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ABSTRACT

This thesis investigates the application of Deep Multi-Agent Reinforcement Learning
(DMARL) to problems within telecommunications and logistics. These sectors are ex-
emplary of a common class of industrial systems that are comprised of large numbers

of interconnected and interdependent assets. Traditionally, optimisation of these systems is
achieved through the utilisation of heuristic and/or human expertise. However, due to their
inherent complexity and dimensionality, these approaches are often significantly sub-optimal.
Deep Reinforcement Learning (DRL) has proved successful in several real-world problems, but
the aforementioned characteristic of these domains precludes its direct application. Alternatively,
we can instantiate each asset as an agent and apply DMARL methodologies. This addresses the
dimensionality but requires cooperative behaviours to be induced. Herein, we detail our efforts
deriving novel cooperative DMARL solutions to representative problems in our target industrial
domains. Our telecommunications work considers network maintenance planning, which requires
a finite amount of maintenance resources to be assigned among network equipment. The logistics
work explores the order-picking problem, in which human and robot workers must collaborate
to collect and deliver items distributed around a commercial warehouse. In both cases, we de-
velop and empirically validate novel DMARL algorithms within simulated environments and
demonstrate improvements over relevant industrial heuristics. Furthermore, inspired by these
domains, we anticipate language playing a key part in future industrial systems as a means to
enable cooperation among diverse sets of agents. As such, we conduct investigations into the
fundamental challenges of automatically establishing a common language from scratch for agents
to effectively communicate. Collectively, this work serves as a first step towards exploiting the
potential of cooperative DMARL for industrial applications and provides paths towards their
realisation within real-world settings.
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1
INTRODUCTION

Through a trial-and-error like process, Reinforcement Learning (RL) offers the ability to au-
tomatically learn near-optimal1 behaviours in sequential decision-making tasks through
maximisation of a reward signal [1]. The adoption of Deep Learning (DL) methodologies

within this paradigm has proved pivotal in its extension to high dimensional problems [2]. This
combination is referred to as Deep Reinforcement Learning (DRL) and has enabled significant
performance improvements over previously established baselines (be that heuristics or human
experts) in a number of complex domains. These include image-based game-play [3], two-player
adversarial games like Go [4] and robotics [5]. In conjunction with the increasing availability and
affordability of compute, this forms the necessary foundations for DRL to revolutionise industrial
control paving the way towards greater productivity. We are beginning to see examples of DRL
agents approach the peripheries of commercial viability within applications like stratospheric
balloon navigation for telecommunications [6] and chip design [7], to name a few. Although
promising, the field is still in its infancy and there is still much work to do. Many challenges
remain including generalisation, explainability and improving sample efficiency.

We explore an alternative challenge, namely the extension of DRL methodologies beyond
the canonical single-agent (and two-player adversarial settings) towards the more generally
applicable N-player setting. In many real-world applications DRL agents will not operate alone,
they will find themselves within larger Multi-Agent Systems (MAS) comprised of numerous
agents who are also empowered to make decisions and may be cooperative, self-interested, or
competitive. In these more complex settings, agents may exert influence on one another which
could impact each other’s efficacy. Deep Multi-Agent Reinforcement Learning (DMARL) extends
DRL to MAS and intends to develop methods which consider the implications of interactions

1Optimality can be guaranteed in some cases, however, this is not typical in SOTA RL methods.
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CHAPTER 1. INTRODUCTION

on agents’ learning process. They range in complexity from Independent Learners (IL) [8],
where other agents are viewed as simply being part of the environment, to methods like Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [9] and Counterfactual Multi-Agent Policy
Gradient (COMA) [10], which propose modifications to address issues like non-stationarity and
credit assignment. The introduction of multiple agents also introduces new opportunities, for
example, communication can be introduced to promote cooperative behaviours [11] and experience
can be shared among agents [8].

In many cases, the decisions to instantiate a problem as an MAS may be conscious and
intended to reflect the realities and characteristics of the underlying system. Examples can be
found in many industrial sectors, including autonomous vehicles, economics, telecommunications
and logistics. Through making this choice improved scalability and tractability [12] can be
provided over monolithic representations. In many cases, these problems involve the optimisation
of a system or organisational-level objective. Approaching the control problem with a singular
centralised DRL is only feasible when the number of agents is small, as the asset number grows
the number of actions tends to scale exponentially. For even modest numbers of agents, this
quickly becomes intractable with standard DRL techniques. Alternatively, we can apply DMARL
approaches to learn coordinated policies whilst providing the improved scalability we desire.
Here, in this thesis, we explore the challenges and opportunities that arise from the application
of cooperative DMARL to problems of this type.

1.1 Illustrative Example

!!

"!, r"#$

(a) Agent (b) Environment

Figure 1.1: Figure 1.1a shows an agent who can observe, interact and receive a reward from an
environment. On the right Figure 1.1b an environment which contains 3 agents is illustrated.

Our major motivator for moving from single-agent DRL to DMARL, is driven by the observa-
tion that many real-world applications are best represented as MAS. In our case, we consider the
control of distributed assets through the use of DMARL. Let us consider the abstract example
depicted in Figure 1.1. In Figure 1.1a, we show a systematic representation of an asset which
is able to observe the environment through observation ot, is able to interact with the world
through actions at and receives a reward rt. Figure 1.1b shows an environment with 3 agents. In

2



1.1. ILLUSTRATIVE EXAMPLE

the context of telecommunications, an asset could be a Base Station (BS), router or other network
infrastructure. In each case, it would make an observation of sensor values and be able to enact
configuration changes through actions. The reward function may be a function of the network
Quality of Service (QoS) or another performance measure and may even be shared among agents.

There is a spectrum of plausible solutions which are shown in Figure 1.2. Within the diagrams,
the brain represents a decision-making functionality (or policy in the language of RL) and the
lines represent their association with assets. In the case of the single-agent approach, we have
greyed out the adjacent assets to indicate that they aren’t represented in the training procedure.
We now consider the implication of training these variations to maximise reception of rt.

CentralisedDMARLSingle-agent

Figure 1.2: A spectrum of solutions for a MAS. On the left, we show what we refer to as a
single-agent method where the presence of other agents is not modelled in training. In the middle,
a DMARL solution is shown where all agents are provided with their own decision-making
functionality and are trained collectively. On the right, all decision-making and training are
conducted in a centralised manner.

Through the single-agent method, we can learn a policy that can control the required asset but
it may have a range of limitations. In applications where agents co-exist in a shared environment
(like the one shown), it will not be aware of the implications of decisions taken by other agents.
This may result in the derived policy being sub-optimal. For example, it will be unable to learn
cooperative behaviours or understand the impact of adversarial actions. We acknowledge that
this may seem naive, but it is common in the applied literature [13, 14].

The centralised approach will enable us to learn these coordinated behaviours. There is
however typically an exponential relationship between the number of actions and the number of
agents [12]. For many industrial sectors that include distributed assets, this relationship can
quickly become prohibitive from a computational perspective. It also requires the communication
of observational data to a centralised location, which may be impractical due to communication
constraints (i.e throughput, latency, privacy).

DMARL assigns each asset with a policy. It is inherently scalable and can address the afore-
mentioned problems. However, the decomposition of the problem introduces new issues. For
example, learning coordinated behaviours is harder than in the centralised settings, and issues

3



CHAPTER 1. INTRODUCTION

which we shall introduce in Chapter 2 like non-stationarity, credit assignment and partial ob-
servability can introduce challenges. Although problematic, these issues are not insurmountable
and a range of algorithmic innovations allow for their mitigation [9, 10, 15]. This fundamentally
is the focus of the contributions within this thesis.

1.2 Research Objectives

Through this research, we hope to understand the advantages that DMARL can provide within
domains usually undertaken through heuristics and/or human experts. We hope to distil both
industry-specific and general insights and recommendations which may be helpful for future
practitioners and researchers alike. To achieve this, we take an empirical approach and detail our
efforts in developing DMARL methodologies for two particularly compelling industrial domains.
The domains we identify are telecommunications and logistics, which we choose for several
reasons. Firstly, the domains are societally important, as both provide essential infrastructure to
move commodities to consumers in order to satisfy various economic, educational, and cultural
functions. Secondly, their infrastructure is typically characterised by large numbers of intercon-
nected and interdependent assets making them good candidates for the application of DMARL.
Thirdly, and finally, we believe our connections with relevant domain experts place us in a unique
position to derive valuable insights.

Our investigations will focus on the development and evaluation of novel DMARL algorithms
which address challenges within the candidate domains. In the list below we provide technical
objectives and a description of what they shall entail.

1. Problem Identification In conjunction with subject matter experts in the aforementioned
industries, we will identify suitable problems which require interaction and coordination
between distributed assets. In these types of domains, we expect DMARL to offer the
potential to improve decision-making and coordination, thereby improving performance.
Furthermore, this activity shall focus on understanding the innate qualities of the problem
and the heuristics that are typically employed.

2. Benefits and Limitations of DMARL Central to this research is the establishment of the
challenges and limitations which MARL may provide over conventional methodologies (e.g.
heuristics) within distributed control problems. Our experimental method shall primarily
comprise of quantitative comparison utilising both DMARL and domain-specific metrics.
However, where necessary we will evaluate qualitative aspects which could arise as a result
of the training methodologies which we will employ for our DMARL algorithms. Through
these comparisons, we can derive insights into the potential of DMARL within industrial
applications and identify obstacles preventing their widespread adoption.

4



1.3. CONTRIBUTIONS

3. Adapting and Design of DMARL approaches Many existing innovations within
DMARL have been demonstrated and applied within game-based domains [9, 10]. Our
objective is to apply these advances to our identified industrial domains and to exploit
their innate characteristics which may allow for the derivation of improved policies. We
anticipate opportunity to utilise methodologies like CTDE [9], parameter sharing [8] and
communication [11] to improve the coordination and decision-making of our agents.

4. Inducing Cooperation Our focus is on cooperative domains where distributed decision-
makers must work together. Inherently, there is a fundamental requirement for cooperation
and our research intends to focus on methods which support its emergence. For example,
inter-agent communication [11] can enable cooperative behaviours and we shall explore its
application.

1.3 Contributions

Collectively, this thesis provides contributions that further research in DMARL. We demonstrate
its application in two notable industrial domains and comment on the path towards real-world
deployed applications. Motivated by our experience of communication in applied DMARL, our
final contribution focuses on the emergent properties of communication as a means to promote
cooperative behaviours. Our contributions are broken down into three separate chapters, and
they are described in the following subsections.

1.3.1 Telecommunications

In Chapter 3, we introduce our exploration of the application of DMARL within telecommunica-
tions. In order to motivate the necessity for DMARL, we begin by considering the suitability and
limitations of DRL for a resource assignment task. As we will explain in Section 3.1, Radio Access
Network (RAN) disaggregation introduces the necessity for resource assignment within future
networks. This problem is modelled as an Bin Packing Problem (BPP) and then formulated as a
MDP An AlphaGo Zero [4] inspired DRL approach is applied to this challenging task. Empirically,
it is demonstrated to outperform our strongest baseline enabling a 5.7% improvement in resource
utilisation. This concerns work detailed in [16], where the author’s contributions are within the
problem formulation and methodology. Through further analysis of this methodology, we suggest
that extension to large-scale networks may unearth limitations which inherently distributed
solutions like DMARL may not be susceptible to. We then explore the application of DMARL
within an alternative setting. The setting we consider is network maintenance planning, where
a finite amount of maintenance resource must be assigned among a set of distributed network
elements. This problem is modelled as an POSG and a novel DMARL approach is developed which
utilises a GNN-empowered centralised critic to learn coordinated policies. Our best performing al-
gorithm, convMAAC, improves network availability by 3.49% and 6.13% in two different network
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topologies over standard baselines. These concerns work in [17], where the author contributed
to all parts of the research project. From this work, we establish problems that prohibit the
deployment of DMARL solutions, including challenges moving from simulated domains (which
are necessary for training) to real deployments.

1.3.2 Logistics

Within Chapter 4, we consider the order-picking problem where humans and robots work to-
gether to retrieve required items from commercial warehouses. This section details collective
efforts developing a DMARL approach to handling their coordination in order to maximise order
throughput. To this end, a feudal DMARL algorithm called HSNAC and a bespoke simulator were
developed which improved order throughput over an established industry heuristic by 23.2%.
The author’s contributions concerned further optimisation of the simulator and algorithm to
enable faster execution times, optimisations of the performance of the existing HSNAC algorithm
through the introduction of techniques like GAE [18], development of policy visualisation tools
and the identification of limitations with the approach. This section details work within [19].

1.3.3 Emergent Communication for Cooperation

As demonstrated within Chapter 3 and 4, there are a multitude of ways through which cooperation
can be achieved. In our telecommunications work on distributed network maintenance planning,
we expected to be able to make use of communication to enable cooperative behaviours. However,
empirically we were not able to demonstrate any advantage in doing so. This led to a fundamental
interest in the properties of communication, and through its study it was hoped that progress
could be made in developing practically useful communicative DMARL solutions. Here, we
focus on identifying and understanding the limitations in existing solutions concerning their
vulnerability to partner population dynamics and the impact of vocabulary size on language
acquisition. These problems are addressed through novel algorithmic innovations.

1.4 Publications

• Thomas, J. D., Hernández, M. P., Parlikad, A. K., & Piechocki, R. (2021, October). Net-
work Maintenance Planning Via Multi-Agent Reinforcement Learning. In 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2289-2295). IEEE.

• Wang, X., Thomas, J. D., Piechocki, R. J., Kapoor, S., Santos-Rodríguez, R., & Parekh,
A. (2022). Self-play learning strategies for resource assignment in Open-RAN networks.
Computer Networks, 206.
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2
BACKGROUND AND RELATED WORK

As previously argued, many industrial settings depend on distributed and interdependent assets.
The primary goal of this thesis is to explore the utilisation of DMARL as a solution to these
problems. Here, we provide an overview of relevant literature and examples of its application.
This chapter is structured as follows:

(2.1) Reinforcement Learning We observe that many of the ideas from MARL, build upon
those from RL. Hence, we begin with an introduction to RL, introducing fundamental concepts
like the Markov Decision Process (MDP), policies, value functions, and reviewing some of the
general challenges that exist within this setting like exploration versus exploitation and credit
assignment. From here, we review model-free Deep Reinforcement Learning (DRL) algorithms
like Deep Q-Networks (DQN) [3] and REward Increment = Nonnegative Factor £ Offset Rein-
forcement £ Characteristic Eligibility (REINFORCE) [20].

(2.2) Multi-Agent Reinforcement Learning With foundational ideas from RL and DRL
established, we then transition into DMARL. We will introduce the SG which generalises the
MDP to the multi-agent setting and analyse the complexities this introduces. As before, we will
then review model-free DMARL algorithms like Value Decomposition Networks (VDN) [21] and
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [9] which build upon DQN and
REINFORCE, respectively.

(2.3) A guide to applying DRL and DMARL Application of DRL and DMARL requires
navigation of a multitude of decisions. Here, we provide a distillation of the literature into
an actionable sequential process. We illuminate many of the challenges that exist in a typical
development cycle.

9
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(2.4) Examples of Application Numerous examples have been made at applying DRL and
DMARL to real industrial problems. In this section, we review them.

2.1 Reinforcement Learning

RL considers sequential decision-making problems where an agent is presented with an unknown
environment and is tasked with learning how to behave such that the reception of a reward
signal is maximised [1]. The aim of the following section is to introduce the typical formulation of
this problem and the algorithms which are typically employed in an attempt to solve them. This
section takes inspiration from Sutton and Barto [1].

2.1.1 Markov Decision Processes

The MDP formulates the sequential decision-making problem [1]. It can be described by the
5-tuple, < S,A,P ,R,∞ >. S is the set of environment states. A is the set of actions. R is the
reward function which is defined as follows R :S£A!R. P is the transition function which is
defined as P : S £A!¢(S). Where ¢(S) denotes a set of probability distributions over S and
represents a stochastic state transition function. Finally, ∞ 2 [0,1} is the discount factor which
impacts the time horizon over which the reward function should be optimised.

Figure 2.1: Agent-Environment interaction in an MDP [1]

This can be represented by Figure 2.1 which explicitly shows the interface between an agent
and an environment. For completeness, we talk through this interactive discrete-time process.
At t = 0, the agent begins in st 2S, it then selects an action at computed from a policy º :S !A.
It then experiences a state transition defined by P to st+1 and receive a reward, rt+1 given by
R. The agent is now in st=1 and again must select an action, after which it will experience a
state transition and receive a reward. This process typically continues until the agent reaches
a terminal state, S+ 2 S which occurs at t = T in the episodic case or alternatively may be
continuous.

2.1.2 Policies and Value Functions

Previously we have informally stated that the objective of RL is to learn behaviours that maximise
the reception of reward signal. These behaviours are more formally referred to as policies
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º :S !A. The reward signal which we are trying to maximise is the return, G, and is defined in
Equation (2.1). Our objective can be concisely defined by Equation (2.2).

(2.1) Gt =
TX

k=t+1
∞k°t°1Rk

(2.2) max
º

E[Gt]

Up until now, we have mostly overlooked the discount factor, ∞. It comes into play in Equation (2.1)
and impacts an agent’s perception of the trade-off between short-term and long-term cumulative
rewards. Setting ∞= 0, results in an agent who is myopic whereas ∞! 1 will optimise long-term
reward. It is common for this value to be set to between 0.95 and 0.99.

Two related and fundamental concepts are the state-value function and the action-value
function. The state-value function indicates the expected return which can be achieved from the
respective state under the current policy. The action-value function indicates the expected return
of a particular action in a particular state as shown in Equation 2.4. Both equations are based on
the Bellman equation [22] which is recursive and serves to compute the expected value of a state
or state-action pair based upon subsequent state or state-action pairs.

vº(s)= E[Gt|St = s]

= E[Rt+1 +∞Gt+1|St = s]

=
X
a
º(a|s)

X

s0,r
p(s0, r|s,a)[r+∞E[Gt+1|St+1 = s0]]

=
X
a
º(a|s)

X

s0,r
p(s0, r|s,a)[r+∞vº(s0)]](2.3)

qº(s,a)= Eº[Gt|St = s, At = a]

=
X

s0,r
p(s0, r|s,a)[r+∞vº(s0)](2.4)

If the transition probabilities and the reward function are available, P and R, the optimal policy,
º§ can be derived through Dynamic Programming (DP) by methods like Policy Iteration (PI) [1].
Unfortunately, these are not always known or in some cases, the dimensionality of a problem
may make DP problems intractable.

2.1.3 The role of Reinforcement Learning

RL allows for consideration of problems where P and/or R are not explicitly known, but samples
can be obtained through interaction with the environment. There are a variety of methods for
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Figure 2.2: Exploration vs. Exploitation: In the grid-world shown, the episode ends upon the
reception of a reward. It is highly likely that an agent will find the smaller reward (depicted by
the coins) first. If we exploit this information, we will not be able to find the larger reward.

approaching this, including model-free methods like Q-Learning [23] and Policy gradient [20]
which attempt to approximate the optimal action-value function and policy respectively, and
model-based methods like PILCO [24] which attempt to learn P and R1. Learning through
RL methods can raise a number of challenges including exploration vs exploitation and credit
assignment. There may also be specific environment qualities which introduce other problems
like non-stationarity and partial observability. We discuss these below.

Exploration vs Exploitation Given an unknown environment, our objective is to learn º§. To
do so, we must explore and collect samples which enable us to build an understanding of both P
and R. Over time we will build understanding and may find a region of the MDP with a relatively
high reward. Do we exploit this knowledge and continue to visit this region, or do we continue to
explore and maybe find a higher reward? Fundamentally, this is the trade-off and is illustrated
in Figure 2.2. There are many ways to handle this trade-off including including epsilon-greedy,
count-based exploration incentives and intrinsic rewards for exploration [25].

Credit Assignment Many environments require agents to contend with delayed reward. In
these settings, actions at previous time-steps may be critical in obtaining reward however there
is a challenge identifying their contribution which is obsfucated by the passage of time. This is
known as the temporal credit assignment problem [26].

Partial Observability In many cases, the true environment state, s 2 S, may not be fully
observable. There are a multitude of reasons why this might be the case, including, noisy sensor
values or an agent observing a limited field of view. In this more complex setting, the environment
state cannot be known with certainty and the Markovian underpinning of the MDP is violated
[1]. This typically manifests as "perceptual aliasing", where observed sensor values may be
indistinguishable whilst actually requiring different actions from the agent [27]. In this case, the
MDP is no longer suitable and the problem is typically represented as a Partially Observable

1In the case of PILCO, this is explicitly known but in general R must be learned.
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Markov Decision Process (POMDP). This formulation captures uncertainty encompassed within
an agents observation of the state. In this more complex domain, it is common use the notation
o 2O to refer to agent observations.

Non-stationarity In non-stationary environments, the dynamics of the MDP can change over
time. These changes may impact the transition dynamics, reward function or both and they may
change gradually or suddenly. In either case, these variations fundamentally change the problem
and impact the manner in which an agent should behave.

2.1.4 Model-Free Deep RL

In recent years, ML has been revolutionised through Deep Neural Network (DNN) which enables
automatic feature extraction and universal function approximation [28]. Collectively, this is
referred to as Deep Learning (DL) and has left very few areas of ML untouched. Some examples
of the key breakthroughs within DL include CNN for image classification [29–31], RNN for
sequential data [32, 33], and GNN for graph-based data [34–36]. Advances in DL have also been
deeply impactful within RL, where the intersection is often referred to as Deep Reinforcement
Learning (DRL). The combination of the CNN and RL was critical in achieving human-level
performance in image-based sequential decision-making within Atari by Mnih et al. [3]. This
advancement allowed for extension to large state spaces where applications of tabular methods
like Q-Learning [23]. This can be overcome through the employment of function approximation
techniques like DNN.

Within RL, there are model-free and model-based methods. Model-free methods learn a policy
directly through interaction with the environment and can be further broken down into Deep
Q-Networks (DQN) and policy optimisation methods. Model-based methods typically learn a
model of the environment and apply planning or dynamic programming techniques to derive an
optimal policy. In the literature, model-free approaches have tended to see more application and
success within complex domain. The difference in performance between these two paradigms is
often attributed to the implications of modelling inaccuracies within model-based approaches
[24, 37]. Henceforth, we focus our review on model-free DRL methods.

