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Abstract
Drift-reduced MHD models are widely used to study magnetised plasma phenomena, in
particular for magnetically confined fusion applications, as well as in solar and astrophysical
research. This letter discusses the choice of Ohm’s law in these models, the resulting dispersion
relations for the dynamics parallel to the magnetic field, and the implications for numerical
simulations. We find that if electron pressure is included in Ohm’s law, then both
electromagnetic and finite electron mass effects must also be included in order to obtain
physical dispersion relations. A simple modification to the plasma vorticity is also found which
improves handling of low density regions, of particular relevance to the simulation of the
boundary region of magnetised plasmas.

Keywords: dispersion, fluid model, tokamak edge, numerical simulation, Ohm’s law

(Some figures may appear in colour only in the online journal)

1. Introduction

Drift-reduced fluid models are widely used for the study of
low-frequency (relative to the ion cyclotron frequency) plasma
phenomena, in relatively collisional regimes where fluid mod-
els are appropriate [1], such as the edge region of present-
day tokamaks. These models have also been applied to the
solar corona [2, 3] and interplanetary turbulence [4]. A wide
range of models have been derived in the literature, see for
example [5–19]. The basic assumption they share is that at low
frequencies the cyclotron motion can be averaged over, and
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the plasma fluid motion perpendicular to the magnetic field
described by drifts due to magnetic and electric field inhomo-
geneities. The electrostatic potential is often determined by
enforcing quasineutrality, whilst in electromagnetic models
the magnetic field perturbation is determined through Ampére
and Ohm’s law.

Most models are constructed to conserve an energy,
either by careful selection of terms in an ordering expansion
(e.g. [11, 16]), or by deriving the equations from a Lagrangian
(see e.g. [13, 17]). Whilst energy conservation is important
for both linear and nonlinear properties [13, 14], and usu-
ally improves the numerical stability of a model implement-
ation, it is not the only consideration. The dispersion rela-
tion of the model, and the characteristics of the waves it
supports, are less often detailed. Physically the group speed
of these waves determines how fast information propagates
in the system, which must not exceed the speed of light in
vacuum.
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In numerical implementations, the fastest waves set the
CFL limit on explicit time steps, and for implicit time step-
ping methods [20–22] contribute to the difficulty of invert-
ing the system Jacobian. Implementations of 3D drift-reduced
fluid models for plasma turbulence applications include
BOUT [23, 24], BOUT++ [25], GBS [26], TOKAM-3D [27],
and STORM [28]. Each of these codes use different numer-
ical methods, coordinate systems, and have variations in the
form of equations solved, but they all share common features
of drift-reduced systems: a vorticity equation, coupled to a par-
allel Ohm’s law and a density continuity equation. Here we
examine numerical issues arising from the the linear behavior
of this fundamental set of equations.

This letter aims to clarify discussion of the physical com-
pleteness and numerical stability of reduced plasma fluid
models, and in particular the effect of the choice of Ohm’s
law. Several studies employing reduced fluid models have
retained both electromagnetic and electron inertia effects (e.g.
[14, 26, 29, 30]) and there have been discussions of the result-
ing dispersion relation [10, 14, 21], but many studies do not
include these terms, and the impact on the dispersion relation
of the various approximations has not to our knowledge been
clearly presented in one place. Therefore in section 2 we intro-
duce the drift-reduced equations, then examine the behaviour
of the electrostatic approximation in section 2.1 and move on
to consider electromagnetic models in section 2.2. Section 3
illustrates the practical importance of the linear modes for
time step and iteration count in example nonlinear simulations.
Conclusions are given in section 4.

2. Drift-reduced MHD model dispersion relations

In this letter we consider a series of simplified drift-reduced
plasma fluid models, which evolve the (electron) density n,
vorticityU, and take a form for Ohm’s law parallel to the mag-
netic field. A full derivation of the drift-reduced equations can
be found elsewhere [16] and is beyond the scope of this paper.
We focus for simplicity on isothermal perturbations of a uni-
form stationary plasma, consisting of a single ion species and
electrons, in a uniform magnetic field, in the cold ion limit.
We therefore do not need to include finite Larmor radius cor-
rections to the drift motion of either species or ion viscosity.
We give a brief outline of the derivation of the model, using
SI units throughout except for electron temperature Te in eV,
which we follow by considering step-by-step the form of the
Ohm’s law. We comment on the potential impact of removing
some of the simplifications considered, but a full analysis of
those models is beyond the scope of the present paper.

