results are 
interpreted as an OR increase severe malaria per 1-SD increase in neutrophil count, 
while in the latter as a 1-SD unit difference in neutrophil count per 1-OR increase in 
severe malaria risk. 
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Table 5-12. MR analysis between neutrophil count and P. falciparum severe malaria. 

Exposure Outcome Method No. SNPs BETA SE P-value OR OR.lci95 OR.uci95 

Cerebral malaria Neutrophil count Inverse variance weighted 2 0.76 0.57 0.18 
   

Other severe malaria Neutrophil count Inverse variance weighted 3 0.73 0.64 0.25 
   

Overall severe malaria Neutrophil count Inverse variance weighted 7 0.71 0.54 0.19 
   

Neutrophil count Cerebral malaria Inverse variance weighted 3 0.00 0.03 0.98 1.00 0.94 1.06 

Neutrophil count Other severe malaria Inverse variance weighted 3 0.03 0.03 0.26 1.03 0.98 1.09 

Neutrophil count Overall severe malaria Inverse variance weighted 3 0.03 0.02 0.24 1.03 0.98 1.07 

Neutrophil count Severe malaria anaemia Inverse variance weighted 3 0.08 0.04 0.08 1.08 0.99 1.18 

 

 



  184 

A single-SNP MR analysis was done to study the effect each genetic variant on the 

outcome. For neutrophil count as exposure, SNPs rs2325919 (proxy for rs2814778), 

rs7460611 (proxy for rs10096834), and rs144109344 were used. There was little 

evidence of an effect by any single SNP, although the general direction was towards 

increasing the risk of severe malaria (Figure 5-19, Appendix 22). The estimated 

conditional F-statistic for SNPs rs2325919, rs7460611 and rs144109344 were 182, 16 

and 36. 

 

For severe malaria as an exposure, SNPs rs113892119, rs116423146, rs1419114, 

rs553707144, rs557568961, rs57032711, rs8176751 were used to proxy for overall 

severe malaria, rs113892119 and rs543034558 for CM, and rs113892119, 

rs116423146, rs557568961 for OTHER (Figure 5-20, Appendix 23). The estimated 

conditional F-statistic for SNPs rs113892119, rs116423146, rs1419114, rs553707144, 

rs557568961, rs57032711 and rs8176751 were 96, 32, 30, 38, 119, 32 and 44. 
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Figure 5-19. Single-SNP MR analysis of neutrophil count on severe malaria. 
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Figure 5-20. Single-SNP MR analysis of severe malaria on neutrophil count.
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5.4. Discussion 

Here, I used the data generated in Chapter 4 to conduct a GWAS of neutrophil count in 

individuals from the AFR CAG in UKBB. Seventy-three independent loci were identified, 

of which nineteen were novel. Ten index SNPs were found using the conservative GCTA-

COJO approach, and another two through MR clumping. Moreover, BOLT-LMM was 

found to be reliable in conducting GWAS on people of African ancestry. Ultimately, this 

allowed me to run a MR analysis between neutrophil count and P. falciparum severe 

malaria. 

 

The overarching aim of this chapter was to establish if higher neutrophil count is a causal 

factor in the severity of P. falciparum malaria using genetic epidemiology methods, 

thereby improving our understanding of blood cell traits (BCTs) and disease. I chose this 

study design to best address the challenges that this posed. First, I ran a GWAS of 

neutrophil count with BOLT-LMM to overcome the possible issues of population structure 

and smaller sample-size in the AFR CAG dataset (Aim 1). Afterwards, sensitivity 

analyses were undertaken at each step of the study to ensure the reliability of the BOLT-

LMM GWAS results (Aim 2). This was followed by my initial aim, to run a MR analysis 

between neutrophil count and SM caused by P. falciparum (Aim 3). Finally, I triangulated 

my findings with those from previous GWAS and performed literature searches to assess 

the validity and biological significance of my results (Aim 4).  

 

One of the questions I aimed to answer in this study was whether BOLT-LMM would be 

able to provide reliable results when performing GWAS in people of non-European 

ancestry, such as those in the UKBB AFR CAG. For example, in their meta-analysis of 

BCTs in non-European datasets, Chen at al. used a linear model in PLINK to run their 

GWAS, restricting BOLT-LMM only to the European dataset 166. Here, the visual 

comparison in Manhattan plots between my GWAS and Chen at al.’s showed a large 

degree of overlap. Compared to the META-WD and META-WOD GWAS, the BOLT-LMM 

approach was more similar with that of Chen et al conducted with a larger sample-size 

(N=15,171). These findings indicate that BOLT-LMM can be reliably used to conduct 

GWAS in non-European populations, which could be advantageous in identifying more 

causal ancestry-specific SNPs for BCTs in future studies, as the power of BOLT-LMM 

scales with increasing GWAS sample-size 435.  

 

There was a stark contrast between the genetic architecture of neutrophil count in people 

of African vs. European ancestry 149. Interestingly, tissue expression for BCTs has been 
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found to vary between ancestries as well 399, further showing the importance of 

conducting GWAS in diverse populations to improve the understanding of BCT biology. 

 

Next, I investigated the GCTA-COJO index SNPs. Genetic variants passing the MR 

clumping parameters were also investigated, as these were used in the MR analysis. 

Two additional SNPs were identified here, which might have not been found in the more 

conservative GCTA-COJO run due to conditioning on SNPs across the genome, and 

these small effects might have pulled their P-values (2.30e-08 and 4.90e-08) below the 

GWAS significance threshold 561.  

 

The first index SNP was rs28734019 (1p22.2), mapping to the pseudogene RNU6-695P. 

Another SNP close to the same pseudogene is rs10922833. A study using 287 liver 

samples to identify protein quantitative loci (pQTL) found rs10922833 to be a trans-acting 

pQTL for Tenascin C, an extracellular matrix protein 564. Due to their close location, an 

analysis with LD Link 565 was done to test whether the two variants were in LD. However, 

this was not the case (r2 = 8.41e-05, D' = 0.43), making it unlikely for rs28734019 to be 

regulating Tenascin C levels by proxy through rs10922833.  

 

The next identified index SNP was rs12747038, located on chromosome 1 (1q21.1). As 

a confirmation of my analysis, Chen et al. and Hu et al. had also identified rs12747038 

to be associated with neutrophil count and found a similar effect size (AFR_CAG BETA 

= -0.22, P-value = 3.90e-09; Chen BETA = -0.31, P-value = 3e-20; Hu BETA = -0.21, P-

value = 8e-36) 166,400. A GTEx search of rs12747038 showed its role as an expression 

quantitative trait locus (eQTL) i.e. associated with levels of gene expression 566. Here, 

the strongest association was with decreasing the expression of CHD1L [normalised 

effect size (NES) = -0.25, P-value = 1.9e-20] in the whole blood. The chromodomain 

helicase DNA binding protein 1 like (CHD1L) protein is involved in a multitude of 

biological processes, such as DNA repair, gene transcription and translation 567. 

However, its role in blood cell traits has not been explored. As an eQTL, rs12747038 

was also associated with increased expression of a nearby upstream pseudogene 

NBPF13P (NES = 0.35, P-value = 9.0e-11) in the whole blood. Additionally, rs12747038 

has a role as a splicing QTL (sQTL) i.e. affecting alternative splicing to make different 

protein isoforms 568, which can be more relevant mechanistically to a phenotype 569. The 

strongest association as a sQTL was with NBPF12 (NES = 0.49, P-value = 2.9e-9) in the 

thyroid, known as neuroblastoma breakpoint family member 12. McCartney et al. had 

found that rs11239931, a SNP mapping to the NBPF13P pseudogene and sQTL for 

NBPF12, was also associated with a decrease in granulocyte count (BETA = -0.23, P-

value = 4e-12) in people of African ancestry (N=6,152) 570. NBPF12 is part of the 
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neuroblastoma breakpoint family, which has been associated with an array of traits, such 

as autism, psoriasis and various cancers 571. While previous GWAS have replicated the 

association between rs12747038 and neutrophil count, the mechanism is unknown. 

 

The rs2814778 (chromosome 1q23.2) index SNP has been the most replicated genetic 

variant in people of African ancestry known to affect neutrophil count 166,572–577, with the 

CC genotype (most common in Africans) associated with decreased neutrophil count 508. 

The exact location of rs2814778 is inside a promoter upstream of the ACKR1/DARC 

(Atypical Chemokine Receptor 1/Duffy Antigen Receptor for Chemokines) gene 503. The 

CC genotype inhibits the binding of the GATA transcription factor and therefore ACKR1 

expression, preventing the production of a glycosylated transmembrane receptor 508. 

This receptor is predominantly found on erythrocytes and is heavily involved in 

chemokine signalling, such as CXCL8 and CCL5 503. Interestingly, those who suffer from 

BEN do not have a worse immune response compared to those with the TC or TT 

genotypes 503. While many studies have replicated the association of rs2814778, the 

exact mechanism of BEN is still under investigation, although a proposed mechanism is 

the reduced differentiation of granulocytes under homeostatic conditions, and a 

heightened response under stress 503. 

 

The next index SNP was rs183362544, found on chromosome 2 (2q11.2). Several other 

SNPs associated with WBC count have been mapped to the same NCAPH (Non-SMC 

Condensin I Complex Subunit H) gene: rs10209780 578, rs111162559 579, rs34063378 

156 with eosinophil count and rs561539268 156, rs584811 580 with monocyte count. 

Biologically, the NCAPH protein is known to play a role in cell mitosis, DNA repair and 

regulation of transcription 581. A study found that increased NCAPH expression in lung 

adenocarcinoma was associated with increased Th2 T-cell infiltration, decreased innate 

immune cell numbers, and decreased survival 582. Similarly, a lookup in The Human 

Protein Atlas 583 showed that NCAPH had higher expression in granulocytes and 

regulatory T-cells, further showing a role in immunity for NCAPH. These findings provide 

further evidence that rs183362544 could have a role in regulating neutrophil count levels. 

However, there was no data available on how rs183362544 affects gene expression, 

and its exact genomic location is not inside the NCAPH gene. Therefore, while nearby 

SNPs have also been found to associate with WBC count, it is uncertain if this occurs 

through the hypothesised mechanism of regulating NCAPH expression. 

 

rs144109344 is another index genetic variant on chromosome 2 (2q21.3), and its 

association was similar to that in the studies of Chen et al. and Soremekun et al. 

(N=17,802 Africans): AFR_CAG BETA = -0.12, P-value = 3.10e-10; Chen BETA = -0.27, 



  190 

P-value = 3.39e-14; Soremekun BETA = -0.21, P-value = 2e-13) 166,575. Similarly, other 

SNPs mapping to the DARS/CXCR4 (Aspartyl-TRNA Synthetase 1/C-X-C Motif 

Chemokine Receptor 4) genes have been associated with neutrophil and monocyte 

count 149,156,166,578,580,584. Biologically, DARS1 is an enzyme that is part of the multi-tRNA 

synthetase complex (MSC) 585. This complex serves many functions, ranging from DNA 

repair, transcription and translation and immune signalling 585, although DARS itself has 

not been implicated in regulating blood cell traits. On the other hand, CXCR4 is a 

chemokine receptor which binds to CXCL12 586, and is known to regulate the release of 

neutrophils from the bone marrow during both homeostasis and infections 587. 

Interestingly, CXCR4 has been involved in P. falciparum pathogenesis. Macrophage 

migration inhibitory factor (MIF) can interact with CXCR2 and CXCR4 to recruit 

neutrophils 588, and the Plasmodium falciparum parasite is known to produce MIF (PfMIF) 

as well 589. A previous laboratory study using both murine (P berghei) and human (P 

falciparum) models found impairment of the parasite liver-cycle in both knocked-out and 

drug-targeted CXCR4 590. Moreover, MIF was found to be released from erythrocytes 

infected with P falciparum, which together with CXCR4 triggered the recruitment of 

neutrophils and formation of NETs 591. PfMIF has been recently identified to possess 

DNase properties 592, which can interfere with NET formation and activity 591.   

 

The next index SNP is rs557482905 (chromosome 5q14.1) which is inside the ACOT12 

(Acyl-CoA Thioesterase 12) gene. There was no evidence for an association in the Chen 

et al. GWAS (AFR_CAG BETA = 0.55, P-value = 5.80e-09; Chen BETA = -0.28, P-value 

= 0.24). The ACOT12 enzyme is predominantly found in the liver and plays a role in 

cellular metabolism and activity through catalysing the hydrolysis of acetyl-coenzyme A 

(acetyl-CoA) into CoA and fatty acids 593,594. A GWAS Catalog query showed that some 

other SNPs mapping to this gene were associated with body size measurements, like 

height and BMI 580,595, which makes sense given the role of ACOT12 in metabolism. 

Interestingly Xing et al. found that rs7735423 (A/G) in ACOT12 was associated with 

higher psoriasis rates in a Han Chinese population (N=1,027) 596. Moreover, a study 

looking at COVID-19 severity in a transcriptomic analysis (N=66) found that fatty acids 

were associated with an increase in neutrophil-to-lymphocyte ratio, and ACOT12 

expression increased with disease severity 597. Nevertheless, the current evidence of 

ACOT12 in immunity is limited, and a further replication analysis is needed given the 

contrast with previous GWAS.  

 

The rs527921556 index SNP is found on chromosome 6q25.3 and is inside the SLC22A2 

(Solute Carrier Family 22 Member 2) gene, encoding the OCT2 (organic cation 

transporter 2) protein 598. OCT2 is found in the renal tubule where it was discovered to 
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play a role in eliminating drugs such as metformin 599. In terms of the GWAS results, 

Chen et al. did not find evidence for an association. Moreover, most SNPs mapping to 

this gene associate with lipoprotein A levels, and no SNPs were identified to influence 

WBC count 600. The next index SNP was rs140048432 (chromosome 9p22.2), found 

inside the SH3GL2 (SH3 Domain Containing GRB2 Like 2, Endophilin A1) gene, 

encoding the endophilin 1 protein 601. Endophilin A1 is found in the brain and has a role 

in intracellular processes such as tyrosine kinase activation and apoptosis 601. However, 

endophilin 1 has not been studied in relation to immunity, and the Chen at al. GWAS did 

not find an association of this SNP with neutrophil count. rs530475031 is found on 

chromosome 12q13.11 and is inside the C12orf54 (Chromosome 12 Open Reading 

Frame 54) gene. Another study found rs11458 mapping to this gene and was associated 

with haemoglobin levels 602, although the role of the encoded protein is unknown. 

rs558204720 (chromosome 16) is an intronic SNP, but no SNPs were found to associate 

with blood cell traits at the LOC105371298 gene. 

 

rs10096834 (MR clump SNP, chromosome 8q23.3) is an intergenic SNP, with the closest 

gene being TRPS1 (Transcriptional Repressor GATA Binding 1). The zinc finger 

transcription repressor encoded by this gene plays many roles, such as in embryonal 

development and chondrocyte cell cycle regulation 603. However, there is evidence of 

this transcription factor’s role in immunity. A GWAS Catalog search identified other SNPs 

close to rs10096834 that associate with neutrophil and monocyte count 149,156,166,580. A 

further query on The Human Protein Atlas 583 showed that TRPS1 had the highest 

expression in monocytes out of all other immune cells. Its expression has been found to 

regulate the recruitment of tumour-infiltrating lymphocytes at the site of breast cancer 

cells 604 and another GWAS found an association between rs2049865, mapped to 

TRPS1, and abdominal infections 605. Moreover, TRPS1 was found to play a role in Th17 

cell differentiation 606. Interestingly, a study looking at hunter-gatherer African 

populations identified positive selection of certain SNPs at the TRPS1 gene, which the 

authors speculate might be due to immune advantages in the rainforest environment 607. 

Six genetic variants (chr8:116702422-116802422) which were fixed in Europeans had 

non-zero allele frequencies (0.01-0.80) in the three hunter-gatherer populations 607. 

However, rs10096834 was not inside this genetic region, and its allele frequency was 

similar in the AFR CAG sample compared with European populations. Overall, these 

findings point to a role for TRPS1 in immunity, but its effect might not be specific to 

neutrophils.  

 

rs138163369 (MR clump SNP, chromosome 18p11.31) maps to a region of the genome 

that encodes a lncRNA transcript CTD-2124B20.2, and there was no evidence of 
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association in Chen et al.’s study (AFR_CAG BETA = 0.53, P-value = 4.90e-08; Chen 

BETA = 0.18, P-value = 0.13). Yang et al. showed that expression of CTD-2124B20.2 

was positively correlated with worse lung adenocarcinoma prognosis, but they did not 

find an association between its expression levels and WBC count 608. Further evidence 

on SNPs mapping to CTD-2124B20.2 is limited, most likely due to the fixed alleles in 

non-African populations 536.  

 

The aim of the description above was to provide a possible biological mechanism through 

which these SNPs might causally affect the levels of neutrophil count, and therefore aid 

in the biological interpretation should there be evidence for a causal effect given by the 

MR analysis. However, mapping SNPs to a functional process i.e. fine-mapping is 

notoriously difficult 609, and it will be interesting to see what future studies discover on 

the genetic architecture 347 of neutrophil count in people of African ancestry.  

 

In terms of the sensitivity analyses undertaken after the main GWAS, the combined 

evidence suggested that the instruments generated from my GWAS could be used in a 

MR analysis. However, only three SNPs were also present inside the severe malaria 

dataset and therefore also estimated the single-SNP effects through the reduced-form 

estimator i.e. Wald ratio method 557. 

 

In the MR analysis, increased neutrophil count showed limited evidence of increasing 

the risk of SM, with some evidence seen on the SMA sub-phenotype, where rs10096834 

(proxied by rs7460611) showed the most evidence for an effect. Band et al. also 

performed a MR analysis between neutrophil count and P. falciparum SM 245. However, 

they used SNPs for neutrophil count generated from a GWAS in Europeans from UKBB 

149, where they found no evidence of an effect on SM (AFR_CAG BETA = 0.03, P-value 

= 0.24; Band BETA = 0.00, P-value = 0.87) 245. When doing the MR in the other direction, 

there was little evidence for an effect by SM on neutrophil count. The results here are 

contrary to the expected outcome of increased neutrophil count leading to an increased 

risk of severe malaria, given the present literature described in the introduction 491,510–514.  

 

5.4.1. Limitations 

Nevertheless, my study has certain limitations. Firstly, a possible limitation for the novel 

genetic variants identified here is Winner’s curse 610. All GWAS use a P-value 

significance threshold to affirm if there is evidence that a SNP is associated with a trait, 

which is commonly set at 5e-8 611,612, as per the recommendations of Risch and 

Merikangas back in 1996 613. However, one consequence of a “significance” threshold in 
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GWAS is that some SNPs can pass this threshold by chance in the first discovery study, 

which is then not replicated in subsequent studies 614,615. Due to the sample-size 

constraints of the AFR_CAG sample, generating a replication sample was not possible. 

However, the AFR_CAG summary statistics were compared to those from Chen et al. 

166 and showed a good degree of nominal replicability. Nevertheless, future GWAS in 

sub-Saharan African with large sample-sizes will be able to identify variants with more 

common alleles and smaller effect sizes, diminishing the possible effect of Winner’s 

curse 614.  

 

Secondly, only a limited number of instruments were available to proxy for neutrophil 

count in the MR analysis. Seven index SNPs had a very high effect allele count, which 

might have been fixed in the MalariaGEN study population and so could not be used in 

the MR analysis. Similarly, the rs2814778 SNP most likely had a very small allele 

frequency and might have been eliminated, although I was able to use another SNP in 

LD with it as a proxy. While LD proxies are useful, they can also come with the caveat of 

not precisely instrumenting the trait 252. Moreover, the MR-Egger method is not reliable 

with a small number of instruments 204. 

 

Thirdly, severe manifestations of P. falciparum malaria are more common in children and 

young adults 616,617, and the immune system has been observed to be less effective in 

terms of neutrophil activity with increasing age 618. Given that the average age for the 

AFR_CAG sample was lower than that in sub-Saharan Africa (58.1 vs 16.8 years) 619, 

the results of the GWAS should be interpreted with this in mind, while those from the MR 

analysis are likely a violation of the 2SMR assumptions 200. 

 

Finally, the most impactful limitation in this study is the small sample-size and hence 

statistical power. As mentioned previously, I have chosen to use BOLT-LMM here to best 

address the issues of a small sample-size and the presence of population structure. 

Current studies done on people living in sub-Saharan Africa have been small 166,573–575 

compared to what is currently being done in regions such as Europe, East Asia and the 

US 162,164,584. The approach I have taken in Chapter 4 and in this chapter has provided a 

valuable resource and could be pooled together with other GWAS done in people of 

African ancestry to create a larger dataset. In any case, having a large-scale study like 

UKBB in sub-Saharan African would be very useful in terms of finding common SNPs 

with smaller effect sizes that could be used reliably for polygenic risk score generation 

or MR analyses. Not only is this important from an equity standpoint but is also helpful in 

understanding the biology of complex traits, such as BCTs, and that can ultimately have 

a positive impact in the health outcomes of all. 
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5.4.2. Conclusion 

In this study I conducted a GWAS of neutrophil count in people from the UKBB African 

CAG. I identified several top SNPs that associated with neutrophil count, which allowed 

me to address the initial aim of running a MR analysis between neutrophil count and SM 

caused by P. falciparum. While the MR results did not display a concrete result, this only 

shows the importance of conducting large-scale biobank studies in Africa.  

 

Similarly to Chapter 3, in this chapter I used specific methodological approaches to study 

the biological relationship between neutrophil count and severe malaria, a disease of 

global significance 385. On the same narrative thread, the work in Chapter 6 is focused 

on another important disease linked with BCTs 620, deep vein thrombosis. 
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CHAPTER 6.  PHENOME-WIDE 
ANALYSIS OF DEEP VEIN 

THROMBOSIS AETIOLOGY  
 

Chapter summary 

In the final results chapter of my thesis I focused on identifying novel causes for deep 

vein thrombosis (DVT) 249, a disease of global prominence (Figure 6-1) 621. Like the other 

diseases I have studied, BCTs play a role in the development of the disease, particularly 

platelets, a subset of BCTs. In this chapter, I used a hypothesis-free Mendelian 

randomization (MR) 169 approach to discover novel risk factors for DVT. This work aimed 

to inform on the mechanism through which platelets might lead to DVT development.  
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Figure 6-1. PhD project and current chapter (6 - coloured).  

Created with BioRender.com. 
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6.1. Introduction 

Under normal physiological conditions, platelets and fibrin form clots to prevent blood 

loss at the site of vessel injury 622. However, when clots (or thromboses) form abnormally 

they can disrupt blood flow 623,624; when this occurs in the deep veins of the limbs or 

pelvis, this is known as deep vein thrombosis (DVT) (Figure 6-2). A complication of DVT 

is pulmonary embolism (PE), where a clot breaks away from a deep vein wall and 

becomes lodged in a pulmonary blood vessel, obstructing blood flow to the lungs and 

causing respiratory dysfunction. In 2021, there were approximately one million incident 

cases of venous thromboembolism (VTE) in the United states alone 625. DVT accounts 

for approximately two-thirds of VTE events and PE is the primary contributor to mortality. 

While VTE was a primary cause for 10,511 deaths in the UK in 2020 626, the actual 

contribution of VTE to annual deaths is estimated to be 2-3 fold higher 627. 

 

 

Figure 6-2. Deep vein thrombosis of the lower leg.  

Made with BioRender.com. 

 

6.1.1. Current treatments for DVT 

To prevent acute and chronic complications it is essential to establish an accurate 

diagnosis of DVT. The symptoms of DVT alone are often not specific or sufficient to make 

a diagnosis, and about half of those suffering DVT will have no symptoms 628. Symptoms 

are considered in conjunction with known risk factors to help estimate the likelihood of 
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DVT and determine whether thromboprophylaxis is required 624. Pharmacological 

thromboprophylaxis includes the use of anticoagulants, such as intravenous heparin and 

oral warfarin (a vitamin K antagonist), which have been used in combination to treat DVT 

for over 50 years, but require constant maintenance and monitoring 624. More recently 

direct oral anticoagulants (DOAC), such as dabigatran (which inhibits thrombin) or 

rivaroxaban (which inhibits factor Xa), have been employed with reduced economic costs 

relative to traditional treatments 629. 

 

6.1.2. DVT aetiology 

Environmental/acquired risk factors for DVT include age, obesity, immobility (e.g. 

hospitalization) and pregnancy 146,623,630,631. Genetic factors which increase the risk of 

DVT are those such as deficiencies in the anticoagulation proteins antithrombin, protein 

C, protein S and Factor V Leiden 623,630,631. Studies implementing traditional epidemiology 

methods have identified potential plasma proteins as biomarkers for DVT, including von 

Willebrand Factor (vWF) and the cell adhesion molecule, P-selectin, both of which are 

positively associated with DVT and with platelet levels 632. Other proteins which may be 

involved in the development of DVT include those that regulate platelet function 622, 

coagulation factors, as well as proteins secreted upon activation of platelets 633. Recent 

technological developments such as the SomaScan by SomaLogic 634 and Olink’s 

proximity extension assay allow the detection of a broad range of plasma proteins, 

enabling the assessment of a wider range of plasma proteins in DVT risk. Identification 

of proteins involved in the causality of DVT is important as the majority of 

pharmacological targets are proteins 635.  

 

Given the potential link between platelets and DVT, studies have also explored the role 

of platelets on DVT risk in a traditional epidemiological framework. Pana-Noeva et al. 

conducted a cross-sectional analysis using VTE cases (N=159) and controls (N=140) 

selected from two prospective studies in Germany 636. Here, they identified that both 

platelet count (PLT) and mean platelet volume (MPV) had predictive value for identifying 

VTE 636. Similarly, Xiong et al. looking at pre-operative Chinese elderly patients 

(N=1,391) identified a higher PLT at the time of the hospital visit in those with DVT 637. 

In their nested case-control study, Edvardsen et al. studied the relationship between 

PLT, MPV and vWF levels with incident VTE (predominantly DVT) over an average 

follow-up to event of 7.5 years in a Norwegian population (cases = 403, controls = 816) 

638. Here, they found increased odds for VTE with increases in both PLT and MPV, as 

well as from their interaction with vWF, indicating a role for both platelet count and 

function in DVT/VTE 638.  
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6.1.3. Current limitations on platelet mechanisms and 
DVT risk 

While there are known risk factors for DVT and platelets are one of the main cells 

involved in thrombus formation (Chapter 1), much is still unknown about the 

mechanisms of DVT aetiology. Additionally, most observational studies on DVT aetiology 

have been done with a hypothesis in mind, which might not explore novel traits involved 

in DVT risk. MR can address the limitations of observational epidemiology such as 

confounding and reverse causation (Chapter 2) 169,219,335,519. Moreover, as most GWAS 

summary statistics are publicly available and MR is undertaken on a computer, 

establishing novel pathways involved in disease development through hypothesis-free 

investigations becomes an attainable goal 335. The identification of potential novel risk 

factors associated with platelets and therefore drug targets is required for improved DVT 

prophylaxis 624, which is essential given the global burden of the disease. Here, I have 

employed two-sample MR, which uses data from separate genome-wide association 

studies (GWAS) for exposures and outcomes of interest (Chapter 2) 200 to consider the 

effect of multiple exposures (phenotypes) on DVT risk.  