2.1.4.1 Deep Q-Networks

Deep Q-Networks (DQN) extends Q-Learning through introducing DNN-based function approxi-
mation. In the interest of identifying the algorithmic innovations that were necessary to extend
Q-Learning, we begin with introducing the original tabular algorithm in Algorithm 1. Q-Learning
is a method which learns to approximates the optimal action-value function, q§. It represents
it as a table of dimension |S|£ |A|, where it updates the appropriate action-value after every
environment interaction. As previously mentioned, the size of the table can become prohibitive as
the environment scales. DQN [3] utilises a DNN to parameterise qµ allowing for an improvement
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in scalability. The algorithm for DQN is shown in Algorithm 2. The introduction of the DNN
complicates the training process and additional apparatus is necessary to stabilise training. The
two most common are (1) an experience replay buffer D and (2) a target network q¡.

Algorithm 1: Q-Learning using ≤-greedy exploration
Input: env, Æ, ∞
Output: Q§

1 Q 2 0|S|£|A|;
2 for episodes do
3 done=False ;
4 s = env.reset();
5 while not done do
6 x ªU(0,1) if x > ≤ then
7 a ª argmaxa(Q(s)) ;
8 else
9 a ª A;

10 end
11 s0, r,done= env.step(at)
12 if not done then
13 Q(s,a)√Q(s,a)+Æ[r+∞maxa0(Q(s0,a0))°Q(s,a)] ;
14 else
15 Q(s,a)√Q(s,a)+Æ[r°Q(s,a)] ;
16 end
17 s √ s0;
18 end
19 end

The experience replay buffer, D, acts as a store for previous agent experience. By sampling
from this rather than training directly on incoming data, it is possible to move closer towards
independent and identically distributed data which facilitates the mitigation of temporal corre-
lations which can be problematic in training. The target network, q¡, acts to reduce instability
which would be present in training as the target value would be constantly changing. Typically
this is changed after a certain number of episodes or may be gradually changed.

Since the initial development of this algorithm, several modifications and additions have
been proposed including Prioritised Experience Replay [38] which preferentially samples rare
experiences from the buffer with higher probability, Double Q-Learning [39] which helps with
the overestimation which Q-Learning is known to suffer from and many others. Where these
and others were combined in Rainbow DQN [40] which achieved improved performance over the
individual parts.
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Algorithm 2: Deep Q-Networks (DQN) algorithm
Input: env, Æ, ∞
Output: Q

1 Initialise Qµ, Q¡ ;
2 Initialise D = [] . Replay buffer of finite capacity ;
3 for episodes do
4 done=False ;
5 s = env.reset();
6 while not done do
7 x ªU(0,1) if x > ≤ then
8 a ª argmaxa(Q(s)) ;
9 else

10 a ª A;
11 end
12 s0, r,done= env.step(at)
13 D.append( (s,a, r, s0,done) );
14 B =D.sample() . Sample random batch of transitions;
15 loss = 0 ;
16 for i = 1 to |B| do
17 si,ai, ri, s0i,donei = Bi ;
18 if not donei then
19 yi = [r+∞maxa0(Q¡(s0,a0)) ;
20 else
21 yi = r ;
22 end
23 loss √ 1

|B| (yi °Qµ(s0i,a))2 ;
24 end
25 loss.backward() ;
26 loss.step() ;
27 s √ s0;
28 end
29 end
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2.1.4.2 Policy Optimisation Methods

Another highly successful class of algorithms are Policy Gradient (PG) methods. These are
derivatives of REINFORCE [20] which is based on the PG theorem which is shown in Equation
2.5. Where J(µ) is a scalar performance measure (Gt for example) and µ(s) is the state distri-
bution which would be experienced when following ºµ. From Equation 2.5, we can obtain the
REINFORCE shown in Equation 2.6 through the steps depicted.

OJ(µ)/
X
s
µ(s)

X
a
Oµºµ(a|s)qº(s,a)(2.5)

= Eº

∑X
a

qº(St,a)Oµºµ(a|St)
∏

= Eº

∑X
a
ºµ(a|St)qº(St,a)

Oµºµ(a|St)
ºµ(a|St)

∏

= Eº

∑
qº(St, At)

Oµºµ(At|St)
ºµ(At|St)

∏

= Eº [GtOµ logºµ(At|St)](2.6)

This expectation can be estimated by Monte Carlo evaluations of the current policy and
through doing this it can be improved. Monte Carlo methods typically suffer from high variance
which can result in slow convergence [1]. Modifications which aim to reduce this variance include
using a baseline, where Gt is replaced with Gt ° vº(s). This requires learning vº but typically
improves performance overall. Actor-Critic methods further build on this and replace the Gt in the
baseline version with Rt +∞vº(s0) which now allows for temporal difference updates of º. Further
modifications to this, include Trust Region Policy Optimisation (TRPO) [41] which limits the size
of the weight update by constraining it by the KL-divergence, PPO [42] which approximates PPO
update constraint, and Soft Actor-Critic [43] which utilises entropy regularisation and trains the
policy in an off-policy manner.

2.2 Multi-Agent Reinforcement Learning

DMARL is a natural extension of DRL to MAS. Many of the issues that we previously introduced
still exist, but new ones also manifest. As a necessary step before discussing these, we introduce
the typical problem formulation within MARL. The MDP which is central to RL is no longer
sufficient to describe MARL problems. A common mathematical framework for this domain is the
Stochastic Game (SG) [44] which we introduce below. Other related settings include POSG [45],
Markov games [46] and the DEC-POMDP. This section provides an overview of DMARL, for a
more comprehensive review please refer to [47].
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2.2.1 Stochastic Game

We can model the MARL setting as an N-player stochastic game [44]. This is defined by the
tuple G = {I,S, {Ai}, {Oi},P ,≠, {Ri}}. Where, I is a finite set of agents indexed by {i, . . . , N}, S is
the state space, Ai represents the finite set of actions that are available to agent i. We refer to
the joint action as A = A1 £ · · ·£ An. At each time-step agent i, receives a partial observation
oi 2Oi which is defined by the observation function ≠ :S£A!O. Agents use this information to
select an action ai 2 Ai according to ºi,a. They then experience a state transition P :S£A!¢(S)
and receive a reward Ri : S,A!R. Agents are tasked with finding action policies ºi,a : Oi ! Ai

which maximise the cumulative discounted reward they receive. We refer to the set of policies
as ¶= {º1, . . .ºN }. It is common to discuss agents converging to a Nash Equilibrium, where this
indicates that the behaviour of each policy is the best response to all other policies [47].

2.2.1.1 Communication in Stochastic Games

In some cases, as in Chapter 5, we may provide agents with the opportunity to communicate.
To reflect this change in agent capability the stochastic game is typically modified such that
G = {I,S, {Ai}, {Mi}, {Oi},P ,≠, {Ri}}. We refer to this in the wider text as a stochastic game with
communication. Where Mi refers to the message set and an agent is able to select a message
mi 2 Mi. We refer to the joint message as M= M1 £ · · ·£Mn. We also introduce M°i =M\Mi to
refer to the set of joints messages, without i. Functionally, this is utilised to refer to the messages
that would be received by agent i. The message is selected according to ºi,m : Oi, M°i ! Mi.
Unlike an action, a message has no direct impact on the physical environment and as such the
transition function and reward function maintain the same form. The impact is indirect, and it
provides an opportunity to influence other agents’ selection of actions. We can modify the agent’s
action policies such that ºi,a : Oi,M°i ! Ai.

2.2.2 How do multiple agents change the problem?

Instead of just learning a singular policy, we are now trying to learn all policies in the set ¶.
This additional complexity manifests as the problems like non-stationarity, multi-agent credit
assignment, partial observability and questions pertaining to cooperation and competivity.

Non-stationarity The policies of the agents in ¶ are not static throughout training - as the
agents acquire experience they’ll update and likely change their policies. If we refer back to
the definition of a SG, we observe that both P and R are a function of all agents’ actions and
therefore their policies. Herein lies the problem, from the perspective of a single agent both P
and R will appear to change [48]. This makes estimation of the expected environment return, Gt,
difficult. As we previously noted, this is present in DRL too. However, in this case, it is a direct
cause of the learning paradigm rather than environmental factors.
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Credit Assignment In the standard RL setting determining the criticality of individual actions
in return acquisition is complex. The MARL setting scales this problem as we now typically
have considerably more actions. The question is typically posed as who and what resulted in
the reward we obtained. Within DMARL there are methods like COMA [10] which propose the
modification of the advantage calculation within AC methodologies to allow for a counterfactual
estimate of an agent’s contribution to the observed return. Empirically, this is not typically found
to be effective though [49]. Other related approaches include Shapley values as in [50].

Partial Observability A primary motivator for DMARL is the ability to perform fully de-
centralised control. As such, we are often considering applications where agents only have the
capacity to observe their immediate surroundings. This results in situations where agents have
to undertake decisions without being privy to the true state of the environment, so may make
sub-optimal decisions. Rather than a SG, the problem is then typically represented as a POSG
[45] or DEC-POMDP.

Cooperative vs Competitive Introducing multiple agents raises questions about their goals
and how they align. It also raises possibilities regarding the training methodology for the agent.
Many of the high-profile successes of DMARL to date (e.g Backgammon, AlphaGo, Chess) have
mostly been within the competitive two-player zero-sum setting. These settings enable the utili-
sation of training paradigms like self-play [51], where a copy of the agent is used as an opponent.
Intuitively, this continually presents the agent with an adversary of equivalent strength and
theoretically converges to a Nash equilibrium allowing for policy generalisation to any adversary.
Empirically the derived policies can be brittle and the utilisation of population-based self-play
methods is typical [52]. Cooperative games are typically not amenable to the naive application of
self-play. This is as the objective mandates coordination between players which typically gives rise
to idiosyncratic conventions which do not extend to arbitrary partners. Methods like Other-Play
[53] have been proposed within the Zero-Shot Coordination (ZSC) to extend self-play to the
cooperative domain. It is, however, much more typical to train directly for reward maximisation
in cooperative settings without consideration for these types of methodologies.

2.2.3 Model-free Deep Multi-Agent Reinforcement Learning

As we stated in Chapter 1, the simplest approach is that of IL and involves direct application of
the same single agent approaches introduced in Section 2.1.4. The most common of which are
Independent Q-Learning (IQL) [8] and Independent Actor-Critic (IAC) [10]. However, typically
these do not perform well. The majority of advances within DMARL focus on extending single-
agent methodologies to handle the aforementioned complexities and additional opportunities
which multiple agents introduce. Along the same lines as Section 2.1.4, we break these advances
down dependent on whether they are derivatives of DQN or PG approaches. However, we do
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acknowledge that there are concepts which do not fit neatly into either bracket. For example,
Centralised Training for Decentralised Execution (CTDE) [54] and parameter sharing [8]. As
such, we introduce it before delving into DQN and policy optimisation derivatives.

Centralised Training Decentralised Execution Permits asymmetry between the training
and execution phases with the intention of improving training performance. The central idea is
that restrictions which exist at execution time (when the algorithm is deployed) do not have to
exist within the training stage. We may introduce apparatus that smooths training as long as this
is not required at execution time. It is common to relax restrictions on partial observability and
develop centralised models which are decomposable on a per-agent basis enabling decentralisation.
Examples include MADDPG [9] and QMIX [55].

Parameter Sharing This refers to the utilisation of the same function approximation parame-
ters by all agents. This was first proposed within [8] as a method to enable experience sharing and
improved sample efficiency. Within [49], it is demonstrated to be advantageous over algorithms
and over the majority of DMARL environments. This is a common practice and one where agent
observations are often further extended through inclusion of an indicator in the observation such
that the agents can learn heterogeneous behaviours [56].

2.2.3.1 Deep Q-Network derivatives

In addition to naive IQL [8], a range of adaptations have been proposed. In [57] the impact of
non-stationarity on the relevance of data in the experience replay buffer is tackled. They propose
two solutions based on importance sampling and an approach similar to Hyper-Q [58] where an
additional conditional argument is introduced to enable estimation of environment behaviour
at the particular sample point. This general issue of instability of experience replay in DMARL
has also been noted within [59]. Other approaches include Mean-Field Reinforcement Learning
(MFRL), which provides a scalable approach based on the mean-field approximation. They utilise
the average action of neighbouring agents as a means to estimate population-level behaviours
and condition each agent’s policy on this in addition to its observation2.

(2.7) Q joint =
NX

i
Qi

Value decomposition methods are perhaps the most common in this family. Where the most
popular are, VDN [21], QMIX [55] and QTRAN [60]. These algorithms consider environments
with shared cooperative reward R1 = ·· · = RN and decomposition of the joint action-value function
Q joint into an individual action-value function for each agent, Qi. Where the major distinction

2We place this under "Deep Q-Network Derivates" as this was their best-performing variant. However, it is
implementable within policy optimisation approaches too.
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between these methodologies is their apparatus for achieving this decomposition. [21] motivate
this line of work as a means to overcome the limitations of centralised and fully-decentralised
implementations of DQN. They observe that centralised methodologies can fall victim to the
"lazy agent" problem, whereby, the success of one agent may impede the derivation of useful
behaviours by a second agent. In the IL domain they cite the well-known issues of non-stationarity
and partial observability as problematic for learning. Conceptually, these value decomposition
methods exist between these extremes and leverage the CTDE paradigm. VDN proposes a linear
decomposition of the joint action-value function into individual action-value functions, where this
is trained end-to-end. QMIX [55] identifies limitations of VDN based on its inability to represent
certain classes of centralised action-value functions. Rather than a linear combination they use a
monotonic function, and propose a non-linear combination achieved through mixing networks.
QTRAN [60] further identifies limitations of VDN and QMIX in their capacity to factorise tasks
which are factorisable. The central idea is the transformation of Q joint into a form which is
more easily factorisable. There are various other extensions upon these methodologies including
methodologies like Multi-Agent Variational Exploration [61] and Multi-Agent Exploration [62]
which specifically consider the challenge of exploration in DMARL.

2.2.4 Policy Optimisation derivatives

As is the case with DQN, many of the PG methods have been extended to the DMARL setting.
These include the likes of Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [9], Multi-
Agent Proximal Policy Optimisation (MAPPO) [63] and Shared Experience Actor-Critic (SEAC)
[64] to name but a few.

Here, we introduce those that can be classified as CTDE methods which are typically variants
of AC algorithms where the critic is centralised. MADDPG [9] extends the off-policy actor-critic
algorithm DDPG [65] to the multi-agent domain. It utilises a centralised action-value critic which
is conditioned on all agents’ observations and actions where they suggest that this improves
the consistency of gradient signals as it is not so susceptible to partial observability and non-
stationarity. Iqbal and Sha [66] extend this approach through the utilisation of an attention
mechanism to aggregate agent observations which results in a more scalable centralised critic
than the fully-connected network utilised in MADDPG. COMA [10] propose a centralised action-
value critic as a means to tackle multi-agent credit assignment. To do so, they propose the
utilisation of a counterfactual baseline to estimate the average return that would be expected
from each agent’s individual action-value function. SEAC [64] proposes an alternative approach
to MADDPG which does not require a shared critic. They instead allow experience sharing
through importance sampling which allows agents to learn from other experiences. MAPPO [63]
extend the highly-popular PPO to multi-agent environments and demonstrate its effectiveness in
a range of cooperative tasks and configurations. Interestingly, they are able to demonstrate that
independent PPO is an effective baseline in a wide range of DMARL environments.
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2.2.5 Communication in MARL

In Chapter 5, we study communication as a means to promote cooperation. In Section 2.2.1.1, we
discussed and provided the modifications necessary to introduce communication into a stochastic
game. Here, we review advances in DMARL. For a comprehensive overview of communication in
DMARL, we refer interested readers to [67, 68].

By facilitating communication between multiple agents, we may promote cooperative be-
haviours and enable the acquisition of higher episode returns. To this end, many methods have
been proposed including DIAL and RIAL [11], CommNet [69], DGN [70] and TARMAC [71].
These methods focus on cheap talk, where there is no cost for utilising communication, and allow
for communication to be established as an emergent phenomenon. We consider there to be two
major classes of algorithms within this sub-topic of DMARL, those that allow gradients to flow in
learning and those that do not and just learn through environment reward. Allowing gradient
propagation across communications links significantly improves sample efficiency as it provides a
much richer learning signal than just utilising environment reward. Gradient-facilitated commu-
nication learning is by far the most common and is utilised in DIAL [11], CommNet [69], DGN
[70] and TARMAC [71]. These typically utilise continuous communications channels as they are
more permissible to backpropagation, however, options for discrete channels exist as seen in
DIAL [11] or through the Gumbel-Softmax relaxation used in [72]. Purely environment reward-
based communicative algorithms are utilised in RIAL [11] and in work in [73, 74]. Although
less efficient they easily permit extension to learning in the case of non-differentiable partners
which may be the case in certain human-centric applications or when a model of a communicative
partner is unavailable.

A common issue that is worth noting in DMARL is deducing the value of communication. In
modestly complex temporally extended environments analysis of protocols can be prohibitively
difficult. Within [75], quantitive measures are suggested that attempt to disentangle the benefit
of communications. Work by Jaques et al. [74] 3 and Eccles et al. [73] introduces modifications
which attempt to promote communication in the environment reward-based domain through
maximisation of related metrics.

A related area is Emergent Communication (EC), which studies agents’ capacity to automat-
ically derive language [67]. Much of the work focuses upon the Referential Game (sometimes
referred to as a Lewis Game [76]) which mandates language formation in order to solve a coop-
erative task. In many ways, this setting is a microcosm of the larger class of games utilised in
MARL which typically allows for the study of language formation in isolation. The typical setting
involves two agents who are referred to as a speaker and listener and communicate utilising
discrete symbols [72, 77].

3We acknowledge this work happened simultaneously to [75]
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Our contribution In Chapter 5, we undertake investigations into the challenges of intra-
agent communication for cooperation. We do so within a referential game (or lewis signalling
game [76]) which allows for the study of the complexity of developing communications protocols
for cooperative tasks. Our work builds upon that by [11, 73, 74], exploring the complexities of
developing communications protocols in non-differentiable channels where agents are trained
purely through environment reward. We extend work in this area in two ways. Firstly, we
investigate the impact of population dynamics and find that periodic partner changes can result
in catastrophic forgetting of existing protocols. A related area is ZSC [53] which considers the
challenge of learning policies to interact with previously unseen partners in cooperative settings.
[78] explicitly consider communication in this domain. Our work differs from this as we allow
multiple unique languages to arise and propose a method which allows agents to learn and
maintain multiple languages. Secondly, we explore the impact of message dimensionality within
discrete communication and experiment with methodologies to reduce excessive redundancy
which is missing from the literature.

2.3 A rough guide to applying DRL and DMARL

Many papers within the literature apply DRL and DMARL approaches to real-world industrial
problems. Before delving into these, it is worth considering the typical academic and engineering
challenges which are common. Within Figure 2.3, we have represented a simplified workflow
which we will now walk through. We note that these blocks typically do not happen sequentially,
and the design and development process is typically more agile and responsive. In this section,
we try to maintain generality and will discuss specific challenges in the Section 2.4.

Problem
specification

Select
algorithm/s

RL/MARL
formulation Optimise Deploy

Figure 2.3: Generalised RL and MARL workflow

2.3.1 Problem Specification

Many complex industrial domains are dependent on human expertise and/or heuristic algorithms
for decision-making tasks. However, these can be sub-optimal. In these domains, it may be possible
to leverage methodologies from DRL or DMARL to improve system performance. If not already
established, the first objective should be to identify the specifics of the system, the relevant
metrics (or KPI) for optimisation, and the various constraints that may exist on the system which
may be operational, regulatory, performance and/or systematic in nature. Relevant details to
establish may include the availability of computational resources, interdependencies that may
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exist with other systems and information regarding system operation from historical data or
domain experts. With this established, a major consideration is the availability of simulators.
The poor sample efficiency of DRL and DMARL techniques [79] and safety concerns mandate
high-performance simulators for training. This process of simulator design and optimisation is
discussed in Chapter 4. We note that the aforementioned heuristics may be useful for testing
and troubleshooting of developed simulators and strongly recommend this step. Skipping this
step and directly applying DRL to DMARL methodologies often leads to a significant increase in
debugging complexity.

2.3.2 RL/MARL formulation

In many common DRL and DMARL research environments like OpenAI Gym [80], the observation
(or state), action and reward are predefined. However, in application-focused domains, this is
a design decision which is critical in achieving a well-functioning solution. Through careful
consideration of the problem specification, we may be able to derive insight into the correct
definitions. Existing heuristics may give insight into system sensor values which are pertinent.
The form and function of controllable parameters may also naturally define the action space.
As we have introduced there are a wide range of possible choices in the formation of this as an
RL problem. From single-agent formulations like the MDP, POMDP and even the Constrained
Markov Decision Process (CMDP) [81] to multi-agent formulations like the SG, POSG, DEC-
POMDP. Identification of the correct formulation will be dependent on the specifics of the
underlying problem. For example, some systems may be more amenable or require representation
as multi-agent variants, whereas systems, where observations are obfuscated by noise, maybe
more appropriately modelled as a partially observable variant. In many cases, this labelling
will help later in the identification of suitable classes of algorithms. A particularly challenging
aspect in all formulations is the challenge of reward definition which requires the translation
of a system-level objective into a scalar. Techniques like reward shaping [82, 83] can be used to
improve learning performance by giving additional rewards to guide an agent/s towards optimal
behaviours but can be susceptible to reward hacking [84]. In multi-agent variants, like the SG
and POSG, there is an additional decision between global or local rewards. We note that local
rewards are typically more scalable [59, 85] but can result in competitive behaviours.

2.3.3 Select algorithm/s

As we have introduced in Section 2.1 and 4.5, there are various algorithmic approaches to DRL
and DMARL. Our previously given representation will be particularly important in identifying
appropriate choices. For example, multi-agent variants will mandate the selection of DMARL
algorithm, and a continuous action space typically restricts the selection to a policy gradient
approach. The form and property of the observation space also may make a compelling case for
the utilisation of particular DNN architectures. An LSTM may be introduced into the network to
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handle issues pertaining to partial observability [86]. Alternatively, graph-based observations
may be best handled by GNN as used in [70, 87], however, we note that attention should be paid
to the correctness of biases in graphical structures [88]. System constraints may also be addressed
here Degrave et al. [89] consider an application which requires very low inference times and
utilise an AC approach which exploits ideas similar to those from CTDE. In their case, their actor
takes the form of a simple FCN, whereas, their critic is a much larger network comprised of an
LSTM. This allows for fast inference times as the critic is not required at deployment. Other
choices that are afforded to a designer include options like, action-masking to remove dangerous,
non-valid or non-sensical actions [90] and utilisation of methods like GAE [18]. The objective of
this step is to identify solutions which may be useful to our agent/s for optimisation in the next
step. However, we acknowledge that many other decisions are plausible. In many cases, this will
be highly dependent on the specifics of the task. It may, for example, be worth reviewing literature
from areas like ZSC if the agent is expected to have to cooperate with unknown partners, ideas
from multi-task RL if the agent is expected to undertake several tasks, or even HRL if temporal
or spatial decompositions of the problem are possible.

