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The dearomative spirocyclisation of benzisoxazoles through a
radical chain mechanism is described. Densely functionalised
spirocycles were prepared in high yields by reacting benzisox-
azole-tethered ynones with aryl thiols in 1,2-dichloroethane
(DCE) at 60°C. The identification of stabilising three-electron

Introduction

Radical dearomatising spirocyclisation cascade reactions enable
simple aromatic substrates to be converted into densely
functionalised and highly prized molecular scaffolds in a single
step.! The effectiveness of this reaction strategy to quickly
access complex 3-dimensional chemical space has inspired
significant progress and a number of substrate systems have
been developed to explore this approach.” However, a
significant proportion of systems developed to date are based
on a simple design principle: tether an electron-rich
(hetero)arene to a reactive radical acceptor or precursor.

In addition to polarity effects lowering the barrier to
spirocyclisation,® we hypothesised that one reason electron-
rich (hetero)arenes have proven so effective is their ability to
form partially stabilised radical intermediates upon spirocyclisa-
tion. For example, indole-tethered ynones 2 were proposed to
rapidly react with a variety of different radical species to form
spirocyclic a-amino radicals 2, which are stabilised by two-
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interactions was key to the development of this new radical
cascade reaction. The obtained spirocyclic products were
converted into other spirocyclic scaffolds through a two-step
hydrogenolysis-cyclisation sequence.

centre  three-electron (2¢,3e) bonding interactions
(Scheme 1a)."”! Based on this rationale, we reasoned that the
elusive radical dearomative spirocyclisation of comparatively
electron-deficient heteroarenes might be realised if similar
interactions could be incorporated into the substrate. Thus, we
identified benzisoxazole-tethered ynones 3 as promising candi-
dates for study (Scheme 1b). Here, the addition of a transient
vinyl radical to the C=N bond of the adjacent benzisoxazole
ring would form nitrogen-centred radical 4,” which would be
stabilised by 2¢,3e bonding with the lone-pair on the adjacent
oxygen atom.

Herein, we describe validation of this design rationale and,
to the best of our knowledge, the first dearomative spirocyclisa-
tion of benzisoxazoles. The straightforward conversion of the
products into other spirocyclic scaffolds through a divergent,
two-step ring expansion sequence is also reported.
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Scheme 1. Radical dearomatising spirocyclisation cascades.
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Results and Discussion

Our studies began by reacting ynone 3a with p-toluenethiol
(HSTol) in MeCN at 60°C for 20 h (Table 1, entry 1), which led to
the formation of a complex mixture of: i) the desired spirocycle
5a in 4% yield; ii) amino alcohol 6a in 11% yield, which was
presumed to form via the cleavage of the weak N—O bond of
spirocycle 5a; and iii) a ~3:7 mixture E/Z alkenes 7a in 65%
yield, which presumably formed via conjugate addition of the
thiol to the electrophilic ynone. Fortunately, a solvent screen
(entries 2-4) revealed that the formation of both side-products
6a and 7a could be completely supressed by using DCE, which
produced the desired spirocycle 5a as the sole product in
quantitative yield (entry 4).®! Attempts to accelerate this
reaction under photochemical conditions led to the unwanted
formation of amino alcohol 6a (entry5). Interestingly, the
addition of basic additives, such as triethylamine, completely
switched the selectivity to favour formation of conjugate
addition product 7a (entry 6). The addition of TEMPO com-
pletely inhibited the formation of spirocycle 5a and only
conjugate addition products 7a were observed (entry 7). More-
over, a thiyl radical TEMPO adduct was observed by HRMS (see
the supporting information). Finally, the formation of spirocycle
5a was also strongly inhibited by the addition of 9,10-
dihydroanthracene (DHA), which is an excellent hydrogen atom
donor (entry 8).”

Table 1. Reaction optimisation studies.

Side products
STol Ph_ST!
Ph \ o
Qe
NH, 6a N\ 7a
OH o-N
Ph
STol
X 0 HSTol on |
1.5 equiv.)
‘ O
o:" [Conditions] O O'NH
3a (0.2 mmol) 5a
Entry® Reaction conditions Yield® Yield® Yield®
5a/% 6a/% 7a/%
1 MeCN, 60°C, 20 h 4 1 65
2 THF, 60°C, 20 h 42 18 -
3 PhMe, 60°C, 20 h 85 4 -
4 DCE, 60°C, 20 h 100 - -
5 DCE, blue LEDs, rt, 21 h 36 34 -
6 Et;N (1 equiv.), - - 95
DCE, 60°C, 20 h
7 TEMPO (1 equiv.), - - 83
DCE, 60°C, 20 h
8 DHA (1 equiv.), trace - 35

DCE, 60°C, 20 h

[a] All reactions were performed with 0.2 mmol of ynone 3a and 0.3 mmol
of HSTol in the stated solvent (2 mL) under argon. [b] Determined by
'H NMR spectroscopy against an internal standard (dibromomethane).
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Based on these observations and previous work in this area,
we propose that a radical chain mechanism is likely operative
and is initiated by the generation of thiyl radical A
(Scheme 2a)."” We propose that thiyl radical A is likely formed
by the facile single electron oxidation of the corresponding
thiolate anion present in solution; the oxidant may simply be
adventitious oxygen, and/or a cationic organic oxidant formed
in situ."" The regioselective addition of radical A to ynone 3a
forms vinyl radical B, which undergoes rapid spirocyclisation to
form nitrogen-centred radical C. Intermediate C may then
abstract a hydrogen atom from HSTol to regenerate thiyl radical
A and afford spirocycle 5a. Computational studies support the
viability of this radical chain, and the idea that intermediate C is
stabilised by 2c,3e bonding interactions (Scheme 2b, see the
Supporting Information for details).'”