 

6.1.4. Main objective 

The aim of my study was to find novel risk factors for DVT that are associated with 

platelet count and function and establish a biological mechanism through which platelets 

might affect the risk of DVT. I therefore decided to undertake a hypothesis-free MR 

approach i.e. an MR phenome-wide association study (MR-PheWAS) 185 on DVT risk. 

 

6.1.5. Study aims 

I have divided my study into three aims to better address the main objective: 

1. Perform a MR-PheWAS on DVT risk 
2. Assess the findings and their biological relevance to DVT aetiology 
3. Investigate a biological mechanism through which these risk factors could affect 

the risk of DVT 
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6.2. Methods 

6.2.1. Study design 

With the aim to identify novel risk factors for DVT associated with platelets, I performed 

a MR-PheWAS to estimate the effects of 973 exposures on DVT risk. As 24 of the 57 

exposures estimated to influence DVT were adiposity-related, I next decided to 

investigate potential mediators of this mechanistic relationship further, focusing the 

mechanistic investigations on circulating proteins altered by adiposity 639,640 and 

performed a two-sample mediation MR to estimate the effect of BMI on DVT with BMI-

associated proteins as mediators. An overview of the study design is shown in Figure 

6-3. All analyses were conducted using R version 3.6.1. The MR-PheWAS was 

conducted using the TwoSampleMR R package 219. STROBE-MR 337 reporting 

guidelines were followed (Appendix 24). 
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Figure 6-3. Study design.  

First, an MR-PheWAS analysis to identify risk factors for DVT was done using the MR-
Base database. 24 out of 57 traits identified were associated with adiposity, therefore, I 
followed up the PheWAS with a two-sample mediation MR between BMI-associated 
pQTL data on DVT risk. MR = mendelian randomization; GWAS = genome-wide 
association study; VTE = venous thromboembolism; DVT = deep vein thrombosis; SNP 
= single-nucleotide polymorphism; pQTL = protein quantitative trait loci; PAI-1 = 
Plasminogen activator inhibitor-1; NOTCH1 = Neurogenic locus notch homolog protein 
1; INHBC = Inhibin Subunit Beta C. 
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6.2.2. Deep vein thrombosis data 

The outcome of interest (DVT) was presented in OpenGWAS as “Non-cancer illness 

code self-reported: deep venous thrombosis (dvt)”; these summary results describe a 

GWAS of Europeans (6,767 cases and 330,392 controls) performed using the PHEnome 

Scan ANalysis Tool (PHESANT), followed by genotypic data selected through SNP 

quality control (QC) 164,641 (http://www.nealelab.is/uk-biobank).  

 

6.2.3. GWAS data for exposures 

Genetic data for exposures were obtained from the OpenGWAS database of harmonised 

GWAS summary data 219. The exposures encompassed lifestyle, disease and biological 

traits. The MR-Base package TwoSampleMR R package permits the hypothesis-free 

analysis of all catalogued exposures to DVT. Non-European (N=88) and duplicate 

(N=138) studies were excluded. In the case of duplicate studies, those with the highest 

sample size were retained. VTE (DVT and PE) and VTE-related (e.g. phlebitis and 

thrombophlebitis) traits were removed (N=9). The genetic instruments used for the 

analysis were single-nucleotide polymorphisms (SNPs) associated with each of the 

exposures at a genome-wide level of significance (P<5e-8). As genetic confounding may 

bias MR estimates if SNPs are correlated 187, linkage disequilibrium (LD) clumping in 

PLINK 247 was conducted to ensure the SNPs used to instrument exposures were 

independent [radius = 10,000 kilobases (kb); r2 = 0.001] using the 1000 Genomes (1KG) 

European reference panel 248. I also used the 1000 Genomes European dataset 248 to 

identify potential SNP proxies (with which the initial SNP is in LD with, r2>0.8) for those 

SNPs absent in the DVT summary statistics. The reported effect size for a given SNP 

was expressed along with the standard error (SE) in standard deviation (SD) units of the 

level of the risk factor for a continuous exposure, or as a unit change in the exposure on 

the log-odds scale for a binary trait.  

 

6.2.4. Protein quantitative trait locus data 

I aimed to determine whether BMI-associated proteins were mediating the relationship 

between adiposity and DVT. A list of BMI-associated proteins was obtained from two 

previous MR studies investigating the effect of BMI on the circulating proteome 639,640. I 

used protein quantitative trait loci (pQTL) data 362,642 to identify SNPs associated with 

circulating protein levels at a genome wide level of significance (P ≤ 5e-08). Protein 

detection platforms for the pQTL data included the SOMAScan® by SomaLogic and Olink 

(ProSeek CVD array I) 643–646. Twenty-five proteins were identified using these criteria 

(Appendix 25). PLINK clumping (radius = 10,000kb; r2 = 0.001) was performed to ensure 
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the genetic variants used to instrument protein levels were independent. Proxy SNPs for 

those SNPs that were not present in the DVT data were identified through the 1KG 

European dataset 248. 

 

Another MR-PheWAS was conducted to establish if thyrotoxicosis affects the levels of 

circulating proteins from pQTL data (N=3,370) curated withthin OpenGWAS. The pQTL 

data available to study were gathered from the same consortia described for the BMI-

associated proteins 643–646. PLINK clumping (radius = 10,000kb; r2 = 0.001) was 

performed to ensure the genetic variants used to instrument thyrotoxicosis were 

independent. Proxy SNPs for those SNPs that were not present in the pQTL data were 

identified through the 1KG European dataset 248.  

 

6.2.5. Data harmonisation 

The majority of GWAS present the effects of a SNP on a trait in relation to the allele on 

the forward strand. However, the allele present on the forward strand can change as 

reference panels get updated. This requires correction (harmonisation) so that both 

exposure and outcome data reference the same strand 250. For exposure and outcome 

data harmonisation, incorrect but unambiguous alleles were corrected, while ambiguous 

alleles were removed. In the case of palindromic SNPs (A/T or C/G), allele frequencies 

were used to solve ambiguities. Harmonisation was not possible for 483 exposures 

(variants were not present in the DVT GWAS), resulting in a final list of 973 exposures 

to include in the MR-PheWAS. For my pQTL analysis, 15 out of 25 proteins had genetic 

variants (including proxies) available in the DVT GWAS (Appendix 26). Finally, 

PhenoSpD was used for multiple testing correction in the MR-PheWAS analysis 

(P=5.43e-5), while Bonferroni correction was used in the pQTL MR (P= 0.05 / 15 = 

0.003). 

 

6.2.6. MR-PheWAS 

I conducted hypothesis-free MR-PheWAS using the TwoSampleMR R package 647. The 

effect of a given exposure on DVT was estimated using the inverse-variance weighted 

(IVW) method for exposures with more than one SNP 202, while Wald ratios (WRs) were 

derived for exposures with a single SNP 189 (Chapter 2).  
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6.2.7. MR sensitivity analyses 

Horizontal pleiotropy occurs when a SNP influences the outcome via a pathway other 

than the exposure of interest, thus violating a key assumption of MR (Chapter 2) 191. MR 

methods which make differing assumptions regarding pleiotropy were performed as 

sensitivity analyses where genetic instruments were comprised of more than 3 SNPs: 

MR-Egger regression, simple mode, weighted mode, and weighted median (Chapter 2) 

204,205,212,214. While conventional MR methods assume effect homogeneity, large numbers 

of genetic instruments associated with an exposure can describe heterogenous effects 

(e.g. variants associated with BMI may be associated with DVT via a number of 

alterations to the circulating proteome) 648. To test for genetic heterogeneity, I used the 

maximum likelihood 557 estimator and MR-Egger 205 for the exposures which were proxied 

by 2 or more variants. 

 

6.2.8. Two-sample MR pQTL mediation analysis 

In the follow-up MR mediation analysis, I estimated the effect of BMI-associated proteins 

on DVT using the TwoSampleMR R package 647. An IVW MR analysis was performed 

for FABP4, for which 3 SNPs were available to use as instruments. WRs were derived 

for the remaining proteins. Where proteins were estimated to have a causal effect on 

DVT, a MR mediation analysis was performed to estimate the proportion mediated by a 

protein in the BMI-DVT link 218. 

 

The method I used to calculate the proportion mediated by each protein was the product 

of coefficients method (see Chapter 2) 218. Here, the effect of BMI on protein levels is 

estimated, after which another MR is done to estimate the effect of protein levels on DVT. 

These are then multiplied to get the indirect effect, which is then divided by the total effect 

(BMI to DVT) to estimate the proportion mediated (Figure 6-4) 218. This assumes that 

the indirect and total effect are in the same direction (both negative or both positive) 218.  

 

 

Figure 6-4. Outline of mediation analysis for BMI-associated proteins. 
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A MR analysis is run between BMI and DVT, providing the total effect estimate (C). Two 

MR analyses are then conducted: BMI on protein levels (A) and protein levels on DVT 

(B). The proportion mediated can be estimated through the product of coefficients 

method A*B / C * 100, assuming A*B and C are both in the same direction. 

 

6.2.9. Multiple testing correction 

As my MR-PheWAS estimated the causal relationship between a large number of 

exposures and DVT, I used PhenoSpD to estimate the number of independent traits in 

order to correct for multiple testing 649, which can adjust the P-value significance 

threshold better than through traditional methods, especially when many traits are being 

tested. I used GWAS summary data describing the top 1000 associated SNPs for each 

exposure to create a phenotypic correlation matrix by Pearson correlation. This 

correlation matrix was used as an input for PhenoSpD to assess the number of 

independent exposures through matrix spectral decomposition 650,651, generating a P-

value threshold of 5.43e-5. For the pQTL analysis, I used a Bonferroni correction, 

accounting for 15 independent tests (P=0.003), which would yield a similar threshold to 

an FDR correction given the small number of independent tests. 

 

6.2.10. Beta coefficient transformation 

Linear mixed model (LMM) methodology has gained popularity in GWAS due to its ability 

to control for population structure and deal with large datasets 435. Regression (beta) 

coefficients from MR analyses are usually converted to odds ratios (ORs) or risk ratios 

(RRs) to make results interpretable. However, as GWAS software such as BOLT-LMM 

still use a linear model (rather than a logistic model) when analysing case-control traits, 

beta coefficients cannot be calculated directly when using thus must be approximated 

435. Using previously described methodology 652, I approximated logRRs for my MR 

estimates with the following formula: β / (μ * (1 - μ)), where μ = case fraction. 

 

6.2.11. Bidirectional MR 

Where there was evidence of an association with exposures tested in the MR-PheWAS, 

I performed a bidirectional MR analysis to assess the direction causality between a given 

exposure and DVT. This was conducted to identify potential pathways of reverse 

causation, which would invalidate MR assumptions 197. 
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6.2.12. Colocalization analysis 

Only one genetic instrument was available for some of the exposures investigated 

(N=10). As the Wald ratio estimator is susceptible to genetic confounding, I performed a 

colocalization analysis for each single-SNP trait. Colocalization analysis uses Bayesian 

statistics to estimate whether an exposure and outcome share a causal signal in a region 

of the genome 653, which can then strengthen the evidence that there is a causal 

relationship. I used the R package “coloc” (https://cran.r-

project.org/web/packages/coloc/) approximate Bayes factor (coloc.abf) function with 

default settings for prior probabilities to conduct a colocalization analysis with the 

following hypotheses: H0 (no causal variant), H1 (causal variant for trait 1 only), H2 

(causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common 

causal variant) 653. I then used LocusZoom (https://locuszoom.org/) to provide visual 

evidence for the presence of a shared signal between my exposures and DVT. 

 

6.2.13. Conditional analysis 

I performed a conditional analysis for each single-SNP trait using the GCTA-COJO 

software 523 to identify any potential shared secondary signals in a 1MB region 524, with 

the aim of performing an additional colocalization analysis on those secondary signals if 

the primary colocalization analysis did not find a shared causal signal. Secondary signals 

are SNPs which pass the GWAS significance threshold when a top SNP in its vicinity is 

conditioned on 524. I downloaded summary statistics for these traits from OpenGWAS 

(https://gwas.mrcieu.ac.uk/) 654 and used genotypic data from the Avon Longitudinal 

Study of Parents and Children (ALSPAC) as a reference panel. Further details of the 

cohort are described elsewhere 655,656, in brief: 14,541 pregnancies to women with an 

expected delivery date of April 1, 1991, to December 31, 1992, were enrolled. I used the 

genotypic data of 8,890 mothers to perform the conditional analysis. Ethical approval for 

the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committee. The study website contains details of all available data 

through a fully searchable data dictionary and variable search tool 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). 
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6.3. Results 

6.3.1. MR-PheWAS 

Of the 973 exposures investigated, 945 were identified as independent using PhenoSpD, 

setting the P-value threshold for my MR analysis at 5.43e-5. Fifty-seven exposures were 

estimated to influence DVT risk (Figure 6-5, Table 6-1). 

 

I observed strong causal evidence for a number of exposures including: 

“Hyperthyroidism/thyrotoxicosis” (IVW Log RR: 2.39, 95% CI: 1.88 to 2.90; P = 8.69e-

18); “Treatment/medication code: carbimazole” (IVW Log RR: 3.60, 95% CI: 2.70 to 4.50, 

P = 2.41e-12); “Chronic obstructive airways disease/chronic obstructive pulmonary 

disease (COPD)” (WR Log RR: 3.72, 95% CI: 1.39 to 4.37; P = 9.21e-07); “Varicose 

veins” (IVW Log RR: 1.90, 95% CI: 1.30 to 2.50; P = 2.36e-07) and “Varicose veins of 

the lower extremities” (IVW Log RR: 3.40, 95% CI: 2.31 to 4.49; P = 5.13e-07) (Figure 

6-5).  

 

Adiposity, an established risk factor for DVT 657, and its related traits (N=24, Table 6-1) 

were all positively associated with DVT. These include traits identified in previous MR 

studies, such as “Body Mass Index” (IVW Log RR: 0.40, 95% CI: 0.32 to 0.47; P = 1.60e-

22), fat mass e.g. “Whole body fat mass” (IVW Log RR: 0.44, 95% CI: 0.36 to 0.51; P = 

4.65e-27) and fat-free mass e.g. “Whole body fat-free mass” (IVW Log RR: 0.41, 95% 

CI: 0.31 to 0.50; P = 3.90e-14) 658 (Figure 6-5). Another previously-associated trait is 

“Height” (IVW Log RR: 0.15, 95% CI: 0.08 to 0.21; P = 5.92e-06) 659. Other associated 

height-related traits not previously investigated in an MR framework include “Standing 

height” (IVW Log RR: 0.17, 95% CI: 0.09 to 0.24; P = 4.61e-06) and “Comparative height 

size at age 10” (IVW Log RR: 0.30, 95% CI: 0.20 to 0.40; P = 1.93e-06) (Figure 6-5). 
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Figure 6-5. MR-PheWAS results.  

Only traits passing the PhenoSpD significance threshold are shown here. A many-to-one 
forest plot of the exposures which passed the P-value threshold following multiple testing 
correction (5.43e-5). Each trait is accompanied by two additional descriptive columns 
(No. SNPs and P-value), while log risk ratio (RR) is displayed to the right, alongside with 
the confidence intervals. MR methods: IVW (SNP > 1) and WR (SNP = 1). 
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Over 50% of the exposures (N=31) which passed my P-value threshold for multiple 

testing were found to have heterogenous effects between instruments using the 

maximum likelihood method. Of these, most (N=24) were traits related to body size 

(mass and adiposity). The remaining heterogenous traits were: “basal metabolic rate” 

(PHet: 3.71e-03); “warfarin treatment” (PHet: 5.66e-40); “Height” (PHet: 1.58e-03); 

“Standing height” (PHet = 4.61e-06); “Comparative height size at age 10” (PHet = 1.93e-

06); “Impedance of leg (right)” (PHet: 4.23e-06) and “Impedance of leg (left)” (PHet: 

9.96e-21). These findings are consistent with my IVW and MR-Egger heterogeneity 

analyses (Table 6-1). 

 

MR-Egger estimates indicated strong evidence of horizontal pleiotropy for 

“Qualifications: None of the above” (intercept = -5.69e-04, P = 3.35e-02), “Impedance of 

leg (right)” (intercept = 2.58e-04, P = 3.22e-04) and “Impedance of leg (left)” (intercept = 

2.22e-04, P = 7.24e-03) (Table 6-1). I was unable to assess whether the “Prospective 

memory result” trait was pleiotropic, as this exposure was instrumented using only 2 

SNPs. In bidirectional MR analyses, DVT was estimated to increase warfarin treatment 

[“Treatment/medication code: warfarin” (beta = 0.29; SE = 0.02; P = 1.79e-30)], implying 

reverse causation, and therefore violating MR assumptions (Appendix 27). 
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Table 6-1. MR-PheWAS results. Adiposity-related traits are coloured in orange. 

Exposure No. SNP 
MR 

method 

Log Risk 

Ratio* 
CI (95%) SE P-value PHet (ML) PPlt 

Treatment/medication code: 

warfarin 7 IVW 4.29 3.09 5.49 0.61 1.40E-09 5.66E-40 0.4260 

Mania/bipolar disorder/manic 

depression 1 WR 3.95 2.60 5.30 0.69 5.18E-06 NA NA 

Chronic obstructive airways 

disease/copd 1 WR 3.72 1.39 4.37 0.76 9.21E-07 NA NA 

Treatment/medication code: 

carbimazole 9 IVW 3.60 2.70 4.50 0.46 2.41E-12 5.21E-01 0.1048 

Varicose veins 2 IVW 3.40 2.31 4.49 0.56 5.13E-07 4.42E-01 NA 

Hyperthyroidism/thyrotoxicosis 6 IVW 2.39 1.88 2.90 0.26 8.69E-18 6.69E-01 0.3874 

Varicose veins of lower extremities 16 IVW 1.90 1.30 2.50 0.31 2.36E-07 1.91E-01 0.5039 

Lysine 1 WR 1.50 0.61 1.96 0.34 1.25E-05 NA NA 

Prospective memory result 2 IVW 1.46 1.02 1.90 0.23 5.33E-08 4.61E-01 NA 

Long-standing illness  disability or 

infirmity 14 IVW 1.25 0.87 1.63 0.20 8.13E-08 2.17E-01 0.4463 

Taking other prescription 

medications 10 IVW 1.17 0.79 1.55 0.20 1.36E-06 4.83E-01 0.4399 

Eicosapentaenoate (EPA; 20:5n3) 1 WR 1.10 0.75 1.45 0.18 3.14E-07 NA NA 

Stearidonate (18:4n3) 1 WR 1.09 0.73 1.45 0.18 1.22E-06 NA NA 
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Exposure No. SNP 
MR 

method 

Log Risk 

Ratio* 
CI (95%) SE P-value PHet (ML) PPlt 

Docosapentaenoate (n3 DPA; 

22:5n3) 1 WR 1.08 0.47 1.46 0.25 2.01E-05 NA NA 

Adrenate (22:4n6) 1 WR 1.01 0.55 1.32 0.20 3.48E-07 NA NA 

X-14473 1 WR 1.01 0.48 1.35 0.22 5.14E-06 NA NA 

Qualifications: None of the above 64 IVW 0.99 0.72 1.26 0.14 2.03E-10 6.18E-01 0.0335 

Arachidonate (20:4n6) 1 WR 0.91 0.61 1.22 0.16 2.08E-06 NA NA 

Overall health rating 54 IVW 0.80 0.61 0.99 0.10 4.40E-14 5.14E-01 0.6398 

Leg fat percentage (right) 246 IVW 0.59 0.47 0.71 0.06 3.32E-18 2.87E-03 0.2399 

Comparative body size at age 10 157 IVW 0.57 0.46 0.68 0.06 3.98E-22 5.18E-01 0.1954 

Arm fat percentage (right) 234 IVW 0.55 0.42 0.68 0.07 8.48E-14 8.47E-17 0.6940 

Arm fat percentage (left) 253 IVW 0.55 0.41 0.68 0.07 1.61E-12 1.32E-24 0.6983 

Leg fat percentage (left) 248 IVW 0.54 0.40 0.67 0.07 1.76E-12 7.00E-04 0.7261 

Leg fat mass (right) 282 IVW 0.53 0.44 0.62 0.05 4.23E-28 9.07E-03 0.4978 

Leg predicted mass (right) 361 IVW 0.52 0.43 0.60 0.04 8.79E-29 1.34E-02 0.6652 

Leg predicted mass (left) 356 IVW 0.52 0.43 0.60 0.05 2.99E-27 5.18E-03 0.8052 

Body fat percentage 253 IVW 0.51 0.41 0.61 0.05 1.48E-20 4.79E-02 0.6346 

Leg fat-free mass (left) 361 IVW 0.51 0.42 0.60 0.05 6.10E-27 4.73E-03 0.8069 

Leg fat-free mass (right) 363 IVW 0.50 0.41 0.59 0.05 1.11E-25 5.05E-03 0.5560 

Waist circumference 227 IVW 0.50 0.40 0.59 0.05 1.74E-22 1.65E-02 0.5222 
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Exposure No. SNP 
MR 

method 

Log Risk 

Ratio* 
CI (95%) SE P-value PHet (ML) PPlt 

Leg fat mass (left) 281 IVW 0.50 0.40 0.59 0.05 1.85E-23 3.71E-02 0.5530 

Weight 337 IVW 0.46 0.38 0.54 0.04 1.93E-28 1.33E-03 0.8573 

Arm fat mass (right) 270 IVW 0.45 0.38 0.52 0.04 1.06E-30 3.60E-01 0.2818 

Arm fat mass (left) 268 IVW 0.45 0.38 0.53 0.04 4.98E-29 1.93E-01 0.1348 

Basal metabolic rate 377 IVW 0.45 0.36 0.54 0.05 2.62E-20 3.71E-03 0.7064 

Arm predicted mass (left) 349 IVW 0.45 0.34 0.55 0.05 3.37E-14 1.53E-05 0.2577 

Trunk fat percentage 237 IVW 0.44 0.35 0.54 0.05 2.91E-16 2.43E-03 0.6180 

Whole body fat mass 280 IVW 0.44 0.36 0.51 0.04 4.65E-27 1.75E-01 0.1772 

Arm fat-free mass (right) 350 IVW 0.44 0.33 0.54 0.05 1.66E-13 2.95E-04 0.2180 

Arm predicted mass (right) 364 IVW 0.43 0.32 0.54 0.05 6.96E-13 9.35E-05 0.2660 

Trunk fat mass 283 IVW 0.43 0.35 0.51 0.04 1.73E-23 2.90E-03 0.6360 

Arm fat-free mass (left) 355 IVW 0.42 0.32 0.53 0.05 1.84E-12 3.14E-05 0.1920 

Whole body water mass 405 IVW 0.42 0.32 0.51 0.05 7.67E-15 1.32E-04 0.3436 

Whole body fat-free mass 405 IVW 0.41 0.31 0.50 0.05 3.90E-14 2.06E-04 0.3422 

Body mass index (BMI) 305 IVW 0.40 0.32 0.47 0.04 1.60E-22 6.81E-02 0.5286 

Trunk fat-free mass 406 IVW 0.39 0.29 0.48 0.05 2.32E-11 2.46E-06 0.0575 

Trunk predicted mass 406 IVW 0.38 0.28 0.48 0.05 4.10E-11 9.09E-06 0.0513 

Hip circumference 282 IVW 0.36 0.28 0.45 0.04 2.22E-13 2.92E-04 0.0876 
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Exposure No. SNP 
MR 

method 

Log Risk 

Ratio* 
CI (95%) SE P-value PHet (ML) PPlt 

Comparative height size at age 10 364 IVW 0.30 0.20 0.40 0.05 1.93E-06 1.56E-05 0.1080 

Overweight 14 IVW 0.28 0.18 0.38 0.05 3.07E-05 3.44E-01 0.1711 

Obesity class 1 17 IVW 0.18 0.11 0.25 0.03 1.34E-07 7.33E-01 0.2392 

Standing height 591 IVW 0.17 0.09 0.24 0.04 4.61E-06 3.14E-05 0.1018 

Obesity class 2 11 IVW 0.17 0.11 0.22 0.03 2.79E-06 5.45E-01 0.6859 

Height 367 IVW 0.15 0.08 0.21 0.03 5.92E-06 1.58E-03 0.3372 

Impedance of leg (right) 319 IVW -0.55 -0.80 -0.35 0.12 2.21E-06 4.23E-06 0.0003 

Impedance of leg (left) 323 IVW -0.69 -1.05 -0.43 0.16 1.00E-05 9.96E-21 0.0072 

*Methods: Inverse Variance Weighted (SNP > 1) and Wald Ratio 

(SNP = 1). 
       

*LogRiskRatio is the logged value of the beta coefficient of the MR analysis into risk ratios. It can be read as an increase in the LogRisk of DVT 

per unit increase in trait. 

*PHET ML is the P-value of the Maximum Likelihood analysis looking at heterogeneity between genetic variants used to instrument a trait. H0 

is that there is no heterogeneity present. 

*PPlt is the P-value of the MR-Egger analysis looking at the presence of horizontal pleiotropy. H0 is that there is no pleiotropy 

present. 
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6.3.2. Blood cell traits and DVT risk 

A major motivation for exploring risk factors for DVT were the potential identification of a 

causal relationship between BCTs and DVT. There were two platelet traits that were part 

of the MR-PheWAS: platelet count (Log RR: -1.90; P = 1.00) and Mean Platelet Volume 

(Log RR: 0.001; P = 1.00), neither which showed evidence for a causal effect on DVT 

risk. This was unexpected, given the observational findings described in the introduction. 

Several explanations exist for this, one being an incomplete repertoire of SNPs available 

to proxy for platelet traits. Another explanation is that the SNPs proxying for platelet traits 

might have positive and negative effects on DVT risk, which cancel out when running the 

MR analysis. Additionally, the number of GWAS summary statistics in OpenGWAS might 

have been a limiting factor at the time of running the analysis. Indeed, there were only 

instruments available for platelet count and mean platelet volume when conducting the 

MR-PheWAS. 

 

6.3.3. Estimated effects of BMI-driven proteins on DVT 
risk 

Of the 57 traits estimated to increase risk of DVT, 24 were adiposity related (Table 6-1). 

While adiposity is an established risk factor for DVT, the biological mechanisms 

underlying the effect of adiposity on DVT are not well understood. I therefore used a two-

sample MR mediation analysis to test whether altered levels of 15 circulating blood 

proteins, driven by adiposity, are responsible for this association (Appendix 26, 

Appendix 28). Blood-circulating proteins were investigated as they have the potential to 

alter platelet activity or act as a component of the platelet clotting cascade. Two recent 

MR studies have demonstrated that BMI causally affects the levels of 15 circulating 

proteins 639,640. Three of these proteins were estimated to influence DVT risk: Neurogenic 

locus notch homolog protein 1 (NOTCH1; WR Log RR: 0.57, 95% CI: 0.45 to 0.68; P = 

1.12e-23), Plasminogen activator inhibitor-1 (PAI-1; WR Log RR: 0.42, 95% CI: 0.30 to 

0.54; P = 4.27e-12) and Inhibin beta C chain (INHBC; WR Log RR: -1.18, 95% CI: -2.18 

to -0.69; P = 0.002), all three associated with platelet function. Mediation analysis was 

performed for PAI-1 (the only protein where BMI-protein and protein-DVT effect 

estimates were consistent in directionality): the proportion of the BMI-DVT effect 

mediated by PAI-1 was estimated to be 18.56% (Figure 6-6, Table 6-2). 
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Figure 6-6. A many-to-one forest plot of the three BMI-associated proteins which passed 
the multiple-testing corrected P-value threshold (0.003) in the MR analysis.  