2.3.4 Optimisation

In addition to the multitude of manners in which a problem may be represented and approached,
DRL and DMARL algorithms typically have numerous hyperparameters. As reported by Hender-
son et al. [91], algorithm hyperparameters can be highly impactful on performance. Optimisation
of these parameters typically involves the utilisation of grid-search or Bayesian optimisation
which are often built into DL experimental platforms like WandB [92]. The objective is typically
to maximise the expected return with the intention of outperforming existing heuristics utilised
in the target problem domain. The procedure for this optimisation is usually iterative and may
involve different problem representations, algorithms and DNN architectures. We stress that
caution should be exercised when utilising expected return (or some derivative) when interpreting
algorithm performance. Expected return does not give a direct insight into agent behaviour. It
only gives a measure of efficacy, however, as mentioned earlier this can be susceptible to reward
hacking. At a minimum, performances should be compared across a set of domain-specific metrics.
In many cases, it may also be possible to physically inspect agent decisions through the analysis
of trajectories. However, the complexity of environments often introduces significant complexity
into this form of analysis.

2.3.5 Deploy

Although beyond the vast majority of research papers, the ultimate goal of a method is deploy-
ment. In many cases, assumptions which underpin research papers preclude deployment. This is
not unexpected, considering the relative immaturity of DRL and DMARL respectively. As we have
previously discussed, simulators are a fundamental part of the training process. We therefore
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must deal with the challenge of transferring trained policies to a real environment. This is known
in the literature as Sim-to-Real [93] which attempts to handle disparities between the respec-
tive environments through techniques like dynamics randomisation [94]. Additional challenges
include non-stationarity, which was previously introduced and may result in reductions in perfor-
mance over time. The tendency of dynamics and objectives to undergo temporal perturbations
requires equipment to monitor application performance. For this, ideas from ML-Ops may be
useful [95, 96]4. Through their inclusion, we may be able to create automated pipelines which
mitigate issues with non-stationarity.

2.4 Applications of DRL and DMARL

DRL and DMARL algorithms have demonstrated impressive performance across a wide range of
challenging sequential decision-making domains. Many of the most high-profile of these have
been in game-based domains as they provide a well-defined, controllable and safe environment
for algorithm development [97]. Notable breakthroughs include human-level performance in
Atari through DQN [3, 98], superhuman performance in two-player zero-sum board games like
Go through AlphaGo variants [4, 99], grandmaster level control in StarCraft 2 through ideas
at the intersection of imitation learning, DRL and DMARL [52], and most recently, Diplomacy
through an algorithm called Cicero which integrates ideas from natural language processing and
DRL [100]. In all cases, the employment of ideas from DRL and DMARL has been paramount in
the development of policies which match or exceed the performance of human experts.

These high-profile innovations showcase the possibilities and potential of DRL/DMARL
techniques within complex domains. Accordingly, there has been a plethora of work which
builds upon these innovations with intended application to real-world tasks. Interest across the
industry has been ubiquitous with numerous surveys exploring applications within areas like
telecommunications [101], logistics and supply chain management [102], autonomous vehicles
[103], intelligent transportation systems [104], and economics [105]. Within all of these domains,
DRL and DMARL is seen as a tool to handle the significant complexity presented by modern
industrial equipment. In general, the vast majority of research papers do not successfully deploy
approaches.

Particularly notable examples of a successful application to real-world systems include station-
keeping of stratospheric balloons for telecommunications [106], plasma control for nuclear fusion
[89], microchip design [7], large scale recommender systems [107] and object manipulation
for robotics [108]. We highlight these examples as they have been demonstrated within real-
world deployments5. Bellemare et al. [106] develop a flight controller for a stratospheric balloon
application which provides cellular coverage to ground-based user devices. They utilise Quantile-
Regression DQN [109] and contend with partial observability through the incorporation of

4These may be useful in the wider context of applied RL too.
5Work by Degrave et al. [89] was on an experimental platform, whereas all other examples achieved deployment
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uncertainty in wind measurements in the agent’s observation. The agent was trained in a
bespoke simulator which utilised historic wind data in combination with data augmentation
techniques to provide large quantities of realistic training scenarios. These efforts culminated in a
successful 39-day deployment and outperformed a highly optimised heuristic algorithm. Degrave
et al. [89] consider magnetic confinement of a plasma through an AC algorithm called Maximum
a Posteriori Policy Optimisation algorithm [110] which is trained in simulation. As previously
stated, the approach leveraged asymmetry between the critic and actor to overcome high control
frequency and achieved improved generality and flexibility over standard approaches within
testing on an experimental platform. An interesting observation is how they overcome a limitation
of their experimental platform’s power supplies through reward shaping. Mirhoseini et al. [7]
use a GNN-based encoder and PPO [42] for microchip floor-planning which was leveraged within
recent tensor processing units. The approach exceeds human-level performance, a challenge
that has previously proved intractable for conventional approaches due to its huge state-action
dimensionality. Chen et al. [107] contend with large action spaces and learning directly from
historic interaction data obtained from an alternative policy. They develop a scalable off-policy
REINFORCE approach which is successfully deployed in YouTube’s production systems. Finally,
OpenAI et al. [108] consider a complex manipulation task requiring the solving of a Rubik’s
cube with a humanoid hand which is further complicated by a requirement for zero-shot Sim-
to-Real transfer. To do so, they utilise a combination of PPO [42] in combination with a novel
approach called automatic domain randomisation. Their novel approach learns an automatic
curriculum which improves Sim-to-Real transfer. As we have established, highly distributed and
interconnected systems are commonplace in many industrial settings. It is therefore notable that
there are limited examples of DMARL being successfully deployed into commercial systems. It
seems likely that there is still much work to do in bridging the gap between the research and
applied streams within DMARL.

As we stated within Chapter 1, in this thesis we focus on two notable industrial domains which
are telecommunications and logistics. We consider these sectors to be particularly intriguing due
to their criticality in modern society. In both cases, they enable the transit of essential commodities
to consumers through highly complicated and interconnected systems. The distributed nature of
these domains makes the utilisation of DMARL particularly compelling. Furthermore, established
connections with relevant industrial partners place the author in a unique position to explore
these domains. Henceforth, we limit our review of applied DRL and DMARL to these domains.
These are covered in Section 2.4.1 and 2.4.2 respectively.

2.4.1 Telecommunications

DRL and DMARL are seen as a key technology within 5G and future 6G communications networks
[111, 112] due to their capacity to manage the significant complexity which is expected in future
networks [113]. In comparison to the previous 4th Generation (4G) system, 5G networks involve
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the adoption of a multitude of new technologies and ideas. These include the likes of mmWave
to overcome radio spectrum scarcity [114], self-organising networks which enable automatic
management (configuration, optimisation and repair) of operational networks [115, 116], and
increasing network densification to provide higher capacities [117]. Through these technologies
and others, 5G aims to provide data rates in excess of 100Mbps and peak data rates in excess of
10Gbps and latencies of 1ms to users [118] – it eclipses the capabilities of 4G, which has a peak
data rate of 150Mbps and latencies of 10ms [113].

In order to ground our conversation of DRL and DMARL algorithms within this setting,
we provide a brief description of a simplified cellular network. A cellular network consists of
a set of BS which will exchange data with dynamic User Equipment (UE) through wireless
communications links. Where UE will typically be allocated to the BS which can provide them
with the best wireless links. BS are interconnected through a core network which enables
information to be exchanged within the network and also onwards with external services. There
is a wide range of problems that can arise even in this highly simplified example. For example,
there may be interference issues between BS or UE equipment that are utilising the same
frequency bands, allocation of radio resources among users and routing through the core network.
Real-world communications networks are significantly more complicated and employment of
intelligent DRL and DMARL agents is seen as a solution to these types of problems.

As we have alluded to there has been significant work applying DRL and DMARL within
telecommunications, and many problems have been tackled including interference management
[119, 120], self-organising networks (e.g antenna parameter optimisation) [121–124], resource
management [125–127], fault management [128] and routing [87, 129]. Where we note that
in recent years there has been an increased focus on DMARL [112] due to its suitability for
distributed decision-making which is attractive in this domain. In the paragraphs below, we
expand upon these and detail their contributions.

Antenna Tilt Optimisation BS typically comprise several directional antennas which are
configured to provide a trade-off between maximisation of received signal strength for UE they
are serving whilst minimising inter-cell interference. Many distributed approaches have been
proposed for this challenging optimisation problem, and a multitude of DMARL methods have
been proposed to enable coordination. In all cases, the following examples are motivated by the
poor performance of single-agent approaches. Balevi and Andrews [121] consider optimisation of
antenna tilt angle, and the vertical and horizontal half-power beam widths in order to maximise
weighted sum rate within a heterogeneous network. Their training methodologies approximate
the interference of nearby cells through a mean-field DMARL Yang et al. [130] and then the
policy is derived through a linear function approximation based Q-Learning. The approach is
demonstrated empirically within a simulated two-tier heterogeneous network which serves 400
UE. Bouton et al. [122] propose a general method for BS optimisation which is applied to antenna
tilting within a traditional cellular network. They consider BS comprised of multiple cells (or
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sectors) which are empowered to select their antenna tilts. The method makes use of coordination
graphs where they utilise edges to indicate interference between BS sectors. The value of the
edge is learned through parameter-sharing DQN, where the reward is defined as a function of
the average throughput of each user in its cell. Computation of the maximum obtainable action
value requires finding the max across all edges, this is achieved message parsing algorithm. This
approach is demonstrated to be scalable to a 207 cell/sector network. Jin et al. [124] propose a
similar approach, whereby, DQN is empowered with a graph attention network [36] which allows
for local parsing of neighbouring cells configurations through message parsing. In contrast to
Bouton et al. [122], they assume a fixed number of neighbours. The approach is trained on a 57
cell network and is impressively demonstrated to generalise to a larger network involving 111
cells. Bouton et al. [123] consider both antenna tilt control and combined antenna tilt and power
control. In a similar way to [122, 124] they utilise a combination of graphs and DQN. In this
case, they state that they are learning the credit assignment and coordination problem through a
method akin to VDN [21] with a GNN. In contrast to [122, 124], they optimise a joint reward.
They compare with results from Jin et al. [124] and demonstrate improved performance whilst
maintaining the capacity for generalisation.

Dynamic Spectrum Access In contrast to mmWave technologies which make new spectrum
available, DSA is a technique attempt to better utilise existing licensed radio bands which often
go underutilised for significant portions of time [131]. These exist within the context of cognitive
radio networks and involve the proposal of algorithmic methodologies that handle opportunistic
access to radio channels. Wang et al. [13] model the problem as a POMDP. The agent’s observation
is comprised of the agent’s belief of the state of a set of available channels which it is able to
update by attempting to access the channel. If the agent successfully accesses a channel it
receives a reward of +1, and otherwise °1. They solve this through the application of DQN which
they demonstrate within simple experimental settings. They further extend this to a 2 to 4 user
setting but acknowledge difficulties associated with the exponential growth of their action space.
Zhu et al. [14] consider a variation on this setting where the network is formed of IoT terminals
which introduce packets into a buffer for a relay device to transmit. The relay is assumed to
be able to observe both buffer and channel states. The task is modelled as an MDP and the
reward is formulated such that a trade-off is found between buffer pressure and transmission
power requirements. They apply a Q-Learning variant that utilises an autoencoder to reduce
the dimensionality of their state space. Extension to the multi-relay setting is not considered,
however, it is identified as future work. Naparstek and Cohen [132] consider an N-user version
of the setting setting considered by Wang et al. [13]. They propose a DMARL approach, namely,
each user is equipped with an IQL with parameter sharing and an LSTM to handle partial
observability. Their IQL is trained for all users in an offline and centralised fashion. Similar to
[57] they observe issues with the utilisation of experience replay, and in their case omit it. The
approach is demonstrated to on a 100-user 50 channel network effectively demonstrating the
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potential of DMARL in a large-scale telecommunications task.

Resource Allocation and Management Many problems in telecommunications networks
and computer systems involve questions of resource allocation and management. Mao et al. [125]
propose REINFORCE to a multi-resource cluster management task. At any time step, the agent
is able to permit multiple buffered jobs to the cluster and is tasked with selecting jobs such
that it minimises the average slowdown of computational jobs. They demonstrate that their
algorithm outperforms a wide range of established benchmarks. Zeng et al. [133] consider the
challenge of edge computing as a resource management task. This involves servers which are
located at the network edge and provide services to mobile user equipment. Through intelligently
moving the server between edge compute (which is located at BS) in response to user behaviours
communication overheads can be reduced but this comes with a migration cost. To find a balance
between these opposing objectives they utilise DQN6. It is demonstrated on a 50 server, multi-BS
network and outperforms a number of domain-specific baselines. However, they do not consider
any constraints on edge computing capacity at BS. Li et al. [134] study network slicing which
involves the reservation of network resources (i.e. capacity) for customers. They apply DQN and
consider sequentially allocating resources for a 3 slice network.

Our contribution Our work within telecommunications involves two problems. Firstly, we
consider the application of DRL to resource assignment within an O-RAN instance. Various
papers have studied problems at the intersection of DRL and resource assignment [125, 133, 134].
In contrast to these, we study the resource assignment problem in an O-RAN instance. Resource
assignment in the related cloud RAN setting has previously been considered by [135–139] who
propose a range of exact and heuristic methods. We explore a different approach and cast
the problem as a 2-dimensional Bin Packing Problem (BPP). To which, we apply a novel DRL
methodology which takes inspiration from AlphaGo Zero [4]. We compare our algorithm to three
strong baselines (Heuristic Virtual Resource Allocation Algorithm (HVRAA) [140], Lego [141] and
MCTS) and demonstrate a 5.7% improvement in resource utilisation. This contribution is detailed
in [16], where the author’s contribution are within the problem formulation and methodology.
Secondly, we develop a solution for network maintenance planning which we apply to a RAN.
Asset maintenance planning itself is a general problem which has seen RL/DRL being applied
in numerous scenarios like military settings [142], and industry sectors like energy [143] and
manufacturing [144]. MARL/DMARL is less exploited and has been applied to a simple system
consisting of two machines and a buffer within [145], a parallel production system [146], a truss
bridge which is modelled as a multi-component system [147] and a manufacturing system [148].
These examples can be grouped as small-scale multi-asset systems [145, 146, 148] and larger
multi-component systems [147]. We explore the challenge of developing maintenance policies

6It is not entirely clear if the implementation is on a per-server basis. If so, this would be parameter sharing IQL.
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for large-scale multi-asset multi-component systems and formalise the problem as an POSG.
We develop a novel approach which utilises a GNN-based centralised critic. Our approach is
demonstrated in two RAN architectures and is shown to improve network availability over
heuristic methods by 3.49% and 6.13% whilst not incurring any additional maintenance costs.
This contribution is detailed in [17], where the author led on all parts. The second author
contributed expertise in asset modelling and provided the foundations of the simulation engine.

2.4.2 Logistics

Logistics as a sector considers the challenge and opportunity which comes from provisioning and
managing the movement of goods and services from a point of origin to a consumer [102]. Similarly
to what we observed in telecommunications, logistics has explored the possibility of utilising DRL
and DMARL to handle the complexities presented by domain-specific challenges. Some of these
challenges include the likes of vehicle routing, inventory management and facility location for
example [149]. Many of these problems are highly dimensional and are often combinatoric in
nature. A classical example is the travelling salesman problem which has been widely studied
utilising DRL [150]. In the following text, we consider the direct application of DRL and DMARL
to problems within logistics.

Papoudakis et al. [49] introduced an environment called the Multi-Robot Warehouse that sim-
ulated a common warehouse problem. This problem is known as the order-picking problem, and
they consider a particular instantiation which involves the movement of goods from warehouse
locations to packaging locations. This is known as the pick-to-picker paradigm and they consider
N-robots collecting requested items from discrete warehouse locations. A common problem in
applied research is the relative scarcity of simulators that are both computationally efficient and
reflect the salient features of industrial tasks. Christianos et al. [64] demonstrate an approach
called SEAC which was introduced in Section 2.2.3 and was demonstrated to outperform other
common algorithms in the Multi-Robot Warehouse environment. Kim et al. [151] consider an
alternative challenge where an N-grid sortation system must arrange the routing of parcels
correctly and quickly towards their relevant destinations. Each grid in the sortation system is
instantiated as an agent and a cooperative objective is solved through the application of IQL.
Ngu et al. [152] tackle a variant of dynamic vehicle routing problem which they call the same-day
delivery problem - this is a common problem and requires the delivery of items from warehouses
to customers in a timely fashion. They instantiate the problem as a grid world where orders are
received and accepted by a singular vehicle within the environment. They then collect the item
from the depot and deliver it to the customer. Agents are incentivised to complete the orders
within a defined amount of time by the reward function and are represented algorithmically
as a parameter sharing IQL. They compare their approach for a number of vehicle numbers
against a mixed-integer programming solution and demonstrate that the relative performance
of IQL improves as the number of agents increases whilst improving execution time. Madeka
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et al. [153] consider inventory management where the task is to calculate the optimal stock level
for a retailer’s products within a warehouse. They model the problem as an MDP and apply a
model-based DRL approach which overcomes difficulties experienced by DP methods.

Our contribution Our work differs from existing research in logistics, exploring an emerging
application with commercial warehouses. The challenge we consider is the order-picking problem,
where robot and human pickers must work together to coordinate the retrieval of items from
a commercial warehouse. As we detail in Chapter 4, the same setting has been studied in
the literature within [154–156] who propose a range of methods have been applied including
heuristics and dynamic programming. They place a number of restrictions on how robots and
human pickers may interact which we relax. Our contribution within [19] is to the best of
our knowledge the first application of DMARL to this problem. The author built upon existing
innovations which included further improving a novel simulator, algorithm and developing a
policy visualisation methodology.
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DEEP REINFORCEMENT LEARNING IN TELECOMMUNICATIONS

Communications networks provide the ubiquitous interconnectivity that is essential to
our modern lives. Their necessity for social and economic functions has led to numerous
calls for its reclassification as an essential utility. Even still, our dependence continues

to grow with emerging applications like autonomous vehicles and virtual reality coming to the
forefront [157]. In order to support our ever-increasing demands and expectations we will require
increasingly innovative technologies.

ML is envisaged as a key component to enable extraction of higher utilities and to support new
applications in future networks and has attracted significant attention in the telecommunications
research community [101, 111]. Through the integration of ML methods, we can improve network
performance through maximisation of relevant QoS metrics in response to changing network
state. As these methodologies begin to approach maturity, considerations for ML applications are
becoming increasingly common in standard specifications. For example, Open Radio Access Net-
work (O-RAN) provide provisions and interfaces for ML applications within the Radio Intelligent
Controller (RIC) [158].

This combination of societal importance and the anticipated centrality of ML methods in
future networks creates a compelling motivation for their study. Communications networks are
typically characterised by their highly distributed nature, comprising a vast network of intercon-
nected network elements that enable widespread access to communication services. This chapter
intends to explore how DRL methods may be applied to enable the optimisation and management
of these types of systems. As in Chapter 1, we argue that their scale and interconnected nature
make the application of centralised and naive single methodologies impractical. Therefore, we
argue for distributed control algorithms and turn to DMARL for this.

This chapter is split into four main parts, (1) "Resource Assignment in O-RAN" (Section 3.1),
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(2) "Why Multi-Agent Reinforcement learning?" (Section 3.2), (3) "Network Maintenance Plan-
ning" (Section 3.3) and (4) "Conclusions and Future Work" (Section 3.4). Below, we introduce the
relevant sections and provide a synopsis detailing their objectives, contributions and relationships
with the wider thesis. Unless otherwise stated, all contributions presented henceforth are the
author’s.

(3.1) "Resource Assignment in O-RAN" RAN disaggregation is a key part of O-RAN, but
introduces challenges for effective resource allocation from RU to DU. This problem is represented
as an MDP and an DRL approach inspired by AlphaGo Zero [4] is demonstrated. The developed
approach is demonstrated to improve resource utilisation by 5.70% over the strongest baseline.
The author’s contribution to this work was within the problem formulation and methodology.
A major issue which we identify with this approach is the extension to larger communications
networks.

(3.2) "Why Multi-Agent Reinforcement learning?" As we have discussed, the inherent
characteristics of communications networks make distributed decision-making an attractive
solution. We examine the implication of scalability on the resource allocation challenge consid-
ered in Section 3.1. We suggest that both centralisation and naive application of single-agent
approaches present their own issues. There is a requirement for algorithmic approaches which
support distribution, to that end we consider DMARL. Furthermore, we emphasise the generality
of this observation which is pervasive within many industrial domains.

(3.3) "Network Maintenance Planning" As a case study for DMARL, we consider learning
distributed maintenance policies for communications networks. The abundance and interde-
pendence between network elements make this a complex task. A communication system is
considered as an example of the more general class of multi-asset, multi-component systems
and the maintenance problem is modelled as an POSG. For this domain, we propose convMAAC
which utilises a centralised critic (as in MADDPG) empowered by a GNN to improve learning
efficiency and scalability. In a simulated RAN convMAAC improves network availability over
standard baselines by 3.49% and 6.13% in two different network topologies.

(3.4) "Conclusions and Future Work" Despite these contributions, the path towards de-
ployment DMARL (and DRL more generally) is fraught with challenges. There are common
challenges like sim-to-real, environmental non-stationarity and regulatory considerations. As
we will learn in Chapter 4, many of these challenges are commonplace across other industrial
domains.
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3.1 Resource Assignment in O-RAN

Alongside virtualisation, RAN disaggregation is seen as a key in enabling more flexible deploy-
ments [159]. RAN disaggregation advocates for the decoupling of the Baseband Unit (BBU)
into three elements, the Remote Unit (RU), the Distributed Unit (DU) and the Central Unit
(CU) which serve differing requirements. This idea was standardised by The 3rd Generation
Partnership Project (3GPP) in Release 14 [160]. Through its introduction, a number of key
benefits can be realised, including, (1) higher network utilisation and efficiency [161, 162], (2)
enhance network optimisation and improved network Quality of Experience (QoE) [163], and (3)
conducting baseband processing for multiple RU at a DU would reduce computational resource
expenditure. An illustration of the envisaged architecture is shown in Figure 3.1. It is seen as a
key part of O-RAN which is a consortium of academic and industry partners who endeavour to
create a more intelligent, open, virtualized and interoperable RAN which can better support the
RAN of the future [158].