The electron density continuity equation is used to avoid the
need to evaluate high order ion polarisation velocity terms:

∂n
∂t

=−∇ · (nve) , (1)

where ve is the electron fluid velocity. The quasineutrality
assumption is enforced through current continuity

∇· J= 0, (2)

and the current parallel to the magnetic field J|| = b · J is
derived from the electron momentum equation [1]

men
dve
dt

+∇pe +∇·Πe + en(E+ ve ×B) = F, (3)

where pe is the electron pressure and F is the friction between
electrons and ions, which will appear in the equations below
as resistivity. In the drift approximation it is assumed that
charged particle motion is due to parallel flow along mag-
netic field-lines, and drifts in the perpendicular direction. For
simplicity we here neglect E×B drift (since it does not lead
to charge separation) and as we assume constant background
magnetic field, the diamagnetic drift is also neglected. The
relevant velocity of electrons and ions would therefore be
given here by the sum of parallel flow and polarisation drift:
vi,e = bv||i,e+ vpoli,e . Note that structure induced in the solution
by the drift terms, as well as the evaluation of the required
field gradients, may introduce additional limitations on numer-
ical speed and accuracy not considered here. Finally, following
standard orderings, the electron polarisation drift and viscosity
Πe are neglected, as they are small in the electron mass. The
ion polarisation drift is approximately given by

vpoli ≃ mi

eB2

dE⊥

dt
, (4)

which arises from the time-derivative of the E×B flow
velocity.

Using the Coulomb gauge, E=−∇ϕ− ∂tA, but following
the standard low-β orderings the electromagnetic contribution
to E⊥ is neglected, so E⊥ ≃−∇⊥ϕ. Since we are interested
in the linear response only, with a stationary background, the
nonlinear advection term can be dropped so that

dE⊥

dt
≃− ∂

∂t
∇⊥ϕ. (5)

Similarly we can neglect here the variation of density in the
ion polarisation, sometimes called the Boussinesq approxima-
tion (see [31] and references therein) when the background is
not formally uniform, so the divergence of the ion polarisation
current can be written as

∇· Jpoli =∇·
(
envpoli

)
≃−min0

B2

∂

∂t
∇2

⊥ϕ, (6)

where n0 is a constant background density.
Thus we have the minimal set of reduced MHD equations

which we will study in this letter:

∂n
∂t

= −∇ ·
(
bn0v||e

)
, (7)

min0
B2

∂

∂t
∇2

⊥ϕ = ∇·
(
bJ||
)
, (8)

me

e

∂v||e
∂t

= − 1
en0

∂||pe + ∂||ϕ+
∂A||

∂t
+ ηJ||, (9)

mi

e

∂v||i
∂t

= −∂||ϕ−
∂A||

∂t
− ηJ||, (10)

2
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J|| = en0
(
v∥i− v∥e

)
=− 1

µ0
∇2A||, (11)

which are essentially the same equations as used in [30–32].
Note that in the isothermal electron limit the thermal force
does not appear in the expression for the parallel friction
b ·F= en0ηJ∥, where the parallel Spitzer resistivity for a
pure deuterium plasma is η = 0.51me/n0e2 τei and τei =

12 π3/2m1/2
e T3/2

e ϵ20/2
1/2n0e5/2 lnΛ is the electron-ion collision

time [33]. Note that [13], for example, gives a more complete
expression for the parallel electron velocity, which reduces
to (9) in the linear limit we will consider here.

With a slight modification the system of equations given
above could be used to describe, approximately, modes above
the ion acoustic frequency (see section 2.1.1) in a system with
additional heavy ion species, whose parallel flow is negligible.
The ionmass in the ion polarisation velocity would be replaced
with an effective mass and an effective charge would appear in
the collision time to represent the multiple species pitch-angle
scattering. However, a complete representation of a multi-ion
system, even in the cold ion limit, would look quite different
and introduce additional numerical complexity, as individual
ion continuity equations would be needed, as well as expres-
sions for the various contributions to the inter-species friction.

