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Abstract 
Rainfall-runoff models play a vital role in understanding hydrologic processes, estimating 

streamflow, and predicting flood and drought risks across various scales. However, 

hydrological modelling still faces significant uncertainties and challenges. Difficulties 

arise in identifying and characterizing hydrological processes (e.g. subsurface losses), 

selecting and evaluating model structures, and dealing with uncertainties in observational 

data and model structures. These problems become even more complex in large-sample 

hydrology due to the heterogeneity of catchments, the abundance of catchment types, and 

the variability in data quality and human influence. 

In this thesis, we address three challenges in rainfall-runoff modelling across a large 

sample of Great Britain catchments. Firstly, we assess the role of catchment location in 

understanding water balance issues in highly permeable catchments when available 

catchment descriptors are insufficient. We find that catchment location relative to the 

coast and within a wider river basin shed light on water balance issues in highly permeable 

catchments. Secondly, we explore the importance of prior model selection through a 

comparison of two modular modelling frameworks. By selecting model structures 

consistent with expected hydrologic variability, we demonstrate the possibility of 

observing meaningful performance differences between model structures in specific 

catchments. Lastly, we develop a signature-based hydrologic efficiency metric that 

proves comparable to traditional statistical evaluation metrics. This metric shows promise 

for model evaluation in ungauged catchments if its signatures can be well-regionalized. 

All three contributions pave the way for follow-up research on new location-based 

catchment descriptors, hydrologically tailored efficiency metrics in gauged and ungauged 

basins, and identifying appropriate components for modular modelling system. We end 

by defining two specific ideas for future research. Firstly, quantifying hydrologic 

ecosystem services through new signatures to assess benefits and understand spatial-

temporal variations. Secondly, coupling national-scale groundwater modelling across 

Great Britain with catchment-scale modelling to estimate inter-catchment groundwater 

flow between neighbouring catchments.    
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Chapter 1 Introduction 

1.1 The importance and challenges of rainfall-runoff modelling 

Hydrology analyses the storage and movement of water in complex environmental systems 

ranging from centimetres to the whole Earth system (Thompson, 2017).  Over the past 

century, terrestrial water fluxes have been rapidly changing in many parts of the world.  

Climate change is changing the frequency, severity and duration of hydrological extremes 

such as floods and droughts (IPCC, 2001; Lehner et al., 2006; Modarres et al., 2016; 

Brunner et al., 2021; Dutta and Maity, 2021; Lane and Kay, 2021; Wang et al., 2022; 

Gebrechorkos et al., 2023). Moreover, human activities such as land use/land cover 

changes, deforestation, urbanisation, dams and water abstractions are having significant 

impact streamflows in most parts of the world (Li et al., 2007; Vogel, 2011; Dey and 

Mishra, 2017; Singh and Basu, 2022; Van Loon et al., 2022; Malede et al., 2023). In order 

to develop sustainable water resources management strategies and to provide long-term 

water security for people and the environment, hydrologists are interested in understanding 

and modelling the hydrologic cycle across spatial and temporal scales (Wagener et al., 

2010; Peel and McMahon, 2020, Yang et al., 2021). Rainfall runoff models, i.e. tools 

representing how a catchment responds to rainfall under different conditions (Dawdy and 

O’Donnell, 1965; Beven, 2001), have become increasingly important for a wide range of 

issues, including for understanding hydrologic processes (Arnold et al., 1998; Watson et 

al., 2019), for estimating streamflow and other hydrologic variables (Perrin et al., 2003; 

Young, 2006), and for predicting flood and drought risks (Guo et al., 2020).  

The rainfall-runoff modelling process consists of several key steps any modeller has to 

address (e.g. Beven, 2001). These are; 1) specifying the hydrologic processes of the 

underlying catchment (i.e. the perceptual model), 2) turning these processes into equations 

(i.e. the conceptual model), 3) developing or selecting one or more suitable model 

structures that integrate these equations (i.e. the procedural model) , 4) defining an 
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objective function to assess how well combinations of a specific model structure and a set 

of parameters perform, 5) identifying suitable parameter sets to represent the catchment 

under study (i.e. model calibration) and 6) ensuring accuracy and applicability of the model 

(i.e. model validation). 

All of these steps in the modelling process still contain unsolved problems and uncertainties 

originating from imperfect observational data, parameter or model structures (Blöschl et 

al., 2019; Pan et al. 2019; Knoben et al., 2020; Klotz et al., 2022); model calibration and 

evaluation problems under changing conditions (Bathurst et al., 2004; Duan et al., 2006; 

Vaze et al., 2010; Thirel et al., 2015; Saft et al., 2016; Fowler et al., 2018; Yang et al., 

2022), equifinality (Beven, 2006; Ebel and Loague, 2006; Lee et al., 2012; Kelleher et al., 

2017; Khatami et al., 2019; Wu et al., 2022) of rainfall-runoff models in gauged and 

ungauged locations (Beven, 2019; Blair et al., 2019). Moreover, catchment behaviour is 

poorly captured by existing physical and climatic descriptors in many catchments due to 

unaccounted for issues such as subsurface losses and anthropogenic activities (Le Moine 

et al., 2007, Schaller and Fan, 2009; Munoz et al., 2016; Kuentz et al., 2017; Bouaziz et al., 

2018; Fan 2019; Liu et al., 2020; Luijendijk et al., 2020). It is also challenging to select an 

adequate model structure and parameters (Uhlenbrook et al., 1999; Beven, 2000; Bai et al., 

2009; Coxon et al., 2014; Paul et al., 2021; David et al., 2022), including the problem of 

evaluating model performance in gauged and ungauged catchments (Gupta et al., 2009; 

Hrachowitz et al., 2013; Knoben et al. 2019, Clark et al., 2021). 

1.2 The challenges of rainfall-runoff modelling in large-sample 

hydrology 

Regardless of whether we study one or many catchments, these modelling problems persist. 

Nevertheless, large-sample hydrology entails further challenges such as dealing with many 

types of catchments or the need to select multiple model structures. Large-sample 

hydrology focuses on the evaluation of hydrologic systems using large number of 
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catchments (Addor et al., 2020). It originates from comparative hydrology which is about 

learning from the differences and similarities between places and about transferring 

hydrologic knowledge across regions (Falkenmark and Chapman, 1989). Gupta et al. 

(2014) highlight four fundamental benefits of using large-sample datasets: 1) improved 

understanding, providing wider range of applicability, higher extrapolation capabilities and 

better identification of limitations by rigorously testing and comparing rainfall runoff 

model structures and hypotheses, 2) robustness of generalizations, enabling to diminish the 

effects of severe data errors and assisting in identifying and addressing outliers via 

statistical analyses with large number of data, 3) classification, regionalization and model 

transfer, by providing a heterogeneous domain including diverse climatic, hydrologic and 

physical characteristics, 4) estimation of uncertainty, providing a better comprehension of 

uncertainty by enabling a statistical regionalization of uncertainty estimates. There is an 

increasing number of large-sample datasets available around the world such as the US 

MOPEX (Hogue et al., 2004) and CAMELS (Newman et al., 2015; Addor et al., 2017) for 

the USA, CAMELS-CL (Alvarez-Garreton et al., 2018) for Chile, CAMELS-GB (Coxon 

et al., 2020b) for UK, CAMELS-BR (Chagas et al., 2020) for Brazil, LamaH-CE (Klingler 

et al., 2021) for central Europe and CAMELS-AUS (Fowler et al., 2021) for Australia. 

Such datasets have been used for different purposes such as catchment classification (e.g. 

Sawicz et al., 2011; Jehn et al., 2020; Brunner et al., 2020), investigating extreme events 

(e.g. Berghuijs et al., 2017; Stein et al., 2021; Vega-Briones et al., 2023), quantifying 

uncertainties in hydrologic data and models (e.g. Coxon et al., 2015; Knoben et al., 2020; 

Yan et al., 2023), and for hydrologic model evaluation and benchmarking (Rakovec et al., 

2019; Lane et al., 2019; Lees et al., 2021).  

This thesis addresses three core challenges of rainfall runoff modelling in large-sample 

hydrology. These are challenges of accounting for subsurface groundwater losses, 

establishing distinct relationships between model structure and catchment types, and 

offering a hydrologically diagnostic model evaluation that can be utilized in both gauged 
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and ungauged catchments. They are selected to be addressed in this thesis due to their 

enduring statues as longstanding issues in rainfall-runoff modelling. Potential groundwater 

flow pathways (such as local and regional flows) have been subject to investigation for 

over five decades (e.g. Toth, 1963). However, comprehending these pathways and their 

impacts on catchment water balance remains uncertain, particularly in the context of large-

sample hydrology. Similarly, modular modelling frameworks have been developed for 

more than two decades (e.g. Leavesley et al., 1996) to provide flexibility in model selection 

for diverse catchments but there is still lack of a robust strategy to select right model 

structures for certain catchment types. Lastly, performance evaluation metrics have been 

evolved in a long time to be more diagnostic (e.g. Nash and Sutcliffe, 1970), yet they are 

still lacking valuable hydrologic information and cannot be calculated in ungauged 

catchments. Tackling these challenges is a pivotal undertaking that will contribute to an 

enhanced understanding of hydrologic processes and improve the selection and evaluation 

of model structures. They are discussed in detail in the following sections. 

1.2.1 Can we identify and characterise leaky catchments based on their location? 

Accounting for subsurface groundwater losses is still an unsolved problem in runoff-

rainfall modelling (Le Moine et al., 2007, Liu et al., 2021).  Many modellers present 

topographic catchments as self-contained hydrologic systems by commonly assuming that 

the net groundwater outflow is negligible (Fan, 2019). However, the water balances of 

many catchments are not closed but influenced by subsurface losses (Figure 1-1) (Schaller 

and Fan, 2009; Genereux and Jordan, 2005).  Investigating these water balance issues at 

the catchment scale is necessary to provide more robust understanding of subsurface losses 

and to guide model development and selection processes in rainfall-runoff modelling 

(Oldham et al., 2023). However, understanding these losses is not an easy task, especially 

when trying to do with currently available catchment descriptors (Bouaziz et al., 2018). 

Descriptors include catchment physical properties (e.g. soil type distribution, land cover, 

geology), climatic boundary conditions (e.g. aridity index), catchment topography (e.g. 
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average topographic slope, elevation) and water management (e.g. abstractions, reservoir 

capacity). Due to complex and hard to observe groundwater gains and losses, the exact 

reasons of water balance discrepancies between neighboring catchments are mostly 

unknown (Genereuz et al. ,2005; Munoz et al., 2016). Since locational aspects of 

catchments are not generally included (or limited) in large-sample hydrology datasets 

(Addor et al., 2018), their contribution to understand these subsurface losses are not 

investigated yet. Some recent papers did suggest that the location of catchments contains 

at least some information that could provide some insight into catchment losses. For 

example, Liu et al. (2020) investigated several thousand catchments around the globe. Their 

results suggest that factors such as location to coast or within a wider river basin could be 

informative in this regard. We will pursue this issue in chapter 2.   

 

Figure 1-1. A hypothetical situation where the carbonate unit diverts water away from the 

river basin under study. In this case, the surface drainage does not coincide with the 

subsurface drainage, with regard to flow boundaries as well as flow directions. Lower 

reach basins can be exporters, complicating the “elevation dependence,” and the large 

basin as a whole is not self-contained, complicating the “scale dependence.”. Taken from 

(Schaller and Fan, 2009). 

1.2.2 How do we select model structures to include in modular modelling 

frameworks applied in a large-sample hydrology? 

Multi-model studies have become common in large sample hydrology to represent diverse 

catchment characteristics and hydrologic processes across heterogeneous domains 

(Rakovec et al., 2019). Model selection is an important step to represent the dominant 
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hydrologic processes of diverse catchments across a study domain while aligning with the 

purpose of the study. Selection criteria depend on the modelling purpose such as 

understanding specific hydrologic processes, determining the frequencies of runoff events, 

or predicting runoff yield for management purposes (Vaze et al., 2012), though one 

generally would like to represent the relevant processes of the catchment at hand. However, 

model selection has been challenging due to an abundance of models in the hydrological 

community (Clark et al., 2011). Having a diverse range of model applications, each with 

unique requirements and demands in hydrology and the lack of consensus on a standardized 

set of concepts for process representations further contribute to the creation of more models 

and/or modular modelling frameworks (Figure 1-2) (Horton et al., 2022; Weiler and Beven, 

2015). Moreover, models should possess two characteristics, adequacy and parsimony, i.e. 

they should not be over-complicated to be interpretable and should be effective enough for 

the task at hand (Horton et al., 2022; Höge et al., 2022). At the same time, other reasons 

such practicality, convenience and experience with existing model set ups might also 

influence model selection (Addor and Melsen, 2019). 
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Figure 1-2. Visualization of how model diversity did arise based on the example of 

Switzerland. Hydrological models applied to different contexts in Switzerland. The 

importance of the link is proportional to the number of scientific articles. The importance 

of some models can be inflated by the fact that an article can address multiple contexts, 

such as floods and climate change. Models with too few use cases (less than three) are not 

included for the sake of clarity. Different colours represent different models. The models 

given in the visualisation are SWAT (Soil and Water Assessment Tool), HBV-light 

(Hydrologiska Byråns Vattenbalansavdelning—light), GERM (Glacier Evolution Runoff 

Model), PREVAH (Precipitation–Runoff–Evapotranspiration HRU Model), TOPKAPI 

(TOPographic Kinematic APproximation and Integration), WaSiM (Water Flow and 

Balance Simulation Model), VIC (Variable Infiltration Capacity model), A3D (Alpine3D), 

RS (Routing System) and G-SCNT (GSM-SOCONT, Glacier and SnowMelt SOil 

CONTribution model). The visualization is taken from Horton et al., 2022. Below the 

visualization, applications of each model are listed. 

Modular modelling frameworks attempt to consider the possible need for representing 

different catchment with different model structures from the beginning. The challenge then 

often becomes even more complicated on how to select suitable models from a large 

number of possible options. Some studies struggle to clearly discern model performances 

of the included model structures in different catchment types (e.g., Lane et al., 2019; 

Knoben et al., 2020). This challenge arises from the selection of multiple model structures 

that share similar process representations or complexities, or that can recreate very similar 

catchment behaviours. To overcome these issues, modellers or modular modelling 

framework developers need a robust strategy for (priori) selection of model(s) to include 

in their multi-model studies or modular modelling frameworks. Little focus has so far been 

placed on the process to identify and include model structures a priori, i.e. before running 

all of them to distinguish them based on performance differences alone. We take a different 

look at this problem in chapter 3. 

1.2.3 How can model performance be evaluated in a hydrologically meaningful 

way, with and without streamflow observations? 

Application of rainfall-runoff models to obtain reliable simulations requires some degree 

of parameter estimation (i.e. calibration) (Mizukami et al., 2019). Statistical performance 

metrics are commonly used for parameter estimation to evaluate model performance based 

on the comparison of simulated and observed streamflow values (Triana et al., 2019). A 

number of statistical performance metrics have been developed and used over the years 
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such as the Root Mean Squared Error (RSME) (Gershenfeld, 1999), Nash-Sutcliffe 

efficiency metric (NSE) (Nash and Sutcliffe, 1970) and Kling-Gupta efficiency (Gupta et 

al., 2009). Evolution of these metrics over time results from the need of more diagnostic 

methods to be used to evaluate and correct (or improve) models (Gupta et al., 2008), which 

has led to the use of hydrological signatures in addition to statistical performance metrics. 

Currently available performance metrics are still criticized for their lack of useful 

hydrological information regarding the behaviour of a model in the catchment of interest, 

i.e. they mainly provide some statistical summary metric with little hydrologic information 

(Schaefli and Gupta, 2007). The widespread utilization of hydrologic signatures does 

provide an interesting way forward though, given that they can be used to quantify 

hydrologically relevant information while also reproducing the information contained in 

some statistical metrics, such as the bias. Moreover, current metrics are only applicable to 

gauged catchments, i.e. they require historical time series of observed streamflow.  In large-

sample hydrology context, hydrologically meaningful diagnostic methods are necessary to 

evaluate the performances of models in terms of hydrological suitability across diverse 

catchments for both gauged and ungauged cases. We investigate this possibility in chapter 

4. 

1.3 Introduction to the main research questions 

In this thesis, these three open challenges of rainfall-runoff modelling will be addressed 

across a large sample of catchments in Great Britain (GB). We choose GB as our key study 

area due to the availability of large-sample catchment hydrology datasets (Coxon et al., 

2020b and due to presence of key knowledge gaps in our perceptual model of GB 

hydrology (Wagener et al., 2021). Water balance issues across GB catchments need to be 

addressed by accounting for groundwater exchange in local and regional scale. 

Investigating these water balance issues using different locational aspects can provide 

better insight into potential future hydrologic changes in specific regions such as coastal 

regions (Fan, 2019; Liu et al., 2020) where significant challenges (e.g. flooding, erosion) 
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already exist in GB (de la Vega-Leinert et al., 2008). Moreover, significant challenges 

remain in our ability to make meaningful connections between model structures and 

catchment characteristics, and thus to develop a coherent strategy for model selection to 

develop tailored multi-model ensembles in GB (e.g. Lee et al., 2005; Coxon et al., 2014; 

Lane et al., 2019). These gaps need to be addressed through improved understanding of 

catchment functions and their model-based representations in a nationally consistent 

framework. Hydrological signatures have an important role in understanding large-sample 

hydrology (Addor et al., 2020; McMillan, 2021). The catchment functions can be captured 

using hydrologic signatures describing hydrologic behavior and dominant processes of 

catchments (Sivapalan, 2005; Wagener et al., 2008; McMillan et al., 2017). Hydrologic 

signatures have been used in literature with different purposes (McMillan, 2021)  such as 

understanding space-time variability of hydrologic processes (e.g. Troch, 2009; McMillan, 

2020, McMillan et al., 2022b), catchment classification (e.g. Sawicz et al., 2011; Kuentz et 

al., 2017; Johnson et al., 2022), defining hydrologic similarity between catchments (e.g. 

Wagener, 2007; Toth, 2013; Neri et al., 2022), predictions in ungauged basins (Blöschl et 

al., 2013; Guo et al. 2021; Pool et al., 2021; Dal Molin et al., 2023) and to assess hydrologic 

model performance (Yilmaz et al. 2008, Euser et al. 2013; Shafii et al. 2017; Sahraei et al., 

2020; Saavedra et al., 2022) with the aim of focusing model calibration on relevant 

hydrograph aspects or major catchment functions (Pool et al., 2018; Todorović et al., 2022). 

In large sample hydrology, hydrological signatures can help to define and quantify the 

observed variability in hydrologic behaviours and their control mechanisms. Therefore, it 

is expected that implementing a consistent approach based on suitable hydrologic 

signatures will make hydrological analyses, modelling and water-management applications 

more meaningful (Wagener et al., 2008). 

The aim of this thesis is to address three challenges of rainfall-runoff modelling outlined 

across a large-sample of GB catchments using a consistent hydrologic signature-based 



11 
 

approach. We use the following research questions to guide our efforts for the main aim of 

my thesis: 

1. Does catchment location relative to its surrounding area explain catchment 

subsurface losses?  

2. Does a priori model selection in multi-model studies enhance our ability to 

meaningfully explain differences in model performance in different GB 

catchments? 

3. Can we define a signature-based hydrologic efficiency metric, which is comparable 

to commonly used statistical evaluation metrics in model evaluation and can be 

estimated in ungauged catchments? 

The research presented in this thesis addressing research questions 2 and 3 above is in 

review in peer reviewed journals: 

1. Kiraz, M., Coxon, G. and Wagener, T. (2023). A priori selection of hydrological model 

structures in modular modelling frameworks: Application to Great Britain. Hydrological 

Sciences Journal. Just-Accepted, 

2. Kiraz, M., Coxon, G. and Wagener, T. (2023). A signature-based hydrologic efficiency 

metric for model calibration and evaluation in gauged and ungauged catchments. Water 

Resources Research. Under review, 

1.4 Thesis structure 

This thesis consists of three research chapters, a conclusion chapter and four appendices. 

Our three research questions are addressed in each research chapter individually as shown 

below: 

 In Chapter 2, we quantify the water balance issues of catchments with unaccounted 

losses or gains of water using a hydrologic signature and relate these issues to possible 

subsurface losses using several locational aspects of catchments, 
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 In Chapter 3, we test the importance of selecting model structures that are consistent 

with the hydrologic variability across the GB domain on understanding of what kind 

of model structures should be used or can work better for certain catchment types. 

 In Chapter 4, we link hydrologic signatures to the components of statistical evaluation 

metrics to develop a hydrologic signature-based efficiency metric, to eventually 

calibrate and evaluate the rainfall-runoff models in hydrologically meaningful way for 

both gauged and ungauged catchments, 

The Appendices A-C contain supplemental material for Chapters 2-4, respectively. In 

Appendix D, the Curriculum Vitae (CV) of the author, providing a comprehensive 

overview of their professional qualifications, experiences, and accomplishments, is given.  
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Chapter 2 Location, Location, Location – Considering 

Relative Catchment Location to Understand Surface 

Losses  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Introduction 

A wide range of catchment descriptors have been developed and utilized to characterize 

hydrologically relevant catchment characteristics for large sample hydrology (e.g. CEH, 

1999; Addor et al., 2017). Descriptors include catchment physical properties (e.g. soil type 

distribution, land cover), climatic boundary conditions (e.g. aridity index), catchment 

topography (e.g. average topographic slope) and water management (e.g. reservoir 

capacity) etc. These descriptors have been deployed for the purpose of regionalization of 

hydrologic signatures or of hydrologic model parameters (e.g. Merz et al., 2004; Young, 

2006; Yadav et al., 2007; Westerberg et al., 2016; Prieto et al., 2019; Beck et al., 2020; 

Pool and Seibert, 2021), for catchment classification (e.g. Moliere et al., 2009; Sawicz et 

This chapter has been prepared for submission to a relevant journal and has undergone 

slight modifications to align with the general layout of this thesis. The study was 

conceptualized by Melike Kiraz, Gemma Coxon, and Thorsten Wagener. Melike Kiraz 

conducted the data processing, with assistance from Gemma Coxon and Mostaquimur 

Rahman. The analyses and creation of figures were performed by Melike Kiraz, under 

the guidance of Gemma Coxon, Mostaquimur Rahman, and Thorsten Wagener. The 

manuscript was primarily written by Melike Kiraz, with input and comments from all 

co-authors. 

