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Abstract

Background: Alzheimer's disease (AD) is often preceded by stages of cognitive

impairment, namely subjective cognitive decline (SCD) and mild cognitive impair-

ment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors

of AD, other non‐invasive candidate predictors include personality traits, anxiety,

and depression, among others. These predictors offer non‐invasive assessment and

exhibit changes during AD development and preclinical stages.

Methods: In a cross‐sectional design,we comparatively evaluated thepredictive value

of personality traits (Big Five), geriatric anxiety and depression scores, resting‐state

Abbreviations: Aβ, Amyloid beta; AD, Alzheimer's disease; aMCI, amnestic mild cognitive impairment; ANOVA, analysis of variance; BFI, Big Five Inventory; BFI‐10, Big Five Inventory 10‐
item short form; BOLD, blood oxygenation level‐dependent; CERAD, Consortium to Establish a Registry for Alzheimer's Disease; CA, class accuracy; CI, confidence interval; CSF,

cerebrospinal fluid; DA, decoding accuracy; DMN, default mode network; DELCODE, DZNE‐Longitudinal Cognitive Impairment and Dementia Study; DZNE, Deutsches Zentrum für

Neurodegenerative Erkrankungen (English: German Center for Neurodegenerative Diseases); EPI, echo‐planar imaging; fMRI, functional magnetic resonance imaging; FWHM, full width at

half maximum; GAI‐SF, Geriatric Anxiety Inventory, Short Form; GDS, Geriatric Depression Scale; HC, healthy controls; Hz, Hertz; MCI, mild cognitive impairment; NIA, National Institute on

Aging; MMSE, Mini Mental Status Examination; MNI, Montreal Neurological Institute; mPerAF, mean percent amplitude of fluctuation; MPRAGE, Magnetization Prepared Rapid Gradient
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functional magnetic resonance imaging activity of the default mode network, apoli-

protein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, Aβ42/40 ratio) in a

multi‐class support vector machine classification. Participants included 189 healthy

controls (HC), 338 individuals with SCD, 132 with amnesticMCI, and 74with mild AD

from the multicenter DZNE‐Longitudinal Cognitive Impairment and Dementia Study

(DELCODE).

Results: Mean predictive accuracy across all participant groups was highest when

utilizing a combination of personality, depression, and anxiety scores. HC were best

predicted by a feature set comprised of depression and anxiety scores and partic-

ipants with AD were best predicted by a feature set containing CSF biomarkers.

Classification of participants with SCD or aMCI was near chance level for all

assessed feature sets.

Conclusion: Our results demonstrate predictive value of personality trait and state

scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and

ApoE genotype show complementary value for classification of AD and its at‐risk
stages.

K E YWORD S

Alzheimer's disease, amnestic mild cognitive impairment, biomarker, cerebrospinal fluid, fMRI,
machine learning, personality, resting‐state, subjective cognitive decline, support vector

machine

Key points

� Multi‐class support vector machine classification was used to compare the predictive value

of well‐established and non‐invasive, easy‐to‐assess candidate variables for classifying

participants with healthy cognition, subjective cognitive decline, amnestic mild cognitive

impairment, and mild Alzheimer's disease.

� Personality traits, geriatric anxiety and depression scores, resting‐state functional magnetic

resonance imaging activity of the default mode network, ApoE genotype, and CSF bio-

markers were comparatively evaluated.

� A combination of personality, anxiety, and depression scores provided the highest predictive

accuracy, comparable to CSF biomarkers, indicating complementary value.

� Established and candidate predictors had limited success in classifying SCD and aMCI,

underscoring the heterogeneity of these cognitive states and emphasizing the need for

standardizing terminology and diagnostic criteria.

1 | INTRODUCTION

Alzheimer's disease (AD) is commonly preceded by cognitive

impairment states, namely subjective cognitive decline (SCD) and

mild cognitive impairment (MCI). While MCI requires a measurable

deviation from normal cognitive performance as assessed by neuro-

psychological testing, SCD does not. As both are recognized risk

factors for AD,1,2 effective treatment for AD requires early inter-

vention.2–8

Established biomarkers for the diagnosis of AD and associated

risk stages are altered levels of amyloid beta (Aβ1‐42), total tau
(tTau), and phosphorylated tau (pTau181) in cerebrospinal fluid

(CSF;3,7,9). Obtaining CSF samples requires an invasive lumbar

puncture and is typically only performed in cases of clinical suspicion.