Each protein is accompanied by two additional descriptive columns (type of analysis 
conducted and P-value), while the effect is displayed to the right, alongside with the 
confidence intervals (Beta coefficient/Log RR ± 95% CI).  
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Table 6-2. pQTL MR mediation analysis. 

Exposure MR method 
Log Risk 

Ratio* 
CI (95%) P-value 

Beta 

coefficient - 

BMI to 

protein* 

Proportion (%) 

mediated by protein 

Neurogenic locus notch homolog protein 1 Wald ratio 0.57 0.45 0.68 1.12E-23 -0.15 Effect not consistent 

Plasminogen activator inhibitor 1 Wald ratio 0.42 0.30 0.54 4.27E-12 0.17 18.56 

Inhibin beta C chain Wald ratio -1.18 -2.18 -0.69 1.96E-03 0.45 Effect not consistent 

LogRiskRatio is the logged value of the beta coefficient of the MR analysis into risk ratios. It can be read as an increase in the LogRisk of 

DVT per increase in cirulating protein levels. 

*BMI-Protein MR effect estimates from Goudswaard et al (https://doi.org/10.1038/s41366-021-00896-1) and Zaghlool et al 

(https://doi.org/10.1038/s41467-021-21542-4) 
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6.3.4. Conditional and colocalization analyses 

Several of the exposures in my MR analyses could be instrumented using only one 

genetic variant, and therefore required a conditional and colocalization analysis to 

provide additional evidence of causality. There were no secondary signals after 

conditioning on the top SNP for each exposure-DVT pair. There was evidence of a 

shared causal variant for PAI-1 (PP.S = 97.5%), strengthening the evidence that there is 

a true causal relationship between the levels of this protein and DVT (Figure 6-7, 

Appendix 29). 
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Figure 6-7. LocusZoom plots of pQTLs with evidence of an effect on DVT risk.  

LocusZoom plots in a 1Mb region of the SNP used to instrument for each protein in both exposure (A,C,E) and outcome (DVT: B,D,F) data: PAI-
1 (A,B), NOTCH1 (C,D), INHBC (E,F). The top signal in the region is labelled in each figure. The x-axis represents the position within the 
chromosome, while the y-axis is the -log10 of the P-value. Each dot is a SNP, and the colours indicate how much LD there is between the reference 
SNP and the other genetic variants. 
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6.3.5. Enrichment analysis of MR-PheWAS traits 

While the results from the analysis of BMI-associated proteins on DVT highlighted a 

valuable result, I wanted to assess whether the fact that half of the traits identified in the 

MR-PheWAS were adiposity-related due to the “Anthropometric” category being more 

common in the initial dataset with 973 traits. In addition to the "Anthropometric” category 

(which included adiposity-related traits only), the initial dataset also included the following 

categories: “Fatty acid”, “Health”, “Cardiovascular”, “Anthropometric-impedance”, 

“Anthropometric-fat-free”, “Psychiatric / neurological”, “Lung”, “Anthropometric-height”, 

“Unknown metabolite”, “Hormone”, “Amino acid”, “Medication”, “Intelligence”, 

“Education”, “Energy” (Appendix 30). 

 

To do this, I performed an enrichment analysis between the initial dataset with 973 traits 

and the results dataset with 58 traits. First, I calculated the expected and observed 

counts for each category within the initial dataset and results dataset, respectively. 

Following this, for categories with five or more counts, I conducted a Chi-Squared test, 

while for those with less than five I ran a Fisher’s Exact test, to determine whether a 

category was under- or over-represented compared to its frequency in the initial dataset 

with 973 traits (Appendix 30).  

 

After applying a Bonferroni multiple testing correction, there was evidence that the 

“Anthropometric” and “Anthropometric-fat-free” categories were over-represented in the 

results dataset of 58 traits (Figure 6-8). 
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Figure 6-8. Enrichment analysis of MR-PheWAS categories.  

The counts for each category were compared between the initial 973-trait dataset and 
the 58-trait results dataset. The y-axis indicates each studied category, while the x-axis 
represents the log2-fold change, which is the log2 of the observed counts divided by the 
expected counts. (* P < 0.05, ** P < 0.01, *** P < 0.001) 

 

6.3.6. Thyrotoxicosis and DVT risk 

Nevertheless, several thyroid-related traits were also present in the MR-PheWAS results: 

hyperthyroidism, Carbimazole treatment, and thyrotoxicosis. I decided to explore the 

relationship between thyrotoxicosis and DVT in the context of finding mediating proteins 

in a similar maner to what was done in the previous analysis for BMI and DVT.  

 

There were no studies which had MR data available for the effect of thyrotoxicosis on 

blood proteins levels. Therefore, I undertook a follow-up MR-PheWAS on the blood 
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proteome to identify if thyrotoxicosis had a causal effect on the levels of circulating 

proteins using data from OpenGWAS (N=3,370). After adjusting the P-value threshold 

for multiple testing even with a less conservative False Discovery Rate correction, there 

was no evidence of an effect by thyrotoxicosis on any of the proteins available in 

OpenGWAS (Appendix 31, database version Aug 2023). While this can be a 

consequence of thryrotoxicosis having no actual effect on the blood proteome, it can also 

be that the limited number of instruments for thyrotoxicosis (N=13) made it less likely for 

an effect to be detected. 

 

6.4. Discussion 

With the aim to identify novel causal risk factors for DVT, I performed a hypothesis-free 

MR-PheWAS of 973 exposures to DVT, of which 57 passed a conservative P-value 

threshold for evidence of causality. I confirmed causality for several previously 

established risk factors for DVT (such as BMI and height) and have identified several 

novel putative causal risk factors (such as hyperthyroidism and varicose veins). Of the 

57 exposures estimated to influence DVT risk, 24 were adiposity-related traits. 

Therefore, I investigated whether the impact of adiposity on DVT is mediated by 

circulating proteins known to be altered by BMI 639,640. Here, I provide novel evidence that 

the platelet-associated circulating protein, PAI-1 has a causal role in DVT aetiology and 

is involved in mediating the BMI-DVT relationship. 

 

The MR-PheWAS approach suggested a number of traits that could affect DVT 

development. One of these is standing height, which has been previously associated 

with increased DVT risk 660 and my results align with this finding. With increased height, 

a greater volume of blood is required which can increase the stress on blood vessels, 

disrupting haemostasis 660. Fat-free mass was also estimated to increase risk of DVT in 

my study. While counterintuitive, this effect could be mediated through height, as taller 

people usually have more fat-free mass  658,659. As expected, many body size related 

traits showed evidence of heterogeneity, likely due to the large number of SNPs used to 

instrument these traits and the many underlying biological pathways explaining variation 

in adiposity.  

 

Venous blood stasis caused by immobility is also a known risk factor for DVT 624. Here, 

I report evidence that long standing illness, disability, or infirmity increases DVT risk. A 

proposed mechanism is stasis of blood flow in the veins which can be either due to a 

particular neurological condition or due to the paralysis of the lower limbs 661.  
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My study also provides evidence for novel DVT risk factors. Hyperthyroidism has 

previously been proposed to contribute to DVT, as indicated by a recent systematic 

review and meta-analysis of cohort studies showing association with DVT (RR: 1.33, 

95% CI: 1.28 to 1.39; I2 = 14%) 662. In the present study, I provide novel evidence for a 

causal effect of hyperthyroidism/thyrotoxicosis on DVT risk (IVW RR: 10.91, 95% CI: 

3.97 to 18.17; P = 3.14e-25). Hyperthyroidism has been found to enhance platelet 

function 663, although the underlying mechanism is not fully understood. It may involve 

thyroid hormones (THs) promoting a hypercoagulable state and venous thrombi 

formation, by increasing plasma concentration of factor VIII, fibrinogen, PAI-1 and vWF 

664. TH T4 may also directly enhance platelet function through integrin v3 665. In 

addition, THs enhance basal metabolic rate (BMR) and thermogenesis, both of which 

affect body weight. Indeed, I found that an increase in basal metabolic rate is associated 

with DVT. While a higher BMR should lead to lower BMI and thus lower DVT risk, it is 

likely that my results may be explained by the hyperthyroidism-associated mechanisms 

outlined above.  

 

My MR estimates also support evidence of a causal association between varicose veins 

and increased risk of DVT. Varicose veins can result in the inability of the blood to fully 

return to the heart, leading to the enlargement of the veins, and in time, potentially an 

increased risk of DVT due to stasis 666. Varicose veins have been outlined as a possible 

risk factor in general practice patients in Germany 667, as well as in a Chinese 

retrospective study of over 100K people 666.  

 

COPD was also associated with an increased risk of DVT. COPD is a severe chronic 

respiratory disease, having been studied extensively for its role in PE 668. Indeed, both 

PE and DVT are more prevalent and underdiagnosed in people with COPD 669. My 

colocalization analysis did not provide evidence that would support my MR estimates. 

Moreover, as the SNP used to proxy for COPD (rs9579496) is intergenic i.e. in-between 

genes, I was unable to compare my results with any locus-specific experimental studies. 

 

Afterwards, as adiposity is an established risk factor for DVT, the estimates I observe 

between adiposity-related traits and DVT most likely reflect true causal relationships. The 

estimate I report here for BMI (RR: 1.49, 95% CI: 1.38 to 1.60; P = 3.14e-25) is consistent 

with a previous MR study conducted in individuals of Danish descent (OR: 1.57, 95% CI: 

1.08 to 1.97; P = 3e-03) 631. In addition, my results are in agreement with the estimated 

effect of BMI on VTE in the FinnGen consortium (MR OR: 1.58, 95% CI: 1.28 to 1.95; P 

= 2.00e-05) 658. Higher adiposity is associated with dysregulated metabolism, which is 



  224 

one factor that can promote a hypercoagulable state and impair venous return, 

increasing the chance of thrombi formation 670. Given that 42% of the traits I found to be 

associated with DVT were adiposity-related, and that previously I and others found that 

adiposity is associated with changes to the circulating proteome 639,640, I hypothesised 

that adiposity-driven changes to the circulating proteome may promote DVT. BMI-driven 

candidates include proteins that can modulate coagulation (anti-thrombin III, PAI-1) 

671,672, platelet function (PAI-1, adiponectin, IGFBP/IGF) 671–673 and/or thrombosis 

(galectin-3) 674.  

 

Using my MR approach, I was able to estimate the effect of 15 BMI-driven circulating 

proteins on DVT risk. My analyses suggest a causal role for 3 of these proteins 

(NOTCH1, PAI-1 and INHBC). Given the established role of some of the circulating 

proteins in coagulation and thrombosis, the lack of evidence for an estimated effect is 

surprising e.g. anti-thrombin III 671. This could represent a true result or my limited ability 

to instrument circulating proteins using single SNPs. 

 

PAI-1 was the only protein for which evidence was directionally consistent with mediation 

of the BMI-DVT relationship (circulating levels of PAI-1 were positively associated with 

BMI and with DVT). This adds to the evidence that platelet traits are involved in DVT, 

given that 90% of PAI-1 is present in platelets 675. A study using data from the Million 

Veterans Program to identify novel VTE risk factors has also confirmed colocalization 

with DVT for the same PAI-1 SNP (rs6993770, ZFPM2 locus) used in my analysis 676. 

Klarin et al. previously identified in their MR analysis that rs4602861 (ZFPM2 locus) 

increased the risk of VTE (OR: 1.08, CI: 1.03-1.15) 677, which is in LD with the PAI-1 SNP 

in my study (R2 = 0.93). On top of replicating this previous finding, I also showed that this 

locus increases DVT risk through regulating PAI-1 levels. Moreover, PAI-1 has been 

associated with an increase in VEGF levels 678–680, which was found to increase the risk 

of VTE in a previous MR study 681, further adding to the evidence that PAI-1 is involved 

in DVT development. A follow-up analysis in a murine model found that PAI-1-

overexpressing mice had 1.5-fold larger thrombus size compared to PAI-1−/− mice 676.  

 

Moreover, a recent observational study done in inhabitants of Tromsø, Norway (cases = 

383, controls = 782) found that PAI-1 increased the risk of future VTE, and that PAI-1 

mediated ~15% of the obesity-VTE relationship 682, a number comparable to my MR 

estimate (18.6%).  These results are consistent with the known role for PAI-1 in inhibiting 

fibrinolysis (breakdown of a clot) 683. In addition, PAI-1 expression has been previously 

found to be associated with DVT formation in mice 683 and in humans after total hip 

arthroplasty 672. PAI-1 overexpression is enhanced in visceral fat tissue 684, and while 
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waist-to-hip ratio (WHR) is highly correlated with visceral fat 685, I did not find evidence 

of an effect of WHR on DVT. Finally, there has been extensive research into PAI-1 drug 

targets, ranging from synthetic peptides, RNA aptamers to monoclonal antibodies 686. 

Rosuvastatin, an HMG-CoA reductase inhibitor, has been found to inhibit PAI-1 in vitro 

687. Randomised clinical trials using rosuvastatin have confirmed that it reduced 

occurrence of symptomatic venous thromboembolism 688 and increased plasma 

fibrinolytic potential 689, supporting a role for statins in VTE treatment and prevention, 

possibly via altered PAI-1. 

 

Although I found evidence for a role of INHBC and NOTCH1 in DVT risk, estimates were 

inconsistent with mediation of the BMI-DVT relationship. I found that circulating INHBC 

levels were negatively associated with DVT, suggesting circulating levels of INHBC may 

have a protective effect. Inhibins are part of the growth and differentiation superfamily of 

transforming growth factor beta (TGF-β) 690 and play a role in inhibiting the levels of 

follicle-stimulating hormone (FSH) produced by the pituitary gland 691. Although I did not 

find evidence of causality between FSH and DVT, a recent study showed that FSH can 

enhance thrombin generation 692. This discrepancy could be due to INHBC acting 

through a different pathway compared to FSH. With regards to NOTCH1, I found that 

higher expression was associated with an increased risk of DVT. NOTCH1 plays a role 

in responses to microenvironmental conditions, vascular development and is a shear 

stress and flow sensor in the vasculature 693. Interestingly, a recent study found that 

NOTCH1 and its ligand Delta-like ligand 4 (DLL-4) are present on platelets and are 

involved in their activation and thrombus formation 694. While NOTCH targeting has not 

been done in relation to VTE, current small molecular drugs such as Crenigacestat 695 

and targeting antibodies such as Brontictuzumab 696 are being used in clinical trials to 

inhibit NOTCH signalling for the treatment of T-cell acute lymphoblastic leukaemia and 

solid tumours, respectively 697. 

 

Finally, I undertook a follow-up blood proteome MR-PheWAS analysis to assess if 

thyrotoxicosis had an effect on the levels of circulating proteins, aiming to then perform 

a similar analysis to that of the adiposity-associated pQTL approach in the previous 

section. Unfortunately, there was no evidence that thyrotoxicosis had an effect on any of 

the 3,370 proteins in OpenGWAS, even with a more relaxed Benjamini-Hochberg 

correction, making it not possible to go forward with a two-step mediation MR analysis. 
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6.4.1. Limitations 

There are some limitations to my approach. Firstly, although the number of traits in MR-

Base is large and continues to grow, and the approach was undertaken in a hypothesis-

free manner, I was limited by the traits available in the platform at the time of the analysis. 

In addition, the availability of genetic instruments for some traits within the platform are 

limited, meaning a false null finding could be reported. Moreover, some of the exposures 

did not have a SNP or proxy present in the outcome (DVT) dataset, making it infeasible 

to perform MR analysis. Finally, I have chosen to investigate risk factors for DVT as 

opposed to PE (which is observed in about 40% of DVT cases 698) to increase the power 

to detect causal risk factors for DVT. Future analyses could focus on PE specifically to 

identify predictive risk factors for this outcome. 

 

6.4.2. Conclusion 

In summary, I have confirmed estimates of previously identified traits on DVT (e.g. 

adiposity-related, height), and identified novel risk factors that could act through platelet 

activity, such as hyperthyroidism. I also provide evidence that the relationship between 

adiposity and DVT is mediated by dysregulated levels of circulating proteins associated 

with platelet count and function, such as PAI-1. These findings improve the 

understanding of DVT aetiology and have notable clinical significance regarding platelet 

traits. 

 

This chapter marks the end of my thesis results. In the next chapter, the discussion, I 

zoom-out and describe my findings in the broader context of the current literature. I also 

provide my opinion on topics such as diverse ancestry GWAS and the future of MR in 

BCTs and disease.  
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CHAPTER 7.  DISCUSSION  
 

Chapter summary 

In this chapter I provide a brief recap of the thesis results. Afterwards, I relate my findings 

back into the broader context of literature to explore the contribution, potential impact, 

and limitations of my work. Finally, I end with a personal note on where I see the field of 

genetics and Mendelian randomization (MR) going forward.  

 

7.1. Synthesis of the findings 

Moving back to the overarching objective from Chapter 1, I set out to explore how the 

use of genetic proxies for blood cell traits (BCTs) can be used to expand the current 

knowledge on BCTs and disease through MR 169. While randomised controlled trials 

(RCTs) would still be the “gold standard” of establishing causality 183, its limitations in the 

context of BCTs discussed in Chapter 1 and Chapter 2 make MR the next most 

desirable method. To exemplify the usefulness of MR, I selected three diseases to serve 

as my aims: colorectal cancer (CRC, Chapter 3), severe malaria (SM) caused by 

Plasmodium falciparum (P. falciparum, Chapter 5) and deep vein thrombosis (DVT, 

Chapter 6).  

 

7.1.1. Relationship between white blood cell count 
and CRC risk (Chapter 3) 

Here, I explored how variation in WBC subtype count could affect the risk of CRC, a 

disease of global importance which has been previously linked with inflammation 266,382. 

Previous studies had been few and limited in scope 291,292,300, which made it difficult to 

estimate if and how each WBC subtype count might affect CRC development. Due to 

the genetic correlation between WBC subtype counts 149,166, I used multivariable MR 

(MVMR) 215 to estimate their direct effect on CRC risk of each WBC subtype. Additionally, 

I used the UK Biobank (UKBB) dataset 161,164 to conduct a cohort analysis of WBC count 

and incident CRC to complement the MR analyses. When assessed in this way, there 

was evidence that the risk of disease was reduced with increasing cell count for both 

increasing eosinophil count and lymphocyte count. Finally, in an analysis using a 

different strategy where I followed-up the eosinophil finding, I performed a MR analysis 

between allergic disease (associated with eosinophils 51) and CRC risk. In this case, it 

was suggested that allergic disease had a potentially protective effect on CRC 
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development. This extended analysis outlined how a MR of BCTs can lead to new 

hypothesis generation and investigation.  

 

7.1.2. People from UK Biobank associated with the 
African continent (Chapter 4) 

Afterwards, I set out to perform a MR analysis between neutrophil count and P. 

falciparum SM. Being a two-sample MR analysis, this required that both the exposure 

and outcome GWAS data come from the same underlying population 200. It was apparent 

that it was important to take into account the population structure (Chapter 4) that might 

be present in a sample, as the diversity within Africa is greater than in any other continent 

387,555,699. As the degree of intra-population structure had not been explored by previous 

studies, I aimed to use the UKBB dataset to identify a group of individuals similar to one 

sampled in Africa and generate sub-clusters inside this continental ancestry group (CAG) 

that would resemble the more homogeneous populations typically used in GWAS. Using 

a combination of software tools and valuable resources such as the 1000 Genomes 

Project 248, I was able to identify four CAGs in UKBB, including 6,653 people as part of 

the African CAG (and 7 clusters) 238. This ultimately helped me conduct Chapter 5, as I 

was able to run a neutrophil count GWAS in people of African ancestry while accounting 

for intrapopulation structure that could affect association statistics. 

 

7.1.3. Relationship between neutrophil count and P. 
falciparum SM (Chapter 5) 

The work in Chapter 4 allowed me to complete analysis of the relationship between 

neutrophil count and P. falciparum SM. Using the African CAG data generated in 

Chapter 4, I conducted a GWAS of neutrophil count, identifying 73 loci associated with 

the trait and 12 SNPs that could be used in a MR analysis. Afterwards, I employed 

several sensitivity analyses to ensure the validity of GWAS and potential MR SNPs. In 

the end, however, the MR analysis suggested little evidence of an effect in either 

direction, most likely due to the low number of instruments for both neutrophil count and 

SM. 

 

7.1.4. Establishing platelet-associated risk factors for 
DVT (Chapter 6) 

The final chapter of my thesis was aimed at understanding the exposures that might 

cause DVT, a disease known to be related to platelet measurements and function 146,700. 
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As the link between platelets and DVT is well-known 622,632,633, I aimed to perform a MR 

phenome-wide association study (PheWAS) 197. This was done to identify a possible 

mechanism through which platelets could affect the risk of DVT in a comprehensive 

manner which could then lead to new mechanistic investigations on platelets and DVT. 

Here, 57 exposures were found to influence DVT risk, of which half were associated with 

adiposity 249. Therefore, I investigated if any BMI-associated circulating proteins might 

mediate the relationship between adiposity and BMI through a MR mediation analysis. 

Blood-circulating proteins were investigated as they have the potential to alter platelet 

activity and/or act as a component of the platelet clotting cascade. Here, plasminogen 

activation inhibitor 1 (PAI-1), a protein predominantly present in platelets (>90%) 672, was 

identified as a mediator 249, and akin to the follow-up analysis in Chapter 3, suggested a 

mechanistic pathway though which platelet levels might affect DVT development. 

 

7.2. Placing my research in context 

Overall, the findings of my thesis have addressed the overarching objective I set out in 

Chapter 1. The work done in Chapter 3 identified eosinophil count and lymphocyte count 

as novel risk factors for CRC. Similarly, Chapter 6 was marked by identification of novel 

risk factors for DVT, such as the platelet-associated PAI-1 protein. Chapter 4 and 

Chapter 5 were successful in showing how one might construct MR instruments for 

BCTs in understudied populations, and although there was no evidence of an effect in 

the subsequent MR analysis of neutrophil count to malaria, this emphasised the need for 

more genetic studies in Africa. 

 

7.2.1. Recent developments 

Since the completion of the analyses, several new studies have been published; the data 

from which could be used in future analyses on the BCT-disease pairs I have studied in 

this thesis. 

 

One of these is the newest iteration of the CRC risk meta-analysis, with a total sample-

size of 265,791 individuals (100,204 cases and 154,587 controls) which identified 50 

new loci associated with CRC risk 583. This not only included a GWAS, but a 

transcriptome-wide association study (TWAS) and a methylation-wide association study 

(MWAS), further describing the genetic architecture 347 of CRC development 583. 

Therefore, an analysis of WBC subtype count on this larger dataset could be used as a 
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replication study, and integrating the TWAS and MWAS results could also pinpoint how 

differences in WBC gene expression might influence CRC risk. 

 

Moreover, the recent release of the Uganda Genome Resource included summary 

statistics for BCTs, such as neutrophil count, for almost ∼5,000 Ugandans 701. Therefore, 

one way to overcome the low instrument number in the Chapter 5 MR analysis could be 

through a meta-analysis of these summary statistics with those generated in my GWAS 

of neutrophil count, raising the sample-size to over 11,000. 

 

Finally, a recent trans-ancestry meta-analysis of venous thromboembolism (VTE, DVT + 

pulmonary embolism) was done on ~80,000 individuals (47,822 Europeans) across 30 

studies, identifying 48 novel associations with VTE, increasing the number of 

independent SNPs associated with VTE to 135 700. Here, platelets were found to be the 

largest contributing factor apart from the known coagulation pathways, further showing 

that platelets traits play an important role in DVT risk 700. Using this new dataset in a 

follow-up MR-PheWAS analysis could outline new novel risk factors for DVT related to 

platelet count and activity. 

 

7.2.2. Public health and clinical implications 

As discussed in Chapter 1, BCTs do not themselves affect the risk of disease but are 

rather used as indicators/flags for an increase or decrease in a biological mechanism 

that can then affect the risk of disease. These can then be assessed if they make 

biological sense by referring to the literature. However, this approach does not determine 

the specific pathways through which the cells associated with these BCT measurements 

act downstream to influence disease risk. Nevertheless, BCTs have been successfully 

used previously in both traditional epidemiological approaches and MR studies 

149,279,281,300, outlining their use as traits to investigate disease aetiology and aiding in the 

generation of new research. 

 

One potential way to investigate the pathways involved in disease aetiology could be 

through a colocalization analysis 702 making use of publicly available datasets, such as 

eqtlGEN 703 or GTEx 361. These include expression quantitative trait loci (eQTL) data for 

BCT subsets such as CD8+ T-cells based on single-cell eQTL data, or specific genes 

such as RNASE2 encoding for the eosinophil-derived neurotoxin (EDN) protein 361,703. A 

shared signal between the BCT and a gene coding for an effect protein would be helpful 

in mapping pathways explaining a MR result. Another way would be to run a two-step 

MR analysis 218, where the effect of e.g. eosinophil count is estimated on an eQTL or 
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protein QTL (pQTL) trait, outlining genes or proteins affected by eosinophil count. The 

next step would be an MR of these highlighted eQTL/pQTL onto a disease, allowing for 

establishing if these act as mediating factors on disease development, as well as 

allowing to quantify the proportion mediated by each intermediate eQTL/pQTL trait in the 

eosinophil count to disease relationship 218. 

 

The study of BCTs and disease has the potential to contribute not only to the current 

literature, but also to the improvement of people’s health outcomes. While BCTs 

themselves are not likely to be directly targetable, untangling the biological mechanisms 

through which a BCT affects the risk of disease could lead to the development of novel 

therapeutic approaches. For example, in Chapter 3 I discussed how the results of my 

analyses could be taken forward, such as through RNA-Seq 363 or SNP clustering 704. 

These would then have the potential to pinpoint a more specific mechanism that affects 

the risk of disease, opening up the possibility of drug target identification 705. One such 

example is present in Chapter 6, where I studied specific proteins and how they affect 

the risk of DVT (e.g. plasminogen activation inhibitor-1, PAI-1). 

 

7.2.3. Population structure 

Another point of discussion is population structure and how it affects the study of BCTs 

and disease. In Chapter 4, I observed prominent structure in the African CAG compared 

to the European CAG. The most common way of dealing with population structure in 

GWAS is through adjustment of principal components (PCs) 228. At the same time, 

however, adjusting for structure can also lead to over correction and loss of signals which 

could then be informative in a MR study 339. Other scientists, such as Eran Elhaik, have 

pushed back entirely on the usage of PCs in genetics, accepting only the first PC as a 

potential covariate in a GWA model 706. 

 

In the context of neutrophil count and severe malaria, ancestry is tied with the 

environment, exposure and outcome simultaneously 245,452,707. This makes it difficult to 

untangle as adjusting for PCs might bias GWAS effect-sizes due to either under or over 

correction 339. One solution would be to sample a population of individuals of European 

ancestry living in sub-Saharan Africa and assess their severity of malaria compared to 

the native population, which would (in theory) allow for controlling of the environmental 

factors.  