Citation: Kiraz, M., Coxon, G., Rahman, M. and Wagener, T. (2023). Location, location, 

location – Considering relative catchment location to understand subsurface losses. (In 

preparation). 
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al., 2011; Fang et al., 2017; Kuentz et al., 2017; Tumiran & Sivakumar, 2021), and for 

comparative hydrology studies (Wagener et al., 2007; Gupta et al., 2014; Addor et al., 

2019; McMillan et al., 2022b).  

However, various studies have pointed to the problem that available catchment descriptors 

– often those related to subsurface properties – are frequently insufficient to describe 

hydrological differences between catchments (e.g. Genereux et al., 2005; Almeida et al., 

2016; Frisbee et al., 2016; Munoz et al., 2016; Addor et al., 2018). In particular, they are 

often insufficient to explain the widely discussed problem that the water balance of many 

catchments is not closed but influenced by sub-surface losses (e.g. Schaller & Fan, 2009; 

Munoz et al., 2016; Bouaziz et al., 2018; Liu et al., 2020; Luijendijk et al., 2020). The exact 

reasons for water balance gains/losses between similar neighboring catchments based on 

available rainfall, topography, land cover, soil and geology data are often unknown. This 

is due to complex and hard-to-observe groundwater interactions (Genereux et al. ,2005; 

Munoz et al., 2016). While some local or regional-scale studies have used more detailed 

descriptors such as major ion concentrations (Genereux and Jordan, 2006) and geomorphic 

metrics (Frisbee et al, 2016) to provide more insight into local and regional flow systems, 

their availability and accessibility in large-scale datasets is very limited (Addor et al., 2018).   

Across large domains, Liu et al. (2020) and Schwamback et al. (2022) find that aridity is a 

key indicator with drier catchments tending to lose water when assessing 2760 catchments 

around world and for 733 Brazilian catchments, respectively. In addition to climate, both 

studies also find that catchment area and slope (or elevation) are some other factors to lose 

or gain water for catchments. The study by Liu et al. (2020) also shows that there is some 

information in the location of catchments, e.g.  in relation to the coast. However, Liu et al. 

(2020) do not go into much depth regarding this issue (given the large geographical scale 

of their study), and few other large-sample studies have investigated the issue. Typically, 

locational aspects are not included in large sample catchment hydrology datasets, thus have 

rarely been assessed for their potential as informative catchment descriptors. In this study, 
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we propose that locational information is more informative than previously thought and we 

test this hypothesis by investigating water balance differences between catchments using 

different locational aspects in combination with basic geological and topographic 

information. 

We conduct our study by comparing observed and expected (based on climate only) long-

term water balances for 660 catchments across Great Britain. If we assume that the 

dominant control on water balance is climate, then catchment water balances should vary 

smoothly in space (similar to climate). If they do not, then something else must exert an 

additional control to cause this deviation. We study the differences between observed and 

expected catchment water balances to understand the role of catchment location on water 

balance issues, i.e. location to coast, location within river drainage basin and location to a 

relevant neighbor. 

2.2 Data 

We analyze 660 catchments spread across Great Britain. Great Britain – consisting of 

England, Wales and Scotland – is characterized by a temperate climate, moderate 

topographic variability and significant geological heterogeneity. Precipitation decreases 

from northern west to southern east, with mean annual precipitation values ranging from 

3500 to about 550 mm/year (Coxon et al., 2020b). Conversely, potential 

evaporatranspiration (PET) increases from northern west (minimum of about 350 mm/year) 

to southern east (maximum of about 550 mm/day). The ratio of PET to P is generally below 

1, which means that we are in an energy limited domain. Most of England is dominated by 

lowland terrain, whereas Wales and Scotland are dominated by more mountainous regions 

with the highest catchment mean elevations of 527m and 682m respectively (Coxon et al., 

2020b). Great Britain has a diverse geology including aquifers consisting of Chalk, 

Magnesian, Jurassic, Devonian/Carbonifero limestone and Permo-Triassic sandstone. 

Chalk is the principal aquifer of Great Britain, and it accounts for more than 50% of the 

groundwater abstractions in the country due to its high productivity, while Permo-Triassic 
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sand stones provide approximately 25% of the groundwater abstractions in England and 

Wales (Allen et al., 1997). Streamflow in the south-east and the midlands of England are 

further influenced by human modifications such as abstractions, effluent discharges (i.e. 

effluent returns), urbanisation and/or reservoirs. Very little to no snow is observed in most 

(>90%) catchments, i.e. no more than 5% of all precipitation falls as snow resulting in snow 

fractions of no more than 0.05 (Coxon et al., 2020). Only twelve catchments in Scotland 

have higher snow fractions than 0.1 up to 0.17 (Coxon et al., 2020). 

For each catchment, we calculate its long-term (decadal) water balance using daily rainfall, 

potential evapotranspiration and streamflow time series for a ten-year period (October 1, 

1999 – September 30, 2009) compiled from the CAMELS-GB dataset (Coxon et al., 2020a; 

2020b). CAMELS-GB is a large sample, open-source, hydro-meteorological dataset for 

Great Britain. It includes hydro-meteorological time series (consisting of rainfall, 

streamflow, potential evapotranspiration, temperature, radiation and humidity for 1970-

2015 years), catchment attributes (including topography, climate, hydrology, land cover, 

soils, hydrogeology and human influences) (see Table A1 in APPENDIX A) and catchment 

boundaries for 671 catchments across Great Britain (Coxon et al., 2020b).  Considering 

climatic variability (i.e. wet and dry periods), ten years of data is assumed to be sufficient 

to capture long-term climatic and hydrologic characteristics of our catchments for the 

purpose of this study. About 96% of the 671 catchments have >90% complete streamflow 

data in this 10-year period (i.e. 1999-2009). While CAMELS-GB dataset includes 671 

catchments, we remove a small number of catchments (11 of 671) that have no available 

data for the time period of our study, where suspected flows were observed due to 

instrumentation problems or have unrepresentative runoff due to heavy urbanization. These 

catchments were removed based on the information acquired from the National River Flow 

Archive (NRFA) website (https://nrfa.ceh.ac.uk/data/search), which reported suspected 

flow issues due to instrumentation problems and unrepresentative runoff due to heavy 

urbanisation. It is worth noting that the NRFA website does not provide a timeline for when 
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these factors might have influenced catchment runoff. As a result, it is presumed that the 

affected catchments experienced the impacts of these factors during the 10-year study 

period. 

We use a variety of data and catchment descriptors to test their ability to explain water 

balance differences between catchments. Firstly, in order to determine if water balance 

differences can be understood based on readily available catchment descriptors, we use the 

catchment attributes (e.g. topographic, climatic, hydrologic, land cover, soil etc.) supplied 

by CAMELS-GB. In addition to the hydrogeological descriptors available in CAMELS-

GB, we derive permeability information from the 1:50,000-scale digital geological map of 

Great Britain prepared by the British Geological Survey (BGS). From this digital 

geological map, we use only basic bedrock permeability information which classifies 

subsurface properties as very low, low, moderate, high and very high. We assume that the 

areas with ‘very high’ class in bedrock permeability have highly permeable geology and 

the remaining areas do not. This ‘very high’ class covers the regions where Chalk, Jurassic, 

Magnesian aquifers and some parts of Devonian/Carboniferous aquifers are located. It is 

accepted as the permeability information for our study. To calculate catchment permeable 

area fractions, we utilize an intersection process within ArcMap, overlaying the 'very high' 

bedrock permeability class map with the map of studied catchments. The permeable 

fraction of a catchment is determined by the ratio of the intersected area, where the 'very 

high' class bedrock permeability map aligns with the catchment's topographic area, to the 

overall catchment area.  

Secondly, we define locational aspects of the catchments including location to the coast 

and location within the river basin. Most CAMELS-GB catchments do not share a border 

with the coastline because river gauges will typically be located some distance from the 

coast. Therefore, we assume here that catchment boundaries that intersect a 10 km buffer 

to the coastline are catchments with a subsurface connection to the coast. A 10 km buffer 

is chosen as a suitable distance after manually testing multiple distances (5, 10, 15, 20 km 
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etc.). Certain coastal catchments were excluded when a shorter distance (e.g. 5 km) was 

applied, or inner catchments (i.e. non-coastal catchments) were inadvertently selected when 

a longer distance (e.g. 15, 20 km) was used. However, these issues did not arise when 

testing a 10 km buffer zone, which is why it was chosen as the appropriate distance. In our 

study, we defined coastal catchments as those with their gauging station situated within the 

designated buffer zone and with no intervening catchments located between them and the 

coast. Any catchments with others situated between them and the coast were not 

categorized as coastal catchments. Location within a river basin is described in a new 

simple index described in Section 2.3.2.  

Finally, in order to investigate the relationship between mean topographic elevation and 

groundwater levels of catchments, we use daily groundwater level data of 878 wells in GB 

from National Groundwater Level Archive of British Geological Survey (BGS, 2022). 878 

wells are selected to include in our study because they have daily groundwater level data 

for every season and multiple years (i.e. ranging from 2 to 10 years). The groundwater 

levels are quite variable between seasons and also some variance between years due to dry 

and wet years. Hence, we calculate the average groundwater levels of wells using daily 

groundwater level time series for a ten-year period (October 1, 1999 – September 30, 2009) 

and its map is given in Figure A9. The average groundwater levels of a catchment are 

quantified by taking the mean of average groundwater levels of wells located in the 

catchment. 

2.3 Methods 

2.3.1 Expected water balance based on climate alone 

The relationship between runoff ratio (RR) and aridity index (AI) is widely used as a 

reference for the long-term catchment water balance (Budyko, 1961). RR is the ratio of 

long-term average streamflow (Q) to long-term average precipitation (P), indicating how 

much precipitation is released from the catchment as streamflow, rather than as 

evapotranspiration (assuming no change in storage and no regional groundwater flux). AI 
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is the ratio of long-term average evapotranspiration (PET) to long-term average 

precipitation (P) and it represents the relative availability of moisture and energy in a 

catchment. If a catchment has an AI value less than 1, then the available energy is limiting 

the amount of actual evapotranspiration, and if AI is larger than 1, available water is 

limiting the amount of actual evapotranspiration.  

We calculate the expected water balance (expected RR) for all catchments, under the 

assumption that the water balance is only controlled by climate, using the Turc-Mezentsev 

curve, which is based on the widely studied Budyko framework (Budyko, 1961). It provides 

reference conditions for energy and water limits on the catchment water balance. 

Catchments with water balances unimpacted by other natural or human controls beyond 

climate are expected to plot close to the Budyko curve located in between water (AET = P) 

and energy limits (AET = PET). Similarly, Turc and Mezentsev link the long-term average 

evaporation to long term average precipitation (Turc, 1955; Mezentsev, 1955). The formula 

developed by Turc is; 

                                             
AET

P
=  
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                                      (2-1) 

Given that actual evapotranspiration is not measured at the catchment scale, we adjust the 

formula using 1- (Q/P) term instead of AET/P. Our formula for the Turc-Mezentsev Curve 

is therefore; 

                                        1 −
𝑄

𝑃
=  

1

[1+(
𝑃

𝑃𝐸𝑇
)

2
]1/2

   where 𝑅𝑅 =  
𝑄

𝑃
                           (2-2) 

The reason of using the Turc-Mezentsev Curve rather than the Budyko Curve is that it 

provides a more straightforward and simple formula to estimate RR based solely on P and 

PET. It is worth noting that the Turc-Mezentsev Curve assumes a linear relationship 

between streamflow and potential evapotranspiration. This means that it assumes a constant 

proportion of potential evapotranspiration contributes to streamflow across different 

catchments. Since it is primarily based on climate only, it disregards potential spatial 
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variability in topography, geology, land use, soil properties and other factors that can 

influence streamflow. Using the Turc-Mezentsev curve as a benchmark for estimating RR 

is easier and quicker due to its simple formula and minimal data requirement (i.e. only P 

and PET data). Its reliability for estimating RR varies depending the specific analysis 

objectives. It can provide useful estimates for catchments with relative uniform attributes 

and under certain simplifying assumptions. However, its accuracy might decrease when 

applied to catchments with diverse characteristics or complex hydrological behaviours. The 

choice between using this curve or more complex methods depends on the trade-off 

between the simplicity and accuracy. In this study, we use it as initial estimation tool, 

providing a preliminary approximation of RR values across GB catchments without the 

need for extensive hydrological modelling. 

We assess the sensitivity of our results to this choice by calculating delta RR (dRR) as the 

difference between the observed RR of catchments and the estimated RR values calculated 

using the Turc-Mezentsev Curve (Figure 2-2). We also test a simple linear regression fit to 

our RR vs AI data as a baseline, which is shown and analysed in APPENDIX A (Figure 

A1). 

2.3.2 A simple index of catchment location within the river basin 

One of the locational aspects that we consider in our study is the location within the wider 

river basin in order to investigate water balance issues of catchments. While the Strahler 

Index indicates order of a stream in a river network (Horton, 1945; Strahler, 1952 and 

Strahler, 1957), it does not define the catchment location within the wider river basin. A 

first order stream can for example either occur in the headwaters of a basin or towards the 

outlet. 

In our study, we introduce a new index to define catchment location within each river basin. 

The Strahler Sequence Index (SSI) is calculated as the difference between the Strahler 

index (SI) at the outlet of the catchment under study and the subsequent receiving river (i.e. 
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SSI = SIreceiving – SIsource ). If a first or second-order catchment (i.e. having SI value 1 or 2) 

has a low SSI value (i.e. 1 or 2), it means that it is in the upper parts of the river basin. If it 

has a high SSI value (i.e. 3 or 4), it is in the lower parts of the river basin (Figure 2-1). It is 

important to highlight that SSI index values do not directly increase from upper parts to 

lower parts in a river network for all streams. However, it is a good proxy to define the 

location of lower order catchments within the wider river basin.       

In order to calculate SSI values based on our formulation, we first calculate SI values of 

the river network. We use the UK NEXTMap 50 m gridded digital elevation model 

(Intermap Technologies, 2009) to derive GB river network and quantify SI values of 

streams. The percentage of total stream length is highest for Strahler index 1 (58%) and 

gradually decreases as the Strahler index increases (maximum of Strahler index of 8). After 

calculating SI values of 660 CAMELS-GB catchments, we calculate their SSI values based 

on our formulation. 

 

Figure 2-1. Visualization of Strahler Index (SI) and Strahler Sequence Index (SSI). SI is 

the order of streams in a river network. SSI is the order difference between a stream and 

the next stream which it drains into.  
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2.4 Results 

Our first step is to evaluate water balance deviations from a climate only expected value 

across Great Britain (GB) - subsequently we call these water balance errors, dRR. We find 

that water balance errors vary significantly across GB (Figure 2-2). When considering 

highly permeable regions of GB (Figure 2-2c), catchments located in highly permeable 

regions appear to have the largest water losses (i.e. negative dRR values). Moreover, Figure 

2-2b shows that AI values of the CAMELS-GB catchments are all lower than 1 (i.e. they 

are energy limited). The largest water losses are mostly observed in the catchments with 

high AI values (i.e. AI>0.5). There are also five catchments that have RR values higher 

than 1, which implies that these catchments are gaining water beyond precipitation (or are 

affected by unknown for anthropogenic activities). dRR values calculated based on linear 

regression using AI as the predictor (Figure A1) indicates quite similar variability across 

GB. 

 

 

Figure 2-2. (a) Map of dRR values calculated according to Turc-Mezentsev, (b) Scatter 

plot of RR vs. AI values for 660 CAMELS-GB catchments. The thick black dashed curve is 

the Turc-Mezentsev Curve and dRR values for each catchment are calculated as the 

vertical difference between the observed RR and their corresponding points on the Turc-

Mezentsev Curve. The thin dashed lines reflect energy and water limits. (c) Map of highly 

permeable geology of GB. 
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By assessing the relationship between dRR values and permeable area fraction (i.e. PAF), 

which is the fraction of catchment area that is underlained by highly permeable geology, 

we find that the median dRR values change from positive to negative when PAF values of 

catchment groups change from lower to higher (Figure 2-3a). We also find that while the 

80th percentile of the catchment group with the highest PAF values have dRR values less 

than zero (down to -0.4), these percentiles decrease for other catchment groups with lower 

PAF values (Figure 2-3b). However, both Pearson linear and Spearman rank correlation 

values between dRR and PAF values of catchments are only -0.29 and -0.23, respectively. 

These findings imply that permeable area fraction is a factor affecting water balance issues 

of catchments, but it is not the only factor contributing to water balance issues. We also 

test the correlations between dRR and an extensive number of catchment attributes from 

the CAMELS-GB dataset (see Table A1) and find that catchment attributes do not show a 

strong correlation with dRR apart from some hydrological attributes (e.g. runoff, Qmean etc.) 

(Figure 2-4 and Figure 2-5). This indicates that currently available CAMELS-GB 

catchment attributes are not enough to understand water balance issues. 

 

Figure 2-3. (a)Violin plot (b) cdf plot of dRR values for the groups of catchments with 

different permeable area fraction (PAF) ranges for 660 CAMEL-GB catchments. dRR 

values of catchments in each group are also shown as circles on the violin plot. The central 

white circles of the violin plot represent the median dRR value of each group. The bottom 

and top edges of the black-filled rectangular box indicate 25th and 75th percentiles, 

respectively. The bottom and top edges of the vertical black line demonstrate the lowest 

and highest data point in the dataset excluding any outliers, respectively. The dashed 

horizontal black line in the violin plot indicates where dRR equals to zero. The numbers 
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given in parentheses above violin plot are the number of catchments in each group. dRR 

values are calculated according to Turc-Mezentsev Curve. 

 

Figure 2-4.  (a) Absolute spearman rank and (b) pearson correlation values between dRR 

and CAMEL-GB attributes. (c) Absolute spearman rank and (d) pearson correlation values 

between WBE (i.e. dRR/RRobserved*100) and CAMEL-GB attributes. The filled and empty 

circles are positive and negative values, respectively. Descriptions and units of used 

catchment attributes are listed in Table A1. 
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Figure 2-5.  Scatter plots of dRR vs. some of CAMEL-GB attributes. PC and SRC represents 

Pearson Correlation and Spearman Rank Correlation, respectively. Different colors 

represent different attributes types (e.g. topography, land cover, soil etc.) as shown in 

Figure 2-4. Descriptions and units of used catchment attributes are listed in Table A1. 

In our study, we aim to investigate whether the addition of location information can help 

to explain these water balance issues. The first locational aspect that we investigate is 

location to coast by analyzing the water balance of coastal catchments, defined as those 

whose catchment boundaries intersect with a 10km coastal buffer we defined. Figure 2-6a 

indicates the coastal catchments with and without highly permeable geology in the area 

between catchment and coast. Figure 2-6b shows that approximately 80th percentile of those 

coastal catchments with a highly permeable geology connection between catchment and 

coast have dRR values less than zero whereas only 40th percentile of other coastal 

catchment group have dRR values less than zero. This implies that coastal catchments with 

highly permeable geology extended all the way to coastline more likely lose water than 

coastal catchments without such geology (also see Figure A2, A3 and A4 in APPENDIX 

A). When we compare the groundwater levels of wells located in some coastal catchments 
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with and without highly permeable geology connection between catchment and coast 

(Figure A5), we observe that wells of catchments that have highly permeable geology 

connection with coast have lower groundwater levels and these catchments have lower dRR 

values than other coastal catchments compared. The result suggests that information about 

location to coast and geology is helpful in defining the water balance of coastal catchments. 

 

Figure 2-6. (a) Map and (b) cdf plot of coastal catchment groups. Map indicates the 

catchment groups analyzed in the hypothesis. dRR values are calculated according to Turc-

Mezentsev Curve. 

The second locational aspect we consider is the catchment’s location within the wider river 

basin. In this analysis, we use a proxy to define the location of a catchment within wider 

river basin called the Strahler Sequence Index (SSI) introduced in section 2.2.2. dRR vs. 

SI values of catchments with highly permeable geology (Figure 2-7a) indicate that 

catchments with low SI values (i.e. I or II order streams) seem to be mostly losing water 

while catchments with SI greater than two have a range of dRR values centered around 

zero. For catchments without highly permeable geology, the dRR vs SI values show that 

they seem to be losing or gaining water regardless of their SI values (Figure 2-7b). If we 

further group these catchments based on their SI values and check their dRR values with 

respect to their SSI values (Figure 2-7c and Figure 2-7d), we observe that when smaller 
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catchments with highly permeable geology (i.e. SI=I or SI=II) are located in the upper 

regions of wider river basin (i.e. low SSI values), they lose more water than the ones located 

in the lower regions of wider river basin (i.e. high SSI values). We do not observe any 

relationships in dRR values of catchments without highly permeable geology based on their 

location within wider river basin. Consequently, understanding water balance issues of 

small catchments with highly permeable geology might be aided by information regarding 

their location within wider river basin (also see Figure A6, A7 and A8 in APPENDIX A).  