The scope of this dearomative spirocyclisation cascade was
next explored using the optimised reaction conditions
(Scheme 3). First, different thiols were examined and pleasingly
a wide variety of alkylated benzenethiols could be used to
afford spirocycles 5a-f in near quantitative yields. It should be
noted that these reactions were easily scalable as spirocycle 5a
could be isolated in 93% yield when the reaction was
performed with 1.0 mmol of ynone 3a. More electron-rich aryl
thiols, including unprotected 4-hydroxybenzenethiol, were
similarly compatible and used to obtain spirocycles 5g-i in
excellent yields. Halogenated benzenethiols were also readily
incorporated into spirocycles 5j-1 and the structure of 51 was
unambiguously confirmed by X-ray crystallography.'” More
acidic electron-deficient aryl thiols primarily afforded conjugate
addition products 7m,n, with spirocycles 5m,n only obtained
in low yield, presumably due to there being a higher
concentration of thiolate anions in solution. Unfortunately, very
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Scheme 2. a) Proposed radical chain mechanism; b) Orbital illustration and
calculated spin density plot to support the proposed 2c,3e © bonding
interaction.
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Scheme 3. Scope of the radical dearomative spirocyclisation cascade. Reactions performed on a 0.2 mmol scale in 2 mL of DCE.

limited reactivity was observed when alkyl thiols were used
(spirocycles 50-q were only formed in trace amounts or low
yields), which is likely due to the higher bond-dissociation
energy (BDE) of the alkyl thiol S—H bonds."* However, dithiols
such as 1,4-benznedithiol were compatible and could be used
to form spirocycle 5r in excellent yield, as a ~1:1 mixture of
diastereoisomers. Other methoxy- and fluoro- substituted
aromatic ynones were prepared and converted into spirocycles
5s,t in excellent yields. Finally, an alkyl ynone substrate was
also prepared and converted into spirocycle 5u in 38% yield.
The reduced reactivity of this alkyl ynone may be due to the
lack of resonance stabilisation of the intermediate vinyl
radical,””® which could change the geometry of the vinyl radical
(from linear to bent) and make thiyl radical addition to the
ynone less thermodynamically favourable.

The synthetic utility of this novel spirocyclic framework was
next explored, by testing a series of divergent reactions to
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convert spirocycle 5a into other spirocyclic products. Guided by
our previous observation that the N—O bond could be readily
cleaved, hydrogenolysis was performed to selectively obtain
amino alcohol 6a in quantitative yield (Scheme 4a). This
procedure was also compatible with other spirocycles and the
structure of amino alcohol 6j was unambiguously confirmed by
confirmed by X-ray crystallography."® Amino alcohol 6a was
then readily cyclised under simple reaction conditions to access
a variety of novel spirocycle frameworks 8-10 in 39-84% yield.
To confirm that other spirocycles could be derivatised similarly,
spirocyclic carbamates 11-14 were also prepared in the same
way, in excellent yields (Scheme 4b).

© 2023 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH
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Scheme 4. Diversification of the spirocycle products through a two-step ring expansion sequence.

Conclusions

In conclusion, the first radical dearomative spirocyclisation
cascade with benzisoxazoles has been developed. The reactions
are proposed to proceed via a thiyl radical-based chain
mechanism, which is initiated under operationally simple
thermal conditions. Thanks to the synthetic versatility of the
weak N—O bond, the densely functionalised spirocyclic products
obtained with this method could be used to access other novel
spirocyclic scaffolds, via divergent, two-step ring expansion
reaction sequences. Considering the prominence of both
benzisoxazoles and spirocycles in medicinal chemistry,"®'” this
work will enable diverse libraries of medicinally relevant
spirocyclic molecules to be rapidly generated. The discovery
that ynones tethered to electron deficient arenes undergo
dearomative spirocyclisation should also encourage the explo-
ration of analogous reactions with other arenes in future
studies.

Experimental Section

General procedure for the synthesis of spirocycles 5: To a solution
of benzioxazole-tethered ynone (0.2 mmol) in DCE (2mL) in a
sealed vial was added thiol (0.3 mmol). The reaction mixture was
degassed with argon for 5 minutes, before being stirred at 60 °C for
20-24 h in a preheated metal heating block. The crude mixture was
quenched with sat. ag. NaHCO; (5 mL) and extracted with CH,Cl,
(3%X5 mL). The organic layers were combined, dried over MgSO,,
concentrated in vacuo and purified by column chromatography to
afford the spirocycle product.
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