Service Management 
and Orchestration (SMO)

Non-real-time RIC (>1s)

Regional Cloud

Near real-time RIC (10~1000ms)

Network intelligence,
Resource assurance, 

Resource control, etc.

xApps
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Cell site

A1 E2
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O1 O1 O1

rApps

Radio 
units

control plane

user plane
E1

F1-c F1-u

O2

O-Cloud Edge Cloud Cell Site

Figure 3.1: O-RAN architecture. Adapted from figure within [96].

This modification requires the DU to be equipped with computational resources which raise
issues pertaining to effective resource allocation. Through intelligent resource allocation of RU
baseband processing requirements at DU a number of benefits may be achieved. For example, (1)
free resources may be reserved for other applications, and (2) inactive computational resources
may be powered down to save energy. Resource allocation in RAN has previously been studied and
a variety of methods have been proposed including stochastic mixed-integer nonlinear program
which is solved by successive convex approximation [135], heuristic methods [136–138] and [139]
studies both exact and heuristic methods.

We take an alternative approach, we begin by proposing the modelling of the RU-DU resource
assignment problem in O-RAN as a Bin Packing Problem (BPP). To solve the combinatorial
optimisation problem, we apply an adaptation of AlphaGo Zero [4] with Ranked Reward (R2)
[164] which allows for an approximation of self-play to be introduced into the 1-player BPP.
The proposed method achieves a performance gain of 5.70% over the best-performing baseline.

35



CHAPTER 3. DEEP REINFORCEMENT LEARNING IN TELECOMMUNICATIONS

This section provides an extended summary of the work detailed in [16] in which the author
contributed to the methodology.

3.1.1 Problem Formulation

We consider the system depicted in Figure 3.1. It consists of a single DU which we model as
a computational cluster with capacity C. The DU is connected through fronthaul interfaces to
a set of N RUs represented by K = {1, . . . N}. After a system-defined time-interval, each k 2 K
raises a request for resource given by the tuple (ck,dk) where ck and dk represent the required
computational resource and the estimated computation time. Collectively, we refer to the set of
requests as I = {((ck,dk)}N

k=1. All requests in I must be served by the DU for the network to be
operational.

This problem is represented as a BPP. I represents our blocks of height ck and width dk. The
bin is represented by H = {C̃, D̃}, where C̃ is upper bounded by the cluster capacity C and D̃ is
upper bounded by a constant D which is the maximum delay permissible for the execution of
the jobs in I. As long as the jobs are executed within D, no penalty is received by the system.
Therefore, the objective can be formalised as the placement of I such that the utilised capacity
C̃ is minimised. We further note two placement rules, (1) blocks are non-rotatable as axes are
not interchangeable, and (2) we permit non-contiguous block placements as long as the required
amount of resources are reserved for the same time period. This work considers a 2-dimensional
resource problem, the challenge of multi-dimensional resource assignment is left to future work.

3.1.1.1 Markov Decision Process

We convert the formulation given in Section 3.1.1 into the form and terminology that is typical
in MDP as introduced in Section 2.1.1. Below, we provide our definition of the state, action and
reward.

State Given the bin, H, and the items, I, a state can be created which encompasses all
information necessary to learn an effective policy. This is defined as the cartesian product of the
set of possible bin configurations H and the set of possible item lists I as shown in Equation (3.1).
Practically, we encode the bin configuration H and the items (ck,dk) 2 I as 2-D binary occupancy
grids. In the case of the bin, the integer 1 is utilised to indicate the reservation of a resource, and
0 is used to represent an unreserved resource. The representation of items is similar, however, all
items’ positioning is standardised and they are situated in the bottom left corner of the grid. In
the case of item placement, all binary occupancy grid elements are set to 0. The bin and item
binary occupancy grids are stacked and passed to the agent as an image.

(3.1) S = {H£I}

36



3.1. RESOURCE ASSIGNMENT IN O-RAN

Action Items are placed sequentially in an arbitrary order. We note that replacement and
removal are not allowed which ensures the item placement process is time-finite, helping to find
feasible solutions. At time-step t, we decide on the placement location (xi, yi) of the request ki.
Where the location refers to the bottom left corner of the block. An item can only be placed at the
edge of the bin or adjacent to another item in both dimensions. This reduces the size of searching
space in this problem. If necessary, we allow for the placement of non-contiguous resources, which
is handled by a simple heuristic method. This process is Markovian.

Reward The reward is defined in Equation (3.2). Where, C§ is the height of the optimal
solution and C̃ is the maximum height of the provided solution. In practise, C§ is not known and
it is estimated via H§ =max(

PN
i=1 ci§di

D§ ,maxi ci).

(3.2) r =

8
<
:

H§

H̃ if st = sT

0 otherwise

3.1.2 Methodology

Given the MDP in Section 3.1.1.1, we now propose a method which can learn a policy º that
maximises the discounted cumulative reward across the distribution of RU requests. Our method
is based upon AlphaGo Zero [4] and Expert Iteration [165] which have leveraged the combination
of policy iteration and MCTS. For each state, M MCTS rollouts are performed which are guided
by a multi-headed neural network (ºµ,vµ)= fµ(s). The MCTS outputs a refined action probability
º̂(a|s)| and a state-value estimation v̂(s) which are used to train fµ via the loss function given in
Equation (3.3).

(3.3) l = (vµ(s)° v̂(s))2 ° º̂(a|s)| logºµ(a|s)

We utilise R2 [164] as a reward shaping method. Through its introduction, we provide an
approximation to self-play which explicitly couples the agent’s reception of reward to its past
performance. The R2 reward is defined by Equation (3.4), where rÆ is the Æ percentile of the
finite reward buffer, B. The reward buffer, B, stores the last 100 episode returns and is utilised to
estimate the current performance of the agent.

(3.4) z =

8
>>><
>>>:

1 if r > rÆ or r = rmax

°1 if r < rÆ

random(1,°1) if r = rÆ and r < rmax
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Parameter Value
(C0,D0) (15,15)

D§ 15
C§ Between 2 to 15

Number of items 10
Number of bins 1

Reward buffer length 100
Number of training iterations 300

Number of self-play per iteration 20
Number of MCTS simulations 200

Æ in ranked reward 75
Batch size 64

Learning rate 0.001

Table 3.1: Resource Assignment experimental parameters

3.1.3 Experiments and Results

In order to assess our method, we apply it within a 2-D BPP. The BPP is configured with the
parameters shown in Table 3.1. These are selected to be representative of an anticipated O-RAN
deployment in the city centre of Bristol, UK. Our DNN, fµ(s), follows the same architecture as
in [166] and is first trained on synthetic data. Synthetic data is randomly generated from the
slicing bins of height C§ =U(2,15) into 10 blocks thereby guaranteeing that an optimal solution
exists. Training takes 7 hours on a GeForce RTX 2080 Ti and we conduct 5 random seeds. We
compare our model against a number of heuristics including Heuristic Virtual Resource Allocation
Algorithm (HVRAA) [140], Lego heuristic [141] and MCTS. The performances of baselines are
obtained from 100 instances of the same BPP.

(3.5) =

8
<
:

0.1, if i completed pick at step t

°0.05, otherwise

The training performance is shown in Figure 3.2 and it is compared to baselines in Table 3.2.
Our approach achieves a 0.028 improvement in reward, r̄, over the baselines. In addition to
the reward, we compare the methods in terms of the optimality ratio which is defined as the
probability of the solution being optimal and is denoted as P(C̃ = C§). For our method, P(C̃ = C§)
is 94% which is 29% higher than the closest baseline. This demonstrates how our proposed
method is much more likely to produce an optimal solution, demonstrating its superiority over
baseline methods. Examples of solutions provided by the methods are shown in Figure 3.3, where
Figure 3.3d is our proposed method.

The current network in Bristol is not an O-RAN instance. However, we can use current
baseband processing data from existing 4G and 5G sites to estimate realistic RU requirements.
Thereby, enabling us to evaluate the performance of our solution within a realistic scenario where
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(a) Mean reward. (b) Optimality ratio.

Figure 3.2: Mean rewards and optimality ratio of 2D BPP during 300 training iterations.

r̄ ær P(C̃ = C§)
HVRAA [140] 0.896 0.239 0.65

Lego heuristics [141] 0.737 0.349 0.44
MCTS 0.936 0.097 0.62

Self-play learning method 0.964 0.160 0.94

Table 3.2: Performance on 2D BPP for the proposed self-play learning method and other baseline
methods. The metrics from left to right are the mean reward (r̄), reward standard deviation (ær)
and optimality ratio P(C̃ = C§).

our BPP problem generation method may not hold true. A number of sites within Bristol have
been identified as possible locations for DU, we sample 2 at random and then assign the nearest
10 RU sites to them. Our obtained results are shown in Table 3.3. Rather than optimality, we
introduce a new metric which we refer to as resource utilisation which is defined in Equation (3.6).

(3.6) U =
PN

i=1 ci §di

C̃§ D̃

DU1 DU2
r̄ Ū r̄ Ū

HVRAA 0.879 0.809 0.938 0.810
Lego heuristics 0.841 0.774 0.811 0.700

MCTS 0.847 0.781 0.847 0.732
Self-play learning method 0.943 0.869 1.000 0.864

Table 3.3: Resource assignment performance on real sites. The metrics used are the mean reward
(r̄) and mean resource utilisation (Ū) for DU1 and DU2.

We additionally present the inference times required by the multitude of methods which we
utilise in Figure 3.4. We find that our method allows significant speed-ups over MCTS but takes
longer to compute compared with the negligible times required by the heuristic methods.
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(a) Results of the HVRAA method.

(b) Results of the Lego heuristic method.

(c) Results of the MCTS method.

(d) Results of the self-play learning method.

Figure 3.3: Results of three 2D BPP instances using baseline methods and the proposed self-play
learning strategy. For each instance, the same colour represents the same item.
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Figure 3.4: Execution time of different methods in seconds.

3.1.4 Summary

Within Table 3.2 and 3.3 we have demonstrated that our method can consistently outperform the
performance of a range of strong baselines. The ability to train on synthetic data and maintain
performance when applied zero-shot to realistic data demonstrates strong generalisation which
is a desirable characteristic.

We do however note a range of limitations. Firstly, the markedly higher inference times
presented in Figure 3.4 which may be problematic for realistic systems and its reduction would
form a considerable part of productionisation. A second related point, is the suitability of this
method as the network scales. This shall form the basis of the rest of this section, where we will
consider the suitability of DMARL for this in the next section.

3.2 Why Multi-Agent Reinforcement Learning?

In Section 3.1, we demonstrated the application of single-agent DRL to a resource allocation
problem. The experimentation includes a simplified communications network consisting of N RU,
a single DU and only a single type of computational resource. Realistic communications networks
are likely to be much larger, spatially distributed and utilise multiple types of computational
resources (typically CPU, RAM and GPU). Extending the proposed method to realistic scenarios
requires tackling a much more complex problem.
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Let us consider the implication of utilising a fully centralised model in a more realistic
resource allocation context. A large network will be comprised of significantly more RU and DU.
Both the action space and observation space of the model will scale accordingly as there will
be a larger number of requests and positions in which each item can be placed. The required
DNN will grow accordingly, for a small increase this will result in longer inference times but for
larger increases, it may be prohibitively large. Furthermore, as observed by [21], the derivation
of centralised policies can be difficult. There are also implications for the physical network, for
example, as distances grow latencies and network traffic overheads increase and there may also
be concerns for network robustness as a centralised model presents a single failure point.

In Section 3.1.3, we handle a small part of a realistic network by dividing the network into
segments with equal numbers of RU. This is a plausible solution, however, it operates on the
principle of a fixed mapping of RU to DU derived from a distance-based heuristic. This is an
improvement on the naive application of single-agent methods which were discussed in Chapter 1
as it ensures that agents interact in worlds that are effectively factorised into spheres of influence.
However, it inherently limits us to a non-optimal solution as it does not optimise global resource
utilisation.

The aforementioned difficulties with centralised methodologies and the direct application of
single-agent are problematic. In telecommunications, these problems are particularly acute as
the sector’s business requires providing communications services to geographically distributed
users. This mandates the distributed deployment of communications equipment. Approaching
network optimisation through centralised methodologies is likely infeasible due to the scale, and
single-agent style approaches may leave untapped performance available. We turn to DMARL
with the intention of deriving solutions that are able to handle these complexities. More widely,
distributed problems are pervasive within many industry applications [12] and hence we need
solutions which address these challenges.

Through the distribution of DRL agents throughout the network, we may alleviate these
problems. However, there is no free lunch and this does give rise to new problems. In the next
section, we consider the challenge of defining a maintenance strategy for a network. We take
inspiration from MADDPG [9] and other approaches described within Chapter 2 and demonstrate
an application to a small RAN. Although, we make advances challenges still remain and we
expand upon these in Section 5.4. In later sections, we consider the potential of DMARL in
domains like logistics in Chapter 4.

3.3 Network Maintenance Planning

Communications network users expect the service they receive to be reliable and fast. However,
equipment failures can degrade this, potentially resulting in significant reductions in the quality
of service for users and costly emergency maintenance expenditures for network providers.
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Through proactive maintenance planning, network providers can mitigate the potential impacts
of equipment failures. Unfortunately, maintenance planning in this domain is complex due
to a multitude of factors. Firstly, an individual asset (e.g base stations) may be comprised of
numerous operationally critical modular components which have their own expected service
life and degradation profiles that in turn influence the asset’s operation. Secondly, there can be
operational interdependencies between assets within the network. These factors become relevant
when designing a network-wide maintenance policy that considers not only the maintenance
costs (e.g. labour and parts) but also the costs of unplanned downtime within the network.

Numerous studies have investigated the challenges of maintenance planning in a variety
of domains. A common choice is to model the maintenance planning problem as an MDP and
to solve it utilising methodologies like RL [144, 167] or if the dimensionality allows it DP [168].
However, when large numbers of elements are considered their application typically becomes
infeasible due to the curse of dimensionality [1]. DMARL methods provide a possible solution for
this problem and their application has been explored within multi-component systems [147] and
multi-asset systems [145, 146]. The work described in this section is motivated by application to
communications networks which are typically multi-asset multi-component systems which is yet
to be explored in the literature.

The contributions of this section are threefold: 1) Definition of the networked asset mainte-
nance problem as a Multi-Agent problem 2) An approach to solve this problem based on MAAC
and 3) Demonstration of the proposed approach in a simulated environment within the context of
RAN. This work involved collaboration between the author and various other persons within the
NG-CDI consortium. The author was the majority contributor to this work and was involved in
all stages discussed henceforth. The work featured in this section is based upon contributions in
[17] and further expands on those results presenting results obtained utilising communicative
DMARL.

This section is organised as follows. First, 3.3.1, present the relevant works in group asset
maintenance planning. Next, Section 3.3.3 introduces the formulation of the group maintenance
problem as a POSG. Section 3.3.4 describes the algorithmic aspects of the proposed approach.
The results and discussion of the evaluation, based on a simulated case study, are presented in
Section 3.3.5. Conclusions and future work are presented in Section 3.3.9.

3.3.1 Asset Maintenance Planning

This section reviews relevant efforts addressing the multi-asset maintenance planning and also
applications of RL for asset management.

3.3.1.1 Maintenance of Network of Assets

Markov decision processes have been widely used to model asset deterioration and to develop
maintenance plans. The problem of finding the optimum maintenance policy for a component
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is formulated as an MDP in [168]. The policy for determining when the component should be
maintained is obtained via uni-chain policy iteration algorithms. Authors of [169] use POMDP as
the basis of a methodology for assessing the benefits of condition monitoring systems.

While these works address mainly single-asset scenarios, MDP have also supported models
of multi-asset systems. A model to optimize the predictive maintenance policy for a multi-
system multi-component network of assets is presented in [170]. The policy is obtained using a
genetic algorithm that enable the exploitation of the benefits of grouping system interventions
and overlapping downtime in a two-bridge network. An MDP is also used to formulate a joint
Condition-Based Component Replacement and Inventory Control Policy (CBRICP) in [171].
Dynamic programming is used to solve the CBRICP, determining the optimal maintenance and
inventory actions for k-out-n:F systems.

3.3.2 Reinforcement Learning for AM

Several works have addressed the use of single-agent RL for asset maintenance planning. An
RL model for determining the optimal timing for maintenance while maintaining the reliability
of the system is presented in [167]. The model was shown to effectively optimise maintenance
scheduling considering expected reward and mean time between failures (MTBF). In [142], a
Monte Carlo RL approach is used to find the optimal preventive maintenance strategy for multiple
components of a group of assets, with application to a fleet of military trucks. The authors showed
that Monte Carlo RL enabled learning of the transition probabilities of the underlying MDP
while optimising at the asset system level rather than locally. A method combining a Q-learning
algorithm and an ensemble of Artificial Neural Networks (ANN) enables learning of the optimal
operation and maintenance policy for a power grid [143]. Despite the reported high computational
time required, a distinct feature of this method is the ability to potentially consider large systems
with high dimensional state-action spaces. The benefits of neural networks with RL are also
exploited in [144], where Double DQN [39] is applied to determine the preventive maintenance
policies that reduce the cost in a serial production line system.

The MARL framework has been less exploited for addressing asset maintenance planning
problems. A small system of two machines and one buffer is considered in [145], where authors
propose a cost-sharing-RL algorithm that outperforms single-agent RL when comparing the
system average costs. Likewise, authors of [146] show the benefits of a multi-agent configuration
where the RL framework enables the reduction of downtime and maintenance costs compared to
other available strategies in a parallel production line system. Deep Centralised Multi-Agent
Actor-Critic (DCMAC) is proposed for obtaining the maintenance policy of multi-component
systems, with application to a truss bridge [147]. Authors of [148] combine Genetic Algorithms
(GA) and MARL to maximise the average revenue rate of a manufacturing system with inter-
mediate buffers. This revenue considers the cost of corrective and preventive maintenance of
the entire system as part of the agent’s reward function. The GA assumes global visibility of
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the system and periodically signals agents to adjust their actions. While there have been efforts
to address cases of larger multi-component systems [147] and small-scale multi-asset systems
[145, 146] separately, the use of MARL frameworks to address the complexity of maintenance
policy computation in networks of multi-assets multi-component systems is still to be explored.

3.3.3 Problem Formulation

The motivation for this work is to automatically derive maintenance policies for a communications
network comprised of multiple network elements. As previously stated, each network element
may be comprised of several modular components. This system can be modelled as a network
comprised of N assets defined by the set Z = {z1, . . . , zN }. Each asset zi may be comprised of n
components, where n may be variable. Each component c follows cycles of deterioration and
maintenance which may have an impact on the asset or network level. The full set of components
is referred to as C. The key elements of the problem are further described below.

3.3.3.1 Component Level

Each component, c 2 C, is modelled as an MDP as illustrated in Figure 3.5. The state space
Sc j = {s0, s1, ..., sk, sk+1, ..., sb°1, sb} represents the states of the component until breakdown (sb).
Where each state is collated from observation of the component’s sensors which may be noisy. The
deterioration rate ∏k determines the change in condition from state sk to state sk+1, where the
probability of the component transitioning directly to sb increases as the component matures.

At every state, a fixed set of domain-dependent actions are assumed to be available. An
example set could be: Do nothing (a0), Component Replacement (a1) and Component Repair
(a2). a1 results in the state of the component being returned to s0 representing replacement. a2

restores the state of the component, however as the component is restored multiple times, the
effect is reduced. This is modelled by ≤ which is a function of the repair count. This is shown in
Fig. 3.5a.

3.3.3.2 Asset Level

An asset zi model can be obtained from a combination of its n components’ MDP and modelling
of their operational interdependencies. Here, the state space of an asset is defined as Szi =
{Sc1£· · ·£Scn £ f }, where f indicates the operational status of the asset which is defined according
to component dependencies. The action space is defined as Azi = {Ac1 £ · · ·£ Acn }.

3.3.3.3 System Level

The larger network maintenance problem can then be represented as an N-player POSG [45],
where each asset is considered as an agent. This was previously defined in Section 2.2.1 and all
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(a) Replacement action a1 taken at sb

(b) Component Repair action a2 with effectiveness ≤

Figure 3.5: MDP showing two actions taken for components c(1)
1 and c(2)

1 of assets 1 and 2
respectively. State transitions are paired with the actions a that lead to the next state. ∏
represents the deterioration rate. sb represents a component breakdown. “Do nothing” actions
are dashed.
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values maintain the same values as defined previously. The objective is to find the set of asset-
level maintenance policies (¶§) which maximises the expected cumulative discounted reward (r).
An abstract illustration is provided in Figure 3.6. The exact definitions of observations, actions
and the reward function are left to Section 3.3.4 as they are domain dependent.
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Figure 3.6: Maintenance actions a are taken in a network of n assets Z, each one with m
components c. For a given time t, a joint action a(k) is taken for each asset, contributing to a
network action At. The goal is to find the policy º that maximises the cumulative joint reward r.

3.3.4 MARL for asset maintenance

The target task could be approached in a centralised manner, where a single agent is responsible
for learning and executing a maintenance policy for all assets. As discussed by [147], single
agent DRL can struggle with large discrete action spaces. In the problem definition provided in
Section 3.3.3.3, the action space may be very large if there are significant numbers of assets as
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the action space scales exponentially. This is to be expected in domains with similar properties to
communications networks. A more practical solution and one considered here is a decentralised
approach where techniques from DMARL are applied to improve training efficiency and facilitate
learning cooperative policies. By decentralising, there are also other benefits including a reduction
in communication overheads, system robustness (as a centralised controller presents a single
point of failure), and the framework can support the introduction of new assets [12].

DMARL approaches take considerable time to train and, as is the case in DRL, require envi-
ronmental exploration to derive near-optimal behaviours. Therefore, training within simulation
is considered to be the most viable path to deployment as it affords opportunity to train at
speeds well in excess of real-time and without risking equipment failure. A recent example of this
strategy is the work undertaken by [6] where they train a policy within a simulator to control
a stratospheric balloon for telecommunications applications and then successfully deploy it in
the real world. The case study undertaken in Section 3.3.5 utilises a custom simulator, but more
generally a Digital Twin [172] is a viable option for algorithm training where asset models could
be refined through the integration of real-world data. The use of a simulated environment also
provides the opportunity to investigate system response in rare circumstances, which may offer
benefits from a system resilience perspective. However, there are issues that present concerning
the challenge of moving from simulation to real-world deployments which are often studied under
Sim-to-Real [93].

The utilisation of a simulation to train DMARL also brings algorithmic benefits like CTDE
[54]. This common MARL paradigm facilitates the introduction of extra information within
training to improve training efficiency as long as this information is not required when the model
is deployed [9]. A number of approaches exist including Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) [9] and Q-MIX [55], for example.