Hence, less invasive measures have been proposed. This study un-

dertook a comparative assessment of the predictive value of voxel‐
wise resting‐state functional magnetic resonance imaging activity of

the default mode network (DMN), personality traits, depression,

anxiety, apolipoprotein E (ApoE) genotype, and CSF biomarkers.

These predictors were employed in a machine‐learning classification

framework to distinguish between different groups of participants

positioned along the trajectory of Alzheimer's disease or those in a

cognitively healthy state (Figure 1).

At an intra‐individual level, personality traits10 change in pre-

morbid cognitive states and in AD itself. Overall, neuroticism has been

observed to increase during the transition from normal cognition to
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amnestic MCI, while extraversion, openness, and conscientiousness

decrease, with limited evidence for lower agreeableness.11–14 Simi-

larly, at an inter‐individual level, individuals with AD display higher

neuroticism and lower scores in agreeableness, extraversion, consci-

entiousness, and openness compared to healthy controls in both self‐
and informant ratings.15,16 In general, a linear trend reflecting the

severity of cognitive decline is apparent in personality trait scores,

indicating that alterations in AD are more notable and pronounced

compared to its preceding stages.

Personality traits are considered rather stable throughout life,

while anxiety and depression are transient states. However, anxiety

and depression are widely reported to correlate with personality

traits17–19 and may be regarded as proxies for neuroticism.20,21

Higher levels of depression and anxiety are consistently associated

with subjective cognitive decline (SCD),22 aMCI,23,24 and AD25 and

may be used as predictors for these cognitive states. Comparisons of

affective symptoms between SCD/MCI and SCD/AD have yielded

inconsistent results, but higher prevalence of depressive symptoms is

observed compared to healthy controls.22 Higher anxiety and

depression levels increase the risk of converting from (a)MCI to

AD26–29 and treatment of these conditions might potentially reduce

the conversion rate.30 Additionally, the rate of cognitive decline is

reported to be influenced by the age of depression onset.31 There is

ongoing debate regarding whether depression constitutes a risk

factor or an initial manifestation of AD, or both.32–34

Activity of the DMN35 can be assessed employing resting‐state
fMRI36 and metrics like PerAF37 by measuring BOLD signal fluctua-

tions. Patterns of AD‐typical Aβ plaques deposition and disturbances

in DMN functional connectivity of the DMN show considerable

overlap.38 DMN functional alterations have been described in in-

dividuals with aMCI and AD for a range of measures, including

amplitude of low frequency fluctuations, therefore holding potential

diagnostic value for identifying AD and its at‐risk states.3,7,39,40

The ε4 allele in the apolipoprotein E (ApoE) gene is a genetic risk

factor for AD, showing a gene‐dose effect of the ApoE ε4 risk allele,

with ApoE ε4 homozygotes having a higher risk than ApoE ε3/ε4
heterozygotes.3,4,8,41–44 The ApoE genotype is proposed as a risk

marker in individuals with SCD.2

Previous research has mostly tested the aforementioned pre-

dictors individually in discriminating cognitively healthy individuals

from those at‐risk for or with AD. Here, we assessed their diagnostic

value in a cross‐sectional multi‐class classification approach,45

including all four participant groups simultaneously. Our primary

focus was to evaluate the role of personality traits, both individually

and in combination with depression and anxiety. Furthermore, we

aimed to compare the performance of all assessed feature sets in

terms of their respective predictive accuracies, that is, class and

decoding accuracies. In this study, the term “predictive” refers to

support vector classification performance of feature sets differenti-

ating participant groups in a cross‐sectional design, not the predic-

tion of a longitudinal diagnostic outcome.

Our hypotheses were as follows:

(1) Measures of personality traits would yield significant predictive

accuracies above chance across all participant groups.

(2) Combining personality traits, depression, and anxiety scores

would improve predictive accuracies compared to personality

traits alone.

(3) A feature set comprising non‐invasive predictors (voxel‐wise

resting‐state activity of the DMN, personality traits, depression

and anxiety scores, and ApoE genotype) would yield equal or

higher predictive accuracies across all groups compared to a

feature set consisting of CSF biomarkers (tTau, pTau181, and

Aβ42/40 ratio).

2 | MATERIALS AND METHODS

2.1 | Participants

For our cross‐sectional study, we used baseline data from partici-

pants recruited through the DELCODE study. For detailed informa-

tion on the DELCODE study, see Jessen et al. 8. We included a large

cohort of 733 participants that were assigned to four different

groups based on their entry diagnosis: HC, SCD, aMCI, and mild AD.