The inclusion of electron inertia or pressure in Ohm’s law,
(9), significantly change the character of the waves in this sys-
tem, as compared to ideal or resistive MHD, introducing the
inertial (IAW) or kinetic Alfvén waves (KAW) [34], whose
wave speeds along the magnetic field have a dependence on
wave-number perpendicular to the magnetic field, k⊥. In the
following sections we examine the effect of approximations
made to (9) on the dispersion relations, and do not note expli-
citly the various ω= 0 solutions which arise. Here we are
concerned with ensuring that the resulting wave speeds do
not diverge or exceed the speed of light in vacuum c for
arbitrary k⊥.

In this paper we consider isothermalmodels with fixed elec-
tron temperature Te, in which the right hand side of the con-
tinuity equation (7) contains a reference density n0 rather than
the evolving density n. This does not affect the linear analysis
presented here, since the linearised system is unaffected by
this choice for a stationary equilibrium. Nonlinearly n0 rather
than n is required in this limit so that by multiplying the set of
equations (7)–(10) by pe = enTe, ϕ, v||e and v||i respectively,
an energy equation can be derived:

∂

∂t

[
1
2
eTe

n2

n0
+

1
2
min0

|∇⊥ϕ|2

B2
+

1
2
men0v

2
||e

+
1
2
min0v

2
||i+

∣∣∇⊥A||
∣∣2

2µ0

]
=−ηj2|| +Div. terms (12)

where the left hand side represents time dependence of the
internal energy, E×B flow energy, electron and ion parallel
flow energy, and electromagnetic field energy. On the right is a
dissipation term due to resistivity, and divergence terms which
become boundary fluxes when integrated over the domain. In a

non-isothermal model the density equation would not particip-
ate in the energy balance, and could contain the evolving dens-
ity n rather than constant n0; the equations above would in that
case be augmented by an internal energy (pressure) equation
for the electrons.

The modifications to Ohm’s law made in the following
sections will modify the conserved energy on the left of (12),
while retaining its general form: In the electrostatic approx-
imation (section 2.1) the A∥ term will be removed; if ion flow
is neglected then the ion parallel kinetic energy is removed;
while if electron mass is neglected then the electron paral-
lel kinetic energy is removed. We note that in more complete
models with advection and other cross-field energy transfer
terms, modifications to one equation must typically be accom-
panied by changes to other equations, so as to avoid breaking
the energy conservation properties of a model.

2.1. Electrostatic model

In the case of isothermal electrons with constant temperature
Te

1
en

∂||pe →
Te

n0
∂||n. (13)

Neglecting both the electromagnetic part of the electric field
and the electron mass, Ohm’s law (9) then reduces to

ηJ|| =−∂||ϕ+
Te

no
∂||n, (14)

so that in the limit of η → 0 the well known Boltzmann
relationship between potential ϕ and density n is recovered.
For clarity we start by neglecting the ion parallel flow, and
so exclude the parallel ion sound wave—we reintroduce it
and consider its effect in section 2.1.1. The parallel current
can then be written as J|| =−env||e. Linearising the set of
equations (7)–(9), with

∂|| → ik||,
∂

∂t
→−iω, ∇2

⊥ →−k2⊥, (15)

the dispersion relation with finite resistivity is then given by

− iω =−k2||
Te

ηen0

(
1

k2⊥ρ
2
s
+ 1

)
. (16)

Here ρs = cs/Ωi =
√
Temi/eB2 is the hybrid ion or ion sound

gyroradius, where cs =
√
eTe/mi is the ion sound speed and

Ωi is the ion cyclotron frequency. Typical magnetised plasma
edge turbulence, for example in tokamaks and linear devices,
have scale lengths perpendicular to themagnetic field such that
k⊥ρs ∼ 0.1− 1.