MADDPG considers a modification to Actor-Critic (AC) [1] for the MARL domain. Within
single-agent RL AC (or Independent AC in [10]) the actor is responsible for selection of actions
and is conditioned on the observation of an individual agent and the critic provides feedback to
the agent about the return associated with its selected action and is conditioned on the action
and state of the agent. When naively applied to a DMARL problem, this can encounter issues
with non-stationarity as any estimate of the value which the critic produces is dependent on the
state and policies of other agents. In MADDPG, the critic is centralised and is conditioned on the
observations of all agents. By doing so, the problems aforementioned can be reduced where Lowe
et al. [9] suggests that it improves the consistency of gradient signals. Notably, only the actor is
required for inference so the centralised critic can be discarded upon deployment.

In the remainder of this section, two algorithms referred to as Multi-Agent Actor-Critic
(MAAC) and Convolutional Multi-Agent Actor-Critic (convMAAC) are introduced. Both of which
adapt MADDPG to the preventive maintenance task, but utilise different critic architectures.
They build upon A2C due to DDPG not natively supporting discrete action spaces. Other algo-
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rithms like choices are possible, but as demonstrated in Section 3.3.5, A2C is effective.

3.3.4.1 MAAC

Algorithm 3 presents the MAAC base workflow used in this paper. Where, T and E represent
the number of time steps in an episode and the number of episodes, respectively. The algorithm
calculates the Advantage A, Policy gradient rµJ(µ) and Value function gradient r¡J(¡) with the
functions detailed in Equations 3.8, 3.9 and 3.10 respectively.

Algorithm 3: Multi-Agent Actor-Critic algorithm
Input: G, T, E
Output: Trained º1,µ, ...,ºN,µ

1 Initialise agent policies º1,µ, ...,ºN,µ ;
2 Initialise centralised critic v¡ ;
3 for e = 1, ..., E do
4 Initialise episode buffer D;
5 for t = 0, ..., T do
6 Receive ot = {oi,t, ..., oN,t} ;
7 at = {} ;
8 for i = 0, ..., N do
9 Sample ai,t ªºi,µ(·|oi,t) ;

10 at = at
S

{ai,t}
11 end
12 Store (ot, ot+1,at, rt) in D;
13 end
14 For all samples in D;
15 Compute Advantage using Equation 3.8;
16 Compute Policy Gradient using Equation 3.9;
17 Compute Value Gradient using Equation 3.10;
18 µ√ µ°ÆµrµJº(µ);
19 ¡√ µ°Æ¡r¡J¡(¡);
20 end

3.3.4.2 convMAAC

In situations where there is a high number of agents, as there will be in any realistic network
maintenance operation the utilisation of a centralised critic may invoke significant computational
expense due to it being parameterised by a fully connected network. To aid in model scalability,
the problem is cast as a Graph Regression task. Thus Graph Convolutional Network (GCN) [35]
are used to learn useful node embeddings which capture topological information and then a mean
operation on the set of node embeddings is used to reduce the graph to a fixed length vector.
Where the associated graph G = {V ,E} is defined by the connections between elements in the
network. Equation 3.7 defines the operation of the GCN, where hk

i refers to the encoding of agent
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i after k convolutions and is initialised to the respective agents observation, oi, at k = 0, Wk is a
trainable weight matrix, and N {i} represents the set of neighbours of agent i. This results in a
model with significantly less parameters than the fully connected equivalent, MAAC.

(3.7) h(k)
i =æ

√
Wk X

v2N (i)[{i}

hvp
|N (i)||N (v)|

!

(3.8) A(O, r)= r+∞V (O0)°V (O)

(3.9) rµJ(µ)= Eºi,µ [rµ logºi,µ(o,a)A(O, r)]

(3.10) r¡J(¡)= E¶µ
[rµ(r+∞V (O0)°V (O))]

3.3.5 Simulated Case Study: Radio Access Networks

The proposed method is applied to the maintenance of telecommunications infrastructure de-
ployed within a region of interest. This section focuses on two challenges, each with increasing
difficulty. The first challenge involves an RAN consisting of N-BS. In this case, there are no
interdependencies between assets and the failure of a singular BS only impacts the area that it
is serving. The second challenge is an RAN comprising of N °1 BS which are interconnected by
a central router. This is more intricate as the central router represents a single point of failure
hence it requires additional precautions. The cases are referred to as Complete Network and Star
Network henceforth.

The observation, action and reward functions are specific to the particular domain and are
defined here. The assets (BS and routers) are defined as 2-component systems, where their
states are derived from continuous sensors which allow for inference of component state and
the anticipated time til failure. It is assumed that both components are critical to normal
asset operation and hence the failure of either component results in complete failure. This is
represented by f which is 1 if the asset fails and 0 otherwise. The available actions for each
component are Do nothing (a0), Component Replacement (a1) and Component Repair (a2). As
before, asset-level actions are defined as the Cartesian product of its components. In all cases, a
maintenance action will take 1 time-step for completion. However, it is assumed that there is a
finite amount of maintenance resources available at each time step reflecting a finite workforce.
If this is exceeded, a subset of the requested resources will be completed.

(3.11) r =°Æ
X

i2n
mi °Ø

X

i2n
fi

50



3.3. NETWORK MAINTENANCE PLANNING

As discussed in Section 2.3, in MARL a decision must be made between a local and global
reward function. In this domain, a global reward function is utilised as it more easily allows for
encoding of the network-level problem than a local reward. The formulation is given in Equation
3.11. mi represents the cost of maintenance operation scheduled by asset i and f i is a binary
variable referring to the asset’s operational status (1 if the asset is unavailable and 0 otherwise).
This formulation captures the trade-off between maintenance and network availability which is
used as a proxy for profitability. The importance of these diametrically opposing objectives can be
controlled through the appropriate selection of Æ and Ø.

Table 3.4: Experiment parameters, where the numbers associated with actions ux are their costs
and the components RUL are initialised randomly according to a uniform distribution. Note that
the the actions ux which apply to both components are proportionally cheaper, this assumption
is based on an operations engineer travel time being reduced relative to the equivalent actions
concurrently.

Parameter Value
Number of assets 9

Max maintenance operations per timestep 2
Episodes 3000

Episode length 100
a0, Do nothing 0
a1, Replace c1 0.3
a2, Repair c2 0.1
a3, Replace c2 0.3

a4, Replace c1 and c2 0.55
a5, Repair c1 0.1

a6, Repair c1 and c2 0.175
Component RUL U (95,105)

Æ 1
Ø 1
≤ 0.7Number component repairs

The parameters used in the experiments are presented in Table 3.4. These and the case study
are based on discussions with partners of the NG-CDI project1 and intend to reflect the realities
of real scenarios. For example, note that execution of maintenance request u4 which involves the
replacement of components c1 and c2 is proportionally cheaper than the replacement of them
individually which reflects a reduction in operational engineer travel time.

3.3.5.1 Implementation

The algorithms introduced in Section 3.3.4 are implemented in PyTorch [173]. In both MAAC
and convMAAC agent networks utilise parameter sharing [8] and the architecture consists of a

1https://www.ng-cdi.org/
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2-layer FCN followed by a 2-layer LSTM. In order to ensure distinct behaviours can be derived,
an asset identifier is concatenated onto the asset observations. The inclusion of the LSTM allows
for capture of temporal correlations which may go unseen if just the FCN was utilised. The major
difference between MAAC and convMAAC is the architecture of the shared critic network. MAAC
critic comprises of approximately 1.2M parameters and utilises a 2-layer FCN followed by a
2-layer LSTM which takes as input the concatenation of all agents’ observations and outputs the
state value. The critic of convMAAC comprises of approximately 610K parameters and utilises
a 2-layer FCN which encodes the observation of all agents separately, and then all encodings
are passed into a 2-layer GCN, the output is then averaged node-wise and passed into a 2-layer
LSTM which then outputs the state value. The model is optimised using a grid search across
parameters, where the hyperparameters utilised within the experiments are depicted in Table
3.5. Training is performed on an Nvidia RTX 2080Ti and takes 30 minutes to converge. WandB
[92] is used for experimental logging and the GCN is implemented using DGL [174].

Table 3.5: Network Maintenance Planning model hyperparameters

Model Actor LR Critic LR Gradient Clipping
MAAC 0.0001 0.0005 1.0

convMAAC 0.0001 0.0005 1.0
IAC 0.00005 0.0005 0.5

3.3.6 Experiments

Although the task is continual it is represented as episodes consisting of 100-time steps which
correspond to 5 full life cycles of an average component. At the beginning of an episode, assets
are assumed to be in factory condition where there is some variance in condition as defined
in Table 3.4. All algorithms are allowed 3000 episodes of training and results are averaged
over 3 random seeds. The derived policies are compared to two maintenance baselines which
are a corrective maintenance policy and a preventive maintenance policy. The corrective policy
requests for component replacement upon failure. The preventive policy takes the form of a
distributed oracle which can observe the Remaining Useful Life (RUL) of the asset’s component
and requests maintenance resource when the RUL drops below 20. To demonstrate the benefit
of critic centralisation IAC [10] agent is implemented too, where the architecture maintains a
similar structure to convMAAC and MAAC.

3.3.7 Results and Discussion

Table 3.6 shows the converged models of MAAC, convMAAC and IAC to heuristic baselines
corrective policy and preventive policy. It provides a comparison in terms of network availability
and maintenance frequency. Network availability is defined as the average amount of the BS
that are usable by users over the course of an episode. Maintenance frequency is the average
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Table 3.6: Final Algorithm performances, where the first number is the mean and the second
number the standard deviation.

Model Complete Network Star Network
Net. Availability Main. Frequency Net. Availability Main. Frequency

MAAC 0.9972, 0.0035 0.8981,0.1356 0.998, 0.0019 0.8864, 0.07219
convMAAC 0.9997, 0.0005 1.1001, 0.1525 0.9997, 0.0012 1.092, 0.1678

IAC 0.9803, 0.0088 7.4490, 1.4560 0.97, 0.008 8.4631, 0.0699
Corrective 0.8750, 0.0084 1.1118, 0.0744 0.7911, 0.0181 1.111, 0.0769
Preventive 0.9638, 0.0100 1.0863, 0.1169 0.9384, 0.0331 1.0738, 0.1039

number of repair or replacement operations which are scheduled at every time step. Both MAAC
and convMAAC achieve similar performance levels in both the Complete Network and Star
Network. There is a heuristics and there is a measurable decrease in performance between the
two topologies. This demonstrates that MAAC and convMAAC are able to adapt to variations in
network topology which are impactful for more naive approaches.

Comparisons of the algorithms’ training performances for the two cases analysed can be
found in Figure 4.2. Figure 3.7a shows the cumulative reward obtained as the agents learn
their policies. In both cases, MAAC and convMAAC converge to comparable cumulative rewards,
where convergence is faster in the complete network case. This is likely due to the difference in
complexity which makes learning in the star network slower. It appears that convMAAC has a
slight edge in convergence speed over MAAC. IAC can encounter difficulties learning effective
policies, where this policy was found to be approximately uniform random regardless of the case.
The differences in DMARL learning algorithms performance demonstrate the importance of
the centralised critic in training, as without it, it is difficult to estimate the true state value
function within the environment as it is partially observable from the perspective of a single
agent. When considering an extension to larger deployments it is arguable that the smaller critic
size required by convMAAC may give it an additional edge. Although not required at deployment
time, practically, a smaller model presents smaller computational requirements.

Through observation, the policies derived by the convMAAC and MAAC can be found to
alternate between full system repair and replacement operations. This suggests that, given the
experiment parameters, the agents understand that performing repair is a preferable operation
to replacement and that coordinating jobs at a single site is cost-effective. An annotated example
trajectory for an individual asset and the actions taken by the corresponding MAAC agent can
be found in Fig. 3.8. It shows that the agent is risk-averse and tends to perform preventive
maintenance of the asset when the components have a RUL of approximately 40. Where this is
the point in an asset’s degradation where the probability of failure for an asset starts to increase
more rapidly. This is seemingly a pragmatic and reasonable decision if the possibility of contention
among agents for the limited maintenance resource available is considered. At the global-level
agents tend to interleave their maintenance decisions tending to schedule maintenance at regular
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(a) (b)

Figure 3.7: Key MARL parameters throughout training. (a) Cumulative reward and (b) Mainte-
nance request per time step.

intervals.

3.3.8 Further Experimentation

In the original publication [17] the potential for communicative DMARL to further improve
performance was suggested. It was believed that communication may enable agents to better
understand the state of the wider network and to be able to better allocate resources. Here,
those ideas are explored. MAAC is extended to allow communication among agents utilising a
method similar to that proposed within DGN [70]. This method is referred to as Communicative
Multi-Agent Actor-Critic (commMAAC) and is further expanded upon below.

3.3.8.1 CommMAAC

As in DGN [70], Multi-Headed Dot Product Attention (MHDPA) [175] is utilised to facilitate
information exchange between agents. MHDPA provide a method to compute a weighted ag-
gregation based on perceived importance of neighbouring agents’ observations which are then
utilised in the respective agent’s policy. This is achieved through the application of Equation (3.12)
and Equation (3.13). Together they provide mechanism to support communication of relevant
information between agents, in the following text we explain their operation.

(3.12) Æm
i, j =

exp(øWm
Q hi · (Wm

K h j)T )
P

k2N (i)[{i} exp(øWm
Q hi · (Wm

K hk)T )

(3.13) h
0

i =æ(concatenate[
X

P
j2N ( j)[{ j}

Æm
i jW

m
V h j,8m 2 M)]

Equation (3.12) serves to provide a learnable mechanism to calculate the relative importance
of the information contained within agent j’s encoding, h j to agent i with respect to its set of
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Figure 3.8: Example degradation of an asset maintained by MARL agent. C1 and C2 represent
components and u4 and u6 represent actions 4 and 6 respectively. Where u4 is a joint replacement
and u6 is a joint repair of both components simultaneously.

neighbours (including itself). This equation takes the familiar form of the softmax function which
is commonplace across DL in situations where a categorical probability distribution is required.
Here, the inputs into the exponential functions are the dot product similarity between the linear
transformation of the agent’s encodings by weight matrices WQ and WK . In the numerator and
denominator, the variable ø is present and is typically referred to as the temperature co-efficient.
It provides a method to control the distribution of probability mass where a higher value results
in more probability mass (and therefore attention) being assigned to the higher dot product
similarities.

The attention weights, Æi, j, are then utilised to perform a weighted aggregation of the linear
transformation of the neighbouring agents’ observations in Equation (3.13). Functionally, the
agent’s policy could then be considered as ºi : Oi,Hi ! Ai. Where H0

i is the set of possible
messages derived from Equation (3.13).

3.3.8.2 Results: Comparison with MAAC

In Figure Figure 3.9 a comparison between commMAAC and MAAC is provided within the
complete network topology. Despite the introduction of the MHDPA, there is no observable
improvement in reward acquisition. This was initially surprising considering the significant
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partial observability within the environment. However, it is perhaps plausible that the inter-
leaving policy acquired in the previous experimentation is significantly easier to derive rather
than a communicative policy. The challenges of communicative DMARL are further explored in
Chapter 5.

Figure 3.9: Cumulative reward comparison between MAAC and commMAAC.

3.3.9 Summary

This work models the challenge of finding a multi-asset, multi-component maintenance policy as
a POSG and proposes a number of DMARL algorithms to solve it. The developed methods, MAAC
and convMAAC took advantage of critic centralisation to improve training efficacy. They were
demonstrated to outperform heuristics and an IAC baseline in a representative RAN maintenance
planning cases study. The best-performing method, convMAAC, achieved a network availability
increase of 3.49% and 6.13% in the complete and star topologies over a preventive maintenance
baseline whilst maintaining similar levels of network maintenance. The utilisation of a GCN
within the critic of convMAAC significantly reduces the number of parameters necessary in
the critic when compared to MAAC. It is argued that this would be practically relevant from a
computational perspective when extending to larger networks.

Moving this work towards deployment requires tackling a number of problems. The most
pressing of which is the availability of a simulator for training. Acquisition of historical data from
equipment vendors may be difficult due to its commercial sensitivity. There are also numerous
opportunities to explore various algorithmic innovations to deal with particular challenges
which this domain offers. Currently, policies are learned at the asset level. Methods that enable
decomposition into component-level representations may be preferable if the particular domain
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involves assets which are constructed from a finite number of modular components. It may also
be possible to integrate a supervisory agent which improves upon the random allocation of repair
resources currently utilised.

3.4 Conclusions

This chapter considered the application of DRL within telecommunications networks. Observing
the highly distributed nature and scale of the underlying system, the suitability of DMARL was
proposed. It was envisaged that algorithms which support decentralised learning, like DMARL,
would be better suited towards the innate characteristics of telecommunications networks than
centralised and naive single-agent approaches.

We began by exploring the application of single-agent DRL to "Resource Assignment in
O-RAN" and demonstrated a novel solution inspired by AlphaGo Zero [4]. The derived solution
improves resource utilisation by 5.7% over our strongest baseline. However, as described within
Section 3.2, issues arise when this methodology is extended to large-scale communications
networks. As introduced in Chapter 1, there is a spectrum of potential solutions including
centralised DRL, naive single-agent DRL and DMARL. We argue that both centralised and
single-agent DRL are impractical due to their challenges with dimensionality and understanding
interdependencies between agents, respectively. Employment of DMARL overcomes these issues
and we demonstrate its application to "Network Maintenance Planning". We introduce an GCN-
based centralised critic within our algorithm convMAAC which improves training performance
and scalability over IL methods and standard FCN-based centralised critics. This method was
demonstrated on two simulated RAN networks and was shown to improve network availability
by 3.49% and 6.13% over a heuristic baseline.

Our analysis supports the hypothesis that DMARL can facilitate the derivation of cooperative
policies in challenging high dimension problems. However, there are many challenges which
remain on the path towards a practically deployable method in telecommunications. Standard
DMARL (and DRL, more generally), require simulators for training. The disparity between
simulation and real-world environments is problematic and is the focus of research within areas
like Sim-to-Real. There is also the natural propensity of the real world to change and evolve over
time. This is known as environmental non-stationarity (or concept drift) and is a fundamental
challenge which must be overcome. As we will learn in Chapter 4, these challenges are general
across many industrial domains and their eventual mitigation is essential.
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4
MULTI-AGENT REINFORCEMENT LEARNING IN LOGISITICS

In this chapter we consider our second domain, logistics. Through doing so, we hope to
develop an insight into the challenges of application within this domain and to enable us
to distil more general insights regarding the applicability of DMARL. Herein, we consider

the prospect of leveraging advances in DMARL to improve the efficiency and flexibility of order-
picking systems for commercial warehouses. We envision a warehouse of the future in which
dozens of mobile robots and human pickers work together to collect and deliver items within
the warehouse. The fundamental problem we tackle, called the order-picking problem, is how
these worker agents must coordinate their movement and actions in the warehouse to maximise
performance (e.g. order throughput) under given resource constraints. Established industry
methods using heuristic approaches require large engineering efforts to optimise for innately
variable warehouse configurations. In contrast, the MARL framework can be flexibly applied
to any warehouse configuration (e.g. size, layout, number/types of workers, item replenishment
frequency) and the agents learn via a process of trial-and-error how to cooperate with one
another. This chapter details the current status of the R&D effort initiated by Dematic1 and
the University of Edinburgh towards a general-purpose and scalable MARL solution for the
order-picking problem in realistic warehouses.

The author helped to further advance the state-of-the-art in this challenging domain. The
project had been in progress for approximately 3 years and had seen the development of a
warehouse simulator and a hierarchical shared network actor-critic algorithm. The author built
upon these existing breakthroughs aiming to further improve the competitivity of the DMARL
approach. The author’s contributions include, (1) further reducing the execution time of the
algorithm and simulator which is necessary for experimental iteration, (2) model optimisations

1Dematic is a multinational company specialising in materials handling systems and logistics automation.
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including introducing GAE, network architecture optimisations, and reward shaping (3) develop-
ment of a policy visualisation based upon similarity to existing heuristics, and, (4) identification
of the limitations of the existing approach. The text in this chapter is an adaptation of the work
within [19].

4.1 Introduction

An order received by a commercial warehouse operator may comprise of several order-lines which
specify a required item and a quantity. Order-picking is the process of retrieving these items
from the warehouse and delivering them to a target location within the warehouse for further
handling [176]. In its most basic form, a human worker will receive an order and travel around
the warehouse with a cart and pick the required items manually. The general objective is to
minimise the time required for order completion. This process typically represents a significant
proportion of a warehouse’s operational costs, where figures in the region of 55% are commonly
quoted [177]. As such, order-picking has attracted significant automation efforts in pursuit of
reducing operational costs and thereby improving commercial competitiveness.

Automation efforts have generally focused on the pick-to-picker paradigm, in which large-
scale autonomous systems move items to pickers for dispatch to customers. There are numerous
examples of these types of systems, including the Dematic Multishuttle2, Autostore3, and KIVA
[178]. Typically, these approaches require significant capital investment and can be costly to
adjust to varying warehouse capacity and consumer demand. For these reasons, adoption is
generally limited to larger operations. An alternative and more common approach is the picker-
to-pick paradigm, in which pickers move to item locations within the warehouse and directly
retrieve them for dispatch. This paradigm accounts for the majority of warehouse operations,
where [179] estimated that 80% of warehouses in Western Europe followed this paradigm. Despite
its prevalence, automation is comparatively less mature in this domain.

In this work, we consider the augmentation of the picker-to-pick paradigm with robotic
vehicles such as automated guided vehicles (AGVs) and autonomous mobile robots (AMRs).
We believe their increasing affordability and capability provides an opportunity to develop an
incremental pathway towards higher productivity and full warehouse automation. We refer to
AGVs and AMRs interchangeably, as our solution is not strictly dependent on the type of vehicle
being used. The general idea of AGV-assisted order-picking has begun to receive attention in the
academic literature [154–156]. Typically, this involves the decoupling of a traditional picker’s
role into order transportation and item picking, where transportation is handled by the AGV and
picking is handled by a human worker or robotic picker. This approach has multiple benefits:
(1) pickers do not need to travel back to the depot to complete an order, thereby minimising
unproductive walking time, (2) the integration of AGV technologies into existing warehouses

2https://www.dematic.com/en-au/products/storage
3https://www.dematic.com/en-au/products/storage/autostore
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requires minimal modification to existing infrastructure, and (3) the system can support scaling
with varying demand by changing the number of AGVs and pickers.