All participants were aged 60 years or older, fluent in German, able to

F I GUR E 1 Study design. In a cross‐
sectional design, predictor variables were
combined into feature sets that were used in
the SVM classification to predict participant

groups. The feature set “confounding variables”
was included in all other feature sets and also
served as the base model.
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give informed consent, and had a study partner present. Please see

Table 1 for details.

Participants for the study were recruited either through local

newspaper advertisements or from memory clinics. Healthy controls

self‐identified as cognitively healthy and passed a telephone

screening for SCD. These individuals were included as HC if their

memory test performance was within 1.5 standard deviations (SD) of

the age‐, gender‐, and education‐adjusted normal performance on all

Consortium to Establish a Registry for Alzheimer's Disease (CERAD)

subtests and if they did not meet the SCD criteria.2 Conversely, in-

dividuals expressing cognitive decline concerns to the memory center

physician were categorized as either SCD or aMCI, based on a

comprehensive semi‐structured interview following the SCD‐plus
criteria2 and their CERAD performance. SCD participants out-

performed the −1.5 SD below normal, while aMCI patients under-

performed (>1.5 SD) on the “recall word list” subtest, thus excluding

non‐amnestic MCI participants. They did not meet the criteria for

dementia, and their inclusion was based on the memory clinic di-

agnoses, which adhered to the current research criteria for MCI as

defined by the National Institute on Aging‐Alzheimer's

Association.1,46

Assignment to the AD group was based on both clinical diagnosis

and on the Mini Mental Status Examination (MMSE). Only partici-

pants with mild AD (>18 points and <26 points on the MMSE) were

included. Aside from HC, all participant groups (SCD, MCI, AD) were

memory clinic referrals and underwent clinical assessments at their

respective memory centers. These assessments consisted of a med-

ical history review, psychiatric and neurological examinations, neu-

ropsychological testing, blood laboratory analysis, and routine MRI

scans. Cognitive function was measured using the CERAD neuro-

psychological test battery, which was administered at all memory

centers.

2.2 | MRI data acquisition

Structural and functional MRI data were acquired on 3T Siemens

scanners following the DELCODE study protocol.8,47 A T1‐weighted

MPRAGE image (TR = 2.5 s, TE = 4.37 ms, flip‐α = 7°; 192 slices, 256

x 256 in‐plane resolution, voxel size = 1 x 1� 1 mm) was acquired for

co‐registration and improved spatial normalization.

The MPRAGE was followed by a 7:54 min resting‐state fMRI

(rs‐fMRI) acquisition, during which T2*‐weighted echo‐planar im-

ages (EPI; TR = 2.58 s, TE = 30 ms, flip‐α = 80°; 47 axial slices,

64 x 64 in‐plane resolution, voxel size = 3.5 x 3.5 � 3.5 mm)

were acquired in odd‐even interleaved‐ascending slice order.

Participants were instructed to lie inside the scanner with eyes

closed, but without falling asleep. Directly after, phase and

magnitude fieldmap images were acquired to improve correction

for artifacts resulting from magnetic field inhomogeneities via

unwarping. This was followed by brief co‐planar T1‐weighted

inversion recovery EPIs.

TAB L E 1 Descriptive statistics of predictor variables.

HC SCD aMCI AD Statistics

N 189 338 132 74 ‐

Age range 60–87 years 59–87 years 61–86 years 60–89 years ‐

Mean age � SD 69.09 � 5.42 years 70.72 � 6.05 years 72.86 � 5.61 years 74.09 � 6.26 years H (3) = 52.653, p < 0.001

Gender ratio 81/108 m/f 183/155 m/f 71/61 m/f 33/41 m/f χ2 (3, N = 733) = 7,79,

p = 0.051

ApoE risk alleles N (0/1/2): 146/36/3 N (0/1/2): 220/102/10 N (0/1/2): 69/50/9 N (0/1/2): 27/31/15 χ2 (6, N = 718) = 72,74, p <
0.001

Mean O score* 3.161 � 0.7284 2.888 � 0.7872 3.012 � 0.7421 2.948 � 0.8263 H (3) = 14.249, p = 0.003

Mean C score* 3.196 � 0.6841 3.196 �0 .6645 3.153 �0 .6539 2.910 �0 .7067 H (3) = 11.917, p = 0.008

Mean E score* 3.175 � 0.5097 3.076 � 0.6439 3.129 � 0.6744 3.142 � 0.8868 H (3) = 4.766, p = 0.190