Equation (16) represents a diffusion equation along the
magnetic field for the evolving quantities (n, ϕ, or J||) with
diffusion coefficient D:

D=
Te

ηen0

(
1

k2⊥ρ
2
s
+ 1

)
. (17)
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Smaller k⊥ modes (longer perpendicular wavelength) diffuse
along the magnetic field faster than high k⊥ modes. With
the Spitzer resistivity η ≃ 10−4 lnΛT−3/2

e Ωm for a pure deu-
terium plasma:

D≃ 1.3× 106
(

Te

10 eV

)5/2(1018 m−3

n0

)
×
(

1
k2⊥ρ

2
s
+ 1

)
m2 s−1.

This fast diffusion can place limits on explicit time steps
or make the linear system solved for an implicit time step
extremely ill conditioned, becoming more restrictive as the
electron temperature increases or the system size increases
(smallest k⊥ decreases). Note that there is no limit to the speed
at which information propagates in this model: k⊥ = 0 modes
communicate instantaneously along magnetic field lines.

If we keep finite electron mass in Ohm’s law, but still drop
the electromagnetic term then (9) becomes

ηJ|| =−∂||ϕ+
1
en0

∂||pe +
me

e

∂v||e
∂t

, (18)

giving the dispersion relation

ω2 + iωη
v2te

µ0V2
Aρ

2
s
= k2||v

2
te

(
1+

1
k2⊥ρ

2
s

)
, (19)

where vte =
√
eTe/me is the electron thermal speed. The

second term on the left here accounts for perpendicular mag-
netic diffusion due to the parallel resistivity, which results
from the electron-ion collisions which have a characteristic
timescale 0.51/τei = ηn0e2/me = ηω2

pe/µ0c2 = ηv2te/µ0V2
Aρ

2
s .

The plasma skin depth is c/ωpe, with c the speed of light
in vacuum, ωpe =

√
n0e2/ϵ0 me the plasma frequency, while

the Alfvén speed VA = B/
√
µ0min0 is introduced in the last

form by noting the characteristic perpendicular lengthscale of
the system is the sound gyroradius. Rather than a diffusion
equation, as (16), the system dispersion relation is now a wave
equation. Writing the solution as ω = ω0 + iγ, where ω0 and
γ are real,

ω0 =
k∥
k⊥

vte
ρs

√
1+ k2⊥ ρ2

s −
η2

4
k2⊥
k2∥

v2te
µ2
0V

4
Aρ

2
s
,

γ =−η

2
v2te

µ0V2
A ρ

2
s
=−0.51

2τei
. (20)

As we are considering the fluid limit, the collision frequency
must be faster than the other timescales in the system, so these
waves must damp rapidly. The same problem is encountered
however: the wave speed diverges as k⊥ → 0.

Neglecting resistivity, in the cold plasma limit Te = 0, the
dispersion relation (19), reduces to

ω2 =Ω2
i

k2∥
k2⊥

mi

me
. (21)

This is the electrostatic wave which has been noted in the con-
text of gyrokinetic simulations to limit the timestep, see for
example the early discussion by Lee [35] or a recent case by
McMillan [36].

These fast waves present a problem for global plasma sim-
ulations, where the largest perpendicular scale is much greater
than ρs: As the system size increases, the fastest wave speed
will rapidly increase, and for (semi-)implicit methods the
problem will become increasingly poorly conditioned.

2.1.1. Ion parallel momentum. If the ion parallel momentum
is also evolved, in the electrostatic approximation, (10) gives

mi

e

∂v||i
∂t

=−∂||ϕ− ηJ||, (22)

and the dispersion relation becomes

ω2 + iωη
v2te

µ0V2
Aρ

2
sm

(
1−

k∥c2sm
ω2

)

=
k2∥v

2
te

k2⊥ρ
2
sm

(
1+ k2⊥ρ

2
sm −

k2∥c
2
sm

ω2

)
, (23)

where for convenience we have defined the electron mass cor-
rections c2sm = c2s/(1+me/mi) and ρsm = csm/Ωi. Neglecting
the electron mass, in the limit of zero resistivity, this reduces
to simply the bracket on the right equal to zero

ω2 = k2||c
2
s

1(
1+ k2⊥ρ

2
s

) ,
and we see that we have introduced the ion acoustic wave
ω2 = k2||c

2
s to the system, including finite sound radius correc-

tions when k⊥ ̸= 0. This wave can be destabilised in the pres-
ence of background plasma gradients to give the slab branch of
drift waves. Note that if we retained an isothermal ion pressure
term in (22)wewould recover the dispersion relation from (23)
with the simple modification c2sm → c2sm(1+Ti/Te). This also
holds for the electromagnetic result (26) which is discussed in
the next section.