Simulation experts at Dematic4 have practical experience in developing various order-picking
strategies in the picker-to-pick paradigm through heuristic methods. They find that their applica-
tion and optimisation for innately variable warehouse configurations and optimisation targets
require significant engineering effort. Ideally, the derivation of optimal methods for worker
control should be an automatic process. Reinforcement learning (RL) offers this capability, having
achieved notable successes in a number of complex real-world domains [89, 106]. Order-picking
by its very nature is a multi-agent problem, thus we leverage multi-agent RL (MARL) which
extends RL to multi-agent systems [48]. An important benefit of MARL is its flexibility to operate
with diverse warehouse and worker specifications as well as optimisation objectives (e.g. order
throughput, battery usage, travel distance, traffic and congestion, pallet stability, labour cost),
where existing heuristic approaches would require significant engineering effort to fit different
specifications.

This chapter details the current status of the R&D effort initiated by Dematic and the Univer-
sity of Edinburgh towards a general-purpose and scalable MARL solution for the order-picking
problem. We developed a high-performance simulator which is capable of representing real-world
customer operations and is optimised for efficient RL training and testing. We further developed
a MARL approach, Hierarchical Shared Network Actor-Critic (HSNAC), which improves sample
efficiency over Shared Network Actor-Critic [64] through enabling decomposition of the large
action space via a multi-layer hierarchy. HSNAC outperforms a well-established industry heuris-
tic, achieving a 23.2% improvement in order-lines per hour while being generally applicable to
different warehouse specifications. We outline a path towards the deployment of our solution,
identifying a number of limitations and promising methodologies to further improve the perfor-
mance and realism of our solution, and consideration for its integration into a comprehensive
machine learning pipeline.

4.2 Related Literature

AGV-assisted order-picking [154] model the order-picking problem as a queuing network
and explore the impact of different zoning strategies (no zoning and progressive zoning). They
then further extend their method by representing it as a Markov decision process and consider
dynamic switching based on the order-profile using dynamic programming. [155] consider an
AGV-assisted picker and provide an exact polynomial time routing algorithm for a single-block
parallel-aisle warehouses. [156] consider a warehouse partitioned into disjoint picking zones,
where AGVs meet pickers at handover zones to transport the orders back to the depot. They
propose a heuristic for effective order-batching to reduce tardiness. We additionally acknowledge

4Dematic is a multinational company specialising in materials handling systems and logistics automation.
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pick-to-conveyor solutions5 which we consider as a special case of AGV-assisted order-picking.
Our work differs from existing work in this area as it does not place any restrictions on how
workers may cooperate. To the best of our knowledge, our work is the first application of MARL
to order-picking in the picker-to-pick context.

Multi-Agent Pickup and Delivery Problem MAPD problems [180] consider a set of agents
that are sequentially assigned tasks. Each task requires the agent to visit a pickup location and
a delivery location. The locations of agents and tasks are typically presented as nodes in an
undirected connected graph. The agents move between locations via the graph’s edges, where
the edge capacity is restricted so that only one agent may move along an edge. The objective
is to minimise the time duration required for task completion, which may be further broken
down into task assignment and the planning of collision free paths. This formulation has been
applied to several problems in warehouse logistics [180–182]. The decoupling of workers within
our approach introduces complex interdependencies between the paths of different worker types
which significantly complicates the problem. [183] have introduced the Cooperative multi-agent
path finding problem which is applicable within this domain but requires explicit specification of
the workers required to cooperate and does not allow for optimisation over extended temporal
periods. We consider MARL as an alternative due to its generality and flexibility.

Multi-agent reinforcement learning MARL algorithms are designed to train coordinated
agent policies for multiple autonomous agents, and have received much attention in recent
years with the introduction of deep learning techniques into MARL [48]. MARL has previously
seen application to various warehousing problems, including Shared Experience Actor-Critic to
pick-to-picker systems [49, 64], and a deep Q-network variant for sortation control [184]. For the
specific complexities of the order-picking problem, we consider methods at the intersection of
MARL and hierarchical RL (HRL) to enable action space decomposition and temporal abstraction.
This combination has been studied by [185] who derive MARL algorithms for macro-actions
under partial observability, and [15] who propose Feudal Multi-Agent Hierarchies (FMH) which
extends Feudal RL [186] to the cooperative MARL domain. We apply a 3-layer adaptation of FMH
to a partially observable stochastic game with individual agent reward functions.

4.3 Background

We consider a scenario in which a warehouse operator (customer) seeks to improve the efficiency of
their warehouse, W , through automation of order-picking. The task requires optimal utilisation
of the customer’s resources to maximally improve warehouse operations, measured by key
performance indicators such as pick rate (order-lines/hour), order lead time (seconds), and
distance travelled (metres).

5www.dematic.com/en-gb/products/case-and-piece-picking
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Figure 4.1: Simple illustration of warehouse with labels.

4.3.1 Warehouse Definition

We consider a customer warehouse defined by the 3-tuple W = {L, Z,W}. An illustration is
provided in Figure 4.1, where key items are labelled.

• L refers to the set of spatially distributed locations within the warehouse and can be further
broken down into L = Li[Lt, where Li and Lt refer to the set of locations with stored items
and other locations (such as idle locations and order delivery stations), respectively.

• Z defines the order distribution which is dependent on the warehouse’s supplier and
customer behaviour and is assumed to be known. An order z = {(b0, q0), . . . , (bn, qn)} is
sampled from Z. Each pair (b, q) represents an order-line, where b represents the item and
q specifies the required quantity.

• W is the set of workers and is comprised of AGVs, V , and pickers, P, where the workers
in each set are homogeneous. AGVs are assigned orders sampled from Z with zv denoting
the current order of AGV v 2V . Successful picking of an order-line requires coordination
between AGVs and pickers.

For a given warehouse, we seek to derive a joint policy º which defines the behaviour
of all workers in W such that we maximise the average pick rate K , formally denoted with
º= argmaxºK(W ,º). A key desideratum of our solution is to automatically learn optimal policies
for any given warehouse configuration and order profile.
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(a) (b)

Figure 4.2: Diagrams illustrating warehouse heuristics behaviours. (a) shows Follow Me, and (b)
shows Pick Don’t Move.

4.3.2 Heuristic Solutions

Two heuristics which Dematic use within this setting are Follow Me (FM), and Pick, Don’t Move
(PDM).

Follow Me A number of AGVs are assigned to each picker and will follow them through the
warehouse, the case of a single picker being assigned to an AGV is shown in Figure 4.2a. Each
AGV’s order is concatenated and the travelling salesman problem (TSP) solution is generated to
determine the order in which the items will be picked. This improves efficiency over a traditional
picker with order cart approach as the AGV can leave the picker and deliver the completed
order to the packing area. FM minimises idle time for pickers, as it ensures that they are always
travelling or picking, but also leads to more travelling of pickers than needed.

Pick, Don’t Move Pickers are allocated to zones (such as a picker per aisle) in the warehouse
which they are responsible for, while AGVs are allowed to travel throughout the entirety of the
warehouse. This is depicted in Figure 4.2b, where the zones are indicated by coloured strips
within the warehouse.The AGVs travel through the list of locations they need to visit to complete
their order using a TSP solution. Once an AGV goes into a picker’s zone, the picker is responsible
for meeting the AGV at the item location, and picking relevant items to the relevant orders onto
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Figure 4.3: Systems architecture for our solution.

the AGV. Pickers prioritise service of AGVs by the relative proximity of the AGV and picker to
their target locations. PDM minimises travel distance for pickers, allowing them to spend more
time picking, and less time moving. However, it may result in under-utilisation of pickers in case
there are few items within current orders in their operating zones.

4.3.3 Key Challenges

The efficacy of optimised heuristic methods is context and customer-dependent, requiring con-
sideration of many factors such as the warehouse item clustering strategy, order profile, order
prioritisation mechanism, changes in demand and supply, changes in labour and workforce
conditions, and regulatory factors to name but a few. A heuristic strategy needs to be selected
and repeatedly tuned with this ever-changing context. The required iterative process necessi-
tates a regular engineering effort in consultation with a customer to review, analyse and tune
performance of heuristics and parameters. This engineering burden motivates the automation of
worker policies for the order-picking problem under the consideration of the following challenges:

Scalability We desire a general-purpose solution which can handle variations in multiple
dimensions, including the number of total item locations |L|, the order distribution Z and the
number of workers |V |+ |P|. Controlling all workers with a single decision-making entity quickly
becomes infeasible due to the joint action space growing exponentially with the number of workers.
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Figure 4.4: 3-D warehouse simulator. Snapshot showing human and AGV workers moving along
aisles.

Hence, we consider MARL approaches in which pickers and AGVs are modelled as individual
agents.

Development environment MARL algorithms require significant numbers of exploratory
interactions within the environment [49], involving prolonged periods of sub-optimal behaviours
within the target warehouse configuration. This is unacceptable for warehouse operators and,
therefore, mandates the utilisation of a high-performance simulation platform as an essential
part of the development pipeline.

Productionisation Any derived solution does not exist in isolation, but as part of a pipeline
and a larger warehouse system. As such, we propose a minimal viable system architecture in
Figure 4.3. The diagram identifies how we envisage our systems interacting. MARL algorithms
will be trained on a training cluster. Algorithm inference runs on an AI controller, which must
be deployed on-premise, as warehouse environments cannot tolerate operational downtime.
Generated commands are transmitted to workers through an on-premise wireless communications
network. For a robotic vehicle, this command is given via the vehicle management system and
executed by the vehicle, and for a human worker, this command is provided on a mobile device
or headset. Feedback is provided to the systems by the picker upon successful pick via voice or
scanned barcode.
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4.4 Warehouse Simulator

To facilitate efficient MARL training, experts at Dematic developed a high-performance ware-
house simulator which is capable of representing real-world customer warehouses and includes
implementations of the baselines described in Section 4.3.2. Figure 4.4 shows an example snap-
shot of a simulated warehouse used in our experiments.

4.4.1 Implementation

The simulator was developed in Python 3.9 using the Panda3D game engine to enable visualisa-
tion and implements the OpenAI gym interface [80]. We introduce several assumptions to reduce
the simulator’s computational requirements. These are listed below, and will be relaxed in future
work.

• Warehouse scaling We model the warehouse at a 1:3 scale and all workers travel at a
speed of 1.66 meters per second. By scaling the distances, we enable faster transit and
consequently faster training times.

• Worker commitment When a worker chooses to travel to a location, it commits to its
execution until arrival.

• Collisions We do not model worker collisions, assuming that they are able to move past
each other without any delay or penalty. We give the vehicle management and execution
system the responsibility of collision avoidance.

• Automatic loading Picking of items from a picker onto an AGV is done automatically
and instantaneously once both workers are at the respective location. The impact of the
quantity in an order-line is considered to be negligible and as such we set it to 1.

• Fixed workers The number of workers within the system is fixed and unchanging. Workers
do not experience failures, nor does their productivity decrease over time.

• FIFO order assignment Orders are assigned to AGVs following a first-in-first-out queue
system. Optimisation of order assignment is left for future work.

4.4.2 Simulator Optimisation

Major effort was directed towards improving the execution speed of the simulator. Through
optimisations, we achieved a speed-up of 13021x (from 0.003643 steps per second to 47.51 steps
per second collected over 300 samples), for a warehouse consisting of 1276 item locations, 24
agents, and running 4 environments in parallel. The most impactful modifications we made are
detailed below.
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Time progression in game engine We generate frames at 0.2 FPS (frames per second), such
that 5 seconds in game time passes on each game engine step (and equivalently, each algorithm
action step). The relatively low FPS rate impacts our worker action frequency, resulting in
some minor performance degradation, but was chosen to make RL training within a reasonable
time-frame tractable.

Precalculation and caching shortest paths As we shall describe within Section 4.5.2,
agents select their target locations as actions. Following such a movement decision, we calculate
the shortest path between the agent’s current and target location. To facilitate this computation,
a warehouse is represented as a graph and shortest paths computed using the Dijkstra’s algo-
rithm [187] are cached in a table. This table uses significant memory for reasonable warehouses
(in the order of 500MB for 1200 locations), but path determination becomes a hash-table lookup
of O(1).

Boosting execution time for distance calculations Calculating distances from (x, y) coor-
dinates to graph nodes is a frequent computation which scales with O(|W ||L|). To improve this
operation, we use the following elements: (1) a graph coordinate hash-table for exact matches,
(2) a compiled vectorised function which translates the operation to machine code, and (3) a
KD-tree [188] of the graph coordinates. We see a significant improvement in execution time for
an insignificant amount of memory usage.

4.5 Multi-Agent Reinforcement Learning

We use MARL to train coordinated agent policies in simulation. This section details our model
and algorithm design.

4.5.1 Problem Modelling

4.5.1.1 Partially observable stochastic game

We model the multi-agent interaction as a partially observable stochastic game (POSG) for
N agents [45]. A POSG is defined by the tuple (I,S, {Oi}i2I , {Ai}i2I ,P ,≠, {Ri}i2I ), with agents
i 2 I = {1, . . . , N}, state space S, and joint action space A = A1 £ . . .£AN . Each agent i only
perceives its local observations oi 2Oi given by the observation function ≠ :S£A 7!¢(O) with
joint observation space O =O1 £ . . .£ON . The transition function P : S £A 7! ¢(S) returns a
distribution over successor states given a state and a joint action. Agent i receives a reward ri

t

at each step t defined by its individual reward function Ri :S £A£S 7!R. The goal is to learn
a joint policy º= (º1, . . . ,ºN ) to maximise the discounted return Gi =PT

t=1∞
t°1ri

t of each agent i
with respect to the policies of other agents; formally, 8i 2 I :ºi 2 argmaxº0

i
E
£
Gi |º0

i,º°i
§

where
º°i =º\{ºi}, and ∞ and T denoting the discount factor and episode length, respectively.
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4.5.1.2 Action space

The completion of orders requires pickers to be able to visit all item locations l 2 Li and for AGVs
to be able to visit all locations l 2 L. We enable this by defining the action space of pickers and
AGVs as Ap = Li and Av = L, respectively. This results in a large action space and an action
duration that is dependent on the distance between an agents current and target location. These
issues are addressed in Section 4.5.2.

4.5.1.3 Observation space

The availability of communication links between workers and the central servers affords a
high degree of flexibility in modelling the information observed by agents. We aim to provide
both classes of agents with sufficient information to make optimal decisions whilst pruning
out unnecessary variables. Picker and AGV observations are defined in Equation (4.1) and
Equation (4.2) with © denoting the concatenation operator. Pickers and AGVs observe the current
and target locations of all agents, denoted l i

c 2 L and l i
t 2 L for agent i. Additionally, AGVs only

observe their own order while pickers observe all orders.

(4.1) Op = {(l i
c, l i

t) | i 2 I}© {zv | v 2V }

(4.2) Ov = {(l i
c, l i

t) | i 2 I}© zv

4.5.1.4 Reward function

Agents are rewarded for behaviour which is aligned with the objective stated in Section 4.3.1.
The reward function for agent i as a picker and AGV, respectively, are given in Equations (4.3)
and (4.4).

(4.3) ri
t =

8
<
:

0.1, if i completed pick at step t

°0.05, otherwise

(4.4) ri
t =

8
>>><
>>>:

0.1, if i received picked item at step t

0.1, if i completed order at step t

°0.05, otherwise

4.5.2 Hierarchical MARL for Order-Picking

In the current formulation, each agent’s action space is very large with |Ai|º |L| and the actions
may take different durations to terminate. To address these challenges and simplify the training
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Figure 4.5: Diagram of 3-layer Feudal Hierarchy.

of agents, we utilise an adaptation of FMH [15], which involves the introduction of a manager
that produces goals for subordinates to satisfy, shown in Figure 4.5. We apply this concept to
partition the locations within the warehouse into a set of disjoint sectors Y , formally L =S

y2Y y.
The manager observes the current and target locations of all agents as well as the current orders
assigned to each AGV, and determines a sector yi for each agent i 2 I to move to. Given the
assigned sector, agent i’s policy ºi selects its new target location l i

t 2 yi within its assigned sector.
This decomposition greatly reduces the effective action space of each agent’s policy which is now
given by maxy2Y |y|ø |L|. Once the target location of each agent is determined, a lower-level
controller will then calculate a path from its current location and execute the necessary sequence
of primitive actions.

We further reduce the size of the effective action space of agents through action-masking,
based on the observation that each AGV v 2V only needs to collect the items within their current
order zv. Therefore, AGVs should only move to locations within the warehouse which contain
these items. This is achieved by masking out actions which refer to locations without items in the
current order of an AGV v. Given that in expectation, |zv|ø |L|, this significantly reduces the
number of actions for each AGV. For pickers, a reasonable action-masking approach is less clear
cut. Empirically, we found that only considering picker actions which refer to current and target
locations of all AGVs was effective.

The policy and value network of the manager are given by a multi-headed neural network
comprising of three fully-connected layers consisting of 128 neurons each with ReLU activations,
and a policy and value head for each agent. Each agent is parameterised by a value and critic
network represented by two fully connected layer of 64 neurons with ReLU activations. This
hierarchical model is trained using the Shared Network Actor-Critic (SNAC) algorithm [64]
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Figure 4.6: Average order-lines per hour of HSNAC, SNAC, and heuristics. Shaded area shows
95% confidence interval.

AGVs Pickers
Distance (m) Idle Time (s) Pick Rate Distance (m) Idle Time (s) Pick Rate

HSNAC 1887± 3 779.48± 1.91 69.99± 0.10 2299± 6 688.44± 1.73 139.98± 0.19
SNAC 1975± 3 952.57± 2.10 63.80± 0.08 3678± 9 585.99± 1.28 127.59± 0.16
PDM 1529± 4 1028.55± 7.11 56.80± 0.21 1104± 5 1084.53± 7.36 113.61± 0.42
FM 1970± 5 514.13± 2.33 78.78± 0.25 1620± 6 582.49± 2.40 157.57± 0.49

Table 1: Performance comparisons between HSNAC (ours), PDM and FM. Results show mean ± 95% confidence interval for
distance travelled, idle time, and pick rate for both pickers and AGVs.

256GB RAM, and one 32 core CPU and 128GB RAM, re-
spectively, and experimental tracking was performed using
WandB (Biewald 2020)5.

Figure 4 shows the episodic lengths of HSNAC and all
baselines across training. We observe that HSNAC achieves
noticeably lower episode lengths compared to PDM, but
is still under-performing compared to FM. Comparing
HSNAC to SNAC demonstrates the advantage of the hier-
archical architecture, with HSNAC learning faster and con-
verging to lower episode lengths. In Table 1, we show se-
lected characteristics for 50 episodes of randomly selected
trained HSNAC seeds, PDM and FM. We find that HSNAC’supdate de-

scription
based on
what we do
(aggregate
across seeds/
...)

improvement in episode lengths and pick rate over PDM is
largely due to a reduction in idle time at a cost of increased
travel over the course of an episode. The relative complexity
of the task and the number of agents large precludes direct
interpretation of the videos. We were however able to ob-
serve situations where two or more pickers appeared to race
towards AGVs which appears to demonstrate the emergence
of competitive behaviours. Through comparison of the pick-
ers order-line completion locations which is provided in the
WandB report. We were able to observe correlations be-
tween pickers which appear to indicate a variety of zone al-
locations emerging. In contrast to PDM, allocated zones are
not served by a singular picker. It appears that HSNAC al-
lows a greater degree of flexibility, where two or more agents
generally serve the same zone of the warehouse, but may
also move to other areas.

7 Path to Deployment
Our results support our hypothesis that MARL agents can
derive effective solutions for the order-picking problem. It
plausibly provides a mechanism by which we can avoid
costly heuristic optimisation in the future. We achieved this
through employing a number of methodologies, where the
hierarchical decomposition of the action space had a large
impact which we attribute to it being able to provide a so-
lution to the order-picking problem at a lower spatial reso-
lution than SNAC. Through HSNAC, we were able to out-
perform PDM which is a well-established industry heuristic.
However, the manner in which it achieves this is not without
fault. The increase in travel distance for pickers shown in
Table 1 likely represents a notable increase in maintenance
costs for robotic pickers and possible concerns for human

5Full evaluation details with additional results and episode
video recordings are available at: http://iaai-report.tandi.sydney

picker welfare. These could conceivably offset any com-
mercial advantage offered by HSNAC in its current form.
This increase in travel is likely attributable to the competi-
tive behaviours we observed, where these represent wasted
journeys. We believe that these observations, in combina-
tion with the current supremacy of FM, demonstrate how
whilst we are already in a region of commercial viability and
greatly exceed heuristic flexibility, there is more work to be
done to achieve performance parity with the best performing
heuristic.

The simulator (Section 4) forms the foundation of our ap-
proach, and provides a necessary trade-off between accuracy
and execution speed in order to make training in a reason-
able time plausible. In real-settings, many of our assump-
tions may be challenged. For example, (1) loading may take
a variable amount of time dependent on the required quantity
or item type, (2) the number of workers may vary with shift
patterns and (3) our decisions may be able to happen quicker
than the 5s interval allowed. Despite this, even with relax-
ation of all assumptions an unavoidable fact is that it is not a
real-warehouse and the transferability of our agents’ policies
is not clear without real-world testing. This is a well-known
challenge within the RL community known as Sim-to-Real

(Zhao, Queralta, and Westerlund 2020). In addition to this,
a warehouse does not exist in a vacuum and it needs to be
adaptive to pressures that are placed on it by its supply chain.
This is an issue of concept drift (Lu et al. 2018) and being
able to handle the issues which this introduces is an essential
part of any pipeline.

8 Conclusion and Future Work
Within this work, we evaluated the feasibility of utilising
MARL as a method to avoid time and resource-intensive
manual heuristic tuning for an AGV-assisted warehouse.
Through employing a range of innovations, we were able
to demonstrate that this is possible. Our algorithm, HSNAC,
achieved a notable performance gain over an established in-
dustry heuristic in a realistic simulated warehouse. We have
identified a range of limitations related to our current as-
sumptions and considerations for deployment.

Moving our solution towards production requires compre-
hensive analysis and mitigation of the limitations which we
have identified. We plan to investigate methods to reduce
picker competitivity, where we hypothesis that an energy us-
age penalty may inhibit the emergence of these behaviours.
We have begun some limited investigations into curriculum
learning (Narvekar et al. 2020) as a method to allow for

Table 4.1: Performance comparisons between HSNAC (ours), SNAC, PDM and FM. Results show
mean ± 95% confidence interval for distance travelled, idle time, and pick rate for both AGVs
and pickers.

in which we share networks across pickers and AGVs, respectively, to improve the efficiency
of the training process. The discount factor, ∞, is set to 0.99 for all agents. We found that we
can further improve performance by applying generalised advantage estimation (GAE) [18] and
standardising the advantage estimate in each training batch to have zero mean and unit variance.