 

As most studies have been conducted in European populations, it is important to focus 

on undertaking more GWAS in diverse populations 153,386. One of the advantages of 
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genomic analyses in diverse populations is that they can find novel phenotypes not seen 

anywhere else. For example, an early study by Kenny et al. had discovered back in 2012 

that a SNP in the tyrosinase-related protein 1 (TYRP1) gene causing an amino-acid 

change was responsible for a blond hair phenotype in people living in Papua New Guinea 

708. From a practical healthcare point of view, genetic studies in non-European 

populations have helped inform on how to improve the health outcomes of a broader 

segment of the population. For example, studies done in people of African ancestry have 

allowed for the generation of novel and effective treatments for ancestry-associated 

diseases such as malaria, sickle cell disease and certain cardiomyopathies 386.  

 

However, the need for GWAS in diverse ancestries also comes from a need to improve 

the health outcomes of specific populations 386. Sub-Saharan Ancestry individuals have 

smaller linkage disequilibrium (LD) blocks (regions of the genome where allele variation 

in SNPs is highly correlated i.e. r2 > 0.8) compared to those of European ancestry 709. 

This can limit the translational ability of polygenic risk scores (PRSs), as different SNPs 

might be representative for LD blocks with different sizes 709. Therefore, it becomes 

important for genomic studies to be conducted in non-European populations to identify 

ancestry-specific signals that can inform on health traits, as has been the case with BCTs 

166,399.  

 

This call for diverse initiatives should not be seen as an expense from a public policy 

point of view, but rather as an investment for the improvement of everyone’s health 

outcomes. For example, those of African ancestry have lower cholesterol levels and a 

lower risk of heart disease due to differences in allele frequencies for particular SNPs 

compared to Europeans, allowing for the investigation of potential novel cholesterol-

lowering drugs 710 that could aid in treatments benefitting everyone. 

 

7.3. Biobanks – variation or power? 

The recent initiative by OurFutureHealth (OFH) to create a biobank of multi-omic data in 

the UK in partnership with the National Health Service (NHS) is one answer to 

addressing the issues of diversity 711. However, it remains to be seen how the ambitious 

target of 5-million samples by 2025 will be met 712. Nevertheless, having a large sample-

size can be a success that comes with its own problems. UKBB is known to suffer from 

selection bias because it is a cohort study where participants are gathered through 

voluntary participation, and therefore the study population is likely not representative of 

the general UK population 713. Therefore, given the volunteer-based approach to OFH, 
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these issues might persist even with an increase in sample-size, as was the case with 

the infamous 1936 Literary Digest poll blunder 714. The Literary Digest newspaper tried 

to poll who would likely win the 1936 US presidential election and sent over 10 million 

mock ballots to US citizens, of which around ~2.5 million posted back a filled ballot 714.  

 

One might think at first that having such an unprecedented large sample-size would 

make the polling results extremely reliable. However, as those who answered the poll 

were more likely to vote for the Republican candidate Landon, the polling results showed 

that he would win against the Democratic incumbent Roosevelt 714. In reality, Roosevelt 

had an overwhelming win over Landon, which was the opposite of what the polling results 

suggested 714. Similarly, if a sample of the population is invited to take part in a biobank 

study, and a subset of this sample is more likely to participate in the study, it might make 

results from both observational and GWA studies less generalizable to the whole UK 

population. Indeed, this is the case with UKBB, where participants were more likely to be 

older, female, healthier, and with a higher socioeconomic status compared to the general 

UK population 713.  

 

In contrast, studies done in people living in sub-Saharan Africa have been small in 

sample-size compared to those in Europeans. Fortunately, the recent announcement by 

the pan-African Bioinformatic Network on the establishment of eight genomics centres in 

Africa is of great importance 715, as it reflects back to the discussion in Chapter 4 and 

Chapter 5 where I highlighted the importance of expanding genetic research in sub-

Saharan Africa. Therefore, a trade-off between variation and power might not be needed 

if the current trend of increasing diversity and sample-size holds. Collaborations in the 

form of data sharing to undertake meta-analyses from datasets from OFH, UKBB, the 

Million Veterans Program 162 and African initiatives could lead to both an increase in 

power and an improved detection of SNP variation that might affect BCTs. 

 

7.4. Mendelian randomization – past, present 
and future 

By employing a state-of-the-art method in genetic epidemiology known as MR, I showed 

how genetically proxied BCTs can be relevant to identifying risk factors for disease. 

Specific methodological approaches for each chapter were made, such as employing 

MVMR or MR-PheWAS 215,219. However, the development of MR methods is relatively 

recent. 
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In their 2003 paper on MR that I mentioned in Chapter 1, Davey-Smith and Ebrahim 

make the case for the potential of MR in improving the understanding of disease by using 

genetic proxies for exposures 169. At the time, this seemed overly optimistic, especially 

since the first actual GWAS was not conducted until 2 years later 157. Just over a decade 

after the MR debut paper, Burgess et al. discuss in their editorial the advances that had 

been made since 2003 716. Here, they confirm the success of MR and its popularity 

fuelled by the rise of large-scale biobank studies and methodological advances 716, such 

as MR-Egger 205. 

 

This year (2023) marks the 20th anniversary of the contemporary conceptualisation of 

MR. In the context of BCTs, the 2020s have seen a promising increase in the number of 

MR studies between BCTs and disease 352,575,717–720. New sensitivity MR methods, such 

as median and mode based estimates allow for better assessment of MR results 204,212. 

Outlier removal methods, such as MR-PRESSO, are able to detect and correct for 

horizontal pleiotropic SNPs that might bias MR estimates 207.  

 

However, these new methodological approaches are not limited to just testing the validity 

of MR assumptions. More recent advances MR methods have outlined a polynomial 

approach to studying the effect of an exposure on an outcome 383. For example, BMI has 

been shown to make a “U” curve with cholesterol levels, which might have previously 

been interpreted as a linear increase using standard MR 383. It would be interesting to 

assess if BCTs affect disease risk in a non-linear pattern. Finally, as datasets become 

larger and more comprehensive in the amount of phenotypes studied, a forward MR-

PheWAS 185 of BCTs on all outcomes would be interesting. This approach could identify 

BCTs as novel risk factors for traits or diseases without any prior hypothesis, thereby 

allowing for the generation of new hypotheses and mechanistic investigations. 

 

7.5. Conclusion 

Overall, the ascending trend of discovery, impact, and methodological advances during 

the last decade in the domain of genomics has continued in the 2020s 154. Even so, much 

is still left to be discovered on the topic of BCTs and disease. I personally view the current 

unknowns and potential limitations outlined above as an untapped resource that can be 

mined through the current toolsets that have generously been provided by past and 

current initiatives. The exploration of BCTs and disease is just the tip of the iceberg, and 

much more will likely be discovered on the role of blood cells in regulating disease risk 

in the upcoming years.  
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APPENDICES 

Appendices for the thesis are found below and are linked throughout the text. 
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Appendix 1. Description of meta-analysed studies for WBC count. 

Study Age 
% 

Female 
BASO 
(109/L) 

EOS 
(109/L) 

LYM 
(109/L) 

MONO 
(109/L) 

NEU 
(109/L) 

WBC 
(109/L) Full study name 

Airwave 
40.88 
(9.03) 

37.40 
0.06 

(0.04) 
0.20 

(0.12) 
1.81 

(0.62) 
0.40 

(0.17) 
3.95 

(1.36) 
6.53 

(1.72) 
Airwave Health Monitoring Study 

n 13113 4910 13104 13105 13104 13105 13105 13105  

BioME (EUR) 
69.76 
(9.74) 

43.1 
0.02 

(0.04) 
0.15 

(0.13) 
1.69 

(1.00) 
0.56 

(0.20) 
4.65 

(2.45) 
7.20 

(2.46) 
BioMe™ BioBank Program 

n 1861 802 460 460 460 460 460 789  

CaPS 
65.46 
(4.45) 

0 
0.08 

(0.03) 
0.22 

(0.17) 
2.75 

(0.72) 
0.75 

(0.18) 
5.98 

(0.83) 
7.09 

(2.03) 
Caerphilly Prospective Study 

n 1181 0 1173 1176 1173 1139 1177 1179  

CHS (EUR) 
72.33 
(5.38) 

60.79 - - - - - 
6.26 

(1.94) 
Cardiovascular Health Study 

n 3249 1975 - - - - - 3249  

Estonia_chip 
39.0 

(15.8) 
51.24 

0.03 
(0.03) 

0.16 
(0.13) 

1.95 
(0.58) 

0.52 
(0.18) 

3.67 
(1.41) 

6.34 
(1.88) 

Estonia SNP Chip 

n 1085 556 1084 1081 1079 1079 1081 1084  

Estonia_WGS 
50.5 

(15.7) 
49.65 

0.03 
(0.02) 

0.15 
(0.12) 

1.97 
(0.64) 

0.51 
(0.18) 

3.68 
(1.39) 

6.36 
(1.92) 

Estonia Whole Genome Sequencing 

n 1009 501 1009 1009 1007 1009 1009 1008  

FHS 
55.86 

(16.27) 
52.78 

0.04 
(0.02) 

0.19 
(0.12) 

1.63 
(0.58) 

0.52 
(0.15) 

3.63 
(1.21) 

6.15 
(1.65) 

Framingham Heart Study 

n 6458 3409 4293 4293 4293 4293 4293 6131  

FINCAVAS 
53.3 

(13.9) 
42 

0.04 
(0.03) 

0.23 
(0.20) 

2.18 
(1.05) 

0.52 
(0.22) 

4.13 
(2.15) 

7.26 
(2.45) 

The Finnish Cardiovascular Study 

n 911 383 396 436 396 396 396 910  

GERA (EUR) 
63.19 

(12.95) 
61.15 - - 

1.89 
(0.73) 

0.58 
(0.22) 

4.06 
(1.92) 

6.67 
(2.27) 

Genetic Epidemiology Research on Adult 
Health and Aging  

n 53822 32912 - - 43479 43475 43479 53822  

GERA 
(EUR_LATchip

) 

60.87 
(13.35) 

70.48 - - 
2.01 

(0.68) 
0.6 (0.23) 

4.3 
(2.16) 

7.06 
(2.79) 

Genetic Epidemiology Research on Adult 
Health and Aging  
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Study Age 
% 

Female 
BASO 
(109/L) 

EOS 
(109/L) 

LYM 
(109/L) 

MONO 
(109/L) 

NEU 
(109/L) 

WBC 
(109/L) Full study name 

n 1504 1060 - - 1204 1204 1204 1504  

INTERVAL 
44.15 

(13.88) 
49.8 

0.04 
(0.04) 

0.17 
(0.13) 

1.95 
(0.53) 

0.53 
(0.15) 

3.75 
(1.25) 

6.47 
(1.95) 

INTERVAL Study 

n 42524 21177 39192 38883 36693 36693 36571 39260  

MESA (EUR) 
69.85 

(9.347) 
51.02 

0.03 
(0.03) 

0.17 
(0.13) 

1.69 
(1.20) 

0.49 
(0.18) 

3.81 
(1.34) 

6.20 
(1.96) 

The Multi-Ethnic Study of Atherosclerosis 

n 1172 598 1172 1172 1172 1172 1172 1172  

MHIphase1 
66.2 

(9.26) 
26.2 

0.05 
(0.05) 

0.18 
(0.13) 

1.84 
(0.92) 

0.63 
(0.22) 

4.95 
(2.37) 

7.65 
(2.65) 

Montreal Heart Institute Biobank phase1 

n 1417 371 1417 1417 1417 1417 1417 1417  

MHIphase2 
65.5 

(9.11) 
24.9 

0.05 
(0.06) 

0.18 
(0.13) 

1.77 
(1.05) 

0.6 (0.22) 
4.74 

(2.32) 
7.33 

(2.67) 
Montreal Heart Institute Biobank phase2 

n 1879 468 1879 1879 1879 1879 1879 1879  

RS-I 79.5 (4.8) 59.2 - - 
2.21 

(0.91) 
0.46 

(0.17) 
- 

7.08 
(1.79) 

Rotterdam Study I 

n 1455 862 - - 1455 1455 - 1455  

RS-II 72.4 (5.2) 54.7 - - 
2.37 

(0.78) 
0.48 

(0.19) 
- 

7.08 
(1.79) 

Rotterdam Study II 

n 1269 694 - - 1269 1269 - 1269  

RS-III 62.4 (5.8) 56.6 - - 
2.42 

(0.72) 
0.46 

(0.16) 
- 

7.07 
(1.85) 

Rotterdam Study III 

n 2378 1345 - - 2378 2378 - 2378  

SHIP 
49.19 

(16.09) 
50.9 - - - - - 

6.74 
(2.02) 

Study of Helath in Pomerania 

n 3164 1610 - - - - - 3159  

SHIP-TREND 
51.82 

(15.37) 
51.3 

0.03 
(0.02) 

0.15 
(0.10) 

1.68 
(0.47) 

0.50 
(0.15) 

3.34 
(1.18) 

5.70 
(1.47) 

Study of Health in Pomerania Trend 

n 4099 2103 938 939 939 939 939 940  

UKBB_EUR 
57.04 
(8.10) 

54 
0.039 

(0.044) 
0.17 

(0.13) 
1.96 

(1.17) 
0.47 

(0.28) 
4.23 

(1.40) 
6.88 

(2.10) 
UK Biobank European-ancestry 

n 463523 250302 453395 455195 455895 452885 455735 456785  
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Study Age 
% 

Female 
BASO 
(109/L) 

EOS 
(109/L) 

LYM 
(109/L) 

MONO 
(109/L) 

NEU 
(109/L) 

WBC 
(109/L) Full study name 

WHI  66.7 (6.7) 100 
0.04 

(0.04) 
0.21 

(0.14) 
1.8 (3.6) 

0.62 
(0.40) 

3.8 (1.4) 
6.5 

(15.2) 
Womens' Health Initiative  

n 17,682 17,682 3168 3175 3193 3193 3193 17672  

YFS 41.9 (5.0) 55.3 - - - - - 
5.64 

(1.63) 
The Cardiovascular Risk in Young Finns 

Study 

n 1889 1044 - - - - - 1888   

Total 626644 344764 522680 524220 572485 569440 567110 612055  

Derived from Chen et al. 
https://doi.org/10.1016/j.cell.2020.06.045 
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Appendix 2. Description of meta-analysed studies for CRC risk. 

Meta-analysis Stage Study Acronym Study Name Country 
N 

total 
N Cases 

(Ad) 
N 

Controls 

1 ASTERISK 
Association STudy Evaluating RISK for 
sporadic colorectal cancer 

France 1839 892 (0) 947 

1 ATBC 
Alpha-Tocopherol, Beta Carotene Cancer 
Prevention Study 

Finland 177 147 (0) 30 

1 CCFR_1 Colon Cancer Family Registry 
USA, Canada, 
Australia 

2014 1036 (0) 978 

1 CCFR_2 Colon Cancer Family Registry 
USA, Canada, 
Australia 

716 331 (0) 385 

1 CCFR_3 Colon Cancer Family Registry 
USA, Canada, 
Australia 

1851 1190 (0) 661 

1 CCFR_4 Colon Cancer Family Registry 
USA, Canada, 
Australia 

2124 1590 (0) 534 

1 Colo2&3 Hawai’i Colorectal Cancer Studies 2&3 USA 211 87 (0) 124 

1 
ColoCare_Heidelbe
rg 

ColoCare Consortium  Germany 223 187 (0) 36 

1 ColoCare_Seattle ColoCare Consortium  USA 169 169 (0) 0 

1 CPSII_1 
American Cancer Society Cancer Prevention 
Study II nested case-control study 

USA 1076 540 (0) 536 

1 CRCGEN 
Colorectal Cancer Genetics & Genomics, 
Spanish study 

Spain 1546 760 (0) 786 

1 DACHS_1 
Darmkrebs: Chancen der Verhütung durch 
Screening  

Germany 3409 1707 (0) 1702 

1 DACHS_2 
Darmkrebs: Chancen der Verhütung durch 
Screening  

Germany 1164 666 (0) 498 

1 DALS_1 Diet, Activity and Lifestyle Study  USA 1411 702 (0) 709 

1 DALS_2 Diet, Activity and Lifestyle Study  USA 863 402 (0) 461 
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1 ESTHER_VERDI 

Epidemiologische Studie zu Chancen der 
Verhütung, Früherkennung und optimierten 
Therapie chronischer Erkrankungen in der 
älteren Bevölkerung; Verlauf der 
diagnotischen Abklärung bei Krebspatienten 

Germany 817 397 (0) 420 

1 HCES-CRC 
The Hwasun Cancer Epidemiology Study-
Colon and Rectum Cancer 

Korea 5294 3026 (0) 2268 

1 HPFS_1 Health Professionals Follow-Up Study USA 455 227 (0) 228 

1 HPFS_2 Health Professionals Follow-Up Study USA 348 176 (0) 172 

1 HPFS_3_AD Health Professionals Follow-Up Study USA 655 312 (312) 343 

1 Kentucky Kentucky Case-Control Study USA 2167 1035 (0) 1132 

1 MCCS Melbourne Collaborative Cohort Study Australia 1343 709 (0) 634 

1 MEC_1 Multiethnic Cohort Study USA 816 389 (0) 427 

1 MECC_1 
Molecular Epidemiology of Colorectal Cancer 
Study 

Israel 978 483 (0) 495 

1 MECC_2 
Molecular Epidemiology of Colorectal Cancer 
Study 

Israel 1901 1093 (0) 808 

1 MECC_3 
Molecular Epidemiology of Colorectal Cancer 
Study 

Israel 4380 2570 (0) 1810 

1 MSKCC 
Memorial Sloan Kettering Cancer Center 
Cohort 

USA 68 68 (0) 0 

1 NFCCR Newfoundland Case-Control Study Canada 660 193 (0) 467 

1 NGCCS PopGen Biobank Germany 1103 1103 (0) 0 

1 NHS_1 Nurses’ Health Study USA 1165 391 (0) 774 

1 NHS_2 Nurses’ Health Study USA 339 158 (0) 181 

1 NHS_3_AD Nurses’ Health Study USA 1090 513 (513) 577 
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1 NHSII Nurses’ Health Study USA 167 87 (0) 80 

1 OFCCR Ontario Familial Colorectal Cancer Registry Canada 1116 594 (0) 522 

1 PHS Physicians’ Health Study USA 764 375 (0) 389 

1 PLCO_1 
Prostate, Lung, Colorectal, and Ovarian 
Cancer Screening Trial 

USA 2496 524 (0) 1972 

1 PLCO_2 
Prostate, Lung, Colorectal, and Ovarian 
Cancer Screening Trial 

USA 889 475 (0) 414 

1 PMH-CCFR 
Postmenopausal Hormones Supplementary 
Study to the Colon Cancer Family Registry 

USA 398 276 (0) 122 

1 SEARCH 
Studies of Epidemiology and Risk Factors in 
Cancer Heredity 

UK 4288 4173 (0) 115 

1 SLRCCS Swedish Low-Risk Colorectal Cancer Study Sweden 4785 2504 (0) 2281 

1 SMC_COSM 
Swedish Mammography Cohort and Cohort of 
Swedish Men 

Sweden 1397 566 (0) 831 

1 USC_HRT_CRC 
Los Angeles County Cancer Surveillance 
Program 

USA 708 321 (0) 387 

1 VITAL VITamins And Lifestyle USA 565 279 (0) 286 

1 WHI_1 Women’s Health Initiative Study USA 1991 468 (0) 1523 

1 WHI_2 Women’s Health Initiative Study USA 1984 978 (0) 1006 

2 CLUEII 
Campaign against Cancer and Heart Disease 
II 

USA 518 258 (0) 260 
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2 COLON 

Colorectal Cancer: Longitudinal Observational 
study on Nutritional and lifestyle factors that 
influence colorectal tumor recurrence, survival 
and quality of life 

Netherlands 1335 643 (0) 692 

2 CORSA_1 Colorectal Cancer Study of Austria Austria 2234 1460 (519) 774 

2 CORSA_2 Colorectal Cancer Study of Austria Austria 2483 1210 (687) 1273 

2 CPSII_2 
American Cancer Society Cancer Prevention 
Study II nested case-control study 

USA 688 339 (0) 349 

2 Czech Czech Republic CCS Czech Republic 3293 1675 (0) 1618 

2 DACHS_3 
Darmkrebs: Chancen der Verhütung durch 
Screening Study 

Germany 1827 1210 (0) 617 

2 EDRN Early Detection Research Network USA 589 273 (6) 316 

2 EPIC 
European Prospective Investigation into 
Cancer and Nutrition 

Europe 4401 2095 (0) 2306 

2 EPICOLON EPICOLON Spain 609 267 (0) 342 

2 HawaiiCCS_AD Hawaii Adenoma Study USA 628 85 (85) 543 

2 HPFS_4 Health Professionals Follow-Up Study USA 380 183 (0) 197 

2 HPFS_5_AD Health Professionals Follow-Up Study USA 260 155 (155) 105 

2 LCCS Leeds Colorectal Cancer Study UK 2183 1482 (0) 701 

2 NCCCSI North Carolina Colon Cancer Study, I USA 720 251 (0) 469 

2 NCCCSII North Carolina Colon Cancer Study, II USA 1281 595 (0) 686 

2 NHS_4 Nurses’ Health Study USA 611 308 (0) 303 

2 NHS_5_AD Nurses’ Health Study USA 477 251 (251) 226 

2 NSHDS 
The Northern Sweden Health and Disease 
Study 

Sweden 829 416 (0) 413 
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2 OSUMC 
Columbus-area HNPCC study, Ohio 
Colorectal Cancer Prevention Initiative, Ohio 
State University Medical Center 

USA 5527 3094 (0) 2433 

2 PLCO_4_AD 
Prostate, Lung, Colorectal, and Ovarian 
Cancer Screening Trial 

USA 2105 797 (794) 1308 

2 SELECT Selenium and Vitamin E Prevention Trial USA 533 264 (0) 269 

2 SMS_AD 
Screening Markers for Colorectal Cancer 
Study (advanced adenomas) 

USA 171 41 (0) 130 

2 WHI_3 Women’s Health Initiative Study USA 1113 554 (0) 559 

Total    98715 52775 45940 

Ad, advanced 
adenoma 

      

Derived from Huyghe et al. https://doi.org/10.1038/s41588-018-0286-6     
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Appendix 3. Description of meta-analysed studies for allergic disease. 

Study Study-type GWA Covariates 

Original 
case 

ascertain
ment 

N 
total 

N 
control

s 

Number of 
cases 

Age (mean, range) % Females 

UKBiobank 
Population-

based 
BOLT-LMM with age, sex 

and SNP chip  NA 
138
354 96108 42246 56.7 (39-73) 53 

23andMe 
Population-

based 
Logistic regression with 
age, sex and PCs 1:5 NA 

118
269 34934 83335 49.5 (1-114) 48 

GERA 
Population-

based 
PLINK 1.9 with age, sex 

and PCs 1:10 NA 
512
18 15999 35219 62.3 (18-90) 59 

CATSS 
Population-

based 
RAREMETALWORKER 
with age and PCs 1:4 NA 

110
68 7488 3580 

9.8 (9-23) 49 

NTR 
Population-

based 
GCTA --mlma-loco with 
age, sex and PCs 1:20 NA 

102
42 7919 2323 40.1 (4-94) 64 

LifeLines 
Population-

based PLINK 1.9 with age and sex NA 
856
0 4837 3723 46.2 (18-88) 58 

TWINGENE 
Population-

based 
PLINK 1.9 with sex and PCs 

1:4 NA 
551
7 3762 1755 58.3 (41-93) 51 

ALSPAC$ 
Population-

based SNPTEST with sex NA 
496
4 2330 2634 

A/E: 10.8 (10-13); H: 13.9 
(13-16) 49 

SALTY 
Population-

based 
RAREMETALWORKER 
with age and PCs 1:4 NA 

406
2 2761 1301 49.8 (41-72) 49 

AAGC 
Selected 

case-control SNPTEST with age and sex Asthma 
243
5 460 1975 35.1 (3-89) 56 

GENEVA 
Selected 

case-control SNPTEST with sex Eczema 
263
3 1274 1359 43.9 (0-85) 56 

GENUFAD-
SHIP-1 

Selected 
case-control 

Mach2dat with sex and PCs 
1:2 Eczema 

178
1 1364 417 

Cases: 3.9 (1-34); 
Controls: 50.0 (20-81) 

Cases: 39; 
Controls: 50 

GENUFAD-
SHIP-2 

Selected 
case-control 

Mach2dat with sex and PCs 
1:2 Eczema 

173
5 1473 262 

Cases: 8.3 (1-26); 
Controls: 50.0 (20-81) 

Cases: 54; 
Controls: 50 

Total    

360
838 180709 180129   

Derived from Ferreira et al. https://doi.org/10.1038/ng.3985       
$ For ALSPAC, information from different surveys was used to define asthma (A) and eczema (E) when compared to those used to define hay fever (H). 
For this reason, age of participants is reported separately for A/E and H. 
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Appendix 4. STROBE-MR checklist of recommended items to address in reports of Mendelian randomization studies. 

Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

1 TITLE and 
ABSTRACT 

Indicate Mendelian randomization (MR) as the study’s design in the title 
and/or the abstract if that is a main purpose of the study 

1-3  

 INTRODUCTION    

2 Background Explain the scientific background and rationale for the reported study. 
What is the exposure? Is a potential causal relationship between exposure 
and outcome plausible? Justify why MR is a helpful method to address the 
study question 

3-5  

3 Objectives State specific objectives clearly, including pre-specified causal 
hypotheses (if any). State that MR is a method that, under specific 
assumptions, intends to estimate causal effects 

6 Introduction, paragraphs 4,5 

 METHODS    

4 Study design and 
data sources 

Present key elements of the study design early in the article. Consider 
including a table listing sources of data for all phases of the study. For 
each data source contributing to the analysis, describe the following:  

  

 a) Setting: Describe the study design and the underlying population, if 
possible. Describe the setting, locations, and relevant dates, including 
periods of recruitment, exposure, follow-up, and data collection, when 
available. 