Mean a score* 3.083 � 0.7849 3.148 � 0.7328 3.056 � 0.7678 2.758 � 0.7708 H (3) = 13.769, p = 0.003

mean N score* 2.825 � 0.6475 2.885 � 0.6643 3.077 � 0.8166 3.045 � 0.7474 H (3) = 10.876, p = 0.012

GDS mean/median

score*

0.66/0.00 2.04/1.00 2.02/2.00 2.39/2.00 H (3) = 124.69, p < 0.001

GAI‐SF mean/median

score*

0.65/0.00 1.19/1.00 1.05/1.00 1.05/1.00 H (3) = 24.348, p < 0.001

Mean tTau (pg/ml) 369.47 � 148.70 374.20 � 185.04 555.61 � 318.78 791.96 � 399.94 H (3) = 62.974, p < 0.001

Mean pTau181 (pg/ml) 49.70 � 16.03 54.03 � 23.92 70.74 � 43.02 95.89 � 47.64 H (3) = 53.933, p < 0.001

Mean Aβ42/40Ratio 0.09650 � 0.02214 0.092397 � 0.027371 0.073111 � 0.030570 0.050423 � 0.019247 H (3) = 77.923, p < 0.001

Note: Demographic information along with statistics from a chi‐squared test (gender ratio) and Kruskal‐Wallis tests (other metrics). *see Figure S1 in the

Supplementary Information

Abbreviations: A, Agreeableness; C, Conscientiousness; E, Extraversion; f, female; m, male; GAI‐SF, Geriatric Anxiety Index; GDS, Geriatric Depression

Scale; ml, milliliter; N, Neuroticism; N, sample size; O, Openness; Short Form; pg, picogram.
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The complete study protocol included other scanning sequences

not used in the analyses reported here.8

2.3 | fMRI data preprocessing and analysis

Data preprocessing and computation of mPerAF maps were per-

formed using Statistical Parametric Mapping (SPM12; Wellcome

Trust Center for Neuroimaging, University College London, London,

UK) and the RESTplus toolbox,48 following a recently described

protocol.49 EPIs were corrected for acquisition time delay (slice

timing), head motion (realignment), and magnetic field in-

homogeneities (unwarping), using voxel‐displacement maps (VDMs)

derived from the fieldmaps. The MPRAGE image was spatially co‐
registered to the mean unwarped image and segmented into six

tissue types, using the unified segmentation and normalization al-

gorithm implemented in SPM12. The resulting forward deformation

parameters were used to normalize unwarped EPIs into a standard

stereotactic reference frame (Montreal Neurological Institute, MNI;

voxel size = 3 x 3 � 3 mm). Normalized images were spatially

smoothed using an isotropic Gaussian kernel of 6 mm full width at

half maximum.

PerAF is a voxel‐wise, scale‐independent measure of low‐
frequency (0.01–0.08 Hz) BOLD signal fluctuations relative to the

mean BOLD signal intensity for each time point, averaged across the

whole time series.37 The global‐mean‐adjusted PerAF (mPerAF) was

computed from rs‐fMRI using an adapted versiona of the RESTplus

toolbox.48 A DMN mask50 was applied, representing a composite of

functionally defined regions of interest (ROIs), and the resulting

mPerAF maps served as voxel‐wise mean‐centered predictor

variables.

2.4 | Clinical and risk factor assessments

Trained study physicians administered the baseline clinical assess-

ments in the DELCODE study. These assessments followed a fixed

order and were completed within a single day. Caregivers of partic-

ipants with AD were allowed to help complete the questionnaires.

Clinical assessments included the Geriatric Depression Scale short

form (GDS;51), the Geriatric Anxiety Inventory short form (GAI‐
SF;52), and the Big Five Inventory short form (BFI‐10;53,54). Scores on
the five personality scales (each calculated as the mean of the two

respective items) were included as five standardized predictors. The

sum scores of GDS and GAI‐SF were included as standardized pre-

dictors, respectively.

2.5 | ApoE genotyping

The single nucleotide polymorphisms (SNPs) rs7412 and rs429358,

which define the ε2, ε3, and ε4 alleles of the ApoE gene, were

determined using a TaqMan® SNP Genotyping Assay (ThermoFisher

Scientific). ApoE ε4 non‐carriers (ε2/ε2, ε2/ε3, ε3/ε3) were coded as

0, heterozygotes (ε2/ε4, ε3/ε4) were coded as 1, and homozygotes

(ε4/ε4) were coded as 2.