 

Figure 2-7. (a) Scatter plot of dRR vs. SI of 174 CAMELS-GB catchments with highly 

permeable geology (PAF (permeable area fraction)>0.1), (b) Scatter plot of dRR vs. SI 

(Strahler Index) of 320 CAMELS-GB catchments without highly permeable geology 

(PAF<0.1), (c) Scatter plots of dRR vs. SSI (Strahler Sequence Index) of catchment in (a) 

subgrouped based on their SI values and (d) Scatter plots of dRR vs. SSI of catchment in 

(b) subgrouped based on their SI values. dRR values are calculated according to Turc-

Mezentsev Curve. 

More locational aspects (e.g. location to a relevant neighbor catchment) could be useful to 

explain these water balance issues. In order to investigate this further by considering 

location to a relevant neighbor catchment, groundwater level data can be informative 
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regarding the potential direction of groundwater exchange between catchments. However, 

this data is not easily accessible for all catchments. Therefore, we investigate if topographic 

elevation which is a widely available and accessible proxy could be used instead of 

groundwater level. When we check the relationship between average groundwater levels 

and topographic elevation of 887 BGS wells, we observe a high correlation with both 

Spearman rank (SRC) and Pearson coefficient (PC) of 0.9 (Figure 2-8a). If we check this 

relationship in catchment scale, we still observe relatively high correlation values (i.e. 

between 0.7 and 0.9) between average groundwater levels and mean elevation or 10th 

percentile elevation of catchments (Figure 2-8b and Figure 2-8c). The information 

regarding the computation of average groundwater levels for wells and catchments can be 

found in Section 2.2. In Figure 2-8, catch. mean elev. and catch. elev. 10 represents mean 

elevation and 10th percentile elevation of catchments, respectively. These elevation values 

are obtained from CAMELS-GB dataset. In addition, the correlation between groundwater 

level difference and elevation difference of neighbouring catchment pairs is also high (i.e. 

between 0.8 and 0.9) especially when elevation difference is calculated using the wells’ 

elevation located in these neighbor catchments (Figure 2-8d). If we use mean or 10th 

percentile elevation of these neighbouring catchments rather than well elevation to 

calculate elevation difference, we observe lower correlation values (Figure 2-8e and Figure 

2-8f). Overall, these plots suggest that groundwater levels correlate with topographic 

elevation.   

By using topographic elevation instead of groundwater level data, one speculation could 

be that there might be groundwater transfer between neighboring catchments from 

topographically higher catchment to lower catchment if they are hydrogeologically 

connected. This might be a factor contributing to water balance issues of catchments. In 

order to test this speculation, we attempt to formulate a proxy including both permeability 

(e.g. permeable area fraction, permeable shared boundary between neighbouring 

catchments) and topographic elevation (e.g. mean elevation, 10th percentile elevation) 
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attributes of catchments, but this does not help us to relate the water balance issues of 

catchments with a relevant neighbouring relationship as a locational aspect (results not 

shown). The reason might be that permeability and topographic attributes used are not 

specific enough or our approach to investigate this locational aspect does not work. These 

possible reasons are discussed further in the following section.  

 

Figure 2-8. Scatter plots of (a) average gw level vs. elevation of 878 BGS wells, (b) average 

gw level of catchments vs. mean elevation and (c) gw level vs. 10th percentile elevation of 

66 catchments, (d) dGW vs. dE (calculated based on well elevation), (e) dGW vs. dE 

(calculated based on catchment mean elevation) and (f) dGW vs. dE (calculated based on 

catchment 10th percentile elevation) of 25 neighboring catchment pairs. Where neighboring 

catchments are concerned, "dGW" denotes the difference between their average 

groundwater levels, while "dE" stands for the difference between their elevations. The 

computation of "dE" involves utilizing the average elevation of wells situated in 

neighboring catchments, the mean and 10th percentile elevations of neighbouring 

catchments in parts (d), (e), and (f), respectively. SRC and PC are Spearman Rank and 

Pearson correlation values for each scatter plot, respectively. 

2.5 Discussion 

Our study indicates that catchment location is informative to understand water balance 

losses in catchments especially when available catchment descriptors are not sufficient. We 

find that highly permeable coastal catchments are losing more water than others by 

combining information regarding location to coast with geology. Other studies conducted 

in the UK (e.g. Gale and Rutter, 2006; Allen and Crane, 2019) report that some regions 

(e.g. Flamborough, Arish Mell and West Lulworth) have groundwater flows in seaward 
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direction and seepages direct to ocean in chalk dominated basins (e.g. Yorkshire and 

Wessex basins).  This effect of geology on groundwater flux of coastal catchments to ocean 

is also observed in the large-sample study by Liu et al. (2020) discussed earlier, and in the 

global coastal groundwater flow modeling study by Luijendijk et al. (2020). The authors 

investigate the response of marine groundwater discharge to variation in groundwater 

recharge, size of contributing area, subsurface permeability and topographic gradient. They 

find that globally groundwater flux of coastal catchments to the ocean is mainly controlled 

by aquifer permeability and topographic gradient, not by catchment length or groundwater 

recharge magnitudes. Looking closer at their results for Great Britain, we find that geology 

is the only controlling factor for coastal groundwater discharge in our domain (likely 

because coastal topography in relevant locations is rather low). These results are in line 

with our findings given that we also found no further improvement when including the 

topographic difference between catchment and coastline (results not shown).  

Our study introduces an index to define the location of catchments within a wider river 

basin – the Strahler Sequence Index (SSI). Our findings show that highly permeable 

headwater catchments (i.e. those that have low SI values) located in the upper regions of 

wider river basins lose more water than the ones in the lower regions. This result is 

consistent with that of Buoaziz et al. (2018) who showes that water balance losses in the 

Meuse basin are mainly found in small headwater catchments and water loss positively 

correlates with increasing permeability (i.e. the percentage of highly fissured aquifers). 

Their modelling results indicate that while the upstream catchment of the Semois catchment 

(i.e. Sainte-Marie) loses 17-20% of observed discharge annually, these water balance losses 

decrease further downstream of the catchment.  However, it is not consistent across studies 

to find such a result. For example, Schaller and Fan (2009) expect upper catchments to lose 

water and lower catchments to gain water. However, the ratio of river streamflow to the 

difference between precipitation and evapotranspiration (i.e. Q/P-ET) distribution in the 
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Cedar River Basin indicates that upper catchments can gain water and lower catchments 

can lose water depending on their underlying geologic structures.  

One limitation of our study is the limited number of headwater catchments (i.e. only 14 and 

49 of the CAMELS-GB catchments have SI of 1 and 2, respectively) to test the relation of 

location within drainage basin with water balance losses. This is despite the fact that the 

largest portion of total stream length of GB river network are headwaters (i.e. SI=1) (Figure 

2-9). Given this limitation, more data are required to test this further across Great Britain 

and globally. 

 

Figure 2-9. Percentages of total stream lengths and total number of CAMELS-GB gauges 

in GB river network according to their Strahler Number. Upper and lower values on the 

top of the bars represent total stream lengths (km) of streams (shown as black bars) and 

total number of CAMELS-GB gauges (show as gray bars), respectively. 

High correlations observed between topographic elevation and groundwater levels of 

catchments implies that topographic relief correlates with the local groundwater flow 

system between neighbouring catchments. Using available groundwater levels and their 

topographic elevation, we are able to indicate that they are strongly correlated in Great 

Britain. Moreover, previous studies have suggested that topographic variability can be an 

indicator of groundwater connectivity. Theoretically, Toth (1963) suggest that topographic 

relief increases the importance of local flow systems and stimulates regional groundwater 
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flows. Condon and Maxwell (2015) conduct a modeling study to evaluate the relationship 

between topography and groundwater behavior in the US. They find that groundwater 

fluxes are mostly driven by topographic gradients. According to Munoz et al. (2016), three 

neighbouring headwater catchments with the same climate and land cover have dissimilar 

water balances due to interbasin water exchange, which is consistent with elevation 

differences based on topographic information provided.  

Nonetheless, our study demonstrates that more specific catchment attributes or different 

approaches might be necessary to define groundwater transfer between neighboring 

catchments and link this with water balance issues of catchments. Even though 

groundwater transfer between some neighbouring catchments has been postulated in 

Chalky regions of Great Britain (e.g. between Pang and Thames catchments or Frome and 

Piddle catchments), there is a complex pattern of groundwater movement in different 

regions due to the various fractures, geological faults and dissolution features (Bradford, 

2002; Griffiths et al., 2006; Allen and Crane, 2019). Due to this heterogeneity, it is 

challenging to introduce a single simple index to define this hydrogeological connectivity. 

More specific attributes are likely necessary to define this connectivity between 

neighbouring catchments beyond simple permeability. Moreover, considering only 

catchment-scale attributes as a top-down approach was sufficient for the earlier two 

locational aspects but it is not for the location to a relevant neighbor. Investigating this 

locational aspect by starting from more local scale (e.g. shared boundary regions of 

neighbouring catchments) to catchment-scale as a bottom-up approach might be a way to 

tackle this problem. However, it points to an interesting aspect that there is no available 

hydrogeological connectivity or topographic elevation descriptors for only dealing with a 

region of catchment and being still relevant for the whole catchment. Eventually, we could 

not justify groundwater transfer between neighbouring catchments and its relationship with 

the water balance issues of catchments in our study. 
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Lastly, it is important to highlight that the proxy we use to quantify water imbalances of 

catchments (i.e. dRR) does not differentiate the effect of water management activities (i.e. 

human disturbances) from natural catchment features. Moreover, dRR values of human 

impacted catchments have the largest deviations compared to benchmark catchments 

(Figure 2-10a). The net effects of water management activities on runoff are still unknown 

and poorly quantified to relate with water balance issues (Figure 2-10b) – even though the 

catchments included should largely be free of major management activities. This lack of 

information on human activities has also been also emphasized in previous studies (e.g. 

Schwamback et al., 2022).  

 

Figure 2-10. (a) Natural catchments (i.e. gray filled circles) (b) Human impacted 

catchments colored based on their water management activities (i.e. WMA). In both (a) 

and (b), red horizontal and blue diagonal dashed line indicates the water limit (i.e. Q=P) 

and the energy limit (i.e. Q = PET), respectively. The black dashed curve is the Turc-

Mezentsev Curve. A is abstraction, R is reservoirs and E is effluent returns. Natural 

catchments have no abstractions and discharges or the variation due to them is so limited 

that the gauged flow is considered to be within 10% of the natural flow at, or in excess of, 

the Q95 flow. Abstraction means that natural runoff is reduced by the quantity abstracted 

from a reservoir or by a river intake for different purposes (e.g. public water supply, 

industry and/or agriculture) and/ or reduced or augmented by groundwater abstraction or 

recharge. Effluent returns are outflows from sewage treatment works will augment the river 

flow if the effluent originates from outside the catchment (Marsh and Hannaford, 2008). 

Water management activities shown here are based solely on the information in Factors 

Affecting Runoff section which is provided at NRFA website 

(https://nrfa.ceh.ac.uk/data/search) for each gauge. This information is subject to ongoing 

evaluation and is routinely refreshed on the website. Nevertheless, specifics concerning the 

timing and duration of these activities, as well as the impacts stemming from factors like 

population growth, climate variations, and alterations in land cover/use, remain 

undisclosed. In the scope of this investigation, it is posited that the runoff within the 

examined catchments is influenced by these water management activities during the 

designated study period. 
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2.6 Summary 

The analysis of large samples of catchments has become a standard tool in hydrologic 

analysis. However, available catchment descriptors are regularly shown to be insufficient 

in defining all relevant aspects of the hydrological behaviour of catchments. In our study, 

we test the hypothesis that the location of a catchment relative to its surrounding area can 

add further information. Specifically, we focus on three different locational aspects to 

determine their value in defining subsurface leakage of GB catchments. We find that 

location relative to the coast and within wider river basin explains significant parts of the 

water balance issues of highly permeable catchments. We further find that there is a strong 

relationship between topography and groundwater levels. We have not found a way to use 

this information in a helpful manner though, which might partially be related to the need to 

add more detail, which we did not do here.  The strong bias in streamgage location is also 

problematic in GB, where we also lack information in first and second order streams, even 

though they make up most of the stream length. Also, in how far our results are specific to 

the GB setting with its Chalk geology and other characteristics remains open to future 

studies.  

Overall, we believe that our results show that location specific information should be 

considered in large sample hydrology. It is likely that other informative indices can be 

defined which are full or partially based on catchment location. We believe that this 

consideration has been largely overlooked so far and deserves further investigation. Given 

the limitations of our dataset, we could not test some location specific expectations for 

catchment water balances. For example, climatic change lines or strong topographic 

variability, e.g. mountain fronts, cannot be found in GB but have been suggested to play a 

role (Fan, 2019). We are further limited by the problem that GB has limited topographic 

variability compared with other domains. Hence, we hope that others will perform similar 

analyses across more topographically and climatically diverse domains. 
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Chapter 3 A Priori Selection of Hydrological Model 

Structures in Modular Modelling Frameworks 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

Modular rainfall-runoff modelling frameworks have been widely used to provide a more 

flexible approach to modelling diverse catchments. These frameworks consist of model 

structures or model structural elements that can be combined in different ways to represent 

different dominant hydrological processes (often at the catchment scale). Some of the more 

widely used frameworks include the Modular Modeling System (MMS) (Leavesley et al., 

1996), the Rainfall-Runoff Modelling Toolbox (RRMT) (Wagener et al., 2001a), the 

Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008), Catchment 

Modelling Framework (CMF) (Kraft et al. 2011), SUPERFLEX (Fenicia et al., 2011; 

Kavetski and Fenicia, 2011), the Structure for Unifying Multiple Modeling Alternatives 

(SUMMA) (Clark et al., 2015a;b), the Eco-hydrological Simulation Environment ECHSE 

(Kneis, 2015), Dynamic fluxEs and ConnectIvity for Predictions of HydRology framework 

DECIPHeR (Coxon et al., 2019),the Nonstationary Rainfall-Runoff Toolbox (NRRT) 

This chapter has been submitted to Hydrological Sciences Journal and has undergone 

slight modifications to align with the general layout of this thesis. The study was 

conceptualized by Melike Kiraz, Gemma Coxon, and Thorsten Wagener. Melike Kiraz 

conducted the data processing, model simulations and creation of figures under the 

guidance of Gemma Coxon and Thorsten Wagener. The manuscript was primarily 

written by Melike Kiraz, with input and comments from all co-authors. 

Citation: Kiraz, M., Coxon, G. and Wagener, T. (2023). A priori selection of hydrological 

model structures in modular modelling frameworks: Application to Great Britain. 

Hydrological Sciences Journal. (Under review). 
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(Sadegh et al., 2019), the Modular Assessment of Rainfall-Runoff Models Toolbox 

(MARRMoT) (Knoben et al., 2019), and RAVEN (Craig et al., 2020) among others. These 

frameworks vary in their spatial resolution, in the model structures and structural elements 

included, in the granularity of the components that make up the model structures and in 

other ways such as the optimization or uncertainty quantification tools included. 

An initial step in any modular modelling exercise is the selection of the model structures 

(or model structural components) to be considered given that they should be both potential 

representations of the system(s) under study and appropriate for the modelling objective(s). 

We might assume that a framework is so flexible that it can reflect any system, but even 

then, some pre-selection might be helpful to avoid testing model structures that can already 

be considered a priori unsuitable– e.g. those based on process perceptions that are not 

present in the study domain to avoid getting the right result for the wrong reasons (e.g. 

Grayson et al., 1992; Kirchner, 2006). Experience, embedded in a perceptual model(s) of 

the underlying system(s), is one way to identify the differences between systems such as 

catchments (Seibert and McDonnell, 2002; Beven and Chappell, 2021; Wagener et al., 

2021; Fenicia and McDonnell, 2022). One recurring problem in this context is that various 

multi-model studies found that there is no specific model that performs better than all others 

for a specific catchment, and that we might only find some basic trend that models with 

more parameters have more flexibility to fit rainfall-runoff relationships (e.g. Perrin et al., 

2001; Kollat et al., 2012; Van Esse et al., 2013; Orth et al., 2015), but even that conclusion 

is not always clear and confounded with the adequacy of a certain process representation 

(Knoben et al., 2020). As a consequence, there is often no clear relationship between 

catchment type and well-performing model structures (e.g. Nicolle et al., 2014; Ley et al., 

2016; Knoben et al., 2020). One aspect that has so far been studied less extensively, is that 

the actual choice of model structures included in such studies might be increasing the 

problem of equifinality in model performances, and thus that the problem can be reduced 

through better a priori selection. 
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Two of the above-mentioned modular modelling frameworks have so far been used in 

multiple studies in the UK - the RRMT (Wagener et al., 2001a; Lee et al., 2005) and FUSE 

(Coxon et al., 2014; Lane et al., 2019) frameworks. The former framework was specifically 

developed for the UK, a region with mostly small catchments located in a temperate 

climate, while the latter includes a wider range of model components based on globally 

used models (more details in the methods section). Using RRMT, Lee et al. (2005) tested 

12 model structures on 28 UK catchments. The authors could not find evidence for a 

relationship between catchment type and model structure, though they identified a subset 

of models that performed better than the rest. Lee et al. (2005) characterized catchment 

types using only descriptors that are available for both gauged and ungauged UK 

catchment– area, regionalized baseflow index and average rainfall – which have limited 

value in characterizing hydrologic differences (Addor et al., 2018). Using the FUSE 

framework, Coxon et al. (2014) evaluated performances of 78 model structures across a 

different set of 24 catchments in England and Wales. They found that statistical model 

performance increased with catchment wetness and that only certain model structures 

provided good model performance in baseflow dominated catchments. Moreover, they 

highlighted the possibility of identifying more informative signatures for better model 

identification (in gauged catchments). Lane et al. (2019) followed up on Coxon et al.’s 

study by selecting only four model structures from the FUSE framework but by 

implementing them in over 1000 GB catchments. The performance patterns of all four 

models across GB were very similar. They performed better (worse) in wetter (drier) 

catchments and were particularly poor in catchments with groundwater leakage to 

neighboring catchments, which none of the model structures accounted for. Even though 

some performance differences exist between these model structures in different types of 

catchments, the authors were not able to explain them through model structure/complexity 

differences. 
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In this study, we aim to test how much distinguishing between model structures in multi-

model studies is a function of which model structures are selected beforehand. In other 

words, we would like to investigate the importance of a priori model selection step (i.e. 

deciding which model structures will be included in a multi-model study) on our ability to 

observe relevant performance differences between model structures. To do so, we compare 

two different modular rainfall-runoff modelling frameworks (and the model structures they 

include) on 998 GB catchments in a Monte Carlo framework. For this comparison, we 

select six model structures from the Rainfall-Runoff Modelling Toolbox (Wagener et al., 

2001a) and compare these to simulation results from the four FUSE model structures 

reported in Lane et al. (2019). We then attempt to explain the resulting differences between 

model structures using hydrologic signatures – as more informative descriptors than 

catchment properties. Lane et al. (2019) used model structures of similar complexity and 

found no distinguishable differences between their process representations that can easily 

be linked to our perceptions of different dominant hydrologic processes across the UK. We 

hypothesize that a different a priori model selection will improve our ability to distinguish 

the performance of model structures across catchment types. So, we are trying to overcome 

two problems we were left with after the study by Lane et al. (2019): (1) The lack of well-

performing model structures in leaky catchments. (2) The lack of distinctive and 

hydrologically relevant performance differences between model structures and catchment 

types. 

3.2 Data, Modular Modelling Framework and Methods 

3.2.1 Data and Hydrologic Signatures 

In this study, we analyse the same catchments across Great Britain as selected by Lane et 

al. (2019) to ensure comparability of our results. These catchments were selected from the 

National River Flow Archive (Centre for Ecology and Hydrology, 2016) based on the 

quality and availability of flow time series. They represent a diverse range of catchment 

characteristics in terms of topography, geology and climate, thus capturing much of the 
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variability found across Great Britain (GB). Details about the general characteristics (e.g. 

climatic, topographic, geologic) of Great Britain are provided in Section 2.2. of Chapter 2. 

We use daily rainfall, streamflow, and potential evapotranspiration time series for twenty-

one years (January 1, 1988 – December 31, 2008) to cover the same time period used by 

Lane et al. (2019). Daily rainfall and potential evaporation data are derived from the Centre 

for Ecology and Hydrology Gridded Estimates of Areal Rainfall (CEH-GEAR) (Tanguy et 

al., 2021) and the Climate Hydrology and Ecology Research Support System Potential 

Evapotranspiration (CHESS-PE) (Robinson et al., 2015a), respectively. Daily potential 

evapotranspiration (mm/day) was calculated using the Penman –Monteith equation 

(Monteith, 1965) for a well-watered grass surface (Allen et al., 1998) with meteorological 

data from the Climate Hydrology and Ecology research Support System dataset (CHESS-

met) (Robinson et al., 2015a; b). Daily observed streamflow data from the National River 

Flow Archive (NRFA) are used to evaluate model performances (Centre for Ecology and 

Hydrology, 2020). 