6-8 Methods, paragraphs 1-4 

 b) Participants: Give the eligibility criteria, and the sources and methods of 
selection of participants. Report the sample size, and whether any power 
or sample size calculations were carried out prior to the main analysis  

7-8 Methods, paragraphs 2-4. Supplementary 
Tables 1-4 

 c) Describe measurement, quality control and selection of genetic variants 8 Methods, paragraphs 2-4. More in the 
manuscript associated with each study. 
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Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

 d) For each exposure, outcome, and other relevant variables, describe 
methods of assessment and diagnostic criteria for diseases 

7-8 Methods, paragraphs 2-4. Supplementary 
Tables 1-4 

 e) Provide details of ethics committee approval and participant informed 
consent, if relevant 

22 Ethics declaration 

5 Assumptions 

 

Explicitly state the three core IV assumptions for the main analysis 
(relevance, independence and exclusion restriction) as well assumptions 
for any additional or sensitivity analysis 

5 Introduction, paragraph 4 

6 Statistical 
methods: main 
analysis 

Describe statistical methods and statistics used 8-11 Methods, paragraphs 6,7,11 

 a) Describe how quantitative variables were handled in the analyses (i.e., 
scale, units, model) 

6 Methods, paragraph 1 

 b) Describe how genetic variants were handled in the analyses and, if 
applicable, how their weights were selected 

9 Methods, paragraph 5 

 c) Describe the MR estimator (e.g. two-stage least squares, Wald ratio) and 
related statistics. Detail the included covariates and, in case of two-sample 
MR, whether the same covariate set was used for adjustment in the two 
samples 

9,10 Methods, paragraphs 8,9 

 d) Explain how missing data were addressed N/A  

 e) If applicable, indicate how multiple testing was addressed N/A  

7 Assessment of 
assumptions 

Describe any methods or prior knowledge used to assess the assumptions 
or justify their validity  

9 Methods, paragraph 7 

8 Sensitivity 
analyses and 

Describe any sensitivity analyses or additional analyses performed (e.g. 
comparison of effect estimates from different approaches, independent 

10 Methods, paragraphs 8,9 
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Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

additional 
analyses 

replication, bias analytic techniques, validation of instruments, 
simulations) 

9 Software and 
pre-registration 

   

 a) Name statistical software and package(s), including version and settings 
used  

10 Methods, paragraph 10 

 b) State whether the study protocol and details were pre-registered (as well 
as when and where) 

N/A  

 RESULTS    

10 Descriptive data    

 a) Report the numbers of individuals at each stage of included studies and 
reasons for exclusion. Consider use of a flow diagram 

11 Supplementary Figure 2 

 b) Report summary statistics for phenotypic exposure(s), outcome(s), and 
other relevant variables (e.g. means, SDs, proportions) 

11 Table 1, Supplementary  

 c) If the data sources include meta-analyses of previous studies, provide the 
assessments of heterogeneity across these studies 

8 Methods, paragraph 5 

 d) For two-sample MR: 

   i.  Provide justification of the similarity of the genetic variant-exposure 
associations between the exposure and outcome samples 

   ii.  Provide information on the number of individuals who overlap 
between the exposure and outcome studies 

N/A 0% overlap between samples 

11 Main results    

 a) Report the associations between genetic variant and exposure, and 
between genetic variant and outcome, preferably on an interpretable scale 

N/A Summary statistics for CRC are not 
currently publicly available.  
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Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

 b) Report MR estimates of the relationship between exposure and outcome, 
and the measures of uncertainty from the MR analysis, on an interpretable 
scale, such as odds ratio or relative risk per SD difference 

13-
16 

Results, paragraphs 3,4,6,7,10,11. 
Supplementary Tables 10,14 

 c) If relevant, consider translating estimates of relative risk into absolute risk 
for a meaningful time period 

N/A  

 d) Consider plots to visualize results (e.g. forest plot, scatterplot of 
associations between genetic variants and outcome versus between 
genetic variants and exposure) 

 Figure 2,3 

12 Assessment of 
assumptions 

   

 a) Report the assessment of the validity of the assumptions 14,16 Results, paragraphs 8,12 

 b) Report any additional statistics (e.g., assessments of heterogeneity 
across genetic variants, such as I2, Q statistic or E-value) 

14,16 Results, paragraphs 8,12 

13 Sensitivity 
analyses and 
additional 
analyses 

   

 a) Report any sensitivity analyses to assess the robustness of the main 
results to violations of the assumptions 

14,16 Results, paragraphs 8,12 

 b) Report results from other sensitivity analyses or additional analyses 14,16 Results, paragraphs 8,12 

 c) Report any assessment of direction of causal relationship (e.g., 
bidirectional MR) 

14 Results, paragraph 8 

 d) When relevant, report and compare with estimates from non-MR analyses 16-
18 

Discussion 
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Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

 e) Consider additional plots to visualize results (e.g., leave-one-out 
analyses) 

N/A  

 DISCUSSION    

14 Key results  Summarize key results with reference to study objectives 16,19 Discussion, paragraphs 1 & 7  

15 Limitations Discuss limitations of the study, taking into account the validity of the IV 
assumptions, other sources of potential bias, and imprecision. Discuss 
both direction and magnitude of any potential bias and any efforts to 
address them  

18,19 Discussion, paragraph 6 

16 Interpretation    

 a) Meaning: Give a cautious overall interpretation of results in the context of 
their limitations and in comparison with other studies 

16-
18 

 

 b) Mechanism: Discuss underlying biological mechanisms that could drive a 
potential causal relationship between the investigated exposure and the 
outcome, and whether the gene-environment equivalence assumption is 
reasonable. Use causal language carefully, clarifying that IV estimates 
may provide causal effects only under certain assumptions  

16-
18 

 

 c) Clinical relevance: Discuss whether the results have clinical or public 
policy relevance, and to what extent they inform effect sizes of possible 
interventions 

  

17 Generalizability    Discuss the generalizability of the study results (a) to other populations, 
(b) across other exposure periods/timings, and (c) across other levels of 
exposure 

19 Methods, paragraphs 5,6. Discussion, 
paragraph 6 

 OTHER 
INFORMATION 
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Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

18 Funding Describe sources of funding and the role of funders in the present study 
and, if applicable, sources of funding for the databases and original study 
or studies on which the present study is based 

21-
22 

 

19 Data and data 
sharing  

Provide the data used to perform all analyses or report where and how the 
data can be accessed, and reference these sources in the article. Provide 
the statistical code needed to reproduce the results in the article, or report 
whether the code is publicly accessible and if so, where 

19  

20 Conflicts of 
Interest   

All authors should declare all potential conflicts of interest 22  
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Appendix 5. STROBE Statement—Checklist of items that should be included in reports 
of cohort studies. 

 
Item 
No Recommendation 

Page 
No 

Title and abstract 1 (a) Indicate the study’s design with a commonly used 

term in the title or the abstract 

1 

(b) Provide in the abstract an informative and 

balanced summary of what was done and what was 

found 

3-4 

Introduction 

Background/rationale 2 Explain the scientific background and rationale for the 

investigation being reported 

4-5 

Objectives 3 State specific objectives, including any prespecified 

hypotheses 

5 

Methods 

Study design 4 Present key elements of study design early in the 

paper 

6 

Setting 5 Describe the setting, locations, and relevant dates, 

including periods of recruitment, exposure, follow-up, 

and data collection 

9-10 

Participants 6 (a) Give the eligibility criteria, and the sources and 

methods of selection of participants. Describe 

methods of follow-up 

9-10 

(b) For matched studies, give matching criteria and 

number of exposed and unexposed 

N/A 

Variables 7 Clearly define all outcomes, exposures, predictors, 

potential confounders, and effect modifiers. Give 

diagnostic criteria, if applicable 

9-11 

Data sources/ 

measurement 

8*  For each variable of interest, give sources of data 

and details of methods of assessment 

(measurement). Describe comparability of 

assessment methods if there is more than one group 

9-10 

Bias 9 Describe any efforts to address potential sources of 

bias 

11 

Study size 10 Explain how the study size was arrived at 9,10,15 

Quantitative 

variables 

11 Explain how quantitative variables were handled in 

the analyses. If applicable, describe which groupings 

were chosen and why 

9-10 

Statistical methods 12 (a) Describe all statistical methods, including those 

used to control for confounding 

10-11 
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(b) Describe any methods used to examine 

subgroups and interactions 

N/A 

(c) Explain how missing data were addressed 10 

(d) If applicable, explain how loss to follow-up was 

addressed 

N/A 

(e) Describe any sensitivity analyses 10-11 

Results 
 

Participants 13* (a) Report numbers of individuals at each stage of 

study—eg numbers potentially eligible, examined for 

eligibility, confirmed eligible, included in the study, 

completing follow-up, and analysed 

15 

(b) Give reasons for non-participation at each stage 9-10 

(c) Consider use of a flow diagram 15 

Descriptive data 14* (a) Give characteristics of study participants (eg 

demographic, clinical, social) and information on 

exposures and potential confounders 

15 

(b) Indicate number of participants with missing data 

for each variable of interest 

15 

(c) Summarise follow-up time (eg, average and total 

amount) 

15 

Outcome data 15* Report numbers of outcome events or summary 

measures over time 

15 

Main results 16 (a) Give unadjusted estimates and, if applicable, 

confounder-adjusted estimates and their precision 

(eg, 95% confidence interval). Make clear which 

confounders were adjusted for and why they were 

included 

16 

  (b) Report category boundaries when continuous 

variables were categorized 

N/A 

  (c) If relevant, consider translating estimates of 

relative risk into absolute risk for a meaningful time 

period 

N/A 

Other analyses 17 Report other analyses done—eg analyses of 

subgroups and interactions, and sensitivity analyses 

16-17 

Discussion 

Key results 18 Summarise key results with reference to study objectives 18 

Limitations 19 Discuss limitations of the study, taking into account sources 

of potential bias or imprecision. Discuss both direction and 

magnitude of any potential bias 

20 
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Interpretation 20 Give a cautious overall interpretation of results considering 

objectives, limitations, multiplicity of analyses, results from 

similar studies, and other relevant evidence 

18-19 

Generalisability 21 Discuss the generalisability (external validity) of the study 

results 

18-19 

Other information 

Funding 22 Give the source of funding and the role of the funders for the 

present study and, if applicable, for the original study on 

which the present article is based 

21-22 

 

*Give information separately for exposed and unexposed groups. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives 

methodological background and published examples of transparent reporting. The STROBE 

checklist is best used in conjunction with this article (freely available on the Web sites of PLoS 

Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, 

and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is 

available at http://www.strobe-statement.org. 
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Appendix 6. Univariable MR analysis of WBC count on CRC with sensitivity methods. 

Exposure Outcome Method 
No 

SNPs 
OR LCI UCI P-value 

Basophil Colon 
Inverse variance 

weighted 
173 0.85 0.74 0.98 0.022 

Basophil Colon MR Egger 173 0.83 0.58 1.19 0.311 

Basophil Colon MR PRESSO 173 0.87 0.78 0.98 0.019 

Basophil Colon Weighted median 173 0.83 0.7 0.99 0.033 

Basophil Colon Weighted mode 173 0.83 0.64 1.08 0.163 

Basophil Distal 
Inverse variance 

weighted 
174 0.82 0.7 0.97 0.019 

Basophil Distal MR Egger 174 0.8 0.53 1.22 0.302 

Basophil Distal MR PRESSO 174 0.86 0.75 0.99 0.034 

Basophil Distal Weighted median 174 0.82 0.66 1.04 0.098 

Basophil Distal Weighted mode 174 0.81 0.56 1.17 0.269 

Basophil Female 
Inverse variance 

weighted 
174 0.92 0.79 1.07 0.271 

Basophil Female MR Egger 174 1.03 0.7 1.52 0.883 

Basophil Female MR PRESSO 174 0.97 0.84 1.11 0.636 

Basophil Female Weighted median 174 0.96 0.78 1.19 0.710 

Basophil Female Weighted mode 174 1.03 0.75 1.42 0.854 

Basophil Male 
Inverse variance 

weighted 
173 0.89 0.78 1.01 0.066 

Basophil Male MR Egger 173 0.82 0.59 1.14 0.239 

Basophil Male MR PRESSO 173       NA 

Basophil Male Weighted median 173 0.81 0.67 0.99 0.037 

Basophil Male Weighted mode 173 0.82 0.61 1.09 0.172 

Basophil Overall 
Inverse variance 

weighted 
171 0.88 0.78 0.99 0.037 

Basophil Overall MR Egger 171 0.89 0.64 1.23 0.485 

Basophil Overall MR PRESSO 171 0.9 0.81 0.99 0.039 

Basophil Overall Weighted median 171 0.92 0.8 1.06 0.248 

Basophil Overall Weighted mode 171 0.94 0.75 1.19 0.628 

Basophil Proximal 
Inverse variance 

weighted 
174 0.87 0.74 1.03 0.103 

Basophil Proximal MR Egger 174 0.75 0.49 1.15 0.191 

Basophil Proximal MR PRESSO 174 0.91 0.79 1.06 0.226 

Basophil Proximal Weighted median 174 0.86 0.69 1.08 0.205 

Basophil Proximal Weighted mode 174 0.9 0.64 1.26 0.543 

Basophil Rectal 
Inverse variance 

weighted 
176 0.93 0.79 1.09 0.355 
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Exposure Outcome Method 
No 

SNPs 
OR LCI UCI P-value 

Basophil Rectal MR Egger 176 0.92 0.61 1.38 0.680 

Basophil Rectal MR PRESSO 176 0.91 0.78 1.07 0.252 

Basophil Rectal Weighted median 176 1.01 0.81 1.25 0.930 

Basophil Rectal Weighted mode 176 1.02 0.69 1.49 0.933 

Eosinophil Colon 
Inverse variance 

weighted 
397 0.9 0.84 0.96 0.001 

Eosinophil Colon MR Egger 397 0.78 0.68 0.89 0.000 

Eosinophil Colon MR PRESSO 397 0.9 0.84 0.96 0.001 

Eosinophil Colon Weighted median 397 0.87 0.79 0.95 0.002 

Eosinophil Colon Weighted mode 397 0.87 0.76 1 0.049 

Eosinophil Distal 
Inverse variance 

weighted 
397 0.89 0.82 0.97 0.007 

Eosinophil Distal MR Egger 397 0.75 0.63 0.88 0.001 

Eosinophil Distal MR PRESSO 397 0.9 0.83 0.97 0.009 

Eosinophil Distal Weighted median 397 0.86 0.77 0.97 0.012 

Eosinophil Distal Weighted mode 397 0.83 0.68 1.01 0.064 

Eosinophil Female 
Inverse variance 

weighted 
393 0.91 0.85 0.99 0.021 

Eosinophil Female MR Egger 393 0.8 0.68 0.93 0.004 

Eosinophil Female MR PRESSO 393 0.93 0.87 1.01 0.076 

Eosinophil Female Weighted median 393 0.91 0.82 1.02 0.095 

Eosinophil Female Weighted mode 393 0.93 0.76 1.13 0.473 

Eosinophil Male 
Inverse variance 

weighted 
398 0.94 0.88 1.01 0.119 

Eosinophil Male MR Egger 398 0.83 0.72 0.96 0.011 

Eosinophil Male MR PRESSO 398 0.93 0.87 1 0.045 

Eosinophil Male Weighted median 398 0.95 0.86 1.05 0.336 

Eosinophil Male Weighted mode 398 0.94 0.8 1.12 0.494 

Eosinophil Overall 
Inverse variance 

weighted 
396 0.93 0.88 0.98 0.012 

Eosinophil Overall MR Egger 396 0.82 0.73 0.92 0.001 

Eosinophil Overall MR PRESSO 396 0.94 0.89 0.99 0.016 

Eosinophil Overall Weighted median 396 0.9 0.83 0.98 0.010 

Eosinophil Overall Weighted mode 396 0.91 0.81 1.03 0.130 

Eosinophil Proximal 
Inverse variance 

weighted 
392 0.89 0.82 0.96 0.003 

Eosinophil Proximal MR Egger 392 0.81 0.69 0.96 0.014 

Eosinophil Proximal MR PRESSO 392 0.91 0.84 0.98 0.019 

Eosinophil Proximal Weighted median 392 0.91 0.81 1.02 0.090 
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Exposure Outcome Method 
No 

SNPs 
OR LCI UCI P-value 

Eosinophil Proximal Weighted mode 392 0.92 0.74 1.13 0.419 

Eosinophil Rectal 
Inverse variance 

weighted 
393 0.96 0.89 1.04 0.305 

Eosinophil Rectal MR Egger 393 0.88 0.75 1.02 0.086 

Eosinophil Rectal MR PRESSO 393       NA 

Eosinophil Rectal Weighted median 393 0.94 0.83 1.05 0.268 

Eosinophil Rectal Weighted mode 393 0.98 0.81 1.19 0.846 

Lymphocyte Colon 
Inverse variance 

weighted 
453 0.96 0.89 1.03 0.215 

Lymphocyte Colon MR Egger 453 0.91 0.78 1.05 0.186 

Lymphocyte Colon MR PRESSO 453 0.97 0.91 1.04 0.393 

Lymphocyte Colon Weighted median 453 0.99 0.9 1.08 0.763 

Lymphocyte Colon Weighted mode 453 1.03 0.83 1.27 0.802 

Lymphocyte Distal 
Inverse variance 

weighted 
449 0.92 0.85 1 0.056 

Lymphocyte Distal MR Egger 449 0.89 0.74 1.06 0.194 

Lymphocyte Distal MR PRESSO 449 0.95 0.87 1.03 0.180 

Lymphocyte Distal Weighted median 449 0.96 0.86 1.08 0.499 

Lymphocyte Distal Weighted mode 449 0.97 0.75 1.26 0.845 

Lymphocyte Female 
Inverse variance 

weighted 
443 0.96 0.88 1.04 0.273 

Lymphocyte Female MR Egger 443 0.79 0.66 0.94 0.008 

Lymphocyte Female MR PRESSO 443 0.98 0.91 1.06 0.672 

Lymphocyte Female Weighted median 443 0.91 0.81 1.03 0.126 

Lymphocyte Female Weighted mode 443 0.86 0.62 1.21 0.391 

Lymphocyte Male 
Inverse variance 

weighted 
444 0.97 0.9 1.04 0.395 

Lymphocyte Male MR Egger 444 0.99 0.85 1.17 0.945 

Lymphocyte Male MR PRESSO 444 0.98 0.91 1.06 0.637 

Lymphocyte Male Weighted median 444 1.03 0.92 1.15 0.622 

Lymphocyte Male Weighted mode 444 1.08 0.87 1.36 0.483 

Lymphocyte Overall 
Inverse variance 

weighted 
444 0.94 0.89 1 0.057 

Lymphocyte Overall MR Egger 444 0.87 0.76 0.99 0.040 

Lymphocyte Overall MR PRESSO 444 0.95 0.9 1.01 0.099 

Lymphocyte Overall Weighted median 444 0.94 0.87 1.02 0.134 

Lymphocyte Overall Weighted mode 444 0.9 0.74 1.08 0.255 

Lymphocyte Proximal 
Inverse variance 

weighted 
455 0.96 0.88 1.04 0.335 
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Exposure Outcome Method 
No 

SNPs 
OR LCI UCI P-value 

Lymphocyte Proximal MR Egger 455 0.86 0.72 1.02 0.092 

Lymphocyte Proximal MR PRESSO 455 0.99 0.91 1.07 0.806 

Lymphocyte Proximal Weighted median 455 1.03 0.91 1.16 0.641 

Lymphocyte Proximal Weighted mode 455 1.06 0.81 1.37 0.685 

Lymphocyte Rectal 
Inverse variance 

weighted 
452 0.93 0.85 1 0.063 

Lymphocyte Rectal MR Egger 452 0.84 0.7 1 0.047 

Lymphocyte Rectal MR PRESSO 452 0.92 0.85 1 0.049 

Lymphocyte Rectal Weighted median 452 0.93 0.82 1.05 0.235 

Lymphocyte Rectal Weighted mode 452 0.93 0.73 1.17 0.518 

Monocyte Colon 
Inverse variance 

weighted 
484 0.97 0.91 1.02 0.242 

Monocyte Colon MR Egger 484 0.97 0.87 1.07 0.543 

Monocyte Colon MR PRESSO 484 0.98 0.93 1.04 0.574 

Monocyte Colon Weighted median 484 1 0.92 1.09 0.993 

Monocyte Colon Weighted mode 484 1 0.91 1.09 0.942 

Monocyte Distal 
Inverse variance 

weighted 
479 0.95 0.89 1.03 0.204 

Monocyte Distal MR Egger 479 0.98 0.86 1.12 0.749 

Monocyte Distal MR PRESSO 479 0.99 0.92 1.06 0.690 

Monocyte Distal Weighted median 479 1 0.91 1.11 0.948 

Monocyte Distal Weighted mode 479 1.02 0.9 1.14 0.783 

Monocyte Female 
Inverse variance 

weighted 
477 0.98 0.92 1.04 0.467 

Monocyte Female MR Egger 477 0.96 0.85 1.07 0.443 

Monocyte Female MR PRESSO 477 0.98 0.92 1.04 0.459 

Monocyte Female Weighted median 477 0.94 0.85 1.05 0.286 

Monocyte Female Weighted mode 477 0.93 0.83 1.05 0.246 

Monocyte Male 
Inverse variance 

weighted 
480 0.95 0.89 1.01 0.089 

Monocyte Male MR Egger 480 1 0.9 1.12 0.982 

Monocyte Male MR PRESSO 480 0.95 0.89 1.01 0.086 

Monocyte Male Weighted median 480 1.03 0.94 1.13 0.544 

Monocyte Male Weighted mode 480 1.02 0.91 1.13 0.749 

Monocyte Overall 
Inverse variance 

weighted 
477 0.95 0.9 1 0.054 

Monocyte Overall MR Egger 477 0.95 0.87 1.04 0.306 

Monocyte Overall MR PRESSO 477 0.96 0.92 1.01 0.140 

Monocyte Overall Weighted median 477 0.97 0.91 1.04 0.458 
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Exposure Outcome Method 
No 

SNPs 
OR LCI UCI P-value 

Monocyte Overall Weighted mode 477 0.96 0.88 1.05 0.378 

Monocyte Proximal 
Inverse variance 

weighted 
487 0.96 0.89 1.03 0.216 

Monocyte Proximal MR Egger 487 0.98 0.86 1.11 0.751 

Monocyte Proximal MR PRESSO 487 0.96 0.9 1.02 0.200 

Monocyte Proximal Weighted median 487 0.99 0.89 1.11 0.885 

Monocyte Proximal Weighted mode 487 0.98 0.86 1.12 0.805 

Monocyte Rectal 
Inverse variance 

weighted 
484 0.95 0.89 1.03 0.200 

Monocyte Rectal MR Egger 484 0.98 0.86 1.12 0.791 

Monocyte Rectal MR PRESSO 484 0.97 0.91 1.05 0.479 

Monocyte Rectal Weighted median 484 0.97 0.86 1.1 0.665 

Monocyte Rectal Weighted mode 484 1.03 0.9 1.17 0.692 

Neutrophil Colon 
Inverse variance 

weighted 
390 0.95 0.87 1.03 0.225 

Neutrophil Colon MR Egger 390 0.96 0.8 1.15 0.640 

Neutrophil Colon MR PRESSO 390 0.95 0.88 1.02 0.168 

Neutrophil Colon Weighted median 390 1.04 0.93 1.15 0.521 

Neutrophil Colon Weighted mode 390 1.13 0.93 1.37 0.233 

Neutrophil Distal 
Inverse variance 

weighted 
398 0.96 0.87 1.06 0.440 

Neutrophil Distal MR Egger 398 1.06 0.85 1.32 0.603 

Neutrophil Distal MR PRESSO 398 0.94 0.86 1.03 0.191 

Neutrophil Distal Weighted median 398 0.98 0.86 1.12 0.796 

Neutrophil Distal Weighted mode 398 0.97 0.76 1.22 0.768 

Neutrophil Female 
Inverse variance 

weighted 
390 0.97 0.89 1.06 0.465 

Neutrophil Female MR Egger 390 0.98 0.81 1.19 0.852 

Neutrophil Female MR PRESSO 390 0.97 0.9 1.06 0.525 

Neutrophil Female Weighted median 390 0.98 0.87 1.11 0.769 

Neutrophil Female Weighted mode 390 1 0.81 1.25 0.967 

Neutrophil Male 
Inverse variance 

weighted 
391 1.01 0.92 1.1 0.851 

Neutrophil Male MR Egger 391 1.15 0.95 1.39 0.142 

Neutrophil Male MR PRESSO 391 0.98 0.9 1.07 0.681 

Neutrophil Male Weighted median 391 1.05 0.93 1.19 0.442 

Neutrophil Male Weighted mode 391 1.09 0.88 1.35 0.447 

Neutrophil Overall 
Inverse variance 

weighted 
387 0.97 0.9 1.05 0.500 
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Exposure Outcome Method 
No 

SNPs 
OR LCI UCI P-value 

Neutrophil Overall MR Egger 387 1.03 0.88 1.21 0.671 

Neutrophil Overall MR PRESSO 387 0.99 0.93 1.05 0.656 

Neutrophil Overall Weighted median 387 1 0.92 1.09 0.970 

Neutrophil Overall Weighted mode 387 1 0.87 1.17 0.952 

Neutrophil Proximal 
Inverse variance 

weighted 
382 0.93 0.84 1.02 0.116 

Neutrophil Proximal MR Egger 382 0.82 0.67 1 0.051 

Neutrophil Proximal MR PRESSO 382 0.96 0.88 1.05 0.353 

Neutrophil Proximal Weighted median 382 0.99 0.86 1.13 0.849 

Neutrophil Proximal Weighted mode 382 1.02 0.82 1.26 0.880 

Neutrophil Rectal 
Inverse variance 

weighted 
396 1.03 0.93 1.13 0.607 

Neutrophil Rectal MR Egger 396 1.07 0.88 1.31 0.496 

Neutrophil Rectal MR PRESSO 396 1.02 0.93 1.12 0.609 

Neutrophil Rectal Weighted median 396 1.03 0.9 1.18 0.637 

Neutrophil Rectal Weighted mode 396 1.07 0.83 1.39 0.580 
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Appendix 7. MVMR analyses summary. 

Exposure Outcome Method OR 

OR 

LCI OR UCI P-value BH P-value1 

Basophil Colon IVW MVMR (direct) 1.14 0.84 1.55 0.398245294 2.26E-03 

Basophil Distal IVW MVMR (direct) 1.29 0.90 1.86 0.165464984 2.38E-03 

Basophil Female IVW MVMR (direct) 1.27 0.90 1.79 0.167114023 5.10E-03 

Basophil Male IVW MVMR (direct) 0.99 0.71 1.36 0.926907635 5.86E-03 

Basophil Overall IVW MVMR (direct) 1.19 0.92 1.54 0.196510154 1.35E-02 

Basophil Proximal IVW MVMR (direct) 1.13 0.78 1.63 0.513197046 2.27E-02 

Basophil Rectal IVW MVMR (direct) 1.13 0.80 1.59 0.502402269 3.40E-02 

Eosinophil Colon IVW MVMR (direct) 0.84 0.75 0.94 0.001929124 4.79E-02 

Eosinophil Distal IVW MVMR (direct) 0.88 0.77 1.00 0.048927969 8.74E-02 

Eosinophil Female IVW MVMR (direct) 0.83 0.73 0.94 0.003895395 1.71E-01 

Eosinophil Male IVW MVMR (direct) 0.92 0.81 1.03 0.142140639 2.80E-01 

Eosinophil Overall IVW MVMR (direct) 0.88 0.80 0.97 0.0109405 3.30E-01 

Eosinophil Proximal IVW MVMR (direct) 0.79 0.69 0.90 0.000437523 3.83E-01 

Eosinophil Rectal IVW MVMR (direct) 0.95 0.83 1.07 0.387621542 3.90E-01 

Lymphocyte Colon IVW MVMR (direct) 0.85 0.76 0.96 0.006790761 4.05E-01 

Lymphocyte Distal IVW MVMR (direct) 0.77 0.67 0.88 0.00013601 4.14E-01 

Lymphocyte Female IVW MVMR (direct) 0.76 0.67 0.87 6.46E-05 4.21E-01 

Lymphocyte Male IVW MVMR (direct) 0.94 0.83 1.06 0.305639437 4.24E-01 

Lymphocyte Overall IVW MVMR (direct) 0.84 0.76 0.93 0.000670022 5.63E-01 

Lymphocyte Proximal IVW MVMR (direct) 0.89 0.77 1.02 0.08805435 5.89E-01 

Lymphocyte Rectal IVW MVMR (direct) 0.86 0.75 0.98 0.02246793 6.09E-01 

Monocyte Colon IVW MVMR (direct) 1.02 0.93 1.11 0.687426188 6.12E-01 

Monocyte Distal IVW MVMR (direct) 0.99 0.88 1.10 0.822614976 6.14E-01 

Monocyte Female IVW MVMR (direct) 1.00 0.91 1.11 0.941591766 6.34E-01 

Monocyte Male IVW MVMR (direct) 0.94 0.86 1.04 0.217817562 6.41E-01 

Monocyte Overall IVW MVMR (direct) 0.97 0.90 1.05 0.506276497 6.46E-01 

Monocyte Proximal IVW MVMR (direct) 1.05 0.94 1.17 0.420872341 6.56E-01 

Monocyte Rectal IVW MVMR (direct) 0.92 0.83 1.02 0.113170722 6.76E-01 

Neutrophil Colon IVW MVMR (direct) 0.94 0.82 1.08 0.403461408 8.30E-01 

Neutrophil Distal IVW MVMR (direct) 1.00 0.85 1.17 0.987074608 8.42E-01 

Neutrophil Female IVW MVMR (direct) 1.01 0.87 1.17 0.91773417 9.29E-01 

Neutrophil Male IVW MVMR (direct) 0.94 0.82 1.08 0.419566677 9.69E-01 

Neutrophil Overall IVW MVMR (direct) 0.95 0.85 1.06 0.348251285 9.83E-01 

Neutrophil Proximal IVW MVMR (direct) 0.90 0.77 1.05 0.19262925 9.87E-01 

Neutrophil Rectal IVW MVMR (direct) 0.97 0.84 1.13 0.721558819 1.00E+00 

 

1Benjamini-Hochberg (FDR) multiple testing correction adjusted P-values for 35 

independent tests.
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Appendix 8. Univariable observational analysis of WBC count on overall, and by genetic 
sex CRC. 