2.6 | Cerebrospinal fluid biomarker assessment

Cerebrospinal fluid biomarkers (tTau, pTau181, and Aβ42/40 ratio;

collectively referred to as CSF biomarkers) were measured using

commercially available kits according to manufacturers' specifica-

tions: V‐PLEX Aβ Peptide Panel 1 (6E10) Kit (K15200 E) and V‐PLEX
Human Total Tau Kit (K151LAE) (Mesoscale Diagnostics LLC, Rock-

ville, USA), and Innotest Phospho‐Tau (181P) (81,581; Fujirebio

Germany GmbH, Hannover, Germany).

2.7 | Assessment of confounding features

Chronological age was included as a standardized predictor

(mean = 0, SD = 1). The acquisition site predictor used in the DEL-

CODE study included 10 distinct sites across Germany, which were

represented as dummy‐coded predictors using 10 binary variables.

Gender was included as a dummy‐coded predictor with two binary

predictors.

2.8 | Prediction of outcome from predictor
variables and performance assessment

Predictor variables were combined into eight feature sets (Figure 1).

In this study, we will employ the terms “predictor(s)” and “feature(s)”

interchangeably, as well as “group(s)” and “class (es)”, to represent

the same concept.

1. Base model: age, gender, site

2. mPerAF: base model, mPerAF

3. Personality: base model, BFI‐10
4. Depression, anxiety: base model, GDS, GAI‐SF
5. Personality extended: base model, BFI‐10, GDS, GAI‐SF
6. ApoE: base model, ApoE genotype

7. CSF: base model, tTau, pTau181, Aβ42/40 ratio

8. All w/o CSF: base model, mPerAF, BFI‐10, GDS, GAI‐SF, ApoE
genotype

To predict the outcome variable (participant group) with the

feature sets, we employed Support Vector Classification (SVC) using

linear Support Vector Machines (SVMs) with soft‐margin parameter

C = 1 and 10‐fold cross‐validation. All SVM analyses were imple-

mented using LibSVM in MATLAB via custom scripts available on

GitHub (https://github.com/JoramSoch/ML4ML).

Predictive performance of participant classification was assessed

using decoding accuracy (DA), that is, the average proportion of

correctly classified participants across all groups, and class accuracy

WASCHKIES ET AL. - 5 of 14
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(CA), that is, the same proportion, separately for each group, each

ranging between 0 and 1.

For each feature set, statistically significant differences from

chance‐level prediction for DA and CAs were tested, and pairwise

comparisons of each feature set against the base model were per-

formed. This was done using one‐tailed paired t‐tests for the classi-

fication performance of each feature set against the base model, with

each pair consisting of a subsample evaluated using both feature sets.

Bonferroni‐Holm correction was applied for multiple testing. Addi-

tionally, a subsample‐by‐subsample correlation matrix of DAs across

all permutations was computed and incorporated into a general

linear model of the pairwise accuracy differences across all sub-

samples. All scripts used to perform the analyses are available at

https://github.com/jmkizilirmak/DELCODE162.

2.9 | Handling of missing values and unbalanced
class sizes

Participants with missing data for age, gender, site, mPerAF, BFI‐10,
GDS, GAI‐SF, and ApoE genotype were excluded from analysis

(N = 663; 179 HC, 308 SCD, 113 aMCI, 63 AD). Due to additional

missing CSF biomarker values, additional exclusions were made for

the “CSF” feature set (N = 341; 75 HC, 155 SCD, 71 aMCI, 40 AD)

and the “CSF” feature set was excluded from inferential comparisons

to maintain statistical power. Supplementary information provides an

alternative analysis with equal sample sizes (N = 311; Table S4)

across all feature sets, as well as an analysis with SCD and aMCI

groups merged into an “at‐risk for AD” group (Table S2).

Subsampling was used to ensure equal numbers of participants in

each group when performing SVC.55 The size of each subsample was

based on the smallest group (rounded off to the nearest 10). A total

of 30 subsamples were created, and each subsample was subjected to

1000 permutations of group membership to establish a null distri-

bution. Permutations were performed to calculate the p‐value of the

prediction accuracy.

3 | RESULTS

Classification results are reported in Table 2 and inferential statis-

tical comparisons are reported in Table 3. DAs are visualized in

Figure 2 and CAs in Figure 3. The four best performing feature sets

sorted by decoding accuracy are depicted as a confusion matrix in

Figure 4.