To compare model structure performances across different catchment types, we organise 

the catchments based on four hydrological signatures which have been found helpful for 

distinguishing UK catchments in the past (Coxon et al., 2014; McMillan et al., 2022b): 

baseflow index (BFI), runoff ratio (RR), the deficit in water balance (dRR) and slope of 

flow duration curve (Slope of FDC). We choose these hydrological signatures because they 

differ in the information they provide about the runoff processes of catchments. Runoff 

ratio represents the proportion of precipitation becoming streamflow, while the baseflow 

index represents the proportion of streamflow sourced from groundwater. The deficit in the 

water balance indicates if catchments produce more or less runoff than expected based on 

climate only, while the slope of the flow duration curve indicates whether catchments have 

more or less flashy (i.e. variable) flow regimes (e.g. Yadav et al., 2007). We further use 

streamflow-derived baseflow index (BFI) values from the UK Hydrometric Register 

(Marsh and Hannaford, 2008). 
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For each catchment, we calculate its long-term water balance (i.e. runoff ratio, RR = Q/P), 

aridity index (AI = PET/P) and slope of flow duration curve (33-66 percentile; Sawicz et 

al., 2011) values using daily precipitation, P, potential evapotranspiration, PET, and 

streamflow, Q, data. We also calculate the expected water balance (expected RR) based 

only on climate using the Turc-Mezentsev curve. The formula of Turc-Mezentsev Curve 

which is used to estimate expected RR is provided in Section 2.3.1 of Chapter 2. Delta 

runoff ratio (dRR) is calculated by taking the difference between observed runoff ratio and 

the expected runoff ratio derived from the Turc-Mezentsev Curve. 

3.2.2 Modular Modelling Framework 

In this study, we selected a minimal set of model structures that covered the range of 

dominant hydrological processes across our study domain of GB. We wanted to ensure that 

the model structures had different levels of complexity (i.e. the number of parameters) to 

represent these dominant hydrological processes and that model structural choices (such as 

the type of flow routing module) could be evaluated in isolation to demonstrate the impact 

of different model structural modules on model performance. 

To achieve these goals, we first selected model structures from the Rainfall-Runoff 

Modelling Toolbox (RRMT) (Figure 3-1a) (Wagener et al., 2001a). RRMT is a flexible 

modelling framework that allows the user to develop model structures with different 

complexity levels by combining soil moisture accounting and flow routing modules that 

are of a low and medium complexity (Wagener et al., 2004). We selected six model 

structures from the toolbox consisting of different combinations of two soil moisture 

accounting modules and three flow routing modules. The soil moisture accounting modules 

(PEN and PDM) are based on long standing experience with UK catchments (see 

discussions in Wagener et al., 2004; Lee et al., 2005; Moore, 2007) and capture key runoff 

generation processes across GB. The flow routing models (CRES, 2PAR and LEAK) 

capture different levels of complexity from one to two linear reservoirs and a leaky routing 

component to reflect different flow pathways because of different soils and regional 
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aquifers that occur across GB (Moore, 2007). The model structural modules are explained 

in detail below and the parameters of each module are listed in Table B2.1. (APPENDIX 

B). Full names of used soil moisture accounting and routing modules are given in List of 

Acronyms. 

PEN is a parsimonious two-store structure based on an empirical drying curve concept 

developed from observed drying patterns in UK soils by Penman (1949). The upper and 

lower store represent the root zone and an infinite soil reservoir, respectively. Analysing 

UK soils, Penman (1949) found that actual evapotranspiration occurs close to the potential 

rate whenever water is available in the root zone reservoir. The actual rate decreases to a 

very small percentage of the potential rate (8%) when the upper store is depleted. Effective 

rainfall – the part of the rainfall that contributes to runoff – is created in two ways. Either 

as rainfall bypass to represent processes such as rapid groundwater recharge or rainfall 

falling close to a river, or as saturation-excess runoff which is produced when both stores 

are full. The model parameters define the size of the root zone storage, Smax1, and the 

fraction of bypass flow, φ. 

PDM is the probability-distributed soil moisture accounting component, which represents 

the variability in soil moisture storage across a typical humid catchment using a distribution 

of storage depths (Moore, 2007). Effective rainfall is produced as overflow from the stores 

which are described as Pareto distribution based on two parameters, the maximum storage 

capacity, Cmax, and parameter, b, describing the shape of the distribution. While PEN 

module primarily focuses on water loss due to the evapotranspiration and features a fixed 

storage capacity across the entire catchment, PDM module represents more flexibility 

through its distribution function for soil moisture storages with different capacities. This 

accounts for heterogeneity in the catchment. 

There are three different routing components. Firstly, CRES is a single linear reservoir 

defined only by a time constant. 2PAR is a combination of two linear reservoirs in parallel 

for routing, one representing fast flow and the other representing slow flow. The effective 
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rainfall (ER) is distributed with respect to parameter a describing the fraction of flow 

through the fast reservoir, while both reservoirs are defined by a time constant. And thirdly, 

LEAK is a leaky aquifer routing component, which allows the model to consider the 

situation when the water balance of a catchment is not closed. The flow from the bottom 

outlet represents leakage from the catchment, while the middle and upper outlets contribute 

to routing the effective rainfall. While CRES modules has simpler structure that renders it 

well-suited for catchments characterized by uncomplicated hydrologic processes, 2PAR 

and LEAK modules which include multiple reservoirs, are better equipped to capture more 

complex hydrologic processes such as subsurface flows and leakage of water within 

catchments. 

The four model structures provided by the FUSE modelling framework (Clark et al., 2008) 

and used by Lane et al. (2019) are shown in Figure 3-1b. These model structures are based 

on four hydrological models which are TOPMODEL (Beven and Kirkby, 1979), the 

Variable Infiltration Capacity (ARNO/VIC) (Liang et al., 1994; Todini, 1996), the 

Precipitation-Runoff Modelling System (PRMS) (Leavesley et al., 1983) and 

SACRAMENTO (Burnash et al., 1973). The details of model parameters are listed in Table 

B2 (APPENDIX B). The modelling decisions are described by Lane et al. (2019) (See 

Table 3 in Lane et al.’s study). Even though these models have similar complexity, their 

structures are different in terms of the structures of upper and lower soil layers and the 

parametrizations of water balance components such as evaporation, surface runoff, 

percolation, interflow and baseflow. Since only a small proportion of the catchments (1%) 

have a snow fraction higher than 0.1 and likely to be snow impacted, no snow modules are 

used in any model structures selected from both RRMT and FUSE frameworks. 
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Figure 3-1. Structures of models used in the study. (a) six model structures consisting of 

different combinations of two soil moisture modules and three flow routing modules 

provided by Rainfall – Runoff Modelling Toolbox (RRMT). PEN/PDM + 2PAR have 5 

parameters, PEN/PDM + LEAK have 7 parameters and PEN/PDM + CRES have 3 

parameters. (b) four models provided by The FUSE modelling framework. Schematic 

illustrations of their structures are taken from Lane et al. (2019). TOPMODEL and 
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ARNO/VIC have 10 parameters, PRMS has 11 parameters and SACRAMENTO has 12 

parameters. In the diagram, p, e, ER, S and Q represent precipitation, evaporation, 

effective rainfall, storage and outflow respectively. In PEN module, Smax1, Smax2, d, φ 

represent size of the upper store (i.e. root constant), size of the lower store, initial deficit 

in upper store and bypass value, respectively. In PDM module, Cmax, b and c represent 

maximum storage capacity, degree of spatial variability and initial critical capacity, 

respectively. In CRES module, T represent the residence time of reservoir. In 2PAR module, 

a, Ts and Tf represent the fraction of effective rainfall going through fast reservoir, the 

residence times of reservoirs for slow flow and fast flow, respectively. In LEAK module, Tu, 

Tm, Tl, h1 and h2 represent the residence times of upper, middle, lower parts, lower 

threshold and upper threshold, respectively. 

Model equations in the FUSE framework are solved by an implicit version of Newton-

Raphson method (See Appendix A in Clark et al.’s study (2008)). Equations in the soil 

moisture accounting and routing modules of RRMT framework are the first order equations 

which are solved in MATLAB programming environment (Wagener et al., 2001a). 

However, our focus is not the analysis of the relative performance between the two 

frameworks, but rather the differences between model structures within each framework. 

Since each framework utilizes a consistent numerical implementation across its model 

structures, the distinctions among model structures within each framework are not linked 

to their numerical implementation. 

3.2.3 Methods 

3.2.3.1 Model Set-up 

To enable comparison with the results from Lane et al. (2019) we replicated the modelling 

setup the authors employed. Consequently, 10,000 parameter values for the six model 

structures in this study are independently and randomly sampled from uniform 

distributions. The model parameter ranges used for RRMT and FUSE frameworks are 

given in Tables B2.1 and B2.2. These parameter ranges are suggested as feasible for RRMT 

(Wagener et al., 2001b) and FUSE model structures (Clark et al., 2008; Coxon et al., 2014). 

The first five years of 21-year period (1988-2008) are used as a warm-up period. A shorter 

warm-up period (e.g. 5% of the study period that is used in Chapter 4 – See Section 4.3.3.) 

can be enough to allow the model to reach a steady state by accounting for initial conditions 

and ensuring that transient effects from the starting point do not significantly affect the 
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simulation results. In this study, the utilization of this warm-up period (approximately 24%) 

was solely driven by the intention to mirror the modelling configuration employed by Lane 

et al. (2019) in their research, thereby facilitating a direct comparison with their findings. 

3.2.3.2 Model performance evaluation 

In this study, it is crucial to be able to compare the performance of multiple model structures 

across many catchments and to make results comparable with Lane et al. (2019). 

Considering this, we use the Nash Sutcliffe (NSE) - which was used by Lane et al. (2019) 

- and Kling Gupta (KGE) Efficiency metrics because they are normalized and unit-free 

metrics enabling the comparison of model performances across catchments. Both metrics 

are calculated for the time period of 1993-2008. We only have the best runs based on NSE 

for the Lane et al. (2019) study, which is why we calculate the KGE values for those and 

not identify the best KGE run separately. 

Nash-Sutcliffe efficiency (NSE) metric is calculated as (Nash and Sutcliffe, 1970); 

                                          𝑁𝑆𝐸 =  1 −  
∑ (𝑥𝑠,𝑡 − 𝑥𝑜,𝑡)

2𝑛
𝑡=1

∑ (𝑥𝑜,𝑡 − µ𝑜)
2𝑛

𝑡=1

                                                (3-1) 

where xs,t is the simulated value at time-step t, xo,t is the observed value at time-step t, n 

is the total number of time-steps and µO is the mean of observed values. NSE ranges from 

-∞ to 1, with a value of 1 indicating a perfect correspondence between simulations and 

observations. NSE=0 indicates that simulations have the same predictive skill as the mean 

of the observations, while NSE<0 indicates that simulations are a worse predictor (Schaefli 

and Gupta, 2007). 

Kling Gupta efficiency (KGE) metric is calculated as (Gupta et al., 2009); 

                             𝐾𝐺𝐸 =  1 −  √(α − 1) 
2 + (𝛽 − 1)2 + (𝑟 − 1)2                                 (3-2) 

with α = σS / σO  and  β = µS/µO  where σo  and σS  are the standard deviations of 

observed and simulated values, µo and µS are the mean of observed and simulated values 
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and r is the linear correlation coefficient between observed and simulated values, 

respectively. Like NSE, KGE metric also ranges from -∞ to 1. KGE=1 also means that 

simulations are perfectly in agreement with observations. Knoben et al. (2019) found that 

when KGE is approximately -0.41, simulations have the same predictive skill as the mean 

of the observations. 

To establish whether the performance of specific model structures (measured using KGE 

or NSE) varies with the magnitude of a specific hydrologic signature (section 2.1), it is 

difficult to simply create scatter plots of one against the other as there is a lot of noise that 

makes it difficult to see trends. We therefore smooth the data to lower the effects of 

variability across catchments so that the separations between increasing or decreasing 

trends in the relative performance differences of model structures can be observed more 

clearly (e.g. Burn and Elnur, 2002). Without smoothing, it is difficult to observe the 

increasing and decreasing trends on the scatter plots (see Figure B1.1. in APPENDIX B). 

We use a nonparametric local weighted regression (LOWESS) approach which includes a 

bi-square weight function to minimize the effect of the outliers in the smoothed values 

(Cleveland, 1979; Coxon et al., 2015). In the LOWESS (locally weighted scatterplot 

smoothing) method, the highest NSE or KGE value for each catchment is sequentially 

selected as the central point (x) among a set of 2k+1 data points (k is called as span which 

is the half of window size selected for smoothing). The catchments are sorted based on 

chosen attributes. Within these 2k+1 points, k data points are before the central NSE or 

KGE point, and k are after. A smoothed NSE or KGE value and its variability are then 

determined by fitting a weighted linear regression to this set of data points. This process is 

repeated for all data points to obtain a final LOWESS fit. More details regarding the 

LOWESS smoothing process are given in APPENDIX B (Section B3 and Figure B1.1). 

We find that a smoothing window size of 40 catchments reflects the performance changes 

across catchments without overly smoothing the results. We then calculate the performance 
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difference (i.e. NSE or KGE difference) between each model structure and the best model 

structure (i.e. the model structure having the highest smoothed NSE or KGE value). 

3.3 Results 

3.3.1 RRMT and FUSE model performance across Great Britain 

First we compare the performance of model structures from both frameworks across Great 

Britain. While Lane et al. (2019) included 1013 catchments in their analysis, we remove 

15 catchments because they have unrealistic runoff ratio values (i.e. RR>1) or because all 

model structures fail to work (i.e. NSE<0). We assume that these problems are caused by 

unknown and thus unaccounted for anthropogenic impacts. Figure 3-2a and Figure 3-2b 

show the best NSE performance from all the model structures from RRMT and FUSE 

frameworks for 998 GB catchments, respectively. Both frameworks simulate 95% of the 

studied catchments with NSE values higher than 0.5 as shown in Figure 3-2c.  The more 

complex FUSE models perform slightly better in catchments where both frameworks 

achieve high NSE values. 

The spatial patterns of model performance in  Figure 3-2a and Figure 3-2b are largely 

similar. However, there are 40 catchments located in south-eastern GB where we find larger 

performance differences (i.e. >±0.2 NSE) between the frameworks (see Figure B4.1a and 

c in APPENDIX B). In 28 of them, highest NSE values are obtained by the RRMT 

framework, and they are significantly higher than ones by the FUSE framework (i.e. NSE 

difference>0.2). More than 80% of these catchments have highly permeable geology 

covering more than 60% of their respective catchment areas. Among them, there are 6 

catchments where the FUSE models perform particularly poorly (i.e. NSE<0) but RRMT 

is able to simulate their streamflow with NSE>0.7. In this Chalky region, the catchments 

are mostly baseflow- dominated and some of them are losing water through regional 

groundwater flows. The inclusion of a LEAK routing component in the RRMT framework 

enables better performances under those conditions. 
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Lower NSE values are also seen in some catchments of northern east and central Scotland 

and north Wales, likely due to snow or reservoirs. There are three catchments in north-east 

Scotland (i.e. snow fractions>0.1) for which model performances show NSE values less 

than 0.5. We did not focus on this any further given that these are just three out of almost 

1,000 catchments. To investigate the impact of reservoirs in more detail, we investigated 

the relationship between two reservoir related descriptors (contributing area upstream of 

the reservoir and normalized upstream capacity; Salwey et al., 2023) and highest NSE 

scores obtained by RRMT and FUSE model structures for 252 catchments (Section B5 in 

APPENDIX B). We found that there is a small decline in model performance the closer a 

reservoir exists to the catchment outlet, and to a lesser degree the larger it is (Figure B5.1 

in APPENDIX B). However, the variability in performance change is very large and it 

would take consideration of additional aspects such as reservoir management to add 

reservoirs to the models used here (e.g. Payan et al., 2008), which is beyond the main aims 

of this study. We also calculate KGE values for the best NSE model runs for comparison 

(Figure 3-2c, Figure 3-2d and Figure B4.2 in APPENDIX B). Overall, they indicate similar 

patterns in comparison with NSE values across GB. However, Figure 3-2d shows that 

RRMT has a larger number of catchments with KGE values>0.4 and both frameworks have 

quite similar distributions after KGE>0.8, whereas FUSE has a larger number of 

catchments with NSE values >0.6 (Figure 3-2c). Performance differences between RRMT 

and FUSE frameworks are not fully consistent when comparing NSE and KGE values 

which are calculated based on the simulation producing best NSE in each catchment, due 

to the difference between the formulations of NSE and KGE. While bias, variance and 

correlation components of streamflow are equally weighted in KGE formulation, they are 

weighted differently in the NSE formulation (i.e. variance term is more dominant in NSE 

formulation than other terms) (Gupta et al., 2009). Moreover, the relationship between NSE 

and KGE will be different for different catchments, mostly depending on the coefficient of 

variation of the observed streamflow (Knoben et al., 2019; Lamontagne et al., 2020). 

Having more complex model structures (i.e. having higher number of parameters) might 
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provide FUSE with more ability to capture the variance of streamflow than RRMT but 

RRMT seems to be performing as well as FUSE considering all three components of 

streamflow equally. 

 

Figure 3-2. NSE values of best simulations performed by any of model structures which 

are selected from a) RRMT and b) FUSE frameworks and Cumulative Distribution 

Function (CDF) plots of (c) NSE and (d) KGE values of these frameworks. 
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3.3.2 Linking model structure performance with hydrologic signatures and 

catchment characteristics 

Figure 3-3 and Figure 3-5 show the differences in NSE values of the six RRMT model 

structures (PEN+2PAR, PEN+LEAK, PEN+CRES, PDM+2PAR, PDM+LEAK, 

PDM+CRES) and the four FUSE model structures (TOPMODEL, ARNO/VIC, PRMS, 

SACRAMENTO) in relation to the best performing model structure in each framework. 

We plot these results against four hydrologic signatures: (a) BFI, (b) dRR, (c) RR and (d) 

slope of FDC, which have in the past been shown to be informative for UK settings (Yadav 

et al., 2007).  We visualize the results in two different ways. The left columns of Figure 

3-3 and Figure 3-5 show scatter plots of model structure performances in percent difference 

compared to the best performing model (in each framework) against hydrologic signatures 

after the smoothing process described in section 2.3.2 has been applied.  The left column 

also shows a threshold of 10% to visualize (as dashed horizontal line) which model 

structures are similar in their performance (i.e. having NSE difference less than 10% with 

respect to the best model structure which has the highest NSE value). Choosing 10% is a 

subjective decision (for visualisation purposes only) but clearer separations are observed 

between performances of model structures using this value in comparison with other 

thresholds we tried (i.e. 5%, 8%, 15%) as shown in Figure B6.1 (APPENDIX B). The panel 

bar plots in the right column of Figure 3-3 and Figure 3-5 indicate where model structures 

show NSE differences less than 10% compared to the best performing structure for selected 

attributes to better show which model structures stop performing well as a function of 

different signature values.  

Figure 3-3 shows that there are clear separations between the performances of the six 

RRMT model structures. We find that the model structures containing a parallel flow 

routing module to represent fast and slow flows (i.e. PEN/PDM + 2PAR) and the model 

structures with the leaky flow routing module (i.e. PEN/PDM + LEAK) outperform other 

models in catchments with a high baseflow contribution (BFI> 0.7) (Figure 3-3a). Both 
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structures allow for slower responses and hence better baseflow representation. For small 

BFI values, all model structures have similar performances (i.e. NSE difference < 10%) 

which suggests that model structures with a single routing reservoir (i.e. 

PEN/PDM+CRES) are sufficient. Figure 3-3b shows that PEN/PDM + LEAK outperform 

other models in catchments with significantly negative delta-RR values (dRR < -0.2, 

indicating subsurface losses or large abstractions). Model structures with the leaky flow 

routing module perform best in catchments that lose water. Interestingly, only PDM + 

2PAR outperforms other models in catchments that have high water gains (i.e. dRR > 0.2), 

suggesting that the flexibility of this model in runoff generation and routing is sufficient to 

capture this situation.  

To explore these interactions in more detail, Figure 3-4 shows the relationship between 

BFI, dRR and model performance of PEN/PDM+2PAR and PEN/PDM+LEAK. We find 

that the majority (~66%) of catchments with high BFI values (i.e. BFI >0.7) have higher 

NSE values when using PEN/PDM+2PAR. The ones where PEN/PDM+LEAK 

outperforms PEN/PDM+2PAR have very negative dRR values (i.e. dRR < -0.2). This 

implies that there are some catchments that have both high BFI and very negative dRR 

values and that PEN/PDM+LEAK outperforms the other RRMT models in these 

catchments. 

Similarly, all model structures have NSE difference < 10% for catchments with high runoff 

ratio values (RR > 0.6) except for the model structures with the PEN module that have NSE 

difference > 10% for catchments with RR>0.9 (Figure 3-3c). These catchments with 

RR>0.9 tend to gain significant amounts of water (i.e. dRR>0.4) due to water management 

activities (e.g. effluent returns, groundwater augmentation etc.) and this makes these 

catchments artificially wet. Simpler model structures based on the Penman Drying Curve 

(i.e. PEN+LEAK/CRES) fail here. The possible reason for this is that PDM module 

represents more flexibility through its distribution function even though it is likely for the 

wrong reasons. If these artificially wet catchments are ignored, all model structures perform 
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well in wet catchments. Therefore, the simplest model structures with a single conceptual 

reservoir for flow routing (i.e. PEN/PDM+CRES) is already suitable under those 

conditions. On the other end of the RR range, it is interesting that only PDM + LEAK 

shows sufficient flexibility, i.e. that both soil moisture accounting and routing have to be 

rather flexible. 