Exposure Outcome Analysis type Model OR LCI UCI P-value 

Basophil Overall Univariable Model 1 1.06 1.02 1.09 0.0004455 

Basophil Male Univariable Model 1 1.02 0.98 1.07 0.240227 

Basophil Female Univariable Model 1 1.03 0.98 1.08 0.252134 

Eosinophil Overall Univariable Model 1 0.97 0.94 1 0.0966543 

Eosinophil Male Univariable Model 1 0.96 0.92 1 0.0485831 

Eosinophil Female Univariable Model 1 1 0.95 1.05 0.9492865 

Lymphocyte Overall Univariable Model 1 1 0.97 1.04 0.7633771 

Lymphocyte Male Univariable Model 1 1 0.96 1.04 0.9784208 

Lymphocyte Female Univariable Model 1 1.03 0.98 1.08 0.1986498 

Monocyte Overall Univariable Model 1 1.05 1.02 1.08 0.0032073 

Monocyte Male Univariable Model 1 1.02 0.98 1.06 0.3028392 

Monocyte Female Univariable Model 1 1.06 1.01 1.11 0.0118104 

Neutrophil Overall Univariable Model 1 1.09 1.06 1.13 1.94E-08 

Neutrophil Male Univariable Model 1 1.08 1.04 1.13 0.0001752 

Neutrophil Female Univariable Model 1 1.07 1.02 1.12 0.0060642 

Basophil Overall Univariable Model 2 1.04 1.01 1.07 0.0139836 

Basophil Male Univariable Model 2 1.02 0.98 1.06 0.4221856 

Basophil Female Univariable Model 2 1.01 0.96 1.06 0.6618079 

Eosinophil Overall Univariable Model 2 0.96 0.93 0.99 0.0215153 

Eosinophil Male Univariable Model 2 0.95 0.91 0.99 0.0201037 

Eosinophil Female Univariable Model 2 0.99 0.94 1.03 0.5515385 

Lymphocyte Overall Univariable Model 2 0.98 0.95 1.02 0.3392471 

Lymphocyte Male Univariable Model 2 0.97 0.94 1.02 0.2176043 

Lymphocyte Female Univariable Model 2 1.01 0.97 1.06 0.5394318 

Monocyte Overall Univariable Model 2 1.03 1 1.07 0.0331332 

Monocyte Male Univariable Model 2 1 0.96 1.04 0.9797341 

Monocyte Female Univariable Model 2 1.06 1.01 1.11 0.0266179 

Neutrophil Overall Univariable Model 2 1.08 1.05 1.11 1.51E-06 

Neutrophil Male Univariable Model 2 1.07 1.02 1.11 0.0020307 

Neutrophil Female Univariable Model 2 1.06 1.01 1.11 0.0263914 
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Appendix 9. Observational analysis of WBC traits, adjusted between each other on 
overall, and by genetic sex CRC. 

Exposure Outcome Analysis type Model OR LCI UCI P-value 

Basophil Overall Multivariable Model 1 1.04 1.01 1.08 0.008168 

Basophil Male Multivariable Model 1 1.02 0.97 1.06 0.4469032 

Basophil Female Multivariable Model 1 1.01 0.96 1.06 0.6789682 

Eosinophil Overall Multivariable Model 1 0.96 0.93 0.99 0.0092955 

Eosinophil Male Multivariable Model 1 0.95 0.91 0.99 0.018828 

Eosinophil Female Multivariable Model 1 0.98 0.93 1.03 0.3967718 

Lymphocyte Overall Multivariable Model 1 0.98 0.94 1.01 0.1903065 

Lymphocyte Male Multivariable Model 1 0.99 0.95 1.04 0.6876938 

Lymphocyte Female Multivariable Model 1 1 0.95 1.06 0.869115 

Monocyte Overall Multivariable Model 1 1.03 1 1.07 0.084775 

Monocyte Male Multivariable Model 1 1.01 0.96 1.06 0.7300268 

Monocyte Female Multivariable Model 1 1.05 0.99 1.1 0.0874193 

Neutrophil Overall Multivariable Model 1 1.08 1.05 1.12 1.92E-06 

Neutrophil Male Multivariable Model 1 1.08 1.04 1.13 0.0003537 

Neutrophil Female Multivariable Model 1 1.05 1 1.11 0.0463839 

Basophil Overall Multivariable Model 2 1.03 1 1.07 0.0475975 

Basophil Male Multivariable Model 2 1.02 0.97 1.06 0.4290144 

Basophil Female Multivariable Model 2 1 0.95 1.05 0.9332657 

Eosinophil Overall Multivariable Model 2 0.96 0.93 0.99 0.0058224 

Eosinophil Male Multivariable Model 2 0.95 0.91 0.99 0.0250332 

Eosinophil Female Multivariable Model 2 0.97 0.93 1.02 0.2623026 

Lymphocyte Overall Multivariable Model 2 0.97 0.94 1 0.0552767 

Lymphocyte Male Multivariable Model 2 0.97 0.93 1.02 0.2245981 

Lymphocyte Female Multivariable Model 2 1 0.95 1.05 0.8695197 

Monocyte Overall Multivariable Model 2 1.03 0.99 1.06 0.1205044 

Monocyte Male Multivariable Model 2 1 0.95 1.04 0.8797589 

Monocyte Female Multivariable Model 2 1.05 1 1.11 0.0687917 

Neutrophil Overall Multivariable Model 2 1.07 1.04 1.11 1.57E-05 

Neutrophil Male Multivariable Model 2 1.07 1.03 1.12 0.0013675 

Neutrophil Female Multivariable Model 2 1.04 0.99 1.1 0.0865551 
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Appendix 10. UVMR analysis between allergic disease and CRC. 

Exposure Outcome Method No SNPs OR LCI UCI P-value 

Allergic disease Colon Inverse variance weighted 79 0.88 0.8 0.97 0.00787327 

Allergic disease Colon MR Egger 79 0.81 0.63 1.03 0.09398785 

Allergic disease Colon MR PRESSO 79 0.88 0.82 0.94 0.00036776 

Allergic disease Colon Weighted median 79 0.92 0.83 1.01 0.0750271 

Allergic disease Colon Weighted mode 79 0.93 0.79 1.09 0.37493087 

Allergic disease Distal Inverse variance weighted 78 0.91 0.82 1.01 0.06698952 

Allergic disease Distal MR Egger 78 0.87 0.66 1.15 0.33837906 

Allergic disease Distal MR PRESSO 78 0.89 0.82 0.98 0.01487843 

Allergic disease Distal Weighted median 78 0.88 0.78 1 0.0506209 

Allergic disease Distal Weighted mode 78 0.83 0.68 1.02 0.07936828 

Allergic disease Female Inverse variance weighted 77 0.87 0.78 0.96 0.00541118 

Allergic disease Female MR Egger 77 0.68 0.52 0.89 0.00703118 

Allergic disease Female MR PRESSO 77 0.87 0.8 0.96 0.00399098 

Allergic disease Female Weighted median 77 0.85 0.75 0.95 0.00459797 

Allergic disease Female Weighted mode 77 0.82 0.69 0.98 0.02914724 

Allergic disease Male Inverse variance weighted 80 0.92 0.85 0.99 0.03389726 

Allergic disease Male MR Egger 80 1.15 0.93 1.42 0.21443635 

Allergic disease Male MR PRESSO 80    NA 

Allergic disease Male Weighted median 80 0.93 0.83 1.04 0.18496623 

Allergic disease Male Weighted mode 80 0.99 0.84 1.15 0.8738974 

Allergic disease Overall Inverse variance weighted 81 0.89 0.82 0.96 0.00319495 

Allergic disease Overall MR Egger 81 0.84 0.68 1.05 0.12746211 

Allergic disease Overall MR PRESSO 81 0.88 0.83 0.94 0.00026143 

Allergic disease Overall Weighted median 81 0.93 0.85 1.01 0.08495569 

Allergic disease Overall Weighted mode 81 0.94 0.83 1.07 0.37462223 

Allergic disease Proximal Inverse variance weighted 79 0.87 0.78 0.97 0.01100713 

Allergic disease Proximal MR Egger 79 0.77 0.57 1.03 0.08357488 

Allergic disease Proximal MR PRESSO 79 0.86 0.79 0.94 0.00145658 

Allergic disease Proximal Weighted median 79 0.83 0.73 0.94 0.00313491 

Allergic disease Proximal Weighted mode 79 0.8 0.63 1.01 0.06986964 

Allergic disease Rectal Inverse variance weighted 80 0.97 0.88 1.07 0.5052078 

Allergic disease Rectal MR Egger 80 0.97 0.74 1.27 0.84002279 

Allergic disease Rectal MR PRESSO 80 0.94 0.86 1.03 0.1902516 

Allergic disease Rectal Weighted median 80 1 0.89 1.12 0.94142787 

Allergic disease Rectal Weighted mode 80 0.99 0.85 1.17 0.94798691 
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Appendix 11. Steps undertaken in the PCA analysis. 

Continental 

ancestry 

group (CAG) 

Nr. 

individuals 

with 80% 

ancestry 

assigned to 

CAG 

Step 1 - 

Unrelated 

individuals 

Step 2 - LD 

independent 

SNPs 

Step 3 - LD independent 

PLINK files 

Step 4 - smartrel 

Related 

individuals 

projected 

Step 5 - smartpca 

Generating PCs 

Step 6 - 

Outlier 

removal 

European  50,685 39006 40095 values from column B and D 

12182 (derived 

from step1, as 

smartrel failed with 

the EUR sample) 

Smartpca to estimate 

PCs only on unrelated 

followed by projection 

of those related + 1KG 

corresponding 

Superpopulation 

NA (ran in fast 

mode with no 

exclusions) 

African 6,653 5306 48818 values from column B and D 541 

Smartpca to estimate 

PCs only on unrelated 

followed by projection 

of those related + 1KG 

corresponding 

Superpopulation 

148 

East Asian 2868 1692 47113 values from column B and D 29 

Smartpca to estimate 

PCs only on unrelated 

followed by projection 

of those related + 1KG 

corresponding 

Superpopulation 

89 
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South Asian 3271 1919 43915 values from column B and D 208 

Smartpca to estimate 

PCs only on unrelated 

followed by projection 

of those related + 1KG 

corresponding 

Superpopulation 

92 
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Appendix 12. Continents used in the study along with UN regions and countries 
associated with each region. 

Continent Geoscheme region Country 

Africa Northern Africa Algeria 

Africa Northern Africa Egypt 

Africa Northern Africa Libya 

Africa Northern Africa Morocco 

Africa Northern Africa Sudan 

Africa Northern Africa Tunisia 

Africa Northern Africa Western Sahara 

Africa Eastern Africa British Indian Ocean Territory 

Africa Eastern Africa Burundi 

Africa Eastern Africa Comoros 

Africa Eastern Africa Djibouti 

Africa Eastern Africa Eritrea 

Africa Eastern Africa Ethiopia 

Africa Eastern Africa French Southern Territories 

Africa Eastern Africa Kenya 

Africa Eastern Africa Madagascar 

Africa Eastern Africa Malawi 

Africa Eastern Africa Mauritius 

Africa Eastern Africa Mayotte 

Africa Eastern Africa Mozambique 

Africa Eastern Africa Reunion 

Africa Eastern Africa Rwanda 

Africa Eastern Africa Saychelles 

Africa Eastern Africa Somalia 

Africa Eastern Africa South Sudan 

Africa Eastern Africa Uganda 

Africa Eastern Africa United Republic of Tanzania 

Africa Eastern Africa Zambia 

Africa Eastern Africa Zimbabwe 

Africa Central/Middle Africa Angola 

Africa Central/Middle Africa Cameroon 

Africa Central/Middle Africa Central African Republic 

Africa Central/Middle Africa Chad 

Africa Central/Middle Africa Congo 

Africa Central/Middle Africa Democratic Republic of the Congo 

Africa Central/Middle Africa Equatorial Guinea 

Africa Central/Middle Africa Gabon 

Africa Central/Middle Africa Sao Tome and Principe 



  330 

Continent Geoscheme region Country 

Africa Southern Africa Botswana 

Africa Southern Africa Eswatini 

Africa Southern Africa Lesotho 

Africa Southern Africa Namibia 

Africa Southern Africa South Africa 

Africa Western Africa Benin 

Africa Western Africa Burkina Faso 

Africa Western Africa Cabo Verde 

Africa Western Africa Cote d'Ivoire 

Africa Western Africa Gambia 

Africa Western Africa Ghana 

Africa Western Africa Guinea 

Africa Western Africa Guinea-Bissau 

Africa Western Africa Liberia 

Africa Western Africa Mali 

Africa Western Africa Mauritania 

Africa Western Africa Niger 

Africa Western Africa Nigeria 

Africa Western Africa Saint Helena 

Africa Western Africa Senegal 

Africa Western Africa Sierra Leone 

Africa Western Africa Togo 

Asia Central Asia Kazakhstan 

Asia Central Asia Kyrgystan 

Asia Central Asia Tajikistan 

Asia Central Asia Turkmenistan 

Asia Central Asia Uzbekistan 

Asia Eastern Asia China 

Asia Eastern Asia China, Hong Kong Special Administrative Region 

Asia Eastern Asia China, Macao Special Administrative Region 

Asia Eastern Asia Democratic People's Republic of Korea 

Asia Eastern Asia Japan 

Asia Eastern Asia Mongolia 

Asia Eastern Asia Republic of Korea 

Asia South-eastern Asia Brunei Darussalam 

Asia South-eastern Asia Cambodia 

Asia South-eastern Asia Indonesia 

Asia South-eastern Asia Lao People's Democratic Republic 

Asia South-eastern Asia Malaysia 

Asia South-eastern Asia Myanmar 
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Continent Geoscheme region Country 

Asia South-eastern Asia Philippines 

Asia South-eastern Asia Singapore 

Asia South-eastern Asia Thailand 

Asia South-eastern Asia Timor-Leste 

Asia South-eastern Asia Vietnam 

Asia Southern Asia Afghanistan 

Asia Southern Asia Bangladesh 

Asia Southern Asia Bhutan 

Asia Southern Asia India 

Asia Southern Asia Islamic Republic of Iran 

Asia Southern Asia Maldives 

Asia Southern Asia Nepal 

Asia Southern Asia Pakistan 

Asia Southern Asia Sri Lanka 

Asia Western Asia Armenia 

Asia Western Asia Azerbaijan 

Asia Western Asia Bahrain 

Asia Western Asia Cyprus 

Asia Western Asia Georgia 

Asia Western Asia Iraq 

Asia Western Asia Israel 

Asia Western Asia Jordan 

Asia Western Asia Kuwait 

Asia Western Asia Lebanon 

Asia Western Asia Oman 

Asia Western Asia Qatar 

Asia Western Asia Saudi Arabia 

Asia Western Asia State of Palestine 

Asia Western Asia Syrian Arab Republic 

Asia Western Asia Turkey 

Asia Western Asia United Arab Emirates 

Asia Western Asia Yemen 

Europe Eastern Europe Belarus 

Europe Eastern Europe Bulgaria 

Europe Eastern Europe Czechia 

Europe Eastern Europe Hungary 

Europe Eastern Europe Poland 

Europe Eastern Europe Republic of Moldova 

Europe Eastern Europe Romania 

Europe Eastern Europe Russian Federation 
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Continent Geoscheme region Country 

Europe Eastern Europe Slovakia 

Europe Eastern Europe Ukraine 

Europe Northern Europe Aland Islands 

Europe Northern Europe Channel Islands 

Europe Northern Europe Denmark 

Europe Northern Europe Estonia 

Europe Northern Europe Faroe Islands 

Europe Northern Europe Finland 

Europe Northern Europe Iceland 

Europe Northern Europe Ireland 

Europe Northern Europe Isle of Man 

Europe Northern Europe Latvia 

Europe Northern Europe Lithuania 

Europe Northern Europe Norway 

Europe Northern Europe Svalbard and Jan Mayen Islands 

Europe Northern Europe Sweden 

Europe Northern Europe United Kingdom of Great Britain and Northern Ireland 

Europe Southern Europe Albania 

Europe Southern Europe Andorra 

Europe Southern Europe Bosnia and Herzegovina 

Europe Southern Europe Croatia 

Europe Southern Europe Gibraltar 

Europe Southern Europe Greece 

Europe Southern Europe Holy See 

Europe Southern Europe Italy 

Europe Southern Europe Malta 

Europe Southern Europe Montenegro 

Europe Southern Europe North Macedonia 

Europe Southern Europe Portugal 

Europe Southern Europe San Marino 

Europe Southern Europe Serbia 

Europe Southern Europe Slovenia 

Europe Southern Europe Spain 

Europe Western Europe Austria 

Europe Western Europe Belgium 

Europe Western Europe France 

Europe Western Europe Germany 

Europe Western Europe Lichtenstein 

Europe Western Europe Luxembourg 

Europe Western Europe Monaco 
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Continent Geoscheme region Country 

Europe Western Europe Netherlands 

Europe Western Europe Switzerland 
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Appendix 13. PCs for each CAG and their respective eigenvalues. 

Continental ancestry group Principal component Eigenvalue (%) 

African PC1 10.82 

African PC2 10.00 

African PC3 4.95 

African PC4 2.82 

South Asian PC1 7.11 

South Asian PC2 5.38 

South Asian PC3 3.42 

South Asian PC4 3.06 

South Asian PC5 2.66 

East Asian PC1 15.93 

East Asian PC2 8.48 

East Asian PC3 4.69 

East Asian PC4 3.60 

European PC1 38.30 
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Appendix 14. PC1 on PCs 2-7 (A-F) with variance explained on the axis labels. 

Information on each 1000 Genomes sub-population is available at 
https://catalog.coriell.org/0/Sections/Collections/NHGRI/1000genome.aspx. 

 

 

Appendix 15. Silhouette analysis for optimal k K-cluster identification.  

Average silhouette width was calculated for k = 2-20. The x-axis represents the K-
cluster number, while the y-axis is the average silhouette width, a larger value 
indicating a better fit. 
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Appendix 16. Correspondence analyses for EUR, SAS and EAS CAGs. 

Continental ancestry group Type1 Dimension 

Variance 

explained (%) 

South Asian ROB Dimension 1 80.00 

South Asian ROB Dimension 2 18.20 

South Asian COB Dimension 1 61.60 

South Asian COB Dimension 2 25.31 

South Asian COB Dimension 3 13.09 

East Asian ROB Dimension 1 92.11 

East Asian ROB Dimension 2 7.89 

East Asian COB Dimension 1 50.49 

East Asian COB Dimension 2 49.51 

European ROB Dimension 1 58.25 

European ROB Dimension 2 28.67 

European COB Dimension 1 40.43 

European COB Dimension 2 31.89 

European COB Dimension 3 22.09 

European COB Dimension 4 4.53 

1COB = country of birth; ROB = UN region based on COB data 
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Appendix 17. Regional plots of index SNPs (1). 
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Appendix 18. Regional plots of index SNPs (2). 
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Appendix 19. Regional plots of index SNPs (3). 
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Appendix 20. Summary statistics for neutrophil count (clumping r2 = 0.1).  

N.META = sample-size in the SNPTEST/META run; K.META = number of K-means clusters used in the SNPTEST/META run. 

SNP CHR BP (GRCh37) EA NEA EAF INFO BETA.BOLT SE.BOLT P.BOLT N.META K.META 

rs28734019 1 90800573 C T 0.998 0.35 -0.65 0.12 2.90E-08 4124 4 

rs12747038 1 146651428 T G 0.990 0.93 -0.22 0.04 3.90E-09 5976 7 

rs112483667 1 151651180 A AT 0.974 0.97 -0.13 0.02 1.70E-08 5976 7 

rs11581802 1 152936164 G A 0.976 0.91 -0.17 0.02 1.10E-12 5976 7 

rs9330298 1 153590254 C A 0.942 0.80 -0.11 0.02 4.70E-10 5976 7 

rs72696290 1 154345686 T C 0.944 0.98 -0.09 0.02 5.60E-09 5976 7 

rs61811432 1 154684462 C T 0.975 0.71 -0.16 0.03 5.00E-09 5976 7 

rs4845401 1 154941593 C G 0.979 1.00 -0.14 0.03 1.40E-08 5976 7 

rs61811895 1 154976137 G T 0.995 1.00 -0.31 0.05 7.50E-10 4124 4 

rs11582072 1 155477570 T C 0.971 1.00 -0.21 0.02 1.00E-19 5976 7 

rs670523 1 155878732 A G 0.959 0.91 -0.15 0.02 2.10E-14 5976 7 

rs3768276 1 156198366 G A 0.966 0.84 -0.18 0.02 1.40E-15 5976 7 

rs10908505 1 156468243 T A 0.968 0.91 -0.17 0.02 2.20E-14 5976 7 

rs11264504 1 156560624 C T 0.848 0.99 -0.06 0.01 1.10E-10 5976 7 

rs12566986 1 156728317 G A 0.977 0.93 -0.14 0.02 2.70E-08 5976 7 

rs2768759 1 156852463 A C 0.931 1.00 -0.10 0.01 2.00E-13 5976 7 

rs17404670 1 157066893 G A 0.971 0.77 -0.15 0.02 2.20E-10 5976 7 

rs10908530 1 157076715 C T 0.966 0.70 -0.13 0.02 3.10E-08 5976 7 

rs12138690 1 157415618 T C 0.985 0.77 -0.21 0.03 1.80E-10 5976 7 

rs3811035 1 157485561 G A 0.910 0.86 -0.11 0.01 1.10E-15 5976 7 

rs12406899 1 157540651 T G 0.911 0.95 -0.07 0.01 1.90E-08 5975 7 

rs7535596 1 157673356 A G 0.125 0.94 0.07 0.01 1.20E-10 5975 7 

rs2210914 1 157673628 T C 0.011 0.88 0.34 0.04 8.80E-22 4643 5 
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rs4272616 1 157865663 T C 0.041 0.85 0.11 0.02 2.40E-08 5976 7 

rs927698 1 157926455 G A 0.972 0.82 -0.19 0.02 9.80E-16 5976 7 

rs1888821 1 157977753 C A 0.995 1.00 -0.29 0.05 1.50E-08 3859 5 

rs6427419 1 158058109 C A 0.962 1.00 -0.16 0.02 2.90E-17 5976 7 

rs74781198 1 158075448 C T 0.998 1.00 -0.46 0.08 3.00E-09 3157 3 

rs371178711 1 158186653 C T 0.969 0.90 -0.17 0.02 6.90E-15 5976 7 

rs74802440 1 158490785 A T 0.994 0.87 -0.30 0.05 1.30E-10 3859 5 

rs12044097 1 158597309 A G 0.992 1.00 -0.22 0.04 2.60E-08 3157 3 

rs34542525 1 158664483 A G 0.998 1.00 -0.48 0.08 1.00E-09 3157 3 

rs539456851 1 158731459 T TTA 0.982 0.73 -0.27 0.03 2.20E-17 5976 7 

1:158777618_CT_C 1 158777618 CT C 0.050 0.76 0.12 0.02 1.40E-10 5976 7 

rs34167592 1 158883393 C A 0.960 0.78 -0.12 0.02 4.10E-09 5976 7 

rs1103805 1 158924741 C A 0.929 0.91 -0.08 0.01 3.20E-08 5976 7 

rs146677619 1 158995984 A AT 0.991 0.66 -0.35 0.05 3.70E-13 5793 6 

rs703153 1 159105879 C G 0.007 0.86 0.27 0.05 4.40E-09 5793 6 

rs2814778 1 159174683 T C 0.036 1.00 0.43 0.02 2.70E-87 5793 6 

rs56921594 1 159314302 A G 0.993 0.97 -0.26 0.04 4.10E-11 5976 7 

rs77238873 1 159369847 T C 0.997 0.91 -0.37 0.06 2.60E-09 4826 5 

rs1446968 1 159535940 G C 0.994 1.00 -0.30 0.05 3.30E-10 3157 3 

rs61823703 1 159542164 T C 0.987 0.82 -0.31 0.04 6.00E-19 5793 6 

rs61380083 1 159604428 C A 0.995 1.00 -0.29 0.05 3.40E-08 3859 5 

rs12760041 1 159714035 C T 0.979 0.94 -0.19 0.03 2.10E-14 5793 6 

rs6677719 1 159723120 C T 0.027 0.86 0.14 0.02 3.10E-09 5976 7 

rs11591079 1 159796302 G T 0.990 0.71 -0.23 0.04 4.00E-08 5975 7 

rs11422063 1 159799599 C CA 0.022 0.50 0.19 0.03 1.20E-08 5976 7 

rs4656856 1 159859392 C T 0.987 1.00 -0.31 0.03 1.50E-22 3340 4 
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rs2789423 1 159885500 G A 0.946 1.00 -0.11 0.02 1.80E-13 5976 7 

rs1320568 1 159912346 A G 0.958 1.00 -0.11 0.02 1.30E-09 5976 7 

rs16831234 1 159977732 T A 0.981 0.91 -0.15 0.03 4.30E-08 5976 7 

rs1186685 1 160029212 A G 0.984 0.85 -0.20 0.03 2.70E-11 5976 7 

rs12402888 1 160059748 C A 0.995 0.82 -0.34 0.05 3.40E-10 4307 4 

rs2369725 1 160587202 A T 0.979 0.93 -0.18 0.03 2.00E-12 5976 7 

rs535622 1 160710745 C T 0.982 0.87 -0.21 0.03 4.50E-13 5976 7 

rs11576058 1 161111446 C A 0.979 0.98 -0.16 0.02 9.80E-11 5976 7 

rs78603008 1 161559720 G A 0.984 1.00 -0.16 0.03 1.70E-09 5793 6 

rs6695760 1 161885545 G C 0.966 0.95 -0.20 0.02 1.90E-20 5976 7 

rs12737539 1 162198429 G A 0.942 0.84 -0.11 0.02 1.60E-11 5976 7 

rs4657188 1 162347877 G C 0.972 1.00 -0.12 0.02 1.20E-08 5976 7 

rs12730805 1 162873220 C A 0.993 1.00 -0.26 0.04 1.00E-09 4124 4 

rs10733036 1 162918475 G A 0.015 0.90 0.17 0.03 1.50E-08 5976 7 

rs12037463 1 164512386 C T 0.985 0.93 -0.16 0.03 3.80E-08 5976 7 

rs183362544 2 97045902 C T 0.998 0.67 0.61 0.11 1.30E-08 2717 4 

rs144109344 2 136787730 C T 0.964 0.93 -0.12 0.02 3.10E-10 5976 7 

rs557482905 5 80629499 C T 0.998 0.75 0.55 0.10 5.80E-09 3778 4 

rs527921556 6 160605701 T C 0.996 0.69 0.40 0.07 4.50E-09 5793 6 

rs10096834 8 116281087 T C 0.573 0.98 0.04 0.01 2.30E-08 5976 7 

rs140048432 9 17700893 T C 0.996 0.86 -0.33 0.06 1.10E-08 5976 7 

rs530475031 12 48810860 G T 0.998 0.37 0.73 0.12 3.20E-09 4952 5 

rs558204720 16 59472815 T C 0.998 0.84 0.52 0.09 1.70E-08 1486 2 

rs138163369 18 6492075 T C 0.998 0.58 0.53 0.10 4.90E-08 4619 5 
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Appendix 21. Independent SNPs from the main GWAS inside GWAS Catalog. 

SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs11581802 1 152887412 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs11584009 1 153081204 32888493 Chen MH 01/09/2020 Monocyte count 

rs9330298 1 153628645 32888493 Chen MH 01/09/2020 Monocyte count 

rs11582072 1 155273869 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs12134456 1 155722506 31152163 Wuttke M 31/05/2019 Blood urea nitrogen levels 

rs12134456 1 155722506 31676860 Zhao B 01/11/2019 Brain region volumes 

rs12134456 1 155722506 32888493 Chen MH 01/09/2020 Mean corpuscular hemoglobin concentration 

rs12134456 1 155722506 31578528 Tin A 02/10/2019 Urate levels 

rs12134456 1 155722506 31578528 Tin A 02/10/2019 Urate levels 

rs12134456 1 155722506 31578528 Tin A 02/10/2019 Urate levels 

rs3856261 1 155876613 26198764 Goes FS 21/07/2015 Schizophrenia 

rs3856261 1 155876613 30595370 Kichaev G 27/12/2018 Eczema 

rs11582072 1 155878732 23128233 Jostins L 01/11/2012 Inflammatory bowel disease 

rs11582072 1 155878732 26192919 Liu JZ 20/07/2015 Crohn's disease 

rs11582072 1 155878732 31043758 Warrington NM 01/05/2019 Birth weight 

rs11582072 1 155907823 31217584 Wojcik GL 19/06/2019 White blood cell count 

rs10908505 1 156406381 30595370 Kichaev G 27/12/2018 Body mass index 

rs10908505 1 156468243 30595370 Kichaev G 27/12/2018 Height 

rs10908505 1 156468243 32888494 Vuckovic D 01/09/2020 Plateletcrit 

rs849830 1 157527250 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 



  344 

SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs11582663 1 157559122 29875488 Sun BB 06/06/2018 Blood protein levels 

rs11582663 1 157561420 30072576 Emilsson V 02/08/2018 Blood protein levels 

rs11582663 1 157561420 30072576 Emilsson V 02/08/2018 Blood protein levels 

rs11264798 1 157668993 27723758 Bronson PG 10/10/2016 Selective IgA deficiency 

rs11264798 1 157670816 21829393 Plagnol V 04/08/2011 

Insulinoma-associated antigen 2 autoantibody levels in 

type 1 diabetes 

rs11264798 1 157670816 29875488 Sun BB 06/06/2018 Blood protein levels 

rs6427401 1 157674997 24390342 Okada Y 25/12/2013 Rheumatoid arthritis 

rs6427401 1 157674997 30423114 Laufer VA 13/11/2018 Rheumatoid arthritis 

rs6427401 1 157674997 32514122 Ishigaki K 08/06/2020 Graves' disease 

rs6427401 1 157674997 33272962 Yin X 03/12/2020 Systemic lupus erythematosus 

rs6427401 1 157748564 30072576 Emilsson V 02/08/2018 Blood protein levels 

rs6427401 1 157779182 29875488 Sun BB 06/06/2018 Blood protein levels 

rs6427401 1 157798000 30895295 

Jonnalagadda 

M 21/03/2019 Iris heterochromicity 

rs7534518 1 157798923 30072576 Emilsson V 02/08/2018 Blood protein levels 

rs7534518 1 157798923 30072576 Emilsson V 02/08/2018 Blood protein levels 

rs7534518 1 157798923 30072576 Emilsson V 02/08/2018 Blood protein levels 

rs7534518 1 157798923 30072576 Emilsson V 02/08/2018 Blood protein levels 

rs6427419 1 158058109 23251661 Comuzzie AG 04/12/2012 Obesity-related traits 
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SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs74802440 1 158518050 33462484 

Sinnott-

Armstrong N 18/01/2021 Glycated hemoglobin levels 

rs34542525 1 158664483 33462484 

Sinnott-

Armstrong N 18/01/2021 Glycated hemoglobin levels 

rs10489844 1 158728389 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs4657616 1 158971086 23263863 Li J 20/12/2012 Hematology traits 

rs4657616 1 158971086 31217584 Wojcik GL 19/06/2019 White blood cell count 

rs856046 1 158983593 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs856046 1 158987941 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs856046 1 159012646 25884002 Moore CB 09/01/2015 Neutrophil count in HIV-infection 

rs856046 1 159062436 25096241 Keller MF 05/08/2014 White blood cell count 

rs856046 1 159062436 25096241 Keller MF 05/08/2014 White blood cell count 

rs856046 1 159062436 31217584 Wojcik GL 19/06/2019 White blood cell count 

rs4656165 1 159167290 30038396 Lee JJ 23/07/2018 Educational attainment (years of education) 

rs4656165 1 159167290 30038396 Lee JJ 23/07/2018 Educational attainment (MTAG) 

rs4656165 1 159169463 32296059 Han Y 15/04/2020 Asthma 

rs4656165 1 159169463 31374203 Lam M 01/08/2019 

Cognitive ability, years of educational attainment or 

schizophrenia (pleiotropy) 

rs2814778 1 159174683 21507922 Ramsuran V 01/05/2011 Neutrophil count 

rs2814778 1 159174683 22037903 Crosslin DR 30/10/2011 White blood cell count 

rs2814778 1 159174683 31869403 Kowalski MH 23/12/2019 White blood cell count 
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SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs2814778 1 159174683 31675503 Gurdasani D 01/10/2019 White blood cell count 

rs2814778 1 159174683 31675503 Gurdasani D 01/10/2019 Monocyte count 

rs2814778 1 159174683 31675503 Gurdasani D 01/10/2019 Neutrophil count 

rs2814778 1 159174683 25884002 Moore CB 09/01/2015 Neutrophil count in HIV-infection 

rs2814778 1 159174683 28158719 Jain D 01/02/2017 White blood cell count 

rs2814778 1 159174683 28158719 Jain D 01/02/2017 White blood cell count (monocyte) 

rs2814778 1 159174683 28158719 Jain D 01/02/2017 White blood cell count (neutrophil) 

rs2814778 1 159174683 31708768 Liu C 25/10/2019 Cerebrospinal fluid sTREM-2 levels 

rs2814778 1 159174683 27863252 Astle WJ 17/11/2016 Granulocyte count 

rs2814778 1 159174683 27863252 Astle WJ 17/11/2016 Sum neutrophil eosinophil counts 

rs2814778 1 159174683 27863252 Astle WJ 17/11/2016 Myeloid white cell count 

rs2814778 1 159174683 27863252 Astle WJ 17/11/2016 Neutrophil count 

rs2814778 1 159174683 27863252 Astle WJ 17/11/2016 Sum basophil neutrophil counts 

rs2814778 1 159174683 27863252 Astle WJ 17/11/2016 Lymphocyte percentage of white cells 

rs2814778 1 159174683 27863252 Astle WJ 17/11/2016 Neutrophil percentage of white cells 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 Monocyte count 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 Monocyte count 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 Neutrophil count 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 Neutrophil count 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 Neutrophil count 

rs2814778 1 159174683 32888494 Vuckovic D 01/09/2020 Lymphocyte percentage of white cells 
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SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 White blood cell count 

rs2814778 1 159174683 31217584 Wojcik GL 19/06/2019 White blood cell count 

rs2814778 1 159174683 32888494 Vuckovic D 01/09/2020 Monocyte count 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 White blood cell count 

rs2814778 1 159174683 32888493 Chen MH 01/09/2020 White blood cell count 

rs2814778 1 159174683 30647433 Legge SE 15/01/2019 

Neutrophil level response to clozapine in treatment-

resistant schizophrenia 

rs2814778 1 159174683 32888494 Vuckovic D 01/09/2020 Neutrophil count 

rs2814778 1 159174683 32888494 Vuckovic D 01/09/2020 Neutrophil percentage of white cells 

rs2814778 1 159174683 32888494 Vuckovic D 01/09/2020 White blood cell count 

rs2814778 1 159174683 29596498 Charles BA 29/03/2018 Low white blood cell count 

rs2814778 1 159174683 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs2814778 1 159174683 34187551 McCartney DL 29/06/2021 DNA methylation PhenoAge acceleration 

rs12075 1 159175354 23017229 Voruganti VS 24/09/2012 Monocyte chemoattractant protein-1 levels 

rs12075 1 159175354 23251661 Comuzzie AG 04/12/2012 Obesity-related traits 

rs12075 1 159175354 22037903 Crosslin DR 30/10/2011 White blood cell count 

rs12075 1 159175354 22291609 Naitza S 26/01/2012 Inflammatory biomarkers 

rs12075 1 159175354 25201988 Rietveld CA 08/09/2014 Educational attainment 

rs12075 1 159175354 29875488 Sun BB 06/06/2018 Blood protein levels 

rs12075 1 159175354 29875488 Sun BB 06/06/2018 Blood protein levels 

rs12075 1 159175354 27989323 Ahola-Olli AV 13/12/2016 Growth-regulated protein alpha levels 
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SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs12075 1 159175354 27989323 Ahola-Olli AV 13/12/2016 Eotaxin levels 

rs12075 1 159175354 27989323 Ahola-Olli AV 13/12/2016 Interleukin-8 levels 

rs12075 1 159175354 27989323 Ahola-Olli AV 13/12/2016 Monocyte chemoattractant protein-1 levels 

rs12075 1 159175354 27863252 Astle WJ 17/11/2016 Myeloid white cell count 

rs12075 1 159175354 27863252 Astle WJ 17/11/2016 White blood cell count (basophil) 

rs12075 1 159175354 27863252 Astle WJ 17/11/2016 Monocyte count 

rs12075 1 159175354 27863252 Astle WJ 17/11/2016 Basophil percentage of white cells 

rs12075 1 159175354 27863252 Astle WJ 17/11/2016 Basophil percentage of granulocytes 

rs12075 1 159175354 32641083 Hillary RF 08/07/2020 Monocyte chemoattractant protein-4 levels 

rs12075 1 159175354 32888493 Chen MH 01/09/2020 Monocyte count 

rs12075 1 159175354 27532455 Sun W 17/08/2016 Blood protein levels 

rs12075 1 159175354 32888493 Chen MH 01/09/2020 Basophil count 

rs12075 1 159175354 32888494 Vuckovic D 01/09/2020 Basophil count 

rs12075 1 159175354 32888494 Vuckovic D 01/09/2020 Basophil percentage of white cells 

rs12075 1 159175354 32888493 Chen MH 01/09/2020 Basophil count 

rs12075 1 159175354 32888494 Vuckovic D 01/09/2020 Lymphocyte percentage of white cells 

rs12075 1 159175354 31217584 Wojcik GL 19/06/2019 White blood cell count 

rs12075 1 159175354 32888494 Vuckovic D 01/09/2020 Monocyte count 

rs12075 1 159175354 32888494 Vuckovic D 01/09/2020 Neutrophil count 

rs12075 1 159175354 32888494 Vuckovic D 01/09/2020 Monocyte percentage of white cells 

rs12075 1 159175354 33067605 Folkersen L 16/10/2020 C-X-C motif chemokine 6 levels 
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SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs12075 1 159175354 32888494 Vuckovic D 01/09/2020 White blood cell count 

rs12075 1 159175354 33067605 Folkersen L 16/10/2020 Monocyte chemoattractant protein-1 levels 

rs12075 1 159175354 33227023 Wang Y 23/11/2020 Monocyte chemoattractant protein-1 levels 

rs12075 1 159175354 31217265 Sliz E 19/06/2019 Monocyte chemoattractant protein-1 levels 

rs13962 1 159175527 22075330 Granada M 08/11/2011 IgE levels 

rs13962 1 159175527 29875488 Sun BB 06/06/2018 Blood protein levels 

rs3845622 1 159176490 33462484 

Sinnott-

Armstrong N 18/01/2021 C-reactive protein levels 

rs11265155 1 159218266 22291609 Naitza S 26/01/2012 Inflammatory biomarkers 

rs11265155 1 159218266 31217584 Wojcik GL 19/06/2019 C-reactive protein levels 

rs863016 1 159223787 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs78478121 1 159237950 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs77383163 1 159282664 33462484 

Sinnott-

Armstrong N 18/01/2021 C-reactive protein levels 

rs4656236 1 159326880 22075330 Granada M 08/11/2011 IgE levels 

rs9427014 1 159342439 20237162 Bozaoglu K 17/03/2010 Chemerin levels 

rs9427014 1 159357684 20237162 Bozaoglu K 17/03/2010 Chemerin levels 

rs4656236 1 159410975 27989323 Ahola-Olli AV 13/12/2016 Growth-regulated protein alpha levels 

rs4656236 1 159410975 27989323 Ahola-Olli AV 13/12/2016 Monocyte chemoattractant protein-1 levels 

rs1446968 1 159535940 33462484 

Sinnott-

Armstrong N 18/01/2021 Serum phosphate levels 
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SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs17457976 1 159580873 33462484 

Sinnott-

Armstrong N 18/01/2021 C-reactive protein levels 

rs61380083 1 159608855 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs12760041 1 159670145 23696881 Wood AR 16/05/2013 Blood protein levels 

rs12760041 1 159670336 27286809 Ligthart S 10/06/2016 

C-reactive protein levels or triglyceride levels 

(pleiotropy) 

rs12760041 1 159722056 30388399 Ligthart S 01/11/2018 C-reactive protein levels 

rs12760041 1 159722056 33462484 

Sinnott-

Armstrong N 18/01/2021 C-reactive protein levels 

1:159891160_TAA

C_T 1 159892088 27863252 Astle WJ 17/11/2016 Mean platelet volume 

1:159891160_TAA

C_T 1 159892088 32888493 Chen MH 01/09/2020 Mean platelet volume 

1:159891160_TAA

C_T 1 159892088 32888493 Chen MH 01/09/2020 Mean platelet volume 

1:159891160_TAA

C_T 1 159892088 32888494 Vuckovic D 01/09/2020 Mean platelet volume 

rs1934073 1 159936733 32939015 Zhu Z 16/09/2020 Ebbinghaus illusion (overestimation) 

rs1934073 1 159936733 34187551 McCartney DL 29/06/2021 DNA methylation-estimated granulocyte proportions 

rs4656342 1 161945419 31217584 Wojcik GL 19/06/2019 White blood cell count 

rs10918701 1 162090536 31689377 Wootton RE 06/11/2019 Lifetime smoking index 
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SNP CHR 

BP 

(GRCh37) PMID First.Author Date Trait 

rs4424487 1 162198429 32527199 

van 

Duijvenboden 

S 11/06/2020 QT dynamics during recovery from exercise 

rs115653138 2 136769426 32888493 Chen MH 01/09/2020 White blood cell count 

rs144109344 2 136787730 32888493 Chen MH 01/09/2020 Neutrophil count 
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Appendix 22. Single SNP MR analysis of neutrophil count on severe malaria. 

Exposure Outcome SNP CHR BP EA NEA EAF b.MR se.MR p.MR LD Proxy 

Neutrophil count Overall severe malaria rs144109344 2 136787730 C T 0.96 0.01 0.07 0.83 rs144109344 

Neutrophil count Cerebral malaria rs144109344 2 136787730 C T 0.96 -0.02 0.10 0.82 rs144109344 

Neutrophil count Severe malaria anaemia rs144109344 2 136787730 C T 0.96 0.19 0.16 0.23 rs144109344 

Neutrophil count Other severe malaria rs144109344 2 136787730 C T 0.96 -0.06 0.09 0.50 rs144109344 

Neutrophil count Overall severe malaria rs2325919 1 159222811 G T 0.98 -0.14 0.25 0.57 rs2814778 

Neutrophil count Cerebral malaria rs2325919 1 159222811 G T 0.98 -0.29 0.36 0.42 rs2814778 

Neutrophil count Severe malaria anaemia rs2325919 1 159222811 G T 0.98 -0.18 0.63 0.78 rs2814778 

Neutrophil count Other severe malaria rs2325919 1 159222811 G T 0.98 0.09 0.38 0.82 rs2814778 

Neutrophil count Overall severe malaria rs7460611 8 116272546 C T 0.57 0.03 0.02 0.22 rs10096834 

Neutrophil count Cerebral malaria rs7460611 8 116272546 C T 0.57 0.00 0.03 0.90 rs10096834 

Neutrophil count Severe malaria anaemia rs7460611 8 116272546 C T 0.57 0.07 0.05 0.14 rs10096834 

Neutrophil count Other severe malaria rs7460611 8 116272546 C T 0.57 0.04 0.03 0.16 rs10096834 
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Appendix 23. Single SNP MR analysis of severe malaria on neutrophil count. 

Exposure Outcome SNP CHR BP EA NEA EAF b.MR se.MR p.MR 

Overall severe malaria Neutrophil count rs113892119 11 5273865 C G 0.05 0.93 0.98 0.34 

Overall severe malaria Neutrophil count rs116423146 3 160396863 T C 0.09 -4.16 4.15 0.32 

Overall severe malaria Neutrophil count rs1419114 1 203652444 A G 0.31 -7.01 6.98 0.32 

Overall severe malaria Neutrophil count rs553707144 4 144988500 A T 0.06 2.32 2.44 0.34 

Overall severe malaria Neutrophil count rs557568961 11 5497277 C G 0.04 0.70 0.70 0.31 

Overall severe malaria Neutrophil count rs57032711 9 129250119 A G 0.13 4.86 4.85 0.32 

Overall severe malaria Neutrophil count rs8176751 9 136131022 T C 0.19 -4.87 4.92 0.32 

Cerebral malaria Neutrophil count rs113892119 11 5273865 C G 0.06 0.77 0.81 0.34 

Cerebral malaria Neutrophil count rs543034558 11 4986130 T C 0.06 0.75 0.81 0.35 

Other severe malaria Neutrophil count rs113892119 11 5273865 C G 0.05 1.16 1.22 0.34 

Other severe malaria Neutrophil count rs116423146 3 160396863 T C 0.09 -3.32 3.31 0.32 

Other severe malaria Neutrophil count rs557568961 11 5497277 C G 0.04 0.78 0.78 0.31 
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Appendix 24. STROBE-MR checklist of recommended items to address in reports of Mendelian randomization studies. 

Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

1 TITLE and 
ABSTRACT 

Indicate Mendelian randomization (MR) as the study’s design in the title 
and/or the abstract if that is a main purpose of the study 

1-3  

 INTRODUCTION    

2 Background Explain the scientific background and rationale for the reported study. What 
is the exposure? Is a potential causal relationship between exposure and 
outcome plausible? Justify why MR is a helpful method to address the study 
question 

3-4 Introduction, paragraphs 1-4. 

3 Objectives State specific objectives clearly, including pre-specified causal hypotheses 
(if any). State that MR is a method that, under specific assumptions, intends 
to estimate causal effects 

4-5 Introduction, paragraphs 5-6. 

 METHODS    

4 Study design and 
data sources 

Present key elements of the study design early in the article. Consider 
including a table listing sources of data for all phases of the study. For each 
data source contributing to the analysis, describe the following:  

  

 a) Setting: Describe the study design and the underlying population, if possible. 
Describe the setting, locations, and relevant dates, including periods of 
recruitment, exposure, follow-up, and data collection, when available. 

5-6 Methods, paragraphs 1-5. Referenced UK 
Biobank paper by Bycroft et al. 

 b) Participants: Give the eligibility criteria, and the sources and methods of 
selection of participants. Report the sample size, and whether any power or 
sample size calculations were carried out prior to the main analysis  

5-6 Supplementary Table 2. Referenced UK 
Biobank paper by Bycroft et al. 

 c) Describe measurement, quality control and selection of genetic variants 5-7 Supplementary Table 2. Referenced UK 
Biobank paper by Bycroft et al. 

 d) For each exposure, outcome, and other relevant variables, describe 
methods of assessment and diagnostic criteria for diseases 

5-6 Referenced UK Biobank paper by Bycroft et al 
and Neale Lab study. 
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Item 
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Section Checklist item  Page 
No. 

Relevant text from manuscript 

 e) Provide details of ethics committee approval and participant informed 
consent, if relevant 

8,16,17  

5 Assumptions 

 

Explicitly state the three core IV assumptions for the main analysis 
(relevance, independence and exclusion restriction) as well assumptions for 
any additional or sensitivity analysis 

4,7 Supplementary Figure 1, Supplementary 
Methods. 

6 Statistical 
methods: main 
analysis 

Describe statistical methods and statistics used   

 a) Describe how quantitative variables were handled in the analyses (i.e., 
scale, units, model) 

6 Methods, Supplementary Table 2. 

 b) Describe how genetic variants were handled in the analyses and, if 
applicable, how their weights were selected 

6,7 Methods, paragraph 6. 

 c) Describe the MR estimator (e.g. two-stage least squares, Wald ratio) and 
related statistics. Detail the included covariates and, in case of two-sample 
MR, whether the same covariate set was used for adjustment in the two 
samples 

7 Methods, paragraph 7. 

 d) Explain how missing data were addressed 7  

 e) If applicable, indicate how multiple testing was addressed 8 Methods, paragraph 9. Supplementary 
Methods. 

7 Assessment of 
assumptions 

Describe any methods or prior knowledge used to assess the assumptions 
or justify their validity  

8-9 Methods. Supplementary Methods. 

8 Sensitivity 
analyses and 
additional 
analyses 

Describe any sensitivity analyses or additional analyses performed (e.g. 
comparison of effect estimates from different approaches, independent 
replication, bias analytic techniques, validation of instruments, simulations) 

7 Methods. Supplementary Methods. 
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Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

9 Software and 
pre-registration 

   

 a) Name statistical software and package(s), including version and settings 
used  

5-7,9 Methods, paragraphs 2-3,6-9. Supplementary 
Methods. 

 b) State whether the study protocol and details were pre-registered (as well as 
when and where) 

N/A  

 RESULTS    

10 Descriptive data    

 a) Report the numbers of individuals at each stage of included studies and 
reasons for exclusion. Consider use of a flow diagram 

5,10 Methods, paragraph 1-3. Results, paragraph 
1. Figure 1. 

 b) Report summary statistics for phenotypic exposure(s), outcome(s), and 
other relevant variables (e.g. means, SDs, proportions) 

 Supplementary Tables 1 and 2. 

 c) If the data sources include meta-analyses of previous studies, provide the 
assessments of heterogeneity across these studies 

N/A  

 d) For two-sample MR: 

   i.  Provide justification of the similarity of the genetic variant-exposure 
associations between the exposure and outcome samples 

   ii.  Provide information on the number of individuals who overlap between 
the exposure and outcome studies 

5-6 Methods, paragraphs 2-3. 

11 Main results    

 a) Report the associations between genetic variant and exposure, and between 
genetic variant and outcome, preferably on an interpretable scale 

8-11  
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Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

 b) Report MR estimates of the relationship between exposure and outcome, 
and the measures of uncertainty from the MR analysis, on an interpretable 
scale, such as odds ratio or relative risk per SD difference 

8-11  

 c) If relevant, consider translating estimates of relative risk into absolute risk 
for a meaningful time period 

N/A  

 d) Consider plots to visualize results (e.g. forest plot, scatterplot of associations 
between genetic variants and outcome versus between genetic variants and 
exposure) 

 Figures 2-3 

12 Assessment of 
assumptions 

   

 a) Report the assessment of the validity of the assumptions 9-10 Table 1 

 b) Report any additional statistics (e.g., assessments of heterogeneity across 
genetic variants, such as I2, Q statistic or E-value) 

10-12 Table 1 

13 Sensitivity 
analyses and 
additional 
analyses 

   

 a) Report any sensitivity analyses to assess the robustness of the main results 
to violations of the assumptions 

9-10  

 b) Report results from other sensitivity analyses or additional analyses  Supplementary table 4 

 c) Report any assessment of direction of causal relationship (e.g., bidirectional 
MR) 

10  

 d) When relevant, report and compare with estimates from non-MR analyses 9-13 Methods & Discussion. 

 e) Consider additional plots to visualize results (e.g., leave-one-out analyses)   
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 DISCUSSION    

14 Key results  Summarize key results with reference to study objectives 11  

15 Limitations Discuss limitations of the study, taking into account the validity of the IV 
assumptions, other sources of potential bias, and imprecision. Discuss both 
direction and magnitude of any potential bias and any efforts to address 
them  

6,7  

16 Interpretation    

 a) Meaning: Give a cautious overall interpretation of results in the context of 
their limitations and in comparison with other studies 

11-13  

 b) Mechanism: Discuss underlying biological mechanisms that could drive a 
potential causal relationship between the investigated exposure and the 
outcome, and whether the gene-environment equivalence assumption is 
reasonable. Use causal language carefully, clarifying that IV estimates may 
provide causal effects only under certain assumptions  

11-14  

 c) Clinical relevance: Discuss whether the results have clinical or public policy 
relevance, and to what extent they inform effect sizes of possible 
interventions 

3,13-
14 

 

17 Generalizability    Discuss the generalizability of the study results (a) to other populations, (b) 
across other exposure periods/timings, and (c) across other levels of 
exposure 

  

 OTHER 
INFORMATION 

   

18 Funding Describe sources of funding and the role of funders in the present study and, 
if applicable, sources of funding for the databases and original study or 
studies on which the present study is based 

15-16  
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19 Data and data 
sharing  

Provide the data used to perform all analyses or report where and how the 
data can be accessed, and reference these sources in the article. Provide 
the statistical code needed to reproduce the results in the article, or report 
whether the code is publicly accessible and if so, where 

15  

20 Conflicts of 
Interest   

All authors should declare all potential conflicts of interest 17  
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Appendix 25. Protein quantitative trait loci data used in mediation analysis. 