3.1 | Base model: Low predictive value of combining
age, gender, and site

The “base model” produced the lowest overall DA (DA = 0.345,

p = 0.047) and no CA was significantly different from chance for any

group (Figure 3).

3.2 | mPerAF: Low but above‐chance performance
of resting‐state DMN activity

Feature set “mPerAF” performed significantly above chance

(DA = 0.352, p = 0.010), along with significant CAs for both HC

(CA = 0.417, p = 0.026) and AD (CA = 0.446, p = 0.016). CAs for SCD

(CA = 0.287, p = 0.299) and aMCI (CA = 0.258, p = 0.419) were

statistically indifferent from chance.

3.3 | Personality trait and affective state scores:
Highest prediction accuracies for HC and across
groups

Feature set “Personality” was consistently outperformed by “Per-

sonality extended”, which produced the overall highest DA

(DA = 0.414, p = 0.001). Combining scores of geriatric depression

and anxiety demonstrated the overall highest class accuracy for

healthy controls (CA = 0.628, p = 0.003) and the overall third‐highest
DA (0.392, p = 0.003).

3.4 | ApoE: Third‐highest decoding accuracy

Feature set “ApoE” showed the third‐best performance (DA = 0.402,

p = 0.002). It also demonstrated significantly above chance CAs for

HC (CA = 0.522, p = 0.021) and AD (CA = 0.522, p = 0.023).

3.5 | Relatively poor performance of combined
predictors without CSF biomarkers

Across all groups and in terms of DA, prediction accuracies of feature

set “All w/o CSF” were consistently lower than those of “Personality”

and “Personality extended” and it was not in the top three CAs for

any participant group.

3.6 | CSF biomarkers predict AD best, but perform
poorly for HC

Feature set “CSF” exhibited the highest CAs for the groups of SCD

(CA = 0.348, p = 0.301) and AD (CA = 0.647, p = 0.009), as well as

the second‐highest DA (0.405, p = 0.017). CAs for HC (CA = 0.431,

p = 0.156) and aMCI (CA = 0.194, p = 0.675) were non‐significant
above chance.

3.7 | Comparison of feature sets and summary

The highest performance in terms of DA (Figure 4) were achieved by

the feature sets “Personality extended” (DA = 0.414, p = 0.001)

followed by “CSF” (DA = 0.405, p = 0.017), “ApoE” (DA = 0.402,
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p = 0.002), and “Depression, anxiety” (DA = 0.392, p = 0.003). All

feature sets—except “mPerAF”—performed significantly better than

the base model in predicting group membership (Table 3).

4 | DISCUSSION

In this cross‐sectional study, we aimed to evaluate the diagnostic

value of several feature sets for Alzheimer's disease, associated at‐
risk states (SCD, aMCI), and healthy controls using support vector

machine classification. We focused on the performance of combining

personality traits with scores of depression and anxiety, as well as

examining the predictive ability of DMN BOLD amplitude fluctuation

measured through resting‐state fMRI, ApoE genotype, and CSF bio-

markers. All feature sets demonstrated decoding accuracy signifi-

cantly above chance (Table 2).

The highest decoding accuracy was observed in feature sets: (i)

“Personality extended,” which combined personality traits with

anxiety and depression scores; (ii) “CSF”, consisting of tTau, pTau181,

and Aβ42/40 ratio; (iii) “ApoE,” including the ApoE genotype; and (iv)

“Depression, anxiety,” comprising depression and anxiety scores. The

only feature sets not achieving significant above‐chance classification

performance for HC were “Base model” and “CSF”, with the latter

showing the lowest overall accuracy for the aMCI group.

4.1 | Inferiority of the combined predictor and poor
prediction accuracy of resting‐state activity of the
DMN

Our hypothesis that combining non‐invasive predictors (feature set

“All w/o CSF”) would outperform CSF biomarkers in prediction ac-

curacy was not supported by our data. The classification accuracies of

the “All w/o CSF” feature set were comparably low and similar to

the “mPerAF” feature set, suggesting that the inclusion of mPerAF

paradoxically reduced classification performance. While DMN

TAB L E 2 SVM classification results.