Lastly, Figure 3-3d shows that all model structures except the simplest ones with a single 

flow routing reservoir (i.e. PEN/PDM+CRES) perform well in catchments showing very 

high streamflow variability. Larger streamflow variability correlates with larger slope of 

FDC (i.e. Slope of FDC>4). On the other end of this signature, only the PDM model with 

2PAR and (to a lesser extent) LEAK seems to be able to capture the lack of streamflow 

variability (i.e. low slope of FDC values). It is interesting that this is not just a question of 

the routing function, but again requires a flexible runoff production function (i.e. PDM). 
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Figure 3-3. NSE difference (%) values and bar plots of six model structures (PEN+2PAR, 

PEN+LEAK, PEN+CRES, PDM+2PAR, PDM+LEAK, PDM+CRES) plotted against their 

BFI (a), dRR (b), RR (c) and slope of FDC (d) attributes. NSE difference values are 

calculated by taking the difference between maximum NSE value obtained by any model 

structure and NSE values of remaining model structures and divided by maximum NSE 

value and multiply by 100 for every catchment. NSE values of model structures are 
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obtained by moving means with 40 point - window size. Through visual inspection, 10% is 

selected as the most helpful threshold to show which model structure is performing 

differently in relation to a specific attribute. The range between two grey dashed vertical 

lines indicates the ranges where the smoothing is based on 20 left and right of the average 

calculated. Outside these ranges, points become increasingly biased by the points at the 

minimum and maximum signature values. 

 

Figure 3-4. Scatter plots of NSE values of PEN+2PAR vs. PEN+LEAK color coded by BFI 

(a) and dRR (b) and PDM+2PAR vs. PDM+LEAK color coded by BFI (c) and dRR (d). 

Figure 3-5 indicates that there are also some separations between the four FUSE model 

structures (TOPMODEL, ARNO/VIC, PRMS, SACRAMENTO) though not clearly 

related to hydrologic process differences. We find that ARNO/VIC performs well across 

all BFI values, and outperforms the rest in catchments with high BFI values (BFI > 0.7). It 

is difficult to explain why this model structure outperformed the other model structures in 

baseflow dominated catchments because all four models have a slow flow component as 

shown in Figure 3-1b. On the lower end of BFI values, all FUSE model structures are within 

10% NSE difference range and there is therefore no significant difference (Figure 3-5a).  

Interestingly, the performance of the ARNO/VIC model is quite robust across a wide range 

of catchment behaviours. It performs better or is sufficiently close (within 10%) to the best 
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performing model across the whole range of RR and slope of the FDC values (Figure 3-5c, 

Figure 3-5d). Also the TOPMODEL implementation works across all RR values, while the 

other two models work across a slightly narrower range of RR values only. We know that 

TOPMODEL can produce simulations with less bias from Lane et al.’s study (2019), but 

the reason for its performance advantage is unclear. It seems that there is no specific model 

structure, except ARNO/VIC, that outperforms the others in catchments with very high RR 

values. This is again due to the artificially wet catchments we discussed above (Figure 

3-3c). Without those catchments, all FUSE model structures are within 10% NSE 

difference range. The SACRAMENTO and PRMS models struggle if the water balance 

deviates more than about 20% from the one we expect using climate only (i.e., dRR values 

of +/-0.2) (Figure 3-5b). The models are thus quite sensitive to water balance problems.  

ARNO/VIC and TOPMODEL are robust in this regard, though they do so for negative and 

positive dRR values respectively. And finally, ARNO/VIC, TOPMODEL, 

SACRAMENTO and PRMS work increasingly poorly in this order when it comes to fitting 

flow variability as expressed through the Slope of the FDC (Figure 3-5d).  All model 

structures except PRMS perform well in catchments with high slope of FDC values (Figure 

3-5d). 
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Figure 3-5. NSE difference (%) values and bar plots of four model structures 

(TOPMODEL, ARNO/VIC, PRMS, SACRAMENTO) plotted against their BFI (a), dRR (b), 

RR (c) and slope of FDC (d) attributes. NSE difference values are calculated by taking the 

difference between maximum NSE value obtained by any model structure and NSE values 

of remaining model structures and divided by maximum NSE value and multiply by 100 for 
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every catchment. NSE values of model structures are obtained by moving means with 40 

point - window size. Through visual inspection, 10% is selected as the most helpful 

threshold to show which model structure is performing differently in relation to a specific 

attribute. Therefore, bar plots of four model structures are created by taking 10% as the 

NSE difference. The range between two grey dashed vertical lines indicates the ranges 

where the smoothing is based on 20 left and right of the average calculated. Outside these 

ranges, points become increasingly biased by the points at the minimum and maximum 

signature values. 

To ensure the robustness of our results to different performance metrics, we recreate Figure 

3-3 and Figure 3-5 using KGE differences (Figure B7.1. and S7.2. in APPENDIX B). When 

we compare the results of NSE and KGE difference for the model structures (using the best 

NSE model), we find some differences between performance separations of both RRMT 

and FUSE model structures. For example, PEN+CRES seems to perform better for lower 

RR values when KGE is used, whereas PEN+2PAR seems to do worse in this region 

compared to using NSE. Moreover, while PEN/PDM+2PAR seem to outperform 

PEN/PDM+CRES in catchments with high slope of FDC values based on NSE values, this 

is not the case based on KGE values. When we look at FUSE model structures, we also 

observe some differences in their performance separations. For instance, ARNO/VIC does 

not outperform PRMS when KGE is used rather than NSE in high slope of FDC values (i.e. 

>4). Moreover, TOPMODEL and PRMS are within the 10% threshold in the range of 

0<RR<0.2 and 0.4<RR<0.6, respectively, based on NSE, whereas this is not the case based 

for KGE values. These findings imply that using KGE instead of NSE makes some 

difference in the performance separation of model structures with respect to the signatures 

assessed. However, when checking the signature ranges that define specific catchment 

types (i.e. baseflow-dominated, leaky, wet), only PEN+2PAR (RRMT) and 

SACRAMENTO (FUSE) show different performance separations when using KGE instead 

of NSE in baseflow-dominated catchments (i.e. BFI >0.7). The other model structures from 

both frameworks show the same separation in all catchment types when using KGE or NSE. 

This result suggests that there is still some more to learn about the differences in assessing 

model performances between KGE and NSE, which is beyond this short technical note. 
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A final question is whether we can predict the hydrologic signatures used in this study (i.e. 

dRR, RR, BFI and slope of the FDC), so we could apply what we've learned to ungauged 

catchments. In the GB setting, BFI has been predicted from physical catchment properties 

in the BFI-HOST framework (Marsh and Hannaford, 2008). These BFI-HOST values 

indicate strong correlation with the BFI values that we use in our study as shown in Figure 

B8.1a while RR shows a strong dependence on AI as shown in Figure B8.1b (APPENDIX 

B). However, we could not identify a single physical attribute or a reasonable combination 

of attributes to predict dRR for ungauged catchments given that different physical 

properties and anthropogenic activities likely influence this deviation. Runoff of leaky 

(dRR< -0.2) and gaining (dRR > 0.2) catchments is affected by both geological differences 

and different water management practices such as abstractions, reservoirs, and effluent 

returns (see Figure B9.1.in APPENDIX B). However, the net effects of such practices 

across GB catchments have not been assessed so far. 

3.4 Discussion 

We compare two modular modelling frameworks to analyse the influence of priori model 

structure selection on performance separation in relation to catchment types across Great 

Britain.  In a direct comparison of model performances, we find that the FUSE structures 

perform slightly better with respect to the NSE metric when this metric is larger than 0.5 

for both frameworks (the result is the inverse for values below). It is generally not 

surprising that FUSE is slightly better given that its models have between 10-12 free 

parameters, while RRMT has between 3 and 7. Multiple studies found a link between model 

performance and the number of free calibration parameters (e.g. Perrin et al., 2001; Kollat 

et al., 2012; Höge et al., 2018). However, we also show that it is not just the number of 

parameters that matters for model performance, as for example found by Knoben et al. 

(2020), as models which include the leaky routing structure of RRMT work better than the 

FUSE structures in catchments with significant subsurface losses – even though they have 
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fewer parameters. Interestingly, the performance difference between the structures goes 

away when using the KGE metric. We have no straightforward explanation for this finding. 

Figure 3-6 is a visual summary of what we find across the GB catchments studied here. 

There are 139 (14%), 62 (6%) and 391 (40%) catchments with BFI>0.7, dRR<-0.2 and 

RR>0.6, respectively. Slope of FDC did not provide additional information about 

separations between model structures because the flatter slopes are also the catchments that 

generally have higher BFI values. There is therefore a large mirroring of the BFI and FDC 

results which does not justify including both results Figure 3-6a shows that six model 

structures from RRMT are distinguished from each other across catchment types in line 

with our expectations regarding hydrological differences. In comparison, Figure 3-6b 

indicates that some of model structures from FUSE also outperform the others in some of 

the catchment types but it is challenging to explain why they differ (as was previously 

concluded by Lane et al., 2019).  The reason is that there are no identifiable 

structural/behavioral differences which explain performance differences between these 

model structures. The six model structures chosen in the RRMT framework have evolved 

from experience in modelling diverse GB catchments (Moore, 2007; Lee et al., 2005; 

Wagener et al., 2004). Our results suggest that these model structures emerge as more 

suitable for specific catchment types, though we also find that they do not necessarily 

provide better performance than other model structures (except in the case of catchments 

with significant groundwater losses).  
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Figure 3-6. Illustration of (a) six model structures’ separation (PEN+2PAR, PEN+LEAK, 

PEN+CRES, PDM+2PAR, PDM+LEAK, PDM+CRES) and (b) four model structures’ 

separation (TOPMODEL, ARNO/VIC, PRMS, SACRAMENTO) for the catchments with 

different characteristics. Baseflow-dominated catchments are the ones containing a higher 

proportion of the river that derives from stored sources (i.e. having high BFI values). Leaky 

catchments are the ones most likely losing water (i.e. having very low negative dRR values). 

Wet catchments are the ones where the rainfall is most likely to become runoff (i.e. having 

high RR). 

Some of these catchment types have also been found to produce distinguishable model 

performances elsewhere. Kavetski and Fenicia (2011) and David et al. (2022) also found 

baseflow dominated catchments to require routing structures with parallel reservoirs. 

Kavetski and Fenicia (2011) selected seven model structures from the SUPERFLEX 

framework and the fixed GR4H model and tested them on four catchments from New 

Zealand and Luxembourg. David et al. (2022) selected only four model structures also from 

SUPERFLEX and evaluated them across 508 Brazil catchments. Both studies selected 

model structures based on their prior knowledge and experience in their study domain. 



61 
 

Similarly, different studies found that wet catchments can be modelled well using a wide 

range of model structures (e.g. Atkinson et al., 2002; Kavetski and Fenicia, 2011; Coxon 

et al., 2014; Massmann, 2020; David et al., 2022). More specifically to GB, our findings 

are similar to Lee et al. (2005) who also found that a leaky routing component is needed in 

catchments with permeable aquifers across GB such as Chalk, Jurassic limestone, and 

Carboniferous/Devonian rock. 

Nonetheless, some studies (e.g. Lee et al., 2005; Van Esse et al., 2013; Lane et al., 2019; 

Knoben et al., 2020) which are conducted in different countries (e.g. UK, France, US) and 

used model structures from different modular frameworks (e.g. RRMT, SUPERFLEX, 

FUSE, MaRRMoT) have not been able to identify clear model structure-catchment type 

relationships (beyond the aforementioned permeable catchments in the case of Lee et al.). 

Both Lee et al. (2005) who used 12 model structures from RRMT across 28 UK catchments, 

and Van Esse et al. (2013) who used 12 model structures from SUPERFLEX plus GR4H 

model across 237 French catchments, observed performances differences between the 

model structures that they used, but they could not establish a catchment type-model 

structure relationship. Both studies suggested that the catchment characteristics used were 

insufficient to reflect catchments’ hydrological behaviors. Lee et al. (2005) stated some 

additional possible reasons for this such as the other choices made in their study (e.g. 

number of catchments, suitability criteria) and using observed rainfall-runoff data which is 

insufficient to represent the catchments. In addition, studies by Lane et al. (2019) who used 

4 model structures from FUSE across 1013 GB and Knoben et al. (2020) who used 36 

model structures from MARRMoT across 559 US catchments could not observe distinct 

separations between their model performances across catchment types due to selection of 

multiple model structures with similar process representations or complexities. 

Our findings suggest that modular modelling frameworks might benefit from an adequate 

strategy for the inclusion of specific model structures, process modules or system 

components in their frameworks (tailored to a specific domain). It might be beneficial for 
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them to explicitly provide the conceptual differences and similarities between the process 

modules or components of model structures and to establish expectations regarding the type 

of catchments that they can potentially represent well or poorly. If these differences are 

unclear a priori, then it is unlikely that we can subsequently explain model performance 

differences. While some modular modelling frameworks such as SUPERFLEX (Fenicia et 

al., 2011) and MARRMoT (Knoben et al., 2019) provide detailed information about the 

differences/similarities between components/fluxes of model structures included and the 

hydrological processes that they can represent, this might not be enough. Knoben et al. 

(2020) investigated model suitability by pre-selecting 36 of 46 MARRMoT model 

structures for 559 US catchments. They ranked the model structures according to their 

performance in each catchment and then attempted to correlate these rankings with 52 

catchment attributes (e.g. hydrologic, climatic and physical). However, the authors could 

not find clear relationships between model rankings and catchment attributes. The study 

stated that not using suitable hydrological signatures/catchment attributes to reflect distinct 

hydrologic behaviors across their study domains could possibly be a reason. Our results 

suggest that a stronger focus on pre-selecting model structures consisting of (as much as 

possible) distinct process-based components for the study domain might be a way forward 

to reduce this problem. 

3.5 Summary 

Modular modelling structures are widely popular although the best approach for selecting 

model structural components has remained unclear. Probably unsurprisingly, many studies 

have found it difficult to find meaningful separations between the model structures or 

structural components considered. Here we hypothesise that the long-term experience 

within a study domain (e.g. a region such as GB) can lead to the development of different 

model structures which provide a guide to a priori model inclusion. While rainfall-runoff 

models have often not explicitly evolved into modular frameworks, they nonetheless can 

contain at least some of the experiences made when trying to simulate diverse catchments 
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across a heterogeneous domain (e.g. Moore, 2007). We therefore use GB experience as a 

guide in our study. 

Applying model structures selected in this manner, we find that these a priori chosen model 

structures more logically separate regarding their performance across catchments than 

those used in a previous multi-model study with non-UK focused model structures (Lane 

et al., 2019). The routing components of our framework separate based on the extent of 

baseflow contribution into single or parallel flow components, while a leaky component is 

required for catchments with significant subsurface losses. The two soil moisture 

accounting components do not separate as strongly, unless significant flexibility is required 

in which case the PDM structure is favoured (e.g. wetter catchments than expected based 

on climate alone).  

Our results suggest that it might be helpful to first build perceptual models of the diverse 

catchments (or systems) encountered across a study domain such as Great Britain (e.g. 

Beven and Chappell, 2021; Wagener et al., 2021; McMillan et al., 2023). Here we 

conditioned our perceptions on previous experiences with different model structures 

applied across our study domain. Without consideration of different perceptual models 

which are reflected in the model structures included, the modular modelling exercise might 

reduce to a regression type analysis with limited knowledge gain. 
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Chapter 4 A Signature-based Hydrologic Efficiency Metric 

for Model Calibration and Evaluation in Gauged and 

Ungauged Catchments 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

Statistical objective functions are widely used to quantify the difference between observed 

and simulated streamflow time series for rainfall-runoff model evaluation and calibration 

in situations where historical streamflow observations are available. Such objective 

functions integrate the differences between observed and simulated time series, i.e. the 

residuals. Many metrics are based on the mean squared error (MSE) which can be derived 

from basic statistical assumptions about the errors present (Gershenfeld, 1999). In 

hydrology, Nash and Sutcliffe (1970) suggested that this metric should be normalized to 

allow for a better comparison of model performances across catchments. Their unit-free 

objective function has become well known as the Nash Sutcliffe Efficiency (NSE). 

This chapter has been submitted to Water Resources Research and has undergone slight 

modifications to align with the general layout of this thesis. The study was 

conceptualized by Melike Kiraz, Gemma Coxon, and Thorsten Wagener. Melike Kiraz 

conducted the data processing, model simulations and creation of figures under the 

guidance of Gemma Coxon and Thorsten Wagener. The manuscript was primarily 

written by Melike Kiraz, with input and comments from all co-authors. 

Citation: Kiraz, M., Coxon, G. and Wagener, T. (2023). A signature-based hydrologic 

efficiency metric for model calibration and evaluation in gauged and ungauged catchments. 

Water Resources Research. (Under review). 
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Multiple authors subsequently pointed out that metrics based on MSE type assumptions 

can be broken up into several constituent components, i.e. bias, standard deviation and 

correlation (Murphy, 1988; Weglarczyk, 1998). However, these components are not 

equally weighted within the traditional NSE formulation. Gupta et al. (2009) therefore 

suggested to combine them using Euclidean distance, which weights them equally in their 

Kling Gupta Efficiency (KGE) (see also Kling et al., 2012). This KGE metric has been 

used widely since its introduction and some authors have suggested improvements. For 

example, Pool et al. (2018) proposed to make the constituent components non-parametric 

so that they are less dependent on underlying assumptions. They replaced Pearson’s linear 

correlation with Spearman rank correlation, and they assessed discharge variability using a 

normalized flow duration curve (FDC) to remove volume information and retain 

information about distributions only.  

These metrics are undoubtedly cornerstones of hydrologic modelling, but some underlying 

problems with their use have been the basis for an ongoing debate. First, it is difficult to 

interpret them and their constituent components hydrologically (Gupta et al., 2008). For 

example, what is hydrologically wrong with my model if the NSE value is only 0.5?  This 

problem has led to the use of hydrologic signatures in model evaluation (e.g. Moges et al., 

2022). Such signatures are indices of hydrologic function, such as the runoff ratio, which 

is an index that quantifies the fraction of precipitation that leaves the catchment as 

streamflow rather than evapotranspiration (McMillan, 2021). Second, the use of hard 

performance thresholds, though promoted by some (e.g. Moriasi et al., 2007; Rogelis et al., 

2016; Towner et al., 2019), has been heavily criticized by others (e.g. Knoben et al., 2019; 

Clark et al., 2021). Flexible performance benchmarks have also been suggested to 

overcome this problem (e.g Seibert, 2001; Schaefli and Gupta, 2007; Seibert et al., 2018), 

while a more diagnostic evaluation of the underlying components has been proposed by 

others (Schwemmle et al., 2021). 
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Metrics like NSE and KGE are only applicable to gauged catchments because they require 

historical time series of observed streamflow to estimate residuals. However, previous 

studies have regionalized hydrologic signatures (e.g. Yadav et al., 2007; Hrachowitz et al., 

2014; Pool and Seibert, 2021; Guo et al., 2021), and the statistical hydrology literature is 

rich with examples where streamflow statistics have been regionalized (e.g. Vogel et al., 

1999). Therefore, at least some of the components that make up efficiency metrics, i.e., 

bias and variance, have already been estimated in ungauged basins. Indeed, there have been 

quite a few studies that have used (uncertain) regionalized hydrologic signatures as 

constraints for rainfall-runoff model ensembles (e.g. Zhang et al., 2008; Bulygina et al., 

2009; Westerberg et al., 2011). However, there has been no attempt so far to build an 

efficiency metric for ungauged basins from these components. 

In this chapter, we propose a signature-based hydrologic efficiency metric that builds upon 

the work that has been done previously with signatures in both gauged and ungauged 

catchments. Integration of hydrologic signatures in an evaluation metric will provide 

opportunity for hydrologic interpretation of model performance and being able to 

regionalize these signatures will provide hydrologic efficiency evaluation of models for 

ungauged catchments. We test our ideas across 633 catchments in Great Britain (GB) by 

using model simulations in a Monte Carlo framework for a 10-year time period. 

4.2 Data 

In this chapter, we analyse 633 catchments spread across Great Britain. Details about the 

general characteristics (e.g. climatic, topographic, geologic) of Great Britain are provided 

in Section 2.2. of Chapter 2. This study uses daily rainfall, streamflow, potential 

evapotranspiration time series for ten years (October 1, 1999 – September 30, 2009) and 

catchment attributes from the CAMELS-GB dataset to develop and demonstrate the new 

metric. More information regarding the CAMELS-GB dataset is available in Section 2.2. 

of Chapter 2. From the 671 CAMELS-GB catchments, we exclude 12 catchments from the 

analysis where (1) the runoff ratio or variance ratio value is higher than 1 – suggesting 
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significant and unexplained water balance issues, (2) there is no available BFI-HOST data 

or (3) there is insufficient streamflow data for the specified study years. In addition, we 

also exclude 26 catchments where water balance analysis (see Section C3 in APPENDIX 

C) shows that they are significantly losing water most likely through subsurface processes 

which is not captured by the hydrological model used in this study. Hence, 633 GB 

catchments are used in the subsequent analysis. 

4.3 Methods 

4.3.1 A Signature-based Hydrologic Efficiency (SHE) metric 

We follow previous work discussed in the introduction section by adding a particular focus 

on signatures representing different hydrological dynamics as the individual components 

underlying hydrological efficiency metrics, as well as our ability to regionalize them (see 

Table 4-1). 

4.3.1.1 Bias term: Runoff ratio 

Runoff ratio (RR) is defined as the ratio of long-term average streamflow to long-term 

average precipitation. It is the long-term water balance separation between water being 

released from the catchment as streamflow and as evapotranspiration (Milly, 1994; 

Sankarasubramanian et al., 2001; Olden and Poff, 2003; Yadav, 2007). Higher runoff ratios 

identify catchments where a large amount of water leaves the catchment as streamflow with 

respect to precipitation and vice versa. 

4.3.1.2 Variance (i.e. amplitude) term: Variance ratio 

We define variance ratio as the ratio of standard deviation of streamflow to standard 

deviation of precipitation. The signature shows how variable (i.e. flashy) streamflow is 

with respect to precipitation drivers and is as such an indicator of the damping of 

precipitation variability through the catchment (a lower value indicating more damping). 
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4.3.1.3 Correlation term 

Correlation is an aspect that is more difficult to capture in a signature. It could be 

represented as a function of the catchment response in relation to precipitation using the 

time of concentration of a catchment. However, estimates of time of concentration using 

the daily data we use in this study do not work very well for small and fast responding 

catchments in Great Britain (Giani et al., 2021). While exploration of this signature is 

beyond this technical note, we will return to the issue when we discussed ungauged basins. 