Protein full name Author Year PMID UniProtID SomaID 
Protein 

abr. 
N Beta* SE* P_val* 

Leptin 

Goudswaard 

LJ 2021 34226637 P41159 SL000498 LEP 2728 0.68 0.08 3.88E-17 

Leptin 

Goudswaard 

LJ 2021 34226637 P41159 SL000498 LEP 2728 0.63 0.08 1.55E-15 

Fatty acid-binding protein 

Goudswaard 

LJ 2021 34226637 P15090 SL005086  Adipocyte 2728 0.65 0.09 6.69E-12 

Leptin 

Goudswaard 

LJ 2021 34226637 P41159 SL000498 LEP 2728 0.61 0.09 2.81E-11 

Fumarylacetoacetase 

Goudswaard 

LJ 2021 34226637 P16930 SL008049 FAAA 2728 0.51 0.11 2.15E-06 

Receptor-type tyrosine-protein 

phosphatase delta 

Goudswaard 

LJ 2021 34226637 P23468 SL008499 PTPRD 2728 -0.49 0.11 4.28E-06 

Inhibin beta C chain 

Goudswaard 

LJ 2021 34226637 P55103 SL007288 INHBC 2728 0.45 0.10 1.08E-05 

Complement C5 

Goudswaard 

LJ 2021 34226637 P01031 SL000319 C5 2728 0.50 0.11 1.10E-05 

Sex hormone-binding globulin 

Goudswaard 

LJ 2021 34226637 P04278 SL005102 SHBG 2728 -0.45 0.10 1.21E-05 

PILR alpha-associated neural 

protein 

Goudswaard 

LJ 2021 34226637 Q8IYJ0 SL019019 PIANP 2728 -0.49 0.11 1.35E-05 

Leptin Zaghlool SB 2021 33627659 P41159 2575-5_5 LEP 992 0.27 0.04 1.32E-12 
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Protein full name Author Year PMID UniProtID SomaID 
Protein 

abr. 
N Beta* SE* P_val* 

Insulin-like growth factor-binding 

protein 1 Zaghlool SB 2021 33627659 P08833 2771-35_2 IGFBP1 992 -0.21 0.03 4.72E-10 

Insulin-like growth factor-binding 

protein 2 Zaghlool SB 2021 33627659 P18065 2570-72_5 IGFBP2 992 -0.19 0.03 3.60E-09 

Plasminogen activator inhibitor 1 Zaghlool SB 2021 33627659 P05121 2925-9_1 SERPINE1 992 0.17 0.03 2.84E-08 

WAP, Kazal, immunoglobulin, 

Kunitz and NTR domain-

containing protein 2 Zaghlool SB 2021 33627659 Q8TEU8 3235-50_2 WFIKKN2 992 -0.17 0.03 5.83E-08 

Dickkopf-related protein 3 Zaghlool SB 2021 33627659 Q9UBP4 3607-71_1 DKK3 992 -0.16 0.03 7.85E-07 

Galectin-3-binding protein Zaghlool SB 2021 33627659 Q08380 5000-52_1 LGALS3BP 992 0.15 0.03 1.18E-06 

Sex hormone-binding globulin Zaghlool SB 2021 33627659 P04278 4929-55_1 SHBG 992 -0.16 0.03 1.88E-06 

Growth hormone receptor Zaghlool SB 2021 33627659 P10912 2948-58_2 GHR 992 0.15 0.03 3.38E-06 

Growth/differentiation factor 2 Zaghlool SB 2021 33627659 Q9UK05 4880-21_1 GDF2 992 -0.15 0.03 4.35E-06 

Netrin receptor UNC5D Zaghlool SB 2021 33627659 Q6UXZ4 5140-56_3 UNC5D 992 -0.15 0.03 4.63E-06 

Neurogenic locus notch 

homolog protein 1 Zaghlool SB 2021 33627659 P46531 5107-7_2 NOTCH1 992 -0.15 0.03 5.08E-06 

Hepatocyte growth factor 

receptor Zaghlool SB 2021 33627659 P08581 2837-3_2 MET 992 -0.14 0.03 6.68E-06 

Antithrombin-III Zaghlool SB 2021 33627659 P01008 3344-60_4 SERPINC1 992 -0.15 0.03 6.82E-06 
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Protein full name Author Year PMID UniProtID SomaID 
Protein 

abr. 
N Beta* SE* P_val* 

C-reactive protein Zaghlool SB 2021 33627659 P02741 4337-49_2 CRP 992 0.13 0.03 2.99E-05 

Neural cell adhesion molecule 1, 

120 kDa isoform Zaghlool SB 2021 33627659 P13591 4498-62_2 NCAM1 992 -0.13 0.03 3.05E-05 

Protein jagged-1 Zaghlool SB 2021 33627659 P78504 5092-51_3 JAG1 992 -0.13 0.03 3.45E-05 

Cystatin-M Zaghlool SB 2021 33627659 Q15828 3303-23_2 CST6 992 -0.14 0.03 3.56E-05 

Endothelial cell-specific 

molecule 1 Zaghlool SB 2021 33627659 Q9NQ30 3805-16_2 ESM1 992 -0.13 0.03 4.33E-05 

Goudswaard et al 

(https://doi.org/10.1038/s41366-

021-00896-1)  
         

Zaghlool et al 

(https://doi.org/10.1038/s41467-

021-21542-4) 
         

*Effect estimate of BMI on the 

specified protein 
          

*Duplicate values in the first 

column indicate different 

heptamers of the same protein 
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Appendix 26. MR results for the proteins with pQTL SNPs in the DVT GWAS. 

Exposure Gene symbol Author 
No. 

SNP 
MR_method 

Log 

Risk 

Ratio* 

CI (95%)* SE* P-value* 

Beta - BMI to 

protein 

estimate* 

Proportion 

mediated 

(%)  

Neurogenic locus 

notch homolog protein 

1 NOTCH1 Sun BB 1 Wald ratio 0.57 0.45 0.68 0.057 1.12E-23 -0.15 20.778 

Plasminogen activator 

inhibitor 1 SERPINE1 Sun BB 1 Wald ratio 0.42 0.30 0.54 0.061 4.27E-12 0.17 18.557 

Inhibin beta C chain INHBC Sun BB 1 Wald ratio -1.18 -2.18 -0.69 0.380 1.96E-03 0.45 133.350 

Growth hormone 

receptor GHR Sun BB 1 Wald ratio 0.19 -0.01 0.35 0.092 4.17E-02 0.15 6.922 

Endothelial cell-

specific molecule 1 ESM1 Sun BB 2 

Inverse 

variance 

weighted 0.13 -0.03 0.26 0.073 8.00E-02 -0.13 4.175 

Antithrombin-III SERPINC1 Sun BB 1 Wald ratio 0.17 -0.05 0.34 0.101 1.04E-01 -0.15 6.054 

Fumarylacetoacetase FAAA Sun BB 1 Wald ratio 0.05 -0.01 0.11 0.031 1.19E-01 0.51 6.138 

PILR alpha-associated 

neural protein PIANP Sun BB 1 Wald ratio 0.16 -0.07 0.35 0.107 1.31E-01 -0.49 19.775 

Dickkopf-related 

protein 3 DKK3 Sun BB 1 Wald ratio 0.08 -0.03 0.17 0.051 1.32E-01 -0.16 3.078 

WAP, Kazal, 

immunoglobulin, 

Kunitz and NTR WFIKKN2 Sun BB 1 Wald ratio 0.03 -0.02 0.08 0.027 2.51E-01 -0.17 1.346 
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Exposure Gene symbol Author 
No. 

SNP 
MR_method 

Log 

Risk 

Ratio* 

CI (95%)* SE* P-value* 

Beta - BMI to 

protein 

estimate* 

Proportion 

mediated 

(%)  

domain-containing 

protein 2 

Cystatin-M CST6 Sun BB 2 

Inverse 

variance 

weighted -0.09 -0.26 0.05 0.081 2.51E-01 -0.14 3.216 

Fatty acid binding 

protein 4 FABP4 Folkersen L 3 

Simple 

mode 0.04 -0.04 0.12 0.040 3.11E-01 0.65 1.292 

Neural cell adhesion 

molecule 1, 120 kDa 

isoform NCAM1 Sun BB 3 

Simple 

mode 0.06 -0.07 0.18 0.064 3.25E-01 -0.13 0.912 

Neural cell adhesion 

molecule 1, 120 kDa 

isoform NCAM1 Sun BB 3 

Weighted 

mode 0.06 -0.08 0.19 0.070 3.76E-01 -0.13 1.911 

Neural cell adhesion 

molecule 1, 120 kDa 

isoform NCAM1 Sun BB 3 

Weighted 

median 0.05 -0.07 0.16 0.057 3.77E-01 -0.13 1.673 

Cystatin-M CST6 Sun BB 1 Wald ratio -0.08 -0.31 0.10 0.105 4.18E-01 -0.14 2.937 

Neural cell adhesion 

molecule 1, 120 kDa 

isoform NCAM1 Sun BB 3 

Inverse 

variance 

weighted 0.04 -0.06 0.13 0.049 4.29E-01 -0.13 1.275 
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Exposure Gene symbol Author 
No. 

SNP 
MR_method 

Log 

Risk 

Ratio* 

CI (95%)* SE* P-value* 

Beta - BMI to 

protein 

estimate* 

Proportion 

mediated 

(%)  

Receptor-type 

tyrosine-protein 

phosphatase delta PTPRD Sun BB 1 Wald ratio 0.08 -0.17 0.28 0.114 4.94E-01 -0.49 9.568 

Fatty acid binding 

protein 4 FABP4 Folkersen L 3 

Inverse 

variance 

weighted 0.01 -0.04 0.06 0.026 6.44E-01 0.65 1.918 

Fatty acid binding 

protein 4 FABP4 Folkersen L 3 

Weighted 

median 0.01 -0.05 0.07 0.030 6.59E-01 0.65 2.108 

Fatty acid binding 

protein 4 FABP4 Folkersen L 3 

Weighted 

mode -0.01 -0.08 0.06 0.033 8.10E-01 0.65 0.742 

C-reactive protein CRP Sun BB 3 

Weighted 

mode -0.02 -0.23 0.15 0.096 8.18E-01 0.13 1.301 

C-reactive protein CRP Sun BB 3 

Inverse 

variance 

weighted 0.01 -0.12 0.13 0.063 8.34E-01 0.13 0.441 

C-reactive protein CRP Sun BB 3 

Simple 

mode -0.01 -0.23 0.17 0.100 9.14E-01 0.13 0.183 

C-reactive protein CRP Sun BB 3 

Weighted 

median 0.00 -0.15 0.13 0.073 9.96E-01 0.13 0.013 

*Log risk ratios per SD 

increase in circulating 

protein level 
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Exposure Gene symbol Author 
No. 

SNP 
MR_method 

Log 

Risk 

Ratio* 

CI (95%)* SE* P-value* 

Beta - BMI to 

protein 

estimate* 

Proportion 

mediated 

(%)  

*BMI-Protein MR effect estimates from Goudswaard et al 

(https://doi.org/10.1038/s41366-021-00896-1) and Zaghlool 

et al (https://doi.org/10.1038/s41467-021-21542-4) 
  

*Multiple-testing 

corrected P-value 

threshold: 0.003 
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Appendix 27. Reverse MR analysis of DVT on traits which had evidence of an effect on DVT in the MR-PheWAS analysis. 

Outcome No. SNP MR method Beta SE P-value PHet (ML) PPlt 

Treatment/medication code: warfarin 9 IVW 0.29 0.02 3.81E-32 9.63E-02 5.11E-01 

Stearidonate (18:4n3) 5 IVW 1.35 0.50 6.78E-03 9.11E-01 8.41E-01 

Leg predicted mass (left) 9 IVW 0.51 0.23 2.73E-02 4.19E-04 6.13E-01 

Leg fat-free mass (left) 9 IVW 0.50 0.23 2.86E-02 5.20E-04 6.10E-01 

Leg predicted mass (right) 9 IVW 0.47 0.23 4.12E-02 3.95E-04 6.03E-01 

Long-standing illness  disability or infirmity 9 IVW 0.19 0.10 4.69E-02 2.25E-01 9.50E-01 

Leg fat-free mass (right) 9 IVW 0.47 0.23 4.71E-02 3.47E-04 6.09E-01 

Taking other prescription medications 9 IVW 0.16 0.10 8.84E-02 7.97E-01 2.34E-01 

Varicose veins 9 IVW 0.02 0.01 9.89E-02 7.21E-01 3.19E-01 

Eicosapentaenoate (EPA; 20:5n3) 5 IVW 0.58 0.44 1.87E-01 5.75E-01 8.16E-01 

Leg fat percentage (left) 9 IVW -0.35 0.27 1.91E-01 8.77E-07 9.80E-01 

Qualifications: None of the above 9 IVW -0.11 0.09 2.06E-01 1.02E-01 8.73E-01 

Varicose veins of lower extremities 9 IVW 0.04 0.03 2.38E-01 2.08E-01 5.93E-01 

Weight 9 IVW 0.22 0.25 3.62E-01 1.95E-02 5.78E-01 

Leg fat percentage (right) 9 IVW -0.25 0.28 3.80E-01 3.18E-07 9.90E-01 

Hyperthyroidism/thyrotoxicosis 9 IVW -0.01 0.02 3.89E-01 9.48E-01 6.27E-01 

Arm fat percentage (left) 9 IVW 0.35 0.42 3.96E-01 6.65E-12 8.82E-01 

Arm fat percentage (right) 9 IVW 0.34 0.41 4.15E-01 1.70E-11 8.55E-01 
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Outcome No. SNP MR method Beta SE P-value PHet (ML) PPlt 

Arm fat mass (left) 9 IVW 0.31 0.39 4.21E-01 1.84E-05 7.77E-01 

Arachidonate (20:4n6) 5 IVW 0.24 0.30 4.28E-01 8.53E-01 8.94E-01 

Hip circumference 9 IVW 0.22 0.29 4.37E-01 8.58E-03 9.32E-01 

Basal metabolic rate 9 IVW 0.21 0.28 4.54E-01 1.46E-06 6.68E-01 

Whole body water mass 9 IVW 0.20 0.32 5.31E-01 1.38E-09 7.29E-01 

Whole body fat-free mass 9 IVW 0.20 0.32 5.42E-01 1.22E-09 7.16E-01 

Waist circumference 9 IVW 0.12 0.25 6.24E-01 1.70E-02 9.81E-01 

Obesity class 2 5 IVW 1.20 2.53 6.33E-01 7.08E-01 5.15E-01 

Arm predicted mass (right) 9 IVW -0.13 0.32 6.91E-01 1.30E-10 8.85E-01 

Overweight 5 IVW -0.46 1.17 6.95E-01 6.26E-01 8.70E-01 

Trunk fat percentage 9 IVW 0.18 0.45 6.98E-01 3.16E-09 9.39E-01 

Whole body fat mass 9 IVW 0.13 0.36 7.18E-01 1.43E-04 6.77E-01 

Arm fat-free mass (right) 9 IVW -0.11 0.33 7.30E-01 9.99E-11 7.45E-01 

Arm predicted mass (left) 9 IVW -0.11 0.33 7.47E-01 1.21E-10 8.46E-01 

Comparative height size at age 10 9 IVW 0.07 0.25 7.70E-01 2.37E-04 6.67E-01 

Treatment/medication code: carbimazole 9 IVW 0.00 0.01 7.83E-01 3.46E-01 9.43E-01 

Arm fat-free mass (left) 9 IVW -0.09 0.32 7.92E-01 5.50E-10 8.24E-01 

Mania/bipolar/manic depression 9 IVW 0.00 0.01 8.09E-01 4.14E-01 8.69E-01 

Trunk predicted mass 9 IVW 0.07 0.39 8.67E-01 1.33E-15 7.36E-01 
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Outcome No. SNP MR method Beta SE P-value PHet (ML) PPlt 

Leg fat mass (right) 9 IVW -0.04 0.29 8.84E-01 1.75E-04 8.88E-01 

Trunk fat-free mass 9 IVW 0.05 0.39 9.03E-01 1.59E-15 7.25E-01 

Body fat percentage 9 IVW 0.04 0.37 9.06E-01 5.73E-09 8.91E-01 

*Method: Inverse variance weighted (IVW). 
       

*Beta column represents the effect estimate from the MR analysis of DVT on trait risk 
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Appendix 28. Forest plot of MR results for the proteins with pQTL SNPs in the DVT GWAS. 

 

3

Supplementary figure 2
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Appendix 29. Colocalization analysis results for traits with only one SNP as instrument for the MR analysis. 

Trait 
nr 

SNP 
PP.H0 PP.H1 PP.H1 PP.H3 PP.H4 PP.S* 

Neurogenic locus notch homolog protein 1 3856 1.0694E-79 4.778E-73 2.2382E-07 0.99999972 6.0801E-08 0.00% 

Inhibin beta C chain 4079 1.1109E-29 2.6137E-23 4.2502E-07 0.99999948 9.3591E-08 0.00% 

Lysine 547 2.4588E-11 0.98338278 3.2772E-13 0.01310352 0.0035137 0.35% 

Bipolar disorder / mania 3533 0.47264348 0.43702738 0.03965284 0.03665077 0.01402554 1.40% 

Chronic obstructive pulmonary disorder 4229 0.0766326 0.83975957 0.00333097 0.03645779 0.04381907 4.38% 

X-14473 655 6.292E-07 0.83967623 6.959E-08 0.09280245 0.06752062 6.75% 

Docosapentaenoate 614 1.9077E-08 0.62830917 1.1181E-09 0.03649044 0.33520037 33.50% 

Adrenate 626 1.8886E-18 0.5838098 1.1167E-19 0.03413747 0.38205274 38.20% 

Stearidonate 674 5.34E-11 0.50441818 3.2335E-12 0.03007888 0.46550294 46.60% 

Eicosapentanoate 633 2.8064E-17 0.22721212 1.6606E-18 0.01268473 0.76010315 76.00% 

Arachidonate 626 4.9721E-77 0.17796851 2.9399E-78 0.00971061 0.81232088 81.20% 

Plasminogen activator inhibitor 1 2604 3.0254E-13 1.9614E-06 3.9637E-09 0.02472248 0.97527556 97.50% 

Posterior probabilities for: H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and 

H4 (one common causal variant). 

*PP.S is the posterior probability of the genetic variant being causal for the shared signal if H4 is true. 
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Appendix 30. The count for each category in the initial dataset of 973 traits. 

Category N (Count) 

Lipid 140 

Unknown metabolite 83 

Medication 80 

Health 77 

Behavioural 66 

Amino acid 58 

Fatty acid 50 

Psychiatric / neurological 42 

Anthropometric 38 

Cardiovascular 33 

Autoimmune / inflammatory 29 

Cancer 23 

Immune cell subset frequency 19 

Peptide 15 

Education 14 

Lung 14 

Immune cell-surface protein expression 
levels 12 

Aging 9 

Bone 9 

Other 9 

Diabetes 8 

Glycemic 8 

Reproductive aging 8 

Sleeping 8 

Supplement 8 

Anthropometric-fat-free 7 

Carbohydrate 7 

Cofactors and vitamins 7 

Hormone 7 

Kidney 7 

Metal 7 

Protein 7 

Energy 6 

Infection 6 

Nucleotide 6 

Personality 6 

Anthropometric-height 5 

Anthropometric-impedance 5 

Benign 5 

Intelligence 4 

Bladder 3 

Haematological 3 
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Geographical 2 

Haemotological 2 

Immune system 2 

Metabolite 2 

Metabolites ratio 2 

Eye 1 

Keto acid 1 

Liver 1 

Skin 1 

Xenobiotics 1 
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Appendix 31. First 50 rows (ordered by Benjamini-Hochberg P-value) of the thyrotoxicosis MR-PheWAS on the circulating proteome. 

Exposure Outcome 
Meth

od 
No. 

SNPs 
BETA SE P-value 

Protei
n ID 

P_BH 

Thyrotoxicosis Membrane protein FAM174A || id:prot-a-1034 IVW 13 -13.96 3.91 0.0004 
prot-a-
1034 0.55 

Thyrotoxicosis Interleukin-21 || id:prot-a-1506 IVW 13 -21.53 6.11 0.0004 
prot-a-
1506 0.60 

Thyrotoxicosis Secreted frizzled-related protein 3 || id:prot-a-1140 IVW 13 -15.04 4.40 0.0006 
prot-a-
1140 0.61 

Thyrotoxicosis Chondroadherin || id:prot-a-533 IVW 13 -13.36 4.02 0.0009 
prot-a-
533 0.66 

Thyrotoxicosis Fibrinogen C domain-containing protein 1 || id:prot-a-1108 IVW 13 -11.25 3.54 0.0015 
prot-a-
1108 0.81 

Thyrotoxicosis 
Signal transducer and activator of transcription 3 || id:prot-a-
2869 IVW 13 11.31 3.54 0.0014 

prot-a-
2869 0.81 

Thyrotoxicosis Wnt inhibitory factor 1 || id:prot-a-3230 IVW 13 -11.41 3.61 0.0016 
prot-a-
3230 0.81 

Thyrotoxicosis Transmembrane protein 87B || id:prot-a-3016 IVW 13 12.32 4.00 0.0021 
prot-a-
3016 0.96 

Thyrotoxicosis Glycoproteins || id:met-c-862 IVW 10 -5.94 2.04 0.0036 
met-c-
862 0.99 

Thyrotoxicosis Prothrombin || id:prot-a-1007 IVW 13 -10.39 3.54 0.0034 
prot-a-
1007 0.99 

Thyrotoxicosis Apolipoprotein E (isoform E2) || id:prot-a-132 IVW 13 -10.21 3.54 0.0039 
prot-a-
132 0.99 

Thyrotoxicosis Insulin-like growth factor-binding protein 7 || id:prot-a-1451 IVW 13 -10.51 3.54 0.0030 
prot-a-
1451 0.99 

Thyrotoxicosis Interleukin-22 receptor subunit alpha-1 || id:prot-a-1509 IVW 13 10.88 3.62 0.0027 
prot-a-
1509 0.99 
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Thyrotoxicosis Laminin subunit alpha-4 || id:prot-a-1696 IVW 13 10.86 3.71 0.0034 
prot-a-
1696 0.99 

Thyrotoxicosis Protocadherin alpha-7 || id:prot-a-2200 IVW 13 10.26 3.54 0.0038 
prot-a-
2200 0.99 

Thyrotoxicosis Periostin || id:prot-a-2332 IVW 13 -10.22 3.54 0.0039 
prot-a-
2332 0.99 

Thyrotoxicosis Spondin-1 || id:prot-a-2829 IVW 13 -11.14 3.76 0.0030 
prot-a-
2829 0.99 

Thyrotoxicosis Angiopoietin-2 || id:prot-a-94 IVW 13 -12.31 4.15 0.0030 
prot-a-
94 0.99 

Thyrotoxicosis 
Leukocyte immunoglobulin-like receptor subfamily B member 4 
|| id:prot-a-1746 IVW 13 10.14 3.54 0.0042 

prot-a-
1746 1.00 

Thyrotoxicosis Albumin || id:met-c-841 IVW 10 0.36 2.15 0.8666 
met-c-
841 1.00 

Thyrotoxicosis Apolipoprotein A-I || id:met-c-842 IVW 10 0.68 2.19 0.7559 
met-c-
842 1.00 

Thyrotoxicosis Apolipoprotein B || id:met-c-843 IVW 10 2.57 2.56 0.3148 
met-c-
843 1.00 

Thyrotoxicosis Glycoprotein acetyls || id:met-c-863 IVW 10 1.80 2.06 0.3830 
met-c-
863 1.00 

Thyrotoxicosis APOBEC1 complementation factor || id:prot-a-1 IVW 13 3.57 3.54 0.3133 
prot-a-
1 1.00 

Thyrotoxicosis Histo-blood group ABO system transferase || id:prot-a-10 IVW 13 -2.24 3.54 0.5278 
prot-a-
10 1.00 

Thyrotoxicosis Angiopoietin-related protein 7 || id:prot-a-100 IVW 13 4.97 3.54 0.1606 
prot-a-
100 1.00 

Thyrotoxicosis RNA-binding protein EWS || id:prot-a-1000 IVW 13 1.76 3.54 0.6195 
prot-a-
1000 1.00 

Thyrotoxicosis Exosome complex component CSL4 || id:prot-a-1001 IVW 13 2.23 3.54 0.5292 
prot-a-
1001 1.00 
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Thyrotoxicosis Exosome complex component RRP40 || id:prot-a-1002 IVW 13 -1.13 3.54 0.7495 
prot-a-
1002 1.00 

Thyrotoxicosis Exostosin-like 2 || id:prot-a-1003 IVW 13 -1.47 3.80 0.6995 
prot-a-
1003 1.00 

Thyrotoxicosis Ezrin || id:prot-a-1004 IVW 13 4.30 3.63 0.2365 
prot-a-
1004 1.00 

Thyrotoxicosis Coagulation factor Xa || id:prot-a-1005 IVW 13 4.25 4.25 0.3175 
prot-a-
1005 1.00 

Thyrotoxicosis Coagulation Factor X || id:prot-a-1006 IVW 13 5.49 4.05 0.1745 
prot-a-
1006 1.00 

Thyrotoxicosis Tissue Factor || id:prot-a-1008 IVW 13 -5.40 3.54 0.1275 
prot-a-
1008 1.00 

Thyrotoxicosis Coagulation Factor VIII || id:prot-a-1009 IVW 13 3.78 4.14 0.3608 
prot-a-
1009 1.00 

Thyrotoxicosis Ankyrin-2 || id:prot-a-101 IVW 13 4.10 4.49 0.3614 
prot-a-
101 1.00 

Thyrotoxicosis Fatty-acid amide hydrolase 2 || id:prot-a-1010 IVW 13 0.83 3.54 0.8152 
prot-a-
1010 1.00 

Thyrotoxicosis Fatty acid-binding protein, liver || id:prot-a-1011 IVW 13 -1.07 3.54 0.7625 
prot-a-
1011 1.00 

Thyrotoxicosis Fatty acid-binding protein, heart || id:prot-a-1012 IVW 13 2.97 3.54 0.4019 
prot-a-
1012 1.00 

Thyrotoxicosis Fatty acid-binding protein, adipocyte || id:prot-a-1013 IVW 13 4.40 3.54 0.2146 
prot-a-
1013 1.00 

Thyrotoxicosis Fatty acid-binding protein, epidermal || id:prot-a-1014 IVW 13 -1.33 3.54 0.7075 
prot-a-
1014 1.00 

Thyrotoxicosis FAS-associated factor 2 || id:prot-a-1015 IVW 13 -0.45 4.13 0.9122 
prot-a-
1015 1.00 

Thyrotoxicosis FAS-associated factor 2 || id:prot-a-1016 IVW 13 4.36 3.54 0.2185 
prot-a-
1016 1.00 
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Thyrotoxicosis FAS-associated factor 2 || id:prot-a-1017 IVW 13 7.40 3.54 0.0367 
prot-a-
1017 1.00 

Thyrotoxicosis Fumarylacetoacetase || id:prot-a-1018 IVW 13 -3.36 3.54 0.3433 
prot-a-
1018 1.00 

Thyrotoxicosis Fas apoptotic inhibitory molecule 3 || id:prot-a-1019 IVW 13 -7.36 4.01 0.0669 
prot-a-
1019 1.00 

Thyrotoxicosis Ankyrin repeat domain-containing protein 27 || id:prot-a-102 IVW 13 0.84 4.66 0.8571 
prot-a-
102 1.00 

Thyrotoxicosis Protein FAM107A || id:prot-a-1020 IVW 13 -9.65 3.54 0.0064 
prot-a-
1020 1.00 

Thyrotoxicosis Protein FAM107B || id:prot-a-1021 IVW 13 1.37 4.61 0.7666 
prot-a-
1021 1.00 

Thyrotoxicosis Protein FAM107B || id:prot-a-1022 IVW 13 4.45 3.54 0.2093 
prot-a-
1022 1.00 
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