4.6 Empirical Evaluation

We test our approach in a warehouse comprising of 1276 item locations, with 16 AGVs and 8
pickers which is shown in Figure 4.4. The workers are presented with an episodic task consisting
of 80 orders with an average length of 5 order-lines which are randomly distributed within Li.
We implement HSNAC in PyTorch [189] and allow it to train for 8000 episodes and 8 random
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seeds. The partitioning, Y , is achieved through division of the warehouse into 22 equal-sized
sections. We compare HSNAC against the PDM and FM heuristics (Section 4.3.2) and SNAC [64]
which uses the same neural network architecture as the HSNAC worker agents. We also tried
shared experience actor critic [64] and independent actor critic but omit them from our figures
as they were not as effective as SNAC. We use pick rate in order-lines per hour as our primary
performance measure, indicating the average frequency of picks in the episode. Experimentation
was performed on three Ubuntu servers, two with 128 core CPUs and 256GB RAM, and one with
32 core CPUs and 128GB RAM, respectively, and experimental tracking was performed using
WandB [92]. Full evaluation details with additional results and episode video recordings are
available in an extended report 6.

Figure 4.6 shows the pick rate in order-lines per hour of HSNAC and all baselines across
training. We observe that HSNAC achieves noticeably higher order-lines per hour compared to
PDM, but is still under-performing compared to FM. Comparing HSNAC to SNAC demonstrates
the advantage of the hierarchical architecture, with HSNAC converging significantly faster.

In Table 4.1, we show selected aggregated characteristics for 50 episodes for PDM and FM,
and across all trained HSNAC and SNAC seeds. We find that HSNAC’s improvement in pick rate
over PDM is largely due to a reduction in idle time by 27.55% for AGVs and 44.68% for pickers,
however it also incurs an increased travel distance of 20.96% for AGVs and 70.23% for pickers
over the course of an episode. Upon closer inspection of agent behaviours, we were able to observe
situations in which two or more pickers raced towards AGVs, which appears to demonstrate the
emergence of competitive behaviours.

Analysis of video provides an insight into agent behaviours, but it is hard to appreciate
statistical qualities of the agents’ behaviours and also can be susceptible to bias. With this in
mind, we propose a measure motivated by the diverse manner in which our heuristics employ
pickers. We collect all pickers’ order-line completion locations and then average and normalise
them into a vector F. We can then compute the cosine similarity between all pickers’ which we
choose to represent as a heatmap. In Figure 4.7, we show how this looks for our heuristics. As
expected, PDM exhibits very little overlap whereas FM order-completion locations appear to
be much more uniform. We show plots for multiple seeds of HSNAC and SNAC in Figure 4.8.
We observe a correlation between pickers which indicates that a variety of zone allocations may
be emerging. In contrast to PDM, allocated zones are not served by a singular picker. HSNAC
appears to allow a greater degree of flexibility, where two or more agents may serve the same zone
of the warehouse, but may also move to other areas. SNAC does not derive this same behaviour.

6sites.google.com/view/scalablemarlwarehouse/
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Figure 4.7: A figure showing the cosine similarity between average picker order-picking locations
for the two heuristics, PDM and FM. It is clear from the figure that PDM agents do not share
locations, whereas FM agents’ are free to visit any location.

4.7 Conclusions

Our results support our hypothesis that MARL agents can derive effective solutions for the
order-picking problem. It plausibly provides a mechanism by which we can avoid costly heuristic
optimisation in the future by supporting learning directly through interaction within a simulated
environment. This was the primary objective of the efforts detailed within this chapter. We
achieved this through employing a number of methodologies, where the hierarchical decompo-
sition of the action space had a large impact which we attribute to it being able to provide a
solution to the order-picking problem at a lower spatial resolution than SNAC. Through HSNAC,
we were able to outperform PDM which is a well-established industry heuristic. However, the
manner in which it achieves this is not without fault. The increase in travel distance for pickers
shown in Table 4.1 likely represents a notable increase in maintenance costs for robotic pickers
and possible concerns for human picker welfare. This is likely attributable to the competitive
behaviours we observed. We believe that these observations, in combination with the current
supremacy of FM, demonstrate that whilst we are already in a region of commercial viability
as we greatly exceed heuristic flexibility, there is more work to be done to achieve performance
parity with the best performing heuristic.

The simulator (Section 4.4) forms the foundation of our approach, and provides a necessary
trade-off between accuracy and execution speed in order to make training in a reasonable time
plausible. In real-world settings, many of our assumptions may be challenged. For example, (1)
loading may take a variable amount of time dependent on the required quantity or item type, (2)
the number of workers may vary with shift patterns and (3) agent policy decisions may be able
to happen quicker than the decision interval allowed. Despite this, even with relaxation of all
our assumptions, transferring policies trained in simulation to the real world bring additional
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Figure 4.8: This figure shows the cosine similarity between the average order-picking location
for HSNAC and SNAC. HSNAC exhibits behaviours which indicate that agents are collectively
implementing zone allocations. This structure does not emerge for SNAC.
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challenges. This is a well-known challenge within the RL community known as sim-to-real [93]. In
addition to this, a warehouse does not exist in a vacuum and it needs to be adaptive to pressures
that are placed on it by its supply chain. This is an issue of concept drift [190] and being able to
handle its implication is essential.

Moving our solution towards production requires comprehensive analysis and mitigation
of the limitations which we have identified. We plan to investigate methods to reduce picker
competitivity, where we hypothesise that additional factors such as energy usage penalty and
agent-to-agent communication may inhibit the emergence of these behaviours. We have begun
some limited investigations into curriculum learning [191] as a method to allow for tightening
of assumptions such as our decision interval, and plan to continue with this work and expand
the scope to consider more variables. We have also begun to consider challenges associated with
deployment. For example, upon our warehouse’s order profile or other parameters drifting, we
envisage opportunity for re-training within simulation. With suitable demand prediction models,
we may even be able to undertake this proactively. A real-world proof-of-concept is within our
project roadmap, and addressing hardware interoperability and sim-to-real challenges is critical
for commercial viability.
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5
EMERGENT COMMUNICATION FOR COOPERATION

As we have demonstrated within this thesis, there are numerous ways to achieve coopera-
tion among agents. In Chapter 3, we explored a network maintenance planning problem
and found that convMAAC could achieve effective maintenance policies through repeated

interaction. Chapter 4 proposed the application of DMARL to a warehouse order picking problem
and demonstrated HSNAC which is a feudal method. Despite their demonstrable competence,
these methods do not make use of communicative policies of a form comparable to those we
introduced in Section 2.2.5. Within Chapter 3, we expected to be able to exploit communication to
learn better cooperative policies. However, we found that there was no observable performance
improvement over their non-communicative counterparts. This was unexpected considering the
significant partial observability present in that environment. Its ineffectiveness raised funda-
mental questions for the author about the emergent qualities of inter-agent communications,
which we explore in the following chapter.

Communication can provide a mechanism to promote cooperation, and its benefits are clearly
observable in numerous biological systems [192, 193]. Its evidential importance in these systems
creates a compelling narrative for its study within ML as a means to develop better cooperative
systems [67]. As we observed within Section 2.2.5, numerous methodologies have been proposed
which equip DMARL agents which the necessary apparatus to facilitate communication. In that
section, we propose a dichotomy that divides the approaches into two categories based on their
formulation’s allowance for gradient propagation across the communications channel.

Within this chapter, we delve into the more restrictive non-differentiable setting which has
been previously explored within [11, 73, 74]. This setting typically makes use of discrete commu-
nications channels and IL [8] which makes learning more challenging than their differentiable
counterparts. However, it easily permits extension to situations where a model of an agent we
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are communicating with is not available. This may be the case in human-centric settings and in
industrial applications which require coordination between distinct commercial entities. This
chapter intends to serve as an investigation into questions within inter-agent communications.
There are numerous questions that can be asked. For example, (1) "When should we communi-
cate?", (2) "Why do we communicate?", (3) "How should we communicate?" and (4) "Who are we
going to be communicating with?". This is a mostly random set, and there are numerous other
examples. All of which could themselves be formed into a full thesis. In this chapter, we provide
investigations into (3) and (4), where we provide an overview of the work we undertake in the
synopses below.

(5.2) Who are we going to be communicating with? When considering EC, or any commu-
nicative setting, it is important to identify whom we are communicating with. Is our conversa-
tional partner someone new or someone we are familiar with? We explore the second possibility
through periodic interactions within populations of conversational agents. We demonstrate that
catastrophic forgetting may be problematic with conventional approaches and propose an architec-
tural modification which enables its mitigation. The section is titled "Who - Periodic Interactions
in Populations of Agents" and is an adaptation of the work within [194].

(5.3) How should we communicate? Understanding redundancy To communicate, agents
must have some functionality to transmit messages. Often for discrete communications, the
number of messages made available to an agent is a design decision. This sub-chapter explores
the impact this has on sample efficiency and generalisation. This section is titled "How - Impact
of message dimension" is based upon contributions within [195].

This chapter is structured as follows. In Section 5.1 we introduce the main concepts, definitions
and notation. Section 5.2 and Section 5.3 provide the results of our investigations into the
questions of who and how. Finally, Section 5.4 serves as a concluding section and identifies future
work which would may be interesting to undertake.

5.1 Preliminaries

Within this section, we introduce nomenclature, concepts and notations from DMARL and EC. We
refer back to Section 2.2.1.1 which provides the necessary formulation to discuss communication
within a stochastic game. We note that we may use s or l in place of the agent index i to refer to
agents’ which are speakers and listeners. For example, ºs and ºl are used to refer to the policy of
a speaker or listener. Here, we will introduce the Referential Games (RG) in Section 5.1.1, and
provide more details on learning to communicate in Section 5.1.2.
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5.1.1 Referential Games

Referential Games (RG) [76] are common-place when studying EC [196]. They provide an en-
vironment where the agents’ are required to learn how to communicate without additional
environmental distractors. Within more complex environments, issues can arise ascertaining the
benefit of communications [75] and hence we focus on this more simple and interpretable setting
for our experimentation.

An RG involves two agents who are typically called the speaker, s, and the listener l. Each
agent receives an observation os 2Os and ol 2Ol which is typically sampled from some dataset, D.
The agents undertake a cooperative task that requires the listener, l, to output an action al 2 Al

which is dependent on both Ol and Os. The only way to achieve this is by effectively utilising
a (typically) discrete communications channel which permits the transmission of a message
m 2 Ms from s to l. If the listener chooses the correct action both agents receive a reward of 1
and otherwise, they receive a reward of °1. An illustration of a RG which we utilise extensively
in this chapter is given in Figure 5.1 which requires the listener to add together images from
MNIST [197].

! "

Speaker Listener

#

$! $"

FIGURE 5.1. A Referential Game comprising of two agents, a speaker and a listener. This variant
includes an MNIST-based game in which the listener must correctly add the observations of both
s and l. As utilised within [73].

5.1.2 Learning to Communicate

Deriving communications protocols among tabula rasa IL with DRL is exceedingly difficult. The
simplest objective function we can use is REINFORCE [20] shown in Equation (5.1). However,
this does not typically work well due to the complexity of the communicative task [73]. In the
context of the RG in Figure 5.1, it requires the speaker to provide salient information in the
conveyed message and for the listener to correctly use it. If either of these mechanisms fails, no
useful feedback is provided to either agent.
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In order to improve the efficacy of communicative policies a range of methods have been developed
[73, 74]. Within this chapter, we use a method developed within [73] which achieves SOTA
performance in this setting as our base algorithm. In the following text, we provide an overview
of its operation. In addition to utilising REINFORCE[20] to train the speaker and listener, biases
are introduced into the agents’ loss functions which promote positive signalling and positive
listening. These were first introduced in [75] to measure communication and are defined in
Definition 5.1 and 5.2 respectively.

Definition 5.1 (Positive Signalling). An agent exhibits positive signalling if its messages are
statistically dependent on either its actions or observations.

Definition 5.2 (Positive Listening). An agent exhibits positive listening if its policy is dependent
on the actions of another agent.

[73] adapted these ideas into explicit biases for the speaker and listener which are shown
in Equation (5.2) and Equation (5.3) respectively. These can be shown to improve the emergent
qualities of communication in this restrictive setting through improved coupling between the
constituent elements of the system. Equation (5.2) is a more computationally stable version of
mutual information. Where, ºs refers to the average speaker policy and is estimated empirically
over a batch of experience, ∏ and Htarget are hyperparameters. From an intuitive perspective,
this loss encourages the speaker to learn a policy where observations and messages are correlated.
Equation (5.3) intends to capture the concept of causal influence of communication as presented
in [75]. Here, º̄l refers to a modification of the listener policy which is not conditioned on
the speaker’s message and is trained to optimise the supervised cross-entropy loss given in
Equation (5.4). This formulation encourages the listener to selection actions which are dependent
on the received message.
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All agent policies within this chapter are optimised according to the methodology described
within this subsection.
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5.2 Who are we going to be communicating with?

On an average day, we may have the opportunity (or requirement) to converse with multiple
different people. We note that the way in which we utilise language is highly dependent on our
familiarity with our conversational partner. With a friend or family member who we may have
a high degree of familiarity with, we are likely to have previously established language and
conventions. This is an example of our capability to make use of information acquired within
previous interactions to improve conversational efficacy in later interactions. Here, we note that
much of the experimentation on communication in the IL setting has been restricted to small
static populations of agents, where this typically involves 2-agents [11, 73, 74]. This restricted
experimental setting does not allow for the study of more complex characteristics like those we
have discussed in the text above.

In this more complex setting which we approximate as a population of agents who interact
pair-wise periodically, we expect conventional methodologies to encounter difficulties. As these
methodologies do not make use of parameter-sharing networks [8], it is conceivable that multiple
unique languages may arise where these languages are unlikely to be compatible. As a result
of this, any interaction with a new agent mandates the learning of a shared language. Without
specific modifications to the agent’s architecture, this new language will overwrite the previous
one as a consequence of a known phenomenon within ML named catastrophic forgetting [198].
As the previous language has been lost, any interaction with the associated conversational
partner will require re-training. We provide an informal illustration of this concept within
Figure 5.2. Here, in order to address this issue, architectural modifications inspired by the
Continual Learning literature [199] are used to extend the algorithm proposed by Eccles et al.
[73]. Namely, multi-headed neural networks are used where a different head is maintained for
each language. This paper formalises this concept and demonstrates it within a novel environment
called Communication Carousel which extends a referential game to facilitate the study of this
problem.

This section continues by providing a formal problem statement within Section 5.2.1. We then
solution based upon a multi-headed DNN architecture in Section 5.2.2 and a novel experimenta-
tion platform within Section 5.2.3. Results and discussion are then provided in Section 5.2.4.

5.2.1 Periodic Interactions in Populations of Agents

Let us consider the existence of two sets of agents, where these are referred to as speakers
Tx = {ºs,0, ...ºs,n} and listeners Rx = {ºl,0, ...ºl,n}, respectively1. For some pairing of Tx to Rx, the
agents’ capacity to effectively convey information will be limited by their ability to understand
one another. Over time, the agents can adapt to each other and arrive at an emergent protocol
which maximises task reward.

1To avoid clashes with standard RL notation, the speakers and listeners sets have symbols consistent with
transmitter and receiver.
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After some time, Alice 
and Bob adapt to one 

another.

Alice and Bob initially 
struggle to 

communicate.

She encounters the 
same issue with Charlie.

Alice now goes on an 
adventure. 

Alice now returns home.
After some time, Alice 

and Charlie adapt to one 
another.

After some time, they 
re-learn  to 

communicate again. 

Unfortunately she has 
forgotten the language 

she spoke with Bob.

FIGURE 5.2. In larger populations of agents which interact periodically there is potential for
many unique languages to emerge. When agents interact with speakers of a different language,
they are likely to overwrite their previous language.

The first question this work intends to delve into is, what happens to their established
emergent protocol when an agent (be that the speaker or the listener) interacts with a new
partner? More formally, when the mapping from Tx to Rx is randomised and a period of training
is allowed, how does this impact the agent’s capacity for conversation with its previous partner?
This problem exists within the continual learning setting, where Catastrophic Forgetting is
known to be an issue [198]. It should be expected that as a pair of agents build up familiarity
with one another, their previous languages will drift.

The fundamental issue with this mode of operation is that it always requires an agent to
re-train upon interacting with a different partner even if they had previously arrived at an
efficient protocol. Ideally, this should be avoided as this period of adaptation is costly. Naturally,
the second question is simply, how can we mitigate this issue?

5.2.2 Multi-headed Neural Networks

As mentioned above, this primary issue in our scenario is Catastrophic Forgetting [198]. Following
the naming convention from [199], our approach considers a simple parameter isolation method,
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FIGURE 5.3. DNN architecture of speaker and listener shown on the left and right, respectively.
The networks maintain a separate head for each possible partner, where the label indicates the
conversational partner that it refers to. The white and blue colouring is representative of how
gradients are allowed to propagate through the network. In both cases the CNN and first head
are trained together, whereas the alternative heads are trained separately.

where each speaker and listener maintains a separate output head for each possible partner. This
idea is based on [200]. It is assumed that the identity of each potential partner is observable and
therefore the correct head can be chosen.

The architecture is presented in Figure 5.3, where the CNN for both the speaker and listener
are only trained with the first partner. This decision is justified by the assumption that, in most
cases, languages consider mappings from a similar set of concepts to different words or phrases
and, as such, the features learned by the CNN for one language should be transferable. An
additional variant upon this model is proposed in which the weights of the non-primary heads
are pre-initialised with those of the primary head upon establishment of the first language. This
can be demonstrated to improve sample efficiency when compared to random initialisations.

5.2.3 Communication Carousel

The intention of this work is to investigate the agents’ capacity to maintain emergent languages
after interacting with new partners. To achieve this, N-parallel referential games are instantiated
and speakers and listeners are afforded E episodes with their initially assigned partner. After the
initial E episodes, the agents are rotated and allowed the same number of episodes to interact
with their new partner. This is illustrated in Figure 5.4. After a number of partner changes, !,
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FIGURE 5.4. An environment to facilitate simulation of periodic interactions between agents. In
this version, the agents’ play a Referential Games (RG), but inclusion of other environments is
straightforward.

the speakers and listeners are returned to their initial partner and afforded a further E episodes
to reconverge. All experimental parameters are introduced in Table 5.1. This environment
formulation provides a simple and interpretable test-bed for studying agent adaptation where
the complexity can be easily controlled through appropriate selection of the referential game.

Table 5.1: Environment parameters in Communications Carousel.

Symbol Value
N 4
E 75000
! 1

All code is implemented in Pytorch [173] according to the methodology described in Section
5.2.22. As previously introduced, the implementation of the speaker and listener follows the
methodology described by [73], where we train agents independently utilising REINFORCE
and utilise the same hyperparameters. As we were unable to achieve convergence with the
defined architecture we made one modification. We introduced an extra layer into the DNN
which alleviated this issue. This minor modification to the method proposed by [73] without the
multi-headed output is utilised as a baseline within our experimentation.

2Code available at https://github.com/Jon17591/multi-lingual-agents
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5.2.4 Results and Discussion

The results obtained support the hypothesis that the Multi-headed methods defined within
Section 5.2.2 results in better maintenance of multiple emergent languages.

Figure 5.5: Average reward obtained by all 4-agents with their current partner. Partner is changed
to a new partner at 75000 episodes and then to the original partner at 150000 episodes.

Figure 5.5 demonstrates the average reward which agents receive with their current con-
versational partner for the baseline, Multi-headed method and the Multi-headed method with
pre-initialisation of the non-primary heads. The most notable observation to draw from this
Figure is that the reward for the baseline method reduces substantially when it returns to the
initial conversational partner at 150k episodes, this reduction is not present in either of the
Multi-headed method. This would suggest that Catastrophic Forgetting has been avoided. This
claim is further supported by Figure 5.6a, 5.6b and 5.6c. These figures show the average reward
obtained by all pairings of speakers and listeners in the form of a heatmap. The steps refer
to the beginning of training, after every partner switch and at the end of training where this
corresponds to episodes 0, 75k, 150k and 225k in Figure 5.5. Note that the baseline method
experiences a significant reduction in reward acquisition once it has trained with a new partner
whereas this is not present in either of the Multi-headed methods.

A drawback of the standard Multi-headed method appears to be the reduction in sample
efficiency present when switching to the second partner (75k episodes) in Figure 5.5. It seems
that the Multi-headed method takes longer to acquire the second language. This is as the
additional heads are untrained and comprise of randomly initialised weights. The baseline method
represents a policy that has converged to a solution. The entropy of both sets of speaker policies
(shown in Figure 5.7) gives an indication as to why this occurs. It is clear that the Multi-headed
method begins with significantly higher entropy. The introduction of this extra stochasticity may
make the arrival at a common protocol more time intensive as there is less determinism to the
respective messages and, as such, it is more difficult to achieve synchronisation between the
agents. This can be overcome by pre-initialising the weights of each head with the solution of the
primary head, thereby achieving comparable convergence speeds to the baseline.
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(a) Heatmap for baseline method evaluated for all pairings at episodes=0, 75000, 150000 and 225000.
Scale represents the average reward which is obtained over 100 episodes.

(b) Heatmap for Multi-head method evaluated for all pairings at episodes=0, 75k, 150k and 225k.
Scale represents the average reward which is obtained over 100 episodes.

(c) Heatmap for Multi-head method evaluated for all pairings at episodes=0, 75k, 150k and 225k.
The scale represents the average reward which is obtained over 100 episodes.

Figure 5.6: Pair-wise conversational partner efficacy for various methods.
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Figure 5.7: Entropy of speakers between 75k and 150k episodes.

5.2.5 Further Extensions

A current limitation of our method which we hope to address is that all derived languages are
unique. The resulting multi-agent system has a quadratic relationship between the number of
languages and the number of speakers/listeners. This is not the case in natural systems with the
number of distinct languages being somewhat restricted. An interesting avenue to explore could
consider methodologies which restrict the number of languages that may emerge thereby aiming
to improve zero-shot performance.

Furthermore, although we focus on emergent communication in this work, we believe the
results presented apply more generally to cooperative games. The idiosyncratic conventions which
cooperative agents’ can develop are equivalent to the languages which arise in referential games.
In future work, we intend to expand our analysis to consider a broad set of cooperative problems
where periodic interactions may arise. We believe this mode of operation and methodology may
be applicable in a range of human-centric tasks where the personalisation of policies may be
desirable.

5.3 How are we going to communicate? Understanding
redundancy

Our investigations of "Who are we going to be communicating with?" in Section 5.2, serve to
explore one dimension of variability which we may expect. As we have discussed, there are many
other dimensions which can be explored. In this section, we change our focus to the parameteri-
sation of the discrete communications channel. Within games which allow communication for
communication (like RG), there is typically an opportunity to choose the parameterisation of the
message set. Within previous works [11, 73, 74], little attention has been paid to how this may
impact the messaging protocol, which could lead to unexpected behaviours.