For now, we decided to use Spearman rank correlation between observed and simulated 

streamflow values as the correlation term of SHE like the non-parametric form of KGE 

developed by Pool et al. (2018). The components and formulation of SHE for gauged cases 

(i.e. SHEg) are given in Table 4-1. 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Table 4-1. Bias, variance and correlation components and formulations of evaluation 

metrics. 

Objective 

function 

Bias 

(𝛃) 

Variance 

(α) 

Corre-

lation (r) 
Combination 

NSE 
(Nash and 

Sutcliffe, 

1970; 

Gupta et 

al., 2009) 

(µS − µO)

σO

 

( σS)

( σO) 
 

rpearson 

2 ∗ α ∗ r − α2 − β2 

KGE 
(Gupta et 

al., 2009) 

(µS)

(µO) 
 

1 −  √(α − 1) 
2 + (β − 1)2 + (r − 1)2 

KGE* 
(modified 

version in 

Kling et 

al., 2012) 

[( 𝜎S)/(µS)]

[( 𝜎𝑂)/(µ𝑂)] 
 

NP 
(Pool et 

al., 2018) 

1 −  ½ ∑ |
xS, I(i) 

nµs

−
xO,  J(i) 

nµo

|
n

i=1
 

rspearman 

SHEg 
(gauged 

situation) 

[(µS)/(µ𝑃)]

[(µ𝑂)/(µ𝑃)] 
 

[( 𝜎S)/( 𝜎P)]

[( 𝜎O)/( 𝜎P)]
 

SHEu 

(ungauged 

situation 

with 

regionalize

d 

signatures) 

[(µS)/(µ𝑃)]

[RRPred] 
 

[( 𝜎S)/( 𝜎P)]

[VRPred]
 r*

spearman 

• S, O and P are simulated streamflow, and observed streamflow and precipitation, respectively.  

• µ is the mean and σ is the standard deviation of streamflow. 

• xS, I(i)  is the simulated streamflow value where I(i) is the time step when the ith largest flow occurs 

within simulated time series and  xO,  J(i)  is the observed streamflow value of target catchment where 

J(i) is the time step when the ith largest flow occurs within observed time series. 

• VRPred and RRPred are regionalized variance ratio and runoff ratio for the target catchment derived 

using stepwise linear regression. Predictors of VRPred are aridity index, BFI-HOST and inland water 

percentage. Predictor of RRPred is only aridity index. Variance ratio is the ratio of standard deviation 

of streamflow to standard deviation of precipitation. Runoff ratio is the ratio of long-term mean of 

streamflow to long-term mean of precipitation. 

• rPearson = Pearson correlation between simulated and the observed streamflow in the target catchment 

• rSpearman = Spearman rank correlation between simulated and the observed streamflow in the target 

catchment 

• r'Spearman= Spearman rank correlation between simulated streamflow of a catchment which is assumed 

to be ungauged and the streamflow values obtained by inverse distance weighting interpolation of 
this catchment’s three closest catchments’ observed streamflow. 
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4.3.2 Application of SHE metric in ungauged catchments 

Applying the SHE metric in ungauged situations requires estimates all of three metric 

components for ungauged basins. We perform this regionalization step in two different 

ways. Bias and variance components, i.e. runoff ratio and variance ratio, or related 

signatures have been widely regionalized using different types of regressions (e.g. Yadav 

et al., 2007; for GB). We use the simplest and widely used strategy, stepwise linear 

regression, to establish the relationships between the catchment attributes and signatures 

(e.g. Almeida et al., 2016). In the MATLAB environment, we utilized the "stepwiselm" 

function to perform stepwise linear regression. The stepwise linear regression analysis 

function utilizes a combination of forward and backward stepwise regression techniques to 

derive the final model. Initially, it starts with a simple constant model, containing only the 

intercept term and no other variables. In each step of the process, the function examines 

whether to add or remove terms from the model based on a specified criterion (e.g., the p-

value < 0.05 in this case). When a term is not yet included in the model, the null hypothesis 

assumes that the term's coefficient would be zero if added. The function tests this 

hypothesis and adds the term to the model if there is sufficient evidence to reject the null 

hypothesis, indicating its significance in improving the model fit. Conversely, if a term is 

already present in the model, the null hypothesis suggests that the term's coefficient is zero. 

The function then examines if there is enough evidence to reject this null hypothesis. If 

there is insufficient evidence, the term is removed from the model, as it does not 

significantly contribute to the model's performance. The p value (probability value) is a 

measure that helps determining the strength of evidence against a null hypothesis.  It is 

calculated based on the observed data and the assumption that the null hypothesis is true. 

It represents the probability of obtaining the observed data if the null hypothesis is true. A 

low p-value suggest that the observed data is unlikely to have occurred under the 

assumption of the null hypothesis. A high p-value suggests that the observed data is 
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consistent with the null hypothesis. In this study, p-values are automatically produced when 

using “stepwiselm” function to perform stepwise linear regression. 

We regionalize runoff ratio (RR) and variance ratio (VR) signatures for 633 GB catchments 

testing 64 catchment attributes from CAMELS-GB representing topography, climate, 

hydrology, land cover, soils, hydrogeology and human influences (see Table A1 in 

APPENDIX A). When the stepwise linear regression is performed using these catchment 

attributes, the regression equations producing the best estimations (i.e. having highest r2 

values) for RR and VR consist of 10 and 19 predictors, respectively. To obtain simpler 

regression equations but still reasonable RR and VR estimations, we have tried other rounds 

of stepwise linear regression using multiple smaller groups of catchment attributes (see 

Table C1.1. in APPENDIX C). Based on stepwise linear regression analyses made using 

these groups of attributes, aridity index (AI) is selected as predictor of RR. AI, baseflow 

index (BFI-HOST) and inland water percentage (inwater_perc) are selected as predictors 

of VR. It is reasonable that RR and AI are highly correlated because both are influenced 

by similar climatic and hydrologic conditions related to the availability of water. Similarly, 

it is sensible that having BFI-HOST and inwater_perc in addition to aridity index as 

predictors of variance ratio because there are some damping effects due to subsurface 

storage and inland water storage. After selecting the predictors, 633 GB catchments are 

randomly divided into 5 groups. One group is left out each time and the remaining ones are 

used in the fitting of regression models for each signature (5-fold cross-validation). After 

obtaining regression models, the signature values are estimated for the catchments in 

omitted group each time. The regression equations, their r2 and p values for each catchment 

group is listed for both RR and VR in Table 4-2 and Table 4-3, respectively. 
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Table 4-2. Regression equations, r2 and p values for 5 catchment groups for runoff ratio 

(RR) 

Catchment 

Group 

Equation r2 value p value 

1 RR=0.98-0.79*AI 0.8 << 0.05 

2 RR =1-0.86* AI 0.79 << 0.05 

3 RR =0.99-0.79* AI 0.84 << 0.05 

4 RR y=0.97-0.79* AI 0.78 << 0.05 

5 RR =0.99-0.81* AI 0.78 << 0.05 

 

Table 4-3. Regression equations, r2 and p values for 5 catchment groups for variance 

ratio (VR) 

Catchment 

Group 

Equation r2 value p value 

1 VR=e0.21-0.07*inwater_perc-2.4*AI*BFI-HOST 0.86 << 0.05 

2 VR=e0.20-0.08*inwater_perc-2.6* AI * BFI-HOST 0.87 << 0.05 

3 VR=e0.21-0.08*AI*inwater_perc-2.5*AI*BFI-HOST 0.87 << 0.05 

4 VR=e0.03-0.09*AI*inwater_perc-3*AI * BFI-HOST 0.88 << 0.05 

5 VR=e0.34-0.08*inwater_perc-2.1* AI * BFI-HOST 0.88 << 0.05 

 

The correlation term is more complicated; given that we have no simple approach to 

regionalize a single value as is the case with the other two signatures. However, Archfield 

and Vogel (2010) have demonstrated that it is feasible to estimate correlation for ungauged 

locations using a geostatistical strategy. They introduced their map correlation method 

which selects the strongest correlated gauge as the reference gauge for an ungauged 

catchment, given that the nearest gauge was not always the most correlated one in their 

study of US catchments. The approach by Archfield and Vogel (2010) follows the basic 

idea of directly transferring streamflow from gauged to ungauged locations (see wider 

review of such approaches by He et al., 2011). Drogue and Plasse (2014) tested four 

different distance-based regionalization methods including the strategy by Archfield and 

Vogel (2010) for European catchments. They found that using multiple reference 

catchments rather than one is preferrable for assessing daily streamflow hydrographs in a 

densely gauged study domain. The simplest strategy to directly transfer streamflow is likely 

the one by Patil and Stieglitz (2012), who used inverse distance weighted (IDW) 
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interpolation to transfer daily streamflow from multiple neighbouring gauged catchments 

to ungauged catchments in the US. Their approach is formulated as follows: 

                                          𝑞(𝑥) =  ∑
𝑤𝑘(𝑥)

∑ 𝑤𝑘(𝑥)𝑁
𝑘=1

𝑁
𝑘=1 ∗ 𝑞(𝑥𝑘)                                  (4-1) 

                                                      and 𝑤𝑘(𝑥)  =  
1

𝑑(𝑥,𝑥𝑘)𝑝                                        (4-2) 

where q(x) is daily streamflow (mm/day) at the ungauged catchment that is located at point 

x in the region, q(xk) is the daily streamflow of neighbouring reference catchment k located 

at point xk in the region and N is the total number of neighbouring reference catchments 

for the interpolation. d is the distance between gauges of catchments and w is the 

interpolation weights of reference catchments. The exponent p is a positive real number, 

called a power parameter. 

We adopt this approach for estimating streamflow to ungauged locations within our GB 

dataset because it works surprisingly well and because optimizing the regionalization 

performance is not our main concern. To identify a suitable number of reference 

catchments, we assume each catchment in turn to be ungauged, estimate the streamflow 

time series using IDW interpolation with different numbers of reference catchments (1-5 

reference catchments), and calculate the Spearman Rank Correlation (SRC) between 

transferred and observed streamflow time series. We find that using three reference 

catchments provides optimum SRC estimate for the ungauged catchments in our sample 

(Figure C2.1 in APPENDIX C). We could actually use a similar streamflow transfer 

strategy to estimate the bias and variance terms but found this strategy to perform less well 

(see Figure C2.2 in APPENDIX C). 

4.3.3 Rainfall-Runoff Model Implementation 

We use a typical lumped parsimonious model structure widely used in Great Britain. The 

model structure, implemented in the Rainfall-Runoff Modelling Toolbox (RRMT; 

Wagener et al., 2001a) combines a probability-distributed soil moisture accounting 

component (i.e. PDM), which represents the variability in soil moisture storage across a 
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typical humid catchment using a distribution of storage depths (Moore, 2007), and a 

combination of two linear reservoirs in parallel for routing, one representing fast flow and 

the other representing slow flow (i.e. 2PAR), with a fixed split between them. Effective 

rainfall is produced as overflow from the PDM stores which are described as Pareto 

distribution based on two parameters, the maximum storage capacity, Cmax, and parameter, 

b, describing the shape of the distribution. The effective rainfall (ER) is split with respect 

to parameter a describing the fraction of flow through the fast reservoir, while both 

reservoirs are defined by a single time constant (Wagener et al., 2001a). The reason of 

choosing PDM is that it represents a flexibility in soil moisture accounting through its 

distribution function to influence the runoff response and combining it with 2PAR flow 

routing module provides different flow pathways for catchments across GB with different 

levels of baseflow contribution. 

To calibrate the model, 10,000 parameter sets are independently sampled using uniform 

random sampling. The first 5% of the ten-year study period is used as a warm-up period. 

The parameter set producing the best performance according to SHE metric is used to 

obtain simulated streamflow. These numbers have been widely used in previous studies. 

4.4 Results 

First, we compare the values estimated for our SHE metric in gauged situations with 

previous efficiency metric implementations, i.e. KGE (Kling et al., 2012), NSE (Gupta et 

al., 2009) and NP (Pool et al., 2018). Figure 4-1 shows scatter plots where SHE values are 

correlated with KGE, NSE and NP values with Pearson correlation (i.e. PC) and Spearman 

rank correlation (i.e. SRC) values to varying degrees. Correlations are highest for SHE-NP 

(above 0.8), then SHE-KGE (around 0.8) and then SHE-NSE (0.6 to 0.67). Our formulation 

is most closely related to that of Pool et al. (2018) and Gupta et al (2009) due to the equal 

weighting of the terms within the efficiency metric. 
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 Figure 4-1. Scatter plots for (a) KGE vs. SHE, (b) NP vs. SHE and (c) NSE vs. SHE. x and 

y axes are limited to [0 1]. KGE, NP and NSE values are calculated using the best 

simulation values based on SHE metric values. 

Second, we estimate the components of our metric for ungauged locations. The scatter plots 

in Figure 4-2a and Figure 4-2b show that the predicted RR and VR using stepwise linear 

regression correlate well with observed RR and VR values. We find PC and SRC 

correlation values above 0.9. The maps indicate that predicted RR and VR values have 

similar patterns with decreases from the north-west to south-east of GB. As shown in Figure 

4-2c for an estimate of correlation for ungauged locations, SRC values between observed 

and transferred streamflow values are above 0.8 for 94% of all catchments (77% above 

0.9), even when using the simple inverse distance method with the three closest catchments. 

All components of our SHE metric can therefore be estimated individually in ungauged 

catchments within our study domain. 
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Figure 4-2. (a) Predicted RR map and scatter plot for predicted vs. observed RR, (b) 

predicted VR map and scatter plot for predicted vs. observed VR and (c) map illustrating 

SRC values between observed streamflow of catchments and the streamflow values 

calculated by taking inverse distance interpolation of their closest three catchments’ 

observed streamflows and its histogram plot. Predictor of RR is aridity index and 

predictors of VR are aridity index, BFI-HOST and inland water percentage. 

And third, we calculate the differences between SHE values for gauged and ungauged cases 

to evaluate how well we can estimate the performance of a model for ungauged catchments, 

in contrast to gauged catchments. Figure 4-3a, Figure 4-3b and Figure 4-3c shows 

histograms of the differences between SHE values for gauged and ungauged cases (i.e.  

SHEg – SHEu). Cumulative distribution functions (CDF) plots of the individual difference 

values are color-coded by (a) bias component difference (i.e. Δβ), (b) variance component 

difference (i.e. Δα) and (c) correlation component difference (i.e. Δr). The histograms (all 

three are identical) show that more than 50% of 633 catchments have difference values 

between -0.1 and 0.1, while 78% of them have difference values between -0.2 and 0.2. Low 

values of SHE difference are associated with small differences in the bias, variance, and 

correlation terms (see CDF plots in Figure 4-3). CDF plots also show that catchments with 

high positive differences (i.e. >0.3) have the highest positive and the lowest negative values 
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of the bias and variance component differences, respectively, suggesting the poor 

regionalization is a problem there. Figure 4-3c shows that correlation component 

differences are overall very small across catchments except for very few catchments with 

high positive differences. In summary, the results imply that when the regionalization of 

the bias and variance signatures works, we can obtain similar SHE values for both gauged 

and ungauged cases. 

 
Figure 4-3. Cumulative distribution function (i.e. cdf) plot and histogram plot of difference 

between SHE for gauged and ungauged cases (i.e. SHEg – SHEu). Cdf plot is color-coded 

by (a) bias component difference (Δβ), (b) variance component difference (Δα) and (c) 

correlation component difference (Δr) between SHE formulations for gauged and 

ungauged cases summarized in Table 4-1. 

4.5 Discussion and Summary 

In summary, we introduced a new signature-based hydrologic efficiency (SHE) metric 

based on the idea that a model’s fit to signatures will be easier to interpret hydrologically, 

and more importantly, that we can estimate it directly in ungauged basins.  The SHE metric 

is correlated to different degree with existing metrics, and we show how its components, 

and hence the metric itself, can be estimated in ungauged catchments. 

A flexible efficiency metric based on signatures provides significant opportunity for 

hydrologically relevant diagnostic model calibration and evaluation (Yadav et al., 2007; 

Yilmaz et al., 2008; Shafii and Tolson, 2015). Here, we simply replace the statistical 

components of the KGE (Gupta et al., 2009) with signatures suitable for our study domain, 

Great Britain. We chose to use runoff ratio and variance ratio as our signatures to represent 
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bias and variance aspects of the hydrograph. However, other signatures could and should 

be considered for different study domains. Hydrologists have investigated many signatures 

and found different ones to be useful to characterize major hydrologic functions or 

hydrograph aspects of catchments depending on the study domain (McMillan, 2020). 

Different aspects of the flow duration curve have for example been used to characterize the 

variability of flow through different signatures (e.g. Yilmaz et al., 2008; Sawicz et al., 2011; 

Westerberg et al., 2011; Pool et al., 2018; McMillan, 2021). It might be useful to use 

different signatures depending on whether study domains for example contain catchments 

with significant snow or those in arid domains. 

We do not believe that SHE would be universally applicable in this form everywhere in the 

world. Actually, we believe that the different components should be replaced by 

appropriate signatures of a catchment’s, water balance, its damping, and its translation of 

precipitation variability into streamflow variability and timing. Different signatures might 

be best suited to represent these components depending on whether the study domain is for 

example located in a temperate, dry or cold part of the world. Equally, existing regionalized 

streamflow indices correlated with these components might provide a baseline from which 

such a metric can be estimated in both gauged and ungauged catchments. An advantage of 

this opportunity and need for tailoring is that making these choices puts the discussion 

about suitable objective functions into the realm of hydrology, rather than just statistics. 

The issue of signature choice is also linked to the ability for regionalising signatures or 

indices correlated with the components of the efficiency metric. Many regionalisation 

studies exist (e.g. He et al., 2011; Wagener and Montanari, 2011), though in how far these 

studies provide a regional basis to calculate efficiency metrics from in ungauged locations 

has so far been unexplored. One issue we did not tackle here in this context is that of 

uncertainty in these regionalisation estimates (e.g. Zhang et al., 2008; Kapangaziwiri et al., 

2012; Westerberg et al., 2014). Uncertainties originate from the underlying measurements 

of physical catchment properties and of hydro-meteorological variables, from processing 
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of the original observations, and from choices made regarding space-time averaging etc. 

(McMillan et al., 2022a; Westerberg et al., 2016). There is opportunity for integrating 

uncertainty in a coherent statistical framework covering both gauged and ungauged 

situations, which should significantly increase the value of available regionalised 

information in the context of model calibration and evaluation. 
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Chapter 5 Conclusion and Outlook 

5.1 Conclusions 

In the Introduction Chapter, we highlight that some challenges still exist in rainfall-runoff 

modelling. These challenges briefly are: 1) Lack of using location specific information in 

the characterization of catchments with subsurface losses, 2) Lack of a coherent strategy 

for a priori selection of models to include in multi-model studies or modular modelling 

frameworks and 3) Lack of hydrologically diagnostic evaluation of models for both gauged 

and ungauged catchments. Our overarching objective is to address these challenges through 

a perceptual understanding of catchment functions in a nationally consistent framework. In 

conclusion, this thesis advances our knowledge of rainfall-runoff modelling in large-

sample hydrology through three key contributions, tackling the three challenges we 

outlined:  

 First, our study reveals that considering the catchment's relative location to the 

coast and its position within a wider river basin significantly contributes to 

explaining the water balance issues in highly permeable catchments affected by 

subsurface losses. We demonstrate the necessity of incorporating location 

indicators into large-sample hydrology datasets.  

 Second, our research findings highlight the role of a priori model selection. By 

selecting model structures consistent with expected hydrologic variability, we 

demonstrate the possibility of observing meaningful performance differences 

between model structures in specific catchments.  

 Finally, we have introduced a novel signature-based hydrologic efficiency (SHE) 

metric that provides a more hydrologically interpretable measure of how well a 

model fits certain functional aspects of a catchment's hydrology and can be 

estimated in ungauged catchments.  
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In this conclusions chapter, we summarize our analyses and findings for each challenge 

presented in each technical chapter (Chapter 2, 3, 4), give overarching remarks and outlook. 

Challenge 1: Location, location, location – Considering relative catchment location to 

understand subsurface losses (Chapter 2) 

The analysis of large samples of hydrologic catchments is regularly used to gain 

understanding of hydrologic variability and controlling processes. Several studies have 

pointed towards the problem that available catchment descriptors (such as mean 

topographic slope or average subsurface properties) are insufficient to capture 

hydrologically relevant properties. Here, we test the assumption that catchment location, 

i.e. the relative properties of catchments in relation to their surrounding neighbours, can 

provide additional information to reduce this problem. We test this idea in the context of 

Great Britain for a widely discussed problem, that of catchment water balance errors due 

to subsurface losses. We focus on three locational aspects (i.e. location to coast, location 

within a wider basin and location to a relevant neighbour), utilizing only basic and widely 

available geological and topographical information. We find that subsurface losses from 

catchments with a highly permeable geology connection to the coast are in order of 30% 

water balance error. We introduce a simple index to define location within a wider basin 

that is able to explain water balance issues of highly permeable headwater catchments. We 

attempt to quantify catchment location relevant to a neighbour but find that it does not 

increase water balance error predictability beyond using available catchment-scale 

geological information. The results imply that location, geology and topography combine 

to define the differences of water balances of Great Britain catchments compared to what 

we would expect from their climatic setting alone. 
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Challenge 2: A priori selection of hydrological model structures in modular modelling 

frameworks (Chapter 3) 

Multi-model studies have become common in large sample hydrology. However, 

significant challenges remain in identifying connections between model structures and 

catchment characteristics, and thus in developing a coherent strategy for tailored multi-

model ensembles. Here, we analyse and discuss the importance of selecting model 

structures that are consistent with the expected hydrologic variability across the modelling 

domain by comparing the results of two modular modelling frameworks across 998 Great 

Britain catchments. One framework is based on model structures which have historically 

evolved in the UK (RRMT), while the other is based on model structures originating from 

different parts of the world (FUSE). While both groups of model structures have members 

that achieve high performance, the historically evolved group members separate in their 

performances between catchments in a way that is more consistent with our expectation of 

hydrologic differences. We further find that four hydrological signatures organize these 

differences. Our results emphasize the importance of model structure selection based on 

explicit perceptual models and the need to go beyond statistical performance as sole 

criterion. 