Feature set Value DA HC SCD aMCI AD

1. Base model Mean accuracy 0.345 0.484 0.248 0.320 0.326

90% CI [0.294, 0.398] [0.374, 0.596] [0.163, 0.353] [0.223, 0.431] [0.227, 0.438]

mean p 0.047 0.051 0.487 0.300 0.316

2. mPerAF Mean accuracy 0.352 0.417 0.287 0.258 0.446

90% CI [0.301, 0.406] [0.310, 0.531] [0.193, 0.397] [0.168, 0.366] [0.336, 0.559]

mean p 0.010 0.026 0.299 0.419 0.016

3. Personality Mean accuracy 0.382 0.466 0.302 0.296 0.465

90% CI [0.330, 0.436] [0.355, 0.579] [0.207, 0.412] [0.201, 0.406] [0.355, 0.578]

mean p 0.006 0.024 0.309 0.300 0.041

4. Depression, anxiety Mean accuracy 0.392 0.628 0.261 0.306 0.374

90% CI [0.340, 0.447] [0.515, 0.732] [0.173, 0.368] [0.210, 0.416] [0.271, 0.488]

mean p 0.003 0.003 0.448 0.311 0.186

5. Personality extended Mean accuracy 0.414 0.564 0.311 0.296 0.485

90% CI [0.361, 0.469] [0.451, 0.673] [0.214, 0.421] [0.201, 0.407] [0.374, 0.598]

mean p 0.001 0.002 0.258 0.292 0.014

6. ApoE Mean accuracy 0.402 0.522 0.299 0.264 0.522

90% CI [0.349, 0.457] [0.409, 0.633] [0.206, 0.409] [0.175, 0.372] [0.410, 0.633]

mean p 0.002 0.021 0.342 0.445 0.023

7. CSF Mean accuracy 0.405 0.431 0.348 0.194 0.647

90% CI [0.330, 0.484] [0.282, 0.591] [0.210, 0.510] [0.091, 0.347] [0.483, 0.787]

mean p 0.017 0.156 0.301 0.675 0.009

8. All w/o CSF Mean accuracy 0.362 0.433 0.293 0.261 0.460

90% CI [0.310, 0.416] [0.325, 0.547] [0.199, 0.404] [0.170, 0.369] [0.350, 0.573]

mean p 0.006 0.016 0.265 0.416 0.012

Note: Because four groups were included, chance performance was at 0.25. Mean accuracy, 90% CI and mean p correspond to the average across 30

subsamples. The p‐value of each subsample was obtained by comparing the accuracy value to the null distribution generated from 1000 permutations.
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resting‐state mPerAF performed above chance, its performance did

not significantly differ from the “Base model".

The predictive ability of resting‐state fMRI of the DMN for AD

has yielded inconsistent findings. While certain studies have reported

consistent alterations in DMN activity and connectivity in AD39 and

the added value of combining different MRI modalities to classify

AD,56 other research suggests that neuropsychiatric measures may

have higher predictive ability.57

It is important to note that most DMN studies have focused on

functional connectivity rather than voxel‐wise amplitude measures

like mPerAF. The divergent results could be attributed to our

approach of evaluating all groups simultaneously, resembling a fully

automated diagnostic process, as opposed to making binary decisions

between distinct groups. Furthermore, unequal sample sizes can

introduce bias in classification, and various approaches have been

proposed to address this issue.58

4.2 | A combination of personality, anxiety, and
depression scores yield a relatively high overall
prediction accuracy

Personality alone demonstrated class accuracies statistically signifi-

cant above chance for the groups of HC and AD, but not for SCD and

aMCI, partially confirming our hypothesis. “Personality” was sur-

passed by the feature set “Personality extended”. However, the ac-

curacy of correctly classifying the aMCI group was equally high, while

class accuracies for the SCD and aMCI groups remained nonsignifi-

cant, partially supporting our hypothesis. These results indicate that

depression and anxiety contribute additional predictive value to the

decoding accuracy of the BFI‐10. The highest class accuracy for HC,

however, was achieved by a feature set containing scores of

depression and anxiety, and adding personality traits did not improve

class accuracy. Previous studies have indicated that depressive epi-

sodes can be prodromal manifestations of neurodegeneration in

AD.32,33,59 Possibly, alterations in levels of depression within the SCD

and aMCI groups surpass changes in personality traits when con-

trasted with shifts seen in healthy controls. The predictive ability of

the feature set “Depression, anxiety” for HC may be primarily

attributed to the GDS as some of the GAI‐SF items overlap with

those of the BFI‐10 neuroticism scale, suggesting depression scores

to be well‐suited in distinguishing between healthy individuals and

participants with cognitive impairment. AD participants were best

classified using a combination of CSF biomarkers, consistent with

previous findings.9,60,61 The predictive value of combining CSF

F I GUR E 2 Decoding accuracies of the evaluated feature sets. The 90% confidence intervals were obtained by averaging the confidence
intervals of the 30 subsamples (single dots) on which SVCs were performed.