Neglecting only the electron mass in (23), we see the ion
sound radius couples the diffusive mode and the ion acous-
tic wave at finite k⊥. When ω2 ≫ k2∥ c2s the parallel ion
momentum equation can be neglected, andwe recover−iωη =
−µ0k2∥V

2
Aρ

2
s (1+ k2⊥ ρ2

s )/k
2
⊥ ρ2

s , that is the diffusive mode (16).
By comparing the diffusive timescale to the inverse ion acous-
tic frequency, we see that this limit corresponds as expected to
the case of mi →∞, or k⊥ → 0 at finite k∥.

The parallel ion momentum evolution modifies the electro-
static wave described by (21) simply by multiplying the right
hand side of that relation by (1+me/mi). The modified fre-
quencies of the resistive wave solution (20) are

ω0 =
k∥
k⊥

vte
ρs

√√√√1+ k2⊥ ρ2
s +

me

mi
− η2

4
k2⊥
k2∥

v2te
µ2
0V

4
Aρ

2
s

(
1+

me

mi

)2

,

γ =−0.51
2τei

(
1+

me

mi

)
.
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Thus the parallel ion momentum evolution has not removed
the difficulty as k⊥ → 0.

Several other physical effects could limit the rate at which
these electrostatic waves propagate. For example, we have
made an isothermal approximation in relating electron pres-
sure pe to density n, which would break down for sufficiently
fast phenomena—butwe should remain in the collisional limit.
We have considered the cold ion limit for simplicity, form-
ally requiring the ion temperature smaller than Te by the mass
ratio. However experimental results show that the ion temper-
ature is often comparable to or larger than Te [37, 38], so finite
ion Larmor radius effects should introduce further dispersion.
Here, however, we focus on Ohm’s law, where a partial solu-
tion to the problem of unphysically fast waves is known to
result from retaining electromagnetic effects [35]. This intro-
duces the Alfvén wave and is discussed in the next section.

2.2. Electromagnetic model

Now we examine the dispersion relation of the system retain-
ing the electromagnetic contribution to the parallel electric
field. We retain the the parallel ion momentum evolution, not-
ing from the electrostatic case the relatively straightforward
changes it introduced. Again we begin by neglecting the finite
electron mass, which gives the dispersion relation

ω2 + iωη
k2

µ0

(
1−

k2∥c
2
s

ω2

)

= k2||V
2
A

[
k2

k2⊥
+ k2ρ2

s +
k2∥c

2
s

ω2

(
ω2

k2∥ V
2
A

− k2

k2⊥

)]
. (24)

Note that this relation does not diverge as k⊥ → 0, unlike the
electrostatic relation in (16), which we see by multiplying
through by k⊥, then letting k⊥ → 0 and k2 → k2∥. Including
the electromagnetic term can therefore improve numerical sta-
bility. However, the equation now has a problem at high k⊥:
the parallel wave speed increases with k⊥. Neglecting the res-
istivity and taking low β = c2s/V

2
A so the ion acoustic wave can

be neglected, we see that this is due to the kinetic Alfvén wave
with dispersion relation

ω2 = k2||V
2
A

(
1+ k2⊥ρ

2
s

)
; (25)

the origin of the k2⊥ρ
2
s term is the ∂||pe term in Ohm’s law.

Typical blob or turbulence simulations need to resolve
smallest scales of around δx ∼ ρs, so the highest k⊥ in the sim-
ulation has k⊥ = 2π/δx ∼ 10/ρs. Adding this term therefore
introduces a wave into the system around 10 times faster than
the Alfvén speed. For deuterium plasmas in a 