Challenge 3: A Signature-based Hydrologic Efficiency Metric for Model Calibration and 

Evaluation in Gauged and Ungauged Catchments (Chapter 4) 

Rainfall-runoff models are commonly evaluated against statistical evaluation metrics. 

However, these metrics do not provide much insight into what is hydrologically wrong if a 

model fails to simulate observed streamflow well and they are also not applicable for 

ungauged catchments. Here, we propose a signature-based hydrologic efficiency (SHE) 

metric consisting of hydrologic signatures that can be regionalized for model evaluation in 

ungauged catchments. We test our new efficiency metric across 633 catchments from Great 

Britain. Strong correlations with Spearman rank and Pearson correlation values around 0.8 

are found between our proposed metric and commonly used statistical evaluation metrics 
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(NSE, KGE, NP…) demonstrating that the proposed SHE metric is related to existing 

metrics as much as these metrics are related to each other. For ungauged catchments, we 

regionalise the three signatures included in SHE and find that 78% of catchments have an 

absolute difference of SHE values between gauged and ungauged cases of less than 0.2. 

This difference increases where the regionalized bias and variance signature values are 

different to the observed ones.  It means that SHE metric is applicable for model evaluation 

in ungauged catchments if its signatures can be regionalized well. 

5.2 Overarching remarks 

The challenges addressed in this thesis are intrinsically inter-linked. Investigating water 

loss or gains in catchments due to regional subsurface connections by considering 

catchment location to its surrounding area is beneficial to better characterize catchments. 

This will advance our perception of catchment processes and ultimately contribute to the 

robust selection or development of suitable rainfall-runoff models (Beven, 2001). 

Moreover, model evaluation metrics and their intrinsic statistical components influence 

how hydrologically meaningful the performance of different models can be assessed and 

ultimately be linked to different catchment types. Hydrologically-based diagnostic model 

evaluation (i.e. using a signature-based evaluation metric) links the dominant hydrologic 

processes of catchments and certain process representations of model structures (Yilmaz et 

al., 2008). This will again help in selecting and developing suitable model structures for 

different catchment types. 

Even though this thesis reduces some problems of rainfall-runoff modelling, there are 

aspects that continue to remain unknown. Certain model structures are able to be identified 

for certain catchment types (e.g. model structure with leaky routing module is able to 

simulate the water balance of leaky catchments). However, water balance errors are likely 

always combinations of multiple factors including errors in observations such as the 

precipitation (Montanari and Di Baldassarre, 2013). In addition, the net impact of water 

management activities, e.g. through abstractions or reservoirs, on the water balance of 
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catchments is often only poorly known. This challenge is amplified in large-sample studies 

where catchments are influenced by a wide variety of water management activities. Despite 

providing valuable opportunities for research, large-sample datasets currently lack 

sufficient characterization of these activities, which limits their use (Addor et al., 2020). 

Although recent efforts have been made to detect the effects of water management activities 

on flow regimes (e.g., Bloomfield et al., 2021; Van Loon et al., 2022; Salwey et al., 2023), 

there are still gaps that require further research to fully understand and address these 

impacts.  Disentangling these different contributions to the overall water balance error will 

in many cases be very difficult given the current data available.  

A priori selection of model structures has been analysed widely for gauged catchments due 

to a strong emphasis on the use of statistical performance metrics to distinguish model 

quality, but how to transfer such information to ungauged places is still challenging. The 

regionalization of hydrological models for streamflow prediction in ungauged catchments 

has been extensively explored, as for example highlighted in the comprehensive review by 

Guo et al. (2021). The authors’ emphasized that the accuracy of hydrological simulations 

in ungauged catchments, utilizing parameter regionalization, heavily relies on the choice 

of model structures. While our study has provided some insights into the potential 

applicability of a signature-based evaluation metric in ungauged catchments, further 

research is needed to effectively transfer the a priori model selection from gauged to 

ungauged catchments. Additionally, addressing the uncertainties associated with signature 

regionalization remains an important task (Almeida et al., 2016; Westerberg et al., 2016). 

Lastly, working with a large number of catchments presents various challenges in 

hydrological research. These challenges include managing data quality and heterogeneity 

across catchments (Merheb et al., 2016; Hrachowitz et al., 2013), handling computational 

demands (Montanari et al., 2013), generalizing findings to other regions (Belvederesi et al., 

2022), and addressing wider problems of uncertainties and variability (McMillan et al., 

2012). Overcoming these challenges requires careful planning, robust methodologies, and 
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a comprehensive understanding of the limitations associated with large-sample 

hydrological studies. 

5.3 Outlook 

In this section, we briefly describe two promising areas of research for expanding and 

refining the work presented in this thesis. Rather than providing an extensive list of ideas, 

we have chosen to focus on these two ideas to provide a more detailed explanation and 

include some preliminary results for one of these ideas. 

5.3.1 Quantification of hydrologic services using signatures 

While addressing some challenges of rainfall-runoff modelling, we have shown the 

applicability of hydrologic signatures in multiple aspects (i.e. catchment characterization, 

model selection, hydrologically diagnostic model evaluation). The next step could be the 

quantification of hydrologic services using specifically defined signatures. Hydrologic 

services are defined as the benefits that human and nature can receive from the eco-

hydrologic processes of a catchment (Brauman, 2007; Wagener et al., 2008). Water supply 

(extractive or in-stream), water damage mitigation, cultural and supporting services are 

different categories of hydrologic services (Brauman, 2007). Quantifying these services is 

important to understand their natural supply and the need for additional services through 

human activity if the natural supply is insufficient. However, such hydrologic services have 

mainly been assessed for small areas or individual catchments (e.g. Terrado et al., 2014; 

Carvalho‐Santos et al., 2016; Casagrande et al., 2021), not for large samples of catchments 

in a comparative analysis. We believe that hydrologic signatures describing the functional 

behavior of catchments can be adjusted to quantify hydrologic services in large-sample 

hydrology. 

As an example, we show some preliminary results regarding how to quantify hydropower 

generation in a large-sample of GB catchments (i.e. 671 CAMELS-GB catchments) using 

a 30-year climatic and hydrologic data (i.e. years between 1985 and 2015). UK has been 
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using water for energy generation since 1879 (International Hydropower Association, 

2020). The installed capacity is mostly located in the wet and mountainous regions of 

Wales and Northwest Scotland. Hydropower generation corresponds to only 2 percent of 

total electricity generation in last 30 years (BEIS, 2021). 

While quantifying hydrologic services, we consider their potential and consistency in a 

catchment. Potential (i.e. availability) refers to the capacity of a catchment to provide a 

hydrologic service. Consistency (i.e. sustainability) refers to the ability of a catchment to 

maintain a hydrologic service over time. If a catchment has high availability and 

consistency of a hydrologic service, it can provide high and sustainable supply of the 

service (Figure 5-1).   

 

Figure 5-1. Illustration of how potential and consistency of a hydrologic service can affect 

the supply of a service. Green, yellow and red regions represent high, medium and low 

supply of a service. 

Hydropower generation is one of the in-stream water supply services. In-stream water 

supply is a catchment’s ability to provide water within the river system for different 

purposes (e.g. water recreation and transportation) or to be diverted temporarily for a 

certain use (e.g. hydropower generation) and returned back to the river system. 

Hydropower generation is a process of transforming the potential energy of water into 

kinetic energy and generating electricity by releasing water from high elevation to low 

elevation and passing it through a turbine (RenÖFÄLt and Nilsson, 2010; Guo and Peng, 

2019). It is calculated as:  
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                                                𝑃 =  𝜂 ∗ 𝜌 ∗ 𝑔 ∗ 𝑄 ∗ 𝐻                                  (5-1) 

where P is the power generated (W), η is the efficiency (dimensionless), ρ is the density of 

water (kg/m3), g is acceleration due to gravity (m/s2), Q is the flow through turbine (m3/s) 

and H is the head drop between the surface water level at the intake and the surface water 

level at the outfall (m) (Basso and Botter, 2012; Hatchard, 2021). The amount of water 

flowing through the river and the elevation that water drops on its way are the two main 

variables to quantify transformation of water’s potential energy into kinetic energy, i.e. in 

order to quantify hydropower generation. 

We create a formulation for a relative measure of which catchment is more or less likely to 

generate hydropower. In order to calculate hydropower generation potential, elevation 

difference between minimum and maximum elevation of a catchment is used instead of 

head by assuming that the beginning of the river is higher (i.e. higher head) in the 

catchments having higher elevation difference. Turbine efficiency coefficient is a constant 

of original hydropower generation formula in the literature but we do not consider it in our 

study because we will not be using any turbine to make a design calculation. Hence, the 

hydropower signature potential of a catchment that we formulate is; 

                                  HGpotential  =  𝜌 ∗ g ∗ Q ∗ dE                                           (5-2) 

where ρ is the density of water (i.e. 1000 kg/m3), g is acceleration due to gravity (i.e. 9.81 

m/s2), Q is average daily streamflow of the catchment (in m3/s) and dE is the difference 

between maximum and minimum elevation of the catchment (in m). 

In addition to potential, we consider hydropower generation consistency. To ensure 

consistency of services across dry and wet years, it is important to consider the variability 

in yearly hydropower generation potential. This allows us to account for the fluctuations in 

hydropower generation and address the challenges associated with different hydrological 

conditions over time. That’s why, and we formulate it as the inverse of coefficient of 

variation of yearly hydropower generation potential: 
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𝐻𝐺𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐻𝐺𝑦𝑒𝑎𝑟𝑙𝑦 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)/𝑚𝑒𝑎𝑛(𝐻𝐺𝑦𝑒𝑎𝑟𝑙𝑦 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)       (5-3) 

where                   𝐻𝐺𝑦𝑒𝑎𝑟𝑙𝑦 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  =  𝜌 ∗ 𝑔 ∗ 𝑄𝑦𝑒𝑎𝑟𝑙𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑑𝐸                      (5-4) 

and Qyearly average is yearly average streamflow (in m3/s). 

We create interpolated maps from 671 CAMELS-GB catchments of hydropower 

generation potential and consistency maps of Great Britain (Figure 5-2). Both maps (a) and 

(b) in Figure 5-2 show similar patterns with higher values in the North-West decreasing to 

South-East. The highest hydropower generation potential values are mostly observed in 

Scotland, in some regions of North England, Midlands and Wales. Similarly, the highest 

hydropower generation consistency values are mostly observed in Scotland, in some 

regions of Northern west of England and Wales. Moreover, the scatter plot (Figure 5-2c) 

indicates that most of the catchments which currently have hydropower generation are 

within the 90th percentile of both hydropower generation potential and consistency. This 

implies that the defined signature is able to quantify hydropower generation service in the 

catchments because we assume that the catchments currently having hydropower 

generation are chosen as suitable because of their potential and consistency for hydropower 

generation. 
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Figure 5-2. Hydropower generation potential (a) and consistency (b) maps of Great Britain 

maps and scatter plot (c) of hydropower generation potential vs. consistency. 105 

benchmark catchments are shown as circles on the maps. Catchments that already have a 

hydropower reservoir in them are shown on maps as green circles. The catchments that 

have hydropower generation potential and consistency values higher than the 90th percent 

of all catchments are also shown as red circles. The black and red dashed lines on the 

scatter plot indicate 50th and 90th percentile values of potential and consistency, 

respectively. Logarithmic values are used while creating the scatter plots of hydropower 

generation potential vs. consistency to make the outliers less extreme so we can see all 

catchments better while preserving their order. 

To summarise, hydrologic services can be quantified across large samples of catchments 

in a comparative approach using hydrologic service signatures. Both potential and 

consistency of services should be considered while quantifying hydrologic services. We 
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can quantify other hydrologic services such as water supply and flood mitigation services 

across GB. In future studies, it might also be interesting to investigate if regionalization of 

hydrologic signatures enables us to robustly quantify hydrologic services in ungauged 

catchments. 

5.3.2 A national-scale groundwater modelling across GB 

In Chapter 2, we could not solve the problem of how the mechanisms of groundwater 

transfers between neighbouring catchments work by investigating the catchments 

themselves (i.e. only using their locational information and available physical descriptors). 

Surface-subsurface interactions and hydrogeological connectivity between neighbouring 

catchments and the net effects of water management activities can be complex and not 

easily captured in simple descriptors. Therefore, we believe that a national-scale 

groundwater modelling could be a way forward so that we can estimate inter-catchment 

groundwater flow between neighbouring catchments. To date, most groundwater modelling 

efforts have taken place at regional scales in GB (e.g. Shepley et al., 2012; Jackson et al., 

2016; Collins et al., 2020). There are several national-scale hydrological modelling studies 

(e.g. Bell et al., 2018; Coxon et al., 2019), but groundwater flow is not explicitly 

represented in them. Recently, Rahman et al. (2023) conducted a study to develop an 

explicit groundwater flow model for England and Wales using observed groundwater head 

data and local hydrogeological information. As their proposed conceptual (or perceptual) 

model for groundwater flow indicates (Figure 5-3), they used two-dimensional 

representation of hydrogeological properties using depth-average transmissivity. Their 

model could be a basis for coupling with hydrologic models that would add surface and 

unsaturated zone processes to gain a more complete picture of the water cycle. Integrated 

modelling of hydrologic fluxes both within and across catchments might provide a better 

way to assess subsurface losses and gains than currently possible.  
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Figure 5-3. Conceptualization of the groundwater flow model proposed by Rahman et al. 

(2023). The blue line in the subsurface represents the location of the groundwater table. 

Groundwater discharge occurs when groundwater table intersects the surface. The two-

dimensional representation of hydrogeology in this figure considers depth-averaged 

transmissivity in the model. Taken from Rahman et al. (2023). 
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APPENDIX A Supplemental Material Chapter 2 
 

 

Figure A1. (a) Map of dRR values and (b) Scatter plot of RR vs. AI for 660 CAMELS-GB 

catchments. The bold black dashed line in Figure (b) is the regression fit line based on 

linear regression using AI as the predictor. 
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Table A1. List of catchment attributes from CAMELS-GB dataset. These attributes are used 

both in Chapter 2 (i.e. Figure 2-4 and Figure 2-5) and Chapter 4. “baseflow_index# (BFI-

HOST)” is only used in Chapter 4. 

Attribute Class Attribute Name Description Unit 

Topography area catchment area km2 

dpsbar catchment mean drainage path slope m km-1 

elev_mean catchment mean elevation m.a.s.l 

elev_min catchment minimum elevation m.a.s.l 

elev_10 catchment 10th percentile elevation m.a.s.l 

elev_50 catchment median elevation m.a.s.l 

elev_90 catchment 90th percentile elevation m.a.s.l 

elev_max catchment maximum elevation m.a.s.l 

Climatic Indices p_mean mean daily precipitation mm day-1 

pet_mean mean daily PET (Penman-Monteith equation without interception 
correction) 

mm day-1 

Aridity_index aridity, calculated as the ratio of mean daily potential 

evapotranspiration to mean daily precipitation 

- 

p_seasonality seasonality and timing of precipitation (estimated using sine curves 

to represent the annual temperature and precipitation cycles; 

positive (negative) values indicate that precipitation peaks in 

summer (winter) and values close to zero indicate uniform 
precipitation throughout the year) 

- 

frac_snow fraction of precipitation falling as snow (for days colder than 0°C) - 

high_prec_freq frequency of high precipitation days (≥ 5 times mean daily 

precipitation) 

days yr-1 

high_prec_dur average duration of high precipitation events (number of 

consecutive days ≥ 5 times mean daily precipitation) 

days 

low_prec_freq frequency of dry days (< 1mm day-1) days yr-1 

low_prec_dur average duration of dry periods (number of consecutive days < 
1mm day-1) 

days 

#
 baseflow_index#  

(BFI-HOST) 

A base-flow index derived from the 29-class Hydrology Of Soil 

Types (HOST) classification 

- 

Land Cover Attributes dwood_perc percentage cover of deciduous woodland % 

ewood_perc percentage cover of evergreen woodland % 

grass_perc percentage cover of grass and pasture % 

shrub_perc percentage cover of medium scale vegetation (shrubs) % 

crop_perc percentage cover of crops % 

urban_perc percentage cover of suburban and urban % 

inwater_perc percentage cover of inland water % 

bares_perc percentage cover of bare soil and rocks % 

Soil Attributes 

 

sand_perc percentage sand % 

silt_perc percentage silt % 

clay_perc percentage clay % 

organic_perc percentage organic content % 

bulkdens bulk density g cm-3 

tawc total available water content mm 

porosity_cosby volumetric porosity (saturated water content estimated using a 

pedotransfer function based on sand and clay fractions) 

- 

porosity_hypres volumetric porosity (saturated water content estimated using a 
pedotransfer function based on silt, clay and organic fractions, bulk 

density and topsoil)  

- 

conductivity_cosby saturated hydraulic conductivity (estimated using a pedotransfer 

function based on sand and clay fractions) 

cm h-1 

conductivity_hypres saturated hydraulic conductivity (estimated using a pedotransfer 

function based on silt, clay and organic fractions, bulk density and 

topsoil) 

cm h-1 

root_depth depth available for roots M 

soil_depth_pelletier depth to bedrock (maximum 50m) M 

Hydrogeology 

Attributes 

 

inter_high_perc significant intergranular flow – high productivity % 

inter_mod_perc significant intergranular flow – moderate productivity % 

inter_low_perc significant intergranular flow – low productivity % 

frac_high_perc flow through fractures – high productivity % 

frac_mod_perc flow through fractures – moderate productivity % 

frac_low_perc flow through fractures – low productivity % 

no_gw_perc rocks with essentially no groundwater % 

low_nsig_perc generally low productivity (intergranular flow) but some not 

significant aquifer 

% 

nsig_low_perc generally not significant aquifer but some low productivity 
(intergranular flow) 

% 

Human Influences surfacewater_abs mean surface water abstraction mm day-1 
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groundwater_abs mean groundwater abstraction mm day-1 

discharges mean discharges (daily discharges into water courses from water 

companies and other discharge permit holders reported to the 
Environment Agency) 

mm day-1 

abs_agriculture_perc percentage of total (groundwater and surface water) abstractions in 

catchment for agriculture 

% 

abs_amenities_perc percentage of total (groundwater and surface water) abstractions in 
catchment for amenities 

% 

abs_energy_perc percentage of total (groundwater and surface water) abstractions in 

catchment for energy production 

% 

abs_environmental_perc percentage of total (groundwater and surface water) abstractions in 
catchment for environmental purposes 

% 

abs_industry_perc percentage of total (groundwater and surface water) abstractions in 

catchment for industrial, commercial and public services 

% 

abs_watersupply_perc percentage of total (groundwater and surface water) abstractions in 
catchment for water supply 

% 

num_reservoir number of reservoirs in the catchment - 

reservoir_cap total storage capacity of reservoirs in the catchment in megalitres ML 

reservoir_he percentage of total reservoir storage in catchment used for 
hydroelectricty 

% 

reservoir_nav percentage of total reservoir storage in catchment used for 

navigation  

% 

reservoir_drain percentage of total reservoir storage in catchment used for drainage % 

reservoir_wr percentage of total reservoir storage in catchment used for water 
resources 

% 

reservoir_fs percentage of total reservoir storage in catchment used for flood 

storage 

% 

reservoir_env percentage of total reservoir storage in catchment used for 

environmental 

% 

#: BFI-HOST of each catchment is obtained from NRFA website 

(https://nrfa.ceh.ac.uk/data/search) where detailed information of each stream gauges is 

given. In the Hydrology Of Soil Types (HOST) dataset, the percentage of each HOST soil 

class present for each grid square is estimated for each 1 km square (Boorman et al., 1995). 

Firstly, BFI (i.e. a measure of catchment responsiveness) values was calculated using daily 

mean flow data with a baseflow separation method developed in the Low Flow Studies 

(Institute of Hydrology, 1980). After that, BFI-HOST values were derived by regionalizing 

these BFI values with multiple linear regressions by using the fractions of HOST soil classes 

within the topographic boundaries of catchments (Boorman et al., 1995). 
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Figure A2. (a) Map of and (b)Whisker-Box plot of coastal catchment groups. Map indicates 

the catchment groups analyzed in the hypothesis. The central horizontal line of the whisker 

plot represents the median dRR value of each group. The bottom and top edges of the 

whisker box indicate 25th and 75th percentiles, respectively. The bottom and top edges of the 

vertical line demonstrate the lowest and highest data point in the dataset excluding any 

outliers, respectively. dRR values are calculated according to Turc-Mezentsev Curve. 

 

Figure A3. (a) Map of, (b)Whisker-Box plot of and (c) cdf plot of coastal catchment groups. 