At a fundamental level, we should expect there to be a relationship between the communica-
tive requirements of a task and the provisioning of the message set. If the set is too small, we
will limit the performance achievable by our agents. We note that it is less clear what happens at

87



CHAPTER 5. EMERGENT COMMUNICATION FOR COOPERATION

equality and values exceeding that. Here, we attempt to establish this. Investigation of this in
temporally-extended environments is difficult, as it is often not clear what the communicative
requirements of tasks are. We, therefore, conduct our investigations within RG which allows for
the relationship to be known.

As we will go on to demonstrate in Section 5.3.1, the selection of the message set size has
implications for both sample efficiency and generalisation. We find that when utilising the SOTA
method introduced by Eccles et al. [73] on the MNIST-based RG (see Section 5.1.1) that over-
allocation improves sample-efficiency on training data in comparison to equality. Interestingly
the derived policies tend to retain a high degree of redundancy and typically utilise multiple
messages to refer to the same digit. Where we observe a relationship between the redundancy
and reward acquisition on test data.

We further build upon this result and investigate methods to reduce the redundancy within
the protocol. By doing so, we hope to build more robust representations that better capture
distinct concepts that a speaker (or agent more generally) may wish to communicate. We achieve
this through the introduction of a linearly-scheduled entropy regulariser into the speaker’s loss
function. At the beginning of training, this term acts to maximise the utilisation of the message
set which has previously been demonstrated to improve performance in this setting [73]. As
training progresses, we linearly reduce this incentive until it is zeroed out. The speaker then
tends towards a policy which reduces the utilisation of the message set. This tendency of emergent
languages to reduce their entropy has previously been observed within [201] and we make use of
this property here. We empirically validate our approach on MNIST [197] and then extend our
analysis to KMNIST [202] and Fashion-MNIST [203]. In all cases, we observe improvements in
sample efficiency and generalisation performance over the original method introduced by Eccles
et al. [73].

The following section is structured as follows. We demonstrate our problem in Section 5.3.1.
Observing the aforementioned characteristics, we introduce our entropy scheduling method in
Section 5.3.2 . Our experimentation setup and results are introduced in Section 5.3.3. We then
discuss our results, their implications and outline a direction for future work in Section 4.7.

5.3.1 Problem Demonstration

The aim of this work is to investigate the impact of message set size in MARL, in this section, we
demonstrate that over-provisioning M results in improved sample efficiency, but that the policies
tend to maintain a higher than necessary level of redundancy in their messaging protocols. We
conduct experiments with 10, 20, 30 and 40 messages each repeated with 10 random seeds. We
split the dataset into a 55k training set, and a 5k validation set. We use the same hyperparamaters
defined within [73] and implement our code within PyTorch Lightning [204].

The performance of different cardinalities of M are shown in Figure 5.8. It is apparent from
Figure 5.8a that over-provisioning of M results in improved sample efficiency when compared
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to |M| = 10. Over-allocation of M may afford a degree of flexibility within learning and reduce
the difficulty of the task. The extra capacity could allow the speaker to represent more distinct
members of an image class as separate messages, whereas M = 10 requires the speaker to learn
that these images represent the same concept. This is supported by Figure 5.8c, which shows
the effective cardinality of the message protocol. We define effective cardinality in Equation (5.5)
which tells us which messages are being used by the speaker on a large batch of validation data,
B. It illustrates how speakers tend to converge to messaging protocols which utilise a subset of M
which is notably larger than the minimum viable size of 10. We expected that this may manifest
in a reduction in test performance – this is supported by Figure 5.8b which shows a negative
correlation from |M|∏ 20 between test performance and the remaining cardinality. Noting, the
significant drop in test performance present between message set cardinalities of 10 and 20, we
conduct a targeted parameter sweep within this range which is shown in Figure 5.9. We find
that cardinalities of 16 to 18 can improve test performance compared to |M| = 20. However, this
appears to come with a greater degree of variance. Values less than 16 experience significant
reductions in performance. Henceforth, we conduct experiments with M = 20 as it provides a
trade-off between variance and mean performance.

(5.5) c(B)=
X

m2M
1[iffm 2 B]

A question that immediately presents itself is whether these characteristics are just a manifes-
tation of the speaker side biases within [73]. In their standard form, these act to incentivise a
speaker to maximise the mutual information between messages and observations. As we saw
previously this is implemented into the speaker’s loss through Equation (5.2). Where ºi

M is the
average of the message policy over a batch of experience, and, ∏ and Htarget are both hyperpa-
rameters. This encourages the speaker to output messages with uniform probability on average,
but are not random with respect to an observation.

It would seem plausible that our observations from Section 5.3.1 may be caused by the

(a) Performance on training data (b) Performance on test data (c) Effective Cardinality of speaker

Figure 5.8: Figures showing the impact of multiple message set cardinalities. Plotted results
show mean and 95% confidence interval.
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Figure 5.9: Figure showing the test performance as in Figure 5.8b with additional message
cardinalities (12,14,16,18). Plotted results show mean and 95% confidence interval.

maximisation of H(ºi
M). This term may encourage the speaker to maintain excessive redundancy.

To evaluate the importance of this term, we perform an ablation in which we remove it from
the loss function. These are shown in Figure 5.10. Its removal appears to reduce learning speed
as demonstrated in Figure 5.10a. However, both the cardinality and test performance of the
converged policies are preferable. A natural question that arises from here is whether it is
possible to obtain the initial sample efficiency which is offered through the inclusion of the
entropy maximisation term and the generalisation performance that is given by its exclusion?
Effectively, we are looking for a method that allows for the manipulation of effective cardinality
at different stages throughout the training procedure.

5.3.2 Scheduling Entropy Regularisation

We have demonstrated that maximisation of H(ºi
M) encourages the maintenance of additional

redundancy. However it does seem to offer improved sample efficiency. We suggest that it may
enable this by providing a mechanism which encourages the speaker to represent more distinct

(a) Performance on training data (b) Performance on test data (c) Effective Cardinality of speaker

Figure 5.10: Figures showing the impact of entropy maximisation. Plotted results show mean
and 95% confidence interval for message dimension of 20.
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members of an image class as separate messages thereby reducing task complexity and aiding
sample efficiency. As training progresses and the speaker’s competence begins to increase, it
would seem to be desirable to encourage it to minimise redundancy and hopefully improving
generalisation. Here, we propose a methodology to enable this. We achieve this by modifying the
behaviour of ∏ and making it a function of the speaker’s experience as shown in Equation (5.6).
Where t is specified in epochs and c is a hyperparameter which controls the point at which we
switch from entropy maximisation to minimisation.

(5.6) ∏(t)=∏£max
µ∑

1°
µ

t
c

∂
,0

∏∂

Intuitively, ∏(t) acts to reduce the influence of the H(ºi
M) as the agent gathers experience. Once

∏(t)= 0, we end up in the mode investigated in Section 5.3.1 and will tend towards the reduction
of effective cardinality.

5.3.3 Experiments

We demonstrate entropy scheduling through an extension on the experimental protocol utilised
in Section 5.3.1. In order to understand the implication of differing observational distributions
and task complexities we introduce two further datasets. In addition to MNIST [197], we utilise
KMNIST [202] and Fashion-MNIST [203]. These were selected as they do not require modification
to the underlying neural network allowing for the avoidance of a potential source of variability
in our analysis. Despite the change in dataset, the underpinning RG remains unchanged still
requiring the speaker and listener to add together digits. Although the task may initially seem
nonsensical as it now requires adding together items of clothing (or Japanese letters), we highlight
that the task actually requires the agents to add together the labels of the images, not the actual
images. This is to say that the semantic meaning of the images is unimportant.

The algorithmic implementation remains the same as in Section 5.3.1, with minor mod-
ifications to facilitate the scheduling given in Equation (5.6). We run a grid-search across
c = [100,200,300,400,500]. We report training reward, validation reward and test performance
effective cardinality for our best performing c. The obtained values are averaged across 3 random
seeds trained for 500 epochs each. As baselines, we include both results obtained in Section 5.3.1,
where these are the standard implementation of [73] and the modification without the maximisa-
tion of the average message entropy.

5.3.4 Results and Discussion

Our results for MNIST, KMNIST and Fashion-MNIST are shown in Figure 5.11, 5.12 and 5.13,
respectively. These results support our hypothesis that addressing excessive redundancy can
improve generalisation performance in comparison to the standard implementation of [73] as
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(a) Performance on training data (b) Performance on Test data (c) Effective Cardinality of speaker

Figure 5.11: Performance comparison of entropy scheduling, no entropy and baseline on MNIST.
Plotted results show mean and 95% confidence interval.

(a) Performance on training data (b) Performance on Test data (c) Effective Cardinality of speaker

Figure 5.12: Performance comparison of entropy scheduling, no entropy and baseline with
KMNIST. Plotted results show mean and 95% confidence interval.

(a) Performance on training data (b) Performance on Test data (c) Effective Cardinality of speaker

Figure 5.13: Performance omparison of entropy scheduling, no entropy and baseline with MNIST.
Plotted results show mean and 95% confidence interval.

92



5.3. HOW ARE WE GOING TO COMMUNICATE? UNDERSTANDING REDUNDANCY

shown in Figure 5.11b, 5.12b and 5.13b. The scheduled entropy regularisation, ∏(t), facilitates
this and can be shown to significantly reduce the excess redundancy in the protocol as shown in
Figure 5.11c, 5.12c and 5.13c.

In comparison to the "No entropy" variant, the scheduled entropy regularisation method
achieves competitive test performance and improves the mean performance on Fashion-MNIST
and KMNIST (Figure 5.12b and 5.13b) but slightly underperforms on MNIST (Figure 5.11b). On
MNIST and Fashion-MNIST, the scheduled entropy regulariser converges to similar values of
effective cardinality. On KMNIST it appears to converge to a value of 14, where the reason for
this is unclear but we expect that if we increase the training duration that this would converge
towards 10 as the "No entropy" variant does. We do note, that even with this higher effective
cardinality the test performance has significantly lower variance and a higher mean value which
may attest to this being a peculiarity of the dataset.

A notable difference can be observed in the sample efficiency of the scheduled entropy
regularisation. On MNIST and KMNIST (Figure 5.11a and 5.12a) it converges more quickly
and on Fashion-MNIST, it achieves comparable performance to the standard implementation.
This is a somewhat unexpected but welcome result. To explain this, we refer to the baselines
within Figure 5.11a and observe that the initial performance of the standard implementation is
superior to the "No entropy" variant but that the models converge at approximately the same
point. This along with the dominance of the scheduled entropy regulariser may imply that entropy
maximisation is only beneficial at the beginning of training. We hypothesise that later in the
training procedure it may act as a source of noise which obfuscates the training objective.

5.3.5 Future Work

We believe that this method represents an interesting step towards generalisation within commu-
nicating MARL. However, there are a number of limitations which we aim to address in future
work.

Firstly, our current investigations were restricted to referential games. This was due to their
amenability to analysis. Most usefully, it allowed us to know the minimal number of messages
required for the task and for the agents to concentrate on communication without distraction
by other environmental tasks. In future work, we intend to extend our experimentation to
more complex temporally-extended environments where communications protocols may be more
abstract. These types of environments may mandate the utilisation agent architectures involving
recurrent neural networks which will add other complexities.

Secondly, we consider a restricted class of scheduling functions. In this work, we only evaluated
linear schedulers which are a function of training time. There are many other plausible functions,
for example, a step or exponential function. It is plausible that the correct choice may be dependent
on exact environmental characteristics. It may also be advantageous to use alternative values
to condition the scheduler on other than training time which may better capture an agent’s
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understanding of the environment.

5.4 Conclusion

Communication is a method by which agents can cooperate, and it is commonplace in many
real-world systems. Learning how to communicate, however, is exceedingly difficult and raises
significant challenges for DMARL agents. This chapter considered the challenge of learning how
to communicate and conducted fundamental research exploring a multitude of challenges. We
focused on two distinct questions, firstly, "Who are we going to be communicating with?", and
secondly, "How are we going to be communicating?". In doing so, we hoped to understand the
limitations and qualities of communicative protocols.

In our analysis of "Who are we going to be communicating with?" in Section 5.2, we considered
the implications of periodic interactions within populations of agents. We observed how multiple
languages can arise, and how partner changes can result in catastrophic forgetting of established
protocols. In order to overcome this, we considered the development of agents which can maintain
multiple languages. This work builds upon that by [73] and introduces a parameter isolation
method into their neural network in order to mitigate the aforementioned issues. The modification
involves the utilisation of a multi-headed output network, where each head is utilised for a specific
language. This approach was validated empirically within a novel referential game formulation
which facilitated the evaluation of language maintenance through interactions with multiple
unique agents and can serve as a simple test-bed for future work. The results demonstrate that
the proposed method effectively avoids catastrophic forgetting when compared to the standard
implementation of [73]. Future work could consider this methodology within more complex
domains and zero-shot scenarios.

In Section 5.3 we explored our second question - "How are we going to be communicating?".
Here, we considered the impact of the discrete message set size on the emergent protocol. Investi-
gations were conducted within an RG which allowed for the communicative requirements of the
task to be known. When utilising the method introduced by [73], we found that equality between
the message set size and the task’s requirements led to noticeably reduced sample efficiency
and absolute performance in comparison to over-parameterisation. However, the derived policies
tended to maintain high degrees of redundancy. Further analysis established that the route course
of the redundancy was an entropy maximisation term within [73]. Its omission translated to
reduced redundancy which improved generalisation, but at the cost of sample efficiency. Through
the introduction of a linearly scheduled decay into the entropy maximisation term, we were able
to achieve the best of both variants. The proposed approach was empirically validated on MNIST,
KMNIST and Fashion-MNIST. On all datasets we observed reduced redundancy, improved test
performance and greater than or equivalent sample efficiency to [73]. On MNIST and KMNIST,
we observed improvements in sample efficiency which was attributed to the entropy maximisation
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acting as a source of noise later in later stages of training. We believe this method presents an
interesting insight into a commonly overlooked hyperparameter and its connections to sample
efficiency and generalisation. Future work could estimate communications requirements of tem-
porally extended tasks which would enable the translation of the observations provided here into
actionable insights.

By developing a deeper understanding of questions like those posed here we hope to better
understand the nature of communications. Through doing so, we may be able to equip agents with
apparatus which facilitates better cooperative behaviours. At the very least, we expect that work
of this type may enable us to develop better solutions to complex tasks. More aspirationally, we
anticipate that future industrial systems will be heavily dependent on inter-agent communication
in order to facilitate the organisation of complex heterogeneous systems. Advantage may be
extracted by enabling DMARL agents to partake in these conversations. As we have identified,
there are numerous opportunities for future work, from a task-centric perceptive identification
capability to quantify task dependence on communication would be advantageous.
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Many industry’s operations are dependent on infrastructure comprised of vast numbers
of interacting and interdependent assets. The resultant system is sufficiently intricate
and high dimensional that it typically prohibits the direct application of conventional

DRL methodologies. This thesis explored the suitability of DMARL as a solution to this problem.
As we have learned, DMARL is tailored towards distributed control and encompasses a range of
algorithmic innovations which provide tractability and suitability within this challenging and
common domain. Our analysis was directed towards two compelling industrial sectors which
have considerable societal importance. These are telecommunications and logistics, both of which
provide essential services. Furthermore, we also explored the role of communication in cooperative
DMARL, which we anticipate as a key method in future methods which may need to support
cooperation within hybrid human-robot teams. In the text below, we summarise our contributions.

The initial focus of our work within telecommunications was to examine the limitations
of conventional DRL methodologies within what is typically a highly distributed system. We
investigated the potential of utilising single-agent DRL to optimise resource allocation in an
O-RAN system. An effective solution was developed which improved resource utilisation by 5.7%
over our strongest baseline. Despite the observed improvements, scalability limitations within the
proposed solution emerged upon closer inspection. While analysing the feasibility of centralised
and single-agent methods, we observed that centralised approaches often struggle with the
curse of dimensionality, limiting their scalability to realistic networks. Conversely, single-agent
methods may overlook the implications of agent interactions, which can reduce their effectiveness.
The aforementioned difficulties can be remedied through the adoption of DMARL. The viability
of DMARL was demonstrated in a network maintenance task which required assets to be able to
make decentralised maintenance decisions. To improve learning efficiency while maintaining full
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decentralisation at deployment, we incorporated concepts from CTDE. Notably, we integrated
critic centralisation into our AC algorithms during training, following a common practice in CTDE.
The best-performing solution, convMAAC, utilised an GNN-based centralised critic and was
shown to improve network availability by 3.49% and 6.13% over a heuristic baseline within two
simulated RAN. Notably, the employment of an GNN-based critic greatly reduced the required
parameters within the DNN in comparison to conventional FCN alternatives providing improved
scalability. Key limitations of the model were identified, where these included Sim-to-Real and
environment non-stationarity.

Within the logistics work, we focused on the extension and improvement of an existing
solution for an order-picking problem with application to commercial warehouses. The best-
performing solution, HSNAC, was developed in collaboration with domain experts and harnessed
various ideas from across DMARL, most notably including methodologies at its intersection with
HRL. HSNAC was demonstrated to achieve competitive performance with established heuristics,
outperforming PDM whilst falling short of FM. However, unlike the heuristic methods, the
derived approach can learn effective behaviours directly from interaction and does not require
manual optimisation significantly reducing the human effort required. Our contributions were
multi-faceted, including enhancing the computational efficiency of the DMARL training pipeline,
model optimisations, policy visualisations and identification of current limitations. Similar to
the telecommunications work, the expected limitations of the logistics solution are foreseen to
bear a striking resemblance, with a particular emphasis on addressing Sim-to-Real transfer and
challenges associated with environmental non-stationarity. Fundamentally, this is attributable
to underlying limitations of DMARL models and the dynamic nature of real systems.

Both convMAAC and HSNAC facilitated learning of cooperative policies within their target in-
dustrial tasks. They made use of varied algorithmic mechanisms to foster cooperative behaviours
attesting to the diversity of methodologies which are available and may be utilised within dif-
fering applications. In our telecommunications work, we anticipated an opportunity further to
improve performance through the facilitation of inter-agent communication. However, empirically,
we were unable to demonstrate this. This led to an interest in the fundamental properties of emer-
gent communication as a method for cooperation. As a microcosm of the problem of learning to
communicate, we conducted a series of experiments within referential games. We established that
periodic interactions in populations of agents can lead to catastrophic forgetting of established
protocols and how vocabulary size and utilisation can impact learning efficiency. In both cases,
we demonstrated methodologies which enable the mitigation of these observations. Although,
more abstract than other concepts within the thesis, we believe communication will likely be an
integral part of future systems as a method to enable cooperation within heterogeneous teams
which may involve human-robot collaboration. It is therefore essential that fundamental work
like this is continued such that the limitations of conventional methods can be established.

In conclusion, this thesis served to further research in cooperative DMARL and demonstrated
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application within two challenging industrial domains. Our contributions highlight the potential
of DMARL to revolutionise industrial control and pave the way towards greater productivity.
Furthermore, they record the process, challenges and considerations which are common and must
be overcome in order to successfully develop viable DMARL solutions. Despite our efforts, many
obstacles still remain before these methodologies can be successfully deployed. Notably, we have
not grappled with the complexities of deployment or those that will be raised by integration with
real systems. In the following section, we provide recommendations for how future work in this
area may proceed.

6.1 Future Work

As the methodologies described within this thesis and the literature more widely begin to
approach maturity, there will be an increasing propensity towards deployment within real-
world applications. This represents a significant domain shift, from the sanitised and often
simplified experimental environments commonplace in academia to the highly dynamic and
complex components that constitute production systems. Furthermore, employed solutions will
have to operate within the constraints of societal bureaucracy and contractual obligations. Here,
we identify compelling opportunities for further work.

Sim-to-Real The infamously low sample efficiency of DMARL and DRL and dangers of learning
within the real-world mandates training within simulation. The simulators are typically required
to be fast and parallelisable in order to reduce the effective training time. As we have mentioned
previously, these simulators are typically approximations of relevant processes and the quality of
this approximation is often referred to qualitatively as the Sim-to-Real gap. The mitigation of this
would seem to be important in the pursuit of practically applicable systems. There would, however,
appear to be practical trade-offs which exist between simulator accuracy and computational
efficiency which require investigation. It may be expected that certain classes of tasks or perhaps
even representations may be less susceptible to the challenges of Sim-to-Real. For example, it
may be expected that digitally native applications that are somewhat disconnected from physical
processes may be easier to move towards deployment.

Non-stationary environments The underlying behaviour of industrial systems varies over
time, the reasons for which are numerous and may include changes in the workforce, technology,
user demands or global events (e.g. pandemics). These changes can be abrupt or they may be
gradual, but no matter how they occur, adaption is typically critical for commercial longevity.
There are numerous opportunities for future work and we explore a subset of them below. Here, we
explore variation in workforce composition and the challenge of ensuring system-level goals are
achieved. At a high level, we desire a workforce that can work together seamlessly. Cooperative
DMARL tends to develop idiosyncratic conventions which may not be compatible with other
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agents (e.g. human employees) who were not part of the training procedure. Exploration of
methodologies like ZSC within industrial settings is a worthwhile endeavour. Furthermore, its
intersection with ideas presented in Chapter 5 regarding periodic interactions and personalisation
may enable incrementally improvement of human experience.

Risk and Governance DRL and DMARL are on their way to becoming a common part
of toolboxes which organisations can use to solve decision-making processes. However, their
introduction requires an understanding of their alignment with organisational values, objectives,
risk appetites and legality. In their current form, there would seem to be numerous issues that
have to be overcome. For example, DRL and DMARL do not typically come with performance
guarantees, comprehensive testing is impractical for developed applications is difficult, and the
explainability of decisions can be difficult to achieve. Methodologies like CMDP and further
consideration of ML-Ops are likely essential. This is especially important in regulated industries
like telecommunications and finance in the United Kingdom.

Auto ML DMARL and DRL promise the capacity to automatically learn to solve tasks through
interaction. This glosses over the significant engineering efforts that are currently critical for its
successful application. As we captured in Section 2.3, there is a vast array of decisions which
must be made and navigation of these requires significant intuition, determination and most
critically luck. Overcoming significant sensitivity to formulation, methodology and algorithmic
hyperparameters is typically an innate part of any development cycle. This challenge is exac-
erbated by the speed at which DRL research community is progressing. Ever-increasing the
number of decisions that are available for engineering teams. Effective distillation of these ideas
into actionable insights is necessary if we are to see widespread adoption of these promising
methodologies within commercial applications.
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