TAB L E 3 Inferential statistical comparisons of decoding
accuracy between feature sets.

Base model versus t p CI Adjusted p

mPerAF 1.02 0.157 [−0.01, 0.02] 0.157

Depression, anxiety 6.30 <0.001 [0.03, 0.06] <0.001

Personality 5.49 <0.001 [0.02, 0.05] <0.001

Personality extended 8.44 <0.001 [0.05, 0.08] <0.001

ApoE 9.48 <0.001 [0.04, 0.07] <0.001

All w/o CSF 2.41 0.011 [0.00, 0.03] 0.022

Note: One‐tailed t‐test results are reported for the difference between

the classification performance of each model and the performance of

the base model. The “CI” column reports the confidence interval for the

mean difference in decoding accuracy. The “p adjusted” column reports

p values corrected for multiple comparisons according to the

Bonferroni‐Holm procedure.71
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F I GUR E 3 Class accuracies of the evaluated feature sets. The dotted line represents the chance level. Error bars represent the average
90% confidence interval across all 30 subsamples.

biomarkers, personality traits and scores of depression and anxiety

should be investigated further.

4.3 | Poor classification accuracy for SCD and aMCI
with any feature set

Predictions for participant groups with SCD or aMCI were mostly

above chance level but not statistically significant (Table 2). This

trend persisted after merging SCD and aMCI into an “at‐risk for

AD” group (Table S2). Neither SCD nor aMCI are specific to AD

and can be caused by a variety of conditions, including normal

aging. Because the underlying conditions causing SCD or aMCI in

DELCODE participants were not assessed at the study's outset, it is

reasonable to assume that a proportion of participants did not

actually have preclinical AD (see Section 2.1). Identification of those

individuals with SCD or aMCI not due to AD likely largely failed as

we used predictors that are specific to AD, explaining the poor

WASCHKIES ET AL. - 9 of 14
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class accuracies for the groups of SCD, aMCI, and “at‐risk for

AD”.62–64

4.4 | Limitations

Our study has several limitations. CSF biomarkers were only

measured in a portion of the sample, resulting in different sample

sizes for feature sets and exclusion of the “CSF” feature set from

inferential analysis. Anosognosia is known to be a common occur-

rence in the early stages of AD65–67 and may also have confounded

the assessments of the GDS, the GAI‐SF,68 and the BFI‐10.69 Addi-

tionally, caregiver influence on self‐reports may have affected the

accuracy of assessments in the aMCI and AD groups. Another

important limitation relates to the demographics of the groups.

Despite being composed of confounding variables only, the “Base

model” performed above chance. This can be attributed to the as-

sociation between age and dementia risk.70 On average, AD partici-

pants were older than HC or those with SCD (Table 1). However,

because age was included in all feature sets, its predictive value was

consistently accounted for. Finally, the cross‐sectional design is a

limitation, as it precludes the use of longitudinal data to track per-

sonality change and assess the validity of the markers over the

natural progression of the participants. This underscores the need for

future research to complement our findings with longitudinal data.

4.5 | Conclusions

Our results show that no single combination of the evaluated fea-

tures achieved consistently superior class accuracies for all assessed

participant groups. The combination of depression and anxiety scores

F I GUR E 4 Confusion matrices of best performing feature sets by decoding accuracy.
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was most effective in classifying healthy controls, supporting previ-

ous findings that regard late‐life depression as a prodrome of Alz-

heimer's disease, while CSF biomarkers were most effective in

classifying participants with mild Alzheimer's disease. The highest

overall prediction accuracies across all participant groups were

achieved by a combination of personality traits with scores of

depression and anxiety, closely followed by CSF biomarkers and the

ApoE genotype. These findings indicate that a combination of CSF

biomarkers, personality, depression and anxiety scores, and the ApoE

genotype may have complementary value for classification of AD and

associated at‐risk states. Further investigation is needed, particularly

regarding the predictive value of personality traits and associated

affective states as low‐cost and easily assessable screening tools.

Moreover, our findings highlight the challenge of accurately classi-

fying SCD and aMCI groups using machine learning approaches when

the underlying conditions of these cognitive impairments are un-

known. Addressing this challenge requires adhering to consensus on

terminology and conceptual frameworks.
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