Map indicates the catchment groups analyzed in the hypothesis. The central horizontal line 

of the whisker plot represents the median dRR value of each group. The bottom and top 

edges of the whisker box indicate 25th and 75th percentiles, respectively. The bottom and top 

edges of the vertical line demonstrate the lowest and highest data point in the dataset 

excluding any outliers, respectively. dRR values are calculated based on linear regression 

using AI as the predictor. 
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Figure A4. a) Map of, (b)Whisker-Box plot of and (c) cdf plot of coastal catchment groups 

with water balance error values in %. Water balance error (WBE) is calculated as dRR 

values divided by observed RR values and multiplied by 100. Map indicates the catchment 

groups analyzed in the hypothesis. The central horizontal line of the whisker plot represents 

the median WBE value of each group. The bottom and top edges of the whisker box indicate 

25th and 75th percentiles, respectively. The bottom and top edges of the vertical line 

demonstrate the lowest and highest data point in the dataset excluding any outliers, 

respectively.  dRR values are calculated according to Turc-Mezentsev Curve. 

 

Figure A5. Maps of catchments 45004 and 44001 (a) and catchments 42001 and 42006 (b). 

Light pink and blue catchments are highly permeable and not highly permeable, 

respectively. Yellow color represents the land of Great Britain. Highly permeable geology 

is also shown as brown regions on the map. The wells located in these catchments are shown 

as green-filled circles. Groundwater (GW) levels of wells and dRR values of catchments are 

given on the bottom left corner in each map.  
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Figure A6. (a) Scatter plot of dRR vs. SSI (Strahler Sequence Index) of 174 CAMELS-GB 

catchments with highly permeable geology (PAF (permeable area fraction)>0.1), (b) 

Scatter plot of dRR vs. SSI of 320 CAMELS-GB catchments without highly permeable 

geology (PAF<0.1). The subgrouped version of Figure (a) based on catchments’ SI 

(Strahler Index) values and the subgrouped version of Figure (a) based on catchments’ SI 

values are also given as (c) and (d), respectively. dRR values are calculated according to 

Turc-Mezentsev Curve. 
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Figure A7. (a) Scatter plot of dRR vs. SI (Strahler Index) of 174 CAMELS-GB catchments 

with highly permeable geology (PAF (permeable area fraction)>0.1), (b) Scatter plot of 

dRR vs. SI of 320 CAMELS-GB catchments without highly permeable geology (PAF<0.1), 

(c) Scatter plots of dRR vs. SSI (Strahler Sequence Index) of catchment in (a) based on their 

SI values and (d) Scatter plots of dRR vs. SSI of catchment in (b) based on their SI values. 

dRR values are calculated based on linear regression using AI as the predictor. 
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Figure A8. (a) Scatter plot of WBE vs. SI (Strahler Index) of 174 CAMELS-GB catchments 

with highly permeable geology (PAF (permeable area fraction)>0.1), (b) Scatter plot of 

dRR vs. SI of 320 CAMELS-GB catchments without highly permeable geology (PAF<0.1), 

(c) Scatter plots of dRR vs. SSI (Strahler Sequence Index) of catchment in (a) based on their 

SI values and (d) Scatter plots of dRR vs. SSI of catchment in (b) based on their SI values. 

dRR values are calculated according to Turc-Mezentsev Curve. 
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Figure A9. Map of average groundwater levels (m.a.o.d.) for 878 GB wells. 
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APPENDIX B Supplemental Material Chapter 3 
B1. Different window sizes for smoothing process 

 

Figure B1.1. NSE values of SACRAMENTO model structure as original values and 

smoothed values (moving from left to right) by LOWESS approach with different window 

sizes including between 10 to 50 catchments (points). These different window sizes are 

checked for every model structure based on different catchment attributes. The most 

appropriate window size is selected as 40 points.  
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B2. Tables of parameters for RRMT and FUSE model structures 

Table B2.1. Parameters of soil moisture accounting modules (i.e. PEN and PDM) and flow 

routing modules (i.e. 2PAR, LEAK and CRES) and their value ranges 

Module Parameter Unit Value range 

PEN Root constant  mm 10 - 200 

Bypass (fraction) - 0 - 0.25 

PDM Maximum storage 

capacity 

mm 0 - 500 

Degree of variability - 0 - 2.5 

2PAR Residence time of first 

reservoir 

T 1 - 15 

Residence time of 

second reservoir 

T 15 - 100 

Fraction of effective 

rainfall going through 

first reservoir 

- 0 - 1 

LEAK Residence time of upper 

part 

T 1 - 200 

Residence time of 

middle part 

T 1 - 100 

Residence time of lower 

part 

T 1 - 25 

Lower threshold mm 0 -175 

Upper threshold mm 0 - 275 

CRES Residence time T 1 - 15 

 

Table B2.2. Parameters of FUSE model structures, units, value ranges and model(s) using 

parameters (1=TOPMODEL, 2=ARNO, 3=PRMS, 4=SACRAMENTO) 

Parameter Description Unit Value 

range 

Model(s) 

MAXWATER 1 Depth of upper soil layer mm 25 - 500 1,2,3,4 

MAXWATER 2 Depth of lower soil layer mm 50 - 5000 1,2,3,4 

FRACTEN Fraction total storage in tension 

storage 

- 0.05 - 

0.95 

1,2,3,4 

FRCHZNE Fraction tension storage in recharge 

zone 

- 0.05 - 

0.95 

3 

FPRIMQB Fraction storage in first baseflow 

reservoir 

- 0.05 - 

0.95 

4 

RTFRAC1 Fraction of roots in the upper layer - 0.05 - 

0.95 

2 

PERCRTE Percolation rate mm d-

1 

0.01 - 

1000 

1,2,3 

PERCEXP Percolation exponent - 1 - 20 1,2,3 

SACPMLT SACRAMENTO model percolation 

multiplier for dry soil layer 

- 1 - 250 4 

SACPEXP SACRAMENTO model percolation 

exponent for dry soil layer 

- 1 - 5 4 
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PERCFRAC Fraction of percolation to tension 

storage 

- 0.5 – 0.95 4 

FRACLOWZ Fraction of soil excess to lower 

zone 

- 0.5 – 0.95 3 

IFLWRTE Interflow rate mm d-

1 

0.1 - 1000 3,4 

BASERTE Baseflow rate mm d-

1 

0.001 - 

1000 

1,2 

QB_POWR Baseflow exponent - 1 – 10 1,2 

QB_PRMS Baseflow depletion rate d-1 0.001 – 

0.25 

3 

QBRATE_2A Baseflow depletion rate first 

reservoir 

d-1 0.001 – 

0.25 

4 

QBRATE_2B Baseflow depletion rate second 

reservoir 

d-1 0.001 – 

0.25 

4 

SAREAMAX Maximum saturated area - 0.05 - 

0.95 

3,4 

AXV_BEXP ARNO/VIC b exponent - 0.001 - 3 2 

LOGLAMB Mean value of the topographic 

index 

m 5 - 10 1 

TISHAPE Shape parameter for the topographic 

index gamma distribution 

- 2 - 5 1 

TIMEDELAY Time delay in runoff d 0.01 - 7 1,2,3,4 
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B3. Process of LOWESS smoothing approach 

In LOWESS (locally weighted scatterplot smoothing) approach, the best NSE or KGE 

value of each catchment is taken in turn as the central point x in a set of 2k+1 data points 

after sorting the catchments by selected catchment attributes. 2k of 2k+1 includes the k 

number of former points and k number of after points for each of central NSE or KGE 

point. The smoothed (i.e. estimated) NSE or KGE value for the central point and its 

variance is produced by fitting a weighted linear regression to the selected set of 2k+1 data 

points.  After repeating this process for all data points, a single LOWESS fit is obtained. 

Weights are calculated using the following function: 

                                              wi = (1 − |
(x−xi)

max(x−xi)
|
3

)3                                  (B3.1) 

Where x is central NSE or KGE point, xi are the other NSE or KGE points within the 

selected 2k+1 data points defined by span (i.e. half of a window size). While the most 

weight is given to the data points nearest to the point of estimation and the least weight to 

the data points that are furthest away. To account for outliers, a first LOWESS fit is 

produced using the original data, followed by a calculation of the residuals r from this initial 

fit. Then, NSE or KGE point is weighted according to its distance from the fitted line using 

following bi-square weight function: 

                                             wi = (1 −  (ri − 6MAD)2)2                                 (B3.2) 

                                             MAD= median(|r|)                                       (B3.1) 

where ri is the residual of the ith residual data point and MAD is the median absolute 

deviation of the residuals. Data points with large residual values are down-weighted by this 

function (adapted from Coxon et al., 2015). 
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B4. Maps for differences between highest KGE and NSE values of RRMT and 

FUSE frameworks and maps for the highest KGE values of RRMT and FUSE 

frameworks 

 

Figure B4.1: Map of highest (a) NSE and (b) KGE differences between RRMT and FUSE 

frameworks. For visual clarity, maps are recreated as (c) and (d) by eliminating 

catchments with NSE and KGE differences values ranging between -0.2 and 0.2 (i.e. 

indicated as black range in the colorbar). 
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Figure B4.2. KGE values of best simulations performed by any of model structures which 

are selected from a) RRMT and b) FUSE frameworks. Best simulations are obtained based 

on NSE. 
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B5. Information regarding the reservoirs in our study catchments 

According to the UK reservoir inventory (Durant and Counsell 2018) and reservoir data for 

Scottish catchments from the Scottish Environment Protection Agency (SEPA), 252 of the 

989 catchments studied have reservoirs located in the catchment. Contributing area 

upstream of the reservoir (%) and normalized upstream capacity are two catchment 

descriptors suggested by Salwey et al. (2023) to quantify the influence of reservoirs on 

streamflow characteristics. Contributing area is defined as the percentage of catchment area 

which drains into the reservoir. A contributing area close to 100% means that the location 

of the reservoir is close to the catchment outlet. Normalized upstream capacity is the ratio 

of total reservoir capacity to average annual precipitation volume received by a catchment. 

It is an indicator of relative reservoir storage size. We investigate the relationship between 

each of these two reservoir-related descriptors and highest NSE scores obtained by RRMT 

and FUSE model structures for 252 catchments (Figure S5.1). Spearman rank correlations 

between highest NSE values obtained by the RRMT (FUSE) model structures and 

contributing area is -0.32 (-0.45), it is only -0.18 (-0.34) between NSE and normalized 

upstream capacity values. So, there is a small decline in model performance the closer a 

reservoir exists to the catchment outlet, and to a lesser degree the larger it is. However, the 

variability in performance change is very large and it would take consideration of additional 

aspects such as reservoir management to add reservoirs to the models used here (e.g. Payan 

et al. 2008). This effort is beyond our study. 
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Figure B5.1. Histogram plots of (a) contributing area (%) and (b) normalized upstream 

capacity of 252 catchments. Scatter plot of (c) and (d) indicates highest NSE values 

obtained by RRMT model structures vs. contributing area and vs. normalized upstream, 

respectively. Same scatter plots with highest NSE values obtained by FUSE model 

structures are given in (e) and (f). 

  



110 
 

B6. Different thresholds for separation between RRMT model structures 

 

Figure B6.1. NSE difference (%) values and bar plots of six model structures (PEN+2PAR, 

PEN+LEAK, PEN+CRES, PDM+2PAR, PDM+LEAK, PDM+CRES) plotted against their 

BFI. Different thresholds (i.e. 5%, 8%, 10%, 15%) are tried and 10% is selected as the 

most reasonable threshold to decide which model structures performing enough in specific 

ranges of attributes by checking for every model structure.  
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B7. Separations between model structures of RRMT and FUSE frameworks based 

on KGE 

 

Figure B7.1. KGE difference (%) values and bar plots of six model structures (PEN+2PAR, 

PEN+LEAK, PEN+CRES, PDM+2PAR, PDM+LEAK, PDM+CRES) plotted against their 
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BFI (a), dRR (b), RR (c) and slope of FDC (d) attributes. KGE difference values are 

calculated by taking the difference between maximum KGE value obtained by any model 

structure and KGE values of remaining model structures and divided by maximum KGE 

value and multiply by 100 for every catchment. KGE values of model structures are 

obtained by moving means with 40 point - window size. Through visual inspection, 10% is 

selected as the most helpful threshold to show which model structure is performing 

differently in relation to a specific attribute. The range between two grey dashed vertical 

lines indicates the ranges where the smoothing is based on 20 left and right of the average 

calculated. Outside these ranges, points become increasingly biased by the points at the 

minimum and maximum signature values. 
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Figure B7.2. KGE difference (%) values and bar plots of four model structures 

(TOPMODEL, ARNO/VIC, PRMS, SACRAMENTO) plotted against their BFI (a), dRR (b), 

RR (c) and slope of FDC (d) attributes. KGE difference values are calculated by taking the 

difference between maximum KGE value obtained by any model structure and KGE values 
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of remaining model structures and divided by maximum KGE value and multiply by 100 

for every catchment. KGE values of model structures are obtained by moving means with 

40 point - window size. Through visual inspection, 10% is selected as the most helpful 

threshold to show which model structure is performing differently in relation to a specific 

attribute. Therefore, bar plots of four model structures are created by taking 10% as the 

KGE difference. The range between two grey dashed vertical lines indicates the ranges 

where the smoothing is based on 20 left and right of the average calculated. Outside these 

ranges, points become increasingly biased by the points at the minimum and maximum 

signature values. 
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B8. Relationship of BFI and RR with related catchment attributes (i.e. baseflow 

index values based on HOST classification (BFI-HOST) and Aridity Index (AI)) 

 

 

Figure B8.1. Scatter plots of (a) BFI vs BFI-HOST values and (b) RR vs AI values for 998 

catchments. Dashed line in (a) is y=x. In (b), the thick black dashed curve is the Turc-

Mezentsev Curve and dRR values for each catchment are calculated as the vertical 

difference between the observed RR and their corresponding points on the Turc-Mezentsev 

Curve. The thin dashed lines reflect energy and water limits While Pearson (PC) and 

Spearman rank correlation (SRC) values between BFI and BFI-HOST are 0.83 and 0.78, 

respectively, these are -0.81 and -0.82 between RR and AI.   
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B9. Water management activities for catchments with water balance issues 

 

 

Figure B9.1. Water management practices effecting runoff of (a) 62 leaky catchments (i.e. 

dRR< -0.2) and (b) 19 gaining catchments (i.e. dRR >0.2). Red edged circles indicate 

Chalky catchments. Abs, res and eff represent abstraction (i.e. taking water out of surface 

water or groundwater for water supply or industrial, agricultural purposes), reservoir (i.e. 

the effect on river flow due to water storage or release in or above gauged catchment) and 

effluent returns (i.e. outflow from sewage treatment works augmenting river flow if effluent 

originates from outside of the catchment), respectively. None represents negligible 

artificial influence. The thick black dashed curve is the Turc-Mezentsev Curve. The thin 

dashed lines reflect energy and water limits. 
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APPENDIX C Supplemental Material Chapter 4 
C1. Stepwise Linear Regression Analysis 

Table C1.1. Different groups of catchment attributes used as predictors to predict RR and 

VR and the correlations between the predicted and observed values. Selected groups of 

predictors for RR and VR are shown as bold. 

Signature 

as 

response 

Predictors Correlation of predicted vs. observed 

signature values 

RR 10 predictors (elev_min, 

aridity_index, frac_snow, 

dwood_perc, silt_perc, 

inter_mod_perc, 

low_nsig_perc, 

reservoir_he) 

 
6 predictors (aridity_index, 

frac_snow, dwood_perc, 

BFI-HOST, urban_perc, 

frac_high_perc) 

 
3 predictors (aridity_index, 

frac_snow and BFI_HOST) 

 
2 predictors (aridity_index 

and frac_snow) 
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1 predictor 

(aridity_index) 

 
VR 19 predictors (elev_min, 

elev_50, pet_mean, 

aridity_index, frac_snow, 

high_prec_frequency, 

low_prec_dur, dwood_perc, 

inwater_perc, 

inter_high_perc, BFI-

HOST etc.) 

 
7 predictors (pet_mean, 

aridity_index, frac_snow, 

low_prec_dur, 

inwater_perc, 

inter_high_perc, BFI-

HOST) 

 

 
3 predictors 

(aridity_index, 

inwater_perc and BFI-

HOST) 
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2 predictors (aridity_index 

and BFI-HOST) 

 
2 predictors (aridity_index 

and inwater_perc) 

 
1 predictor (aridity_index) 
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C2. Some decisions made for quantification of correlation term for ungauged 

catchments 

We checked how many nearest gauges should be taken as reference to estimate streamflow 

time series for ungauged catchments to calculate correlation term (see Section 3.2.). Since 

not much changed is observed in the percentage of catchments having Spearman Rank 

Correlation (SRC)>0.8 after three catchments, taking three nearest gauges is chosen as 

optimum option.   

 

Figure C2.1. Five histogram graphs of Spearman Rank Correlation (SRC) between 

estimated and observed streamflow time series of 633 catchments. Estimated streamflow 

time series are calculated by taking inverse distance weighted interpolation of taking (a) 

nearest gauge, (b) nearest two gauges, (c) nearest three gauges, (d) nearest four gauges 

and (e) nearest five gauges as reference for ungauged cases.   
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Figure C2.2. Scatter plots of observed RR (i.e. RRObs) vs. (a) estimated RR (i.e. RREst) using 

estimated streamflow time series by inverse distance weighted interpolation of nearest 

three catchments’ streamflow, (b) predicted RR values (RRPred) by stepwise linear 

regression analysis using aridity index as predictor and scatter plot of  observed VR (i.e. 

VRObs) vs. (a) estimated VR (i.e. VREst) using estimated streamflow time series by inverse 

distance weighted interpolation of nearest three catchments’ streamflow, (b) predicted VR 

values (VRPred) by stepwise linear regression analysis using aridity index, baseflow index 

(BFI-HOST) and inland water percentage as predictors. 
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C3. Inclusion of leaky catchments 

There are 26 leaky catchments (i.e. ones having high water balance errors) that are 

eliminated from study. In order to specify these catchments, we calculate their expected 

water balance (i.e. expected runoff ratio (RR)) based on only climate using the Turc-

Mezentsev curve. Turc-Mezentsev curve provides the relationship between long term the 

long-term average evaporation to long-term average precipitation (Turc, 1955; Mezentsev, 

1955). Since measurements of actual evapotranspiration are not available at the catchment 

scale, we adjust the formula using 1- (Q/P) as a response term instead of AET/P as used in 

the original formulation. The formula that we use to create Turc-Mezentsev Curve is 

therefore; 

                                                          1 −
𝑄

𝑃
=

1

[1+(
𝑃

𝑃𝐸𝑇
)

2
] 

1
2

                                       (C3.1) 

The water balance errors, i.e. delta runoff ratio (dRR) values, of catchments are calculated 

as the difference between their observed and expected RR (i.e. Q/P) derived from the Turc-

Mezentsev Curve formula. If catchments have negative dRR values, it means that their 

observed RR is less than expected RR and they are likely losing water.  

In addition to PDM+2PAR, we also conducted model simulation using PDM+LEAK model 

structure for all 659 catchments. PDM+LEAK consists of same soil moisture accounting 

component with a leaky aquifer routing component, which allows the model to consider 

the situation when the water balance of a catchment is not closed. The flow from the bottom 

outlet represents leakage from the catchment, while the middle and upper outlets contribute 

to routing the effective rainfall. Model structures are visualized in Figure C3.5. SHE values 

obtained by PDM+2PAR are compared to ones obtained by PDM+LEAK based on dRR 

values as shown in Figure C3.3. It demonstrates that PDM+LEAK model structures works 

better than PDM+2PAR mainly in catchments where dRR values less than –0.2. Therefore, 

26 catchments having dRR<-0.2 (Figure C3.4) are assumed to be leaky catchments and 

eliminated from the results in the main chapter to simply the study by using only one model 
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structure. Even though 26 leaky catchments are eliminated, the results including them (i.e. 

659 GB catchments) are given in Figure C3.6, C3.7 and C3.8. 

 

Figure C3.3. Scatter plots of SHE values obtained by PDM+2PAR and PDM+LEAK and 

color-coded by dRR values. The original plot and its version of being x-axis limited to [0 

1] are given in (a) and (b), respectively. 

 

 

Figure C3.4. 659 CAMEL-GB catchments shown in GB map. While 26 leaky catchments 

are shown in dark blue filled circles, 633 remaining catchments indicated as grey circles. 

While 633 GB catchments are used to simply the study by using only one model structure 
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to produce results, results with 659 catchments are also presented in supplemental material 

by using another model structure for 26 leaky catchments.  

 

 

 

Figure C3.5. Visualization of model structures used: a) PDM+2PAR and b) PDM+LEAK 

 

 

Figure C3.6. Scatter plots for (a) KGE vs. SHE, (b) NP vs. SHE and (c) NSE vs. SHE. x 

and y axes are limited to [0 1]. 659 GB catchments are used in these results. 
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Figure C3.7. (a) Predicted RR map and scatter plot for predicted vs. observed RR, (b) 

predicted VR map and scatter plot for predicted vs. observed VR and (c) map illustrating 

SRC values between observed streamflow of catchments and the streamflow values 

calculated by taking inverse distance interpolation of their closest three catchments’ 

observed streamflows and its histogram plot. Predictor of RR is aridity index and 

predictors of VR are aridity index, BFI-HOST and inland water percentage. 659 GB 

catchments are used in these results. 

 

 

Figure C3.8. Cumulative distribution function (i.e. cdf) plot and histogram plot of 

difference between SHE(gauged) and SHE(ungauged) values (i.e. SHE(gau) – SHE(ung)). 

Cdf plot is color-coded by (a) bias component difference (B), (b) variance component 

difference (V) and (c) correlation component difference (C) between SHE(gauged) and 

SHE(ungauged) formulations summarized in Table 1. Histogram of SHE(gau)-SHE(ung) 

is also shown on the figure. 659 GB catchments are used in these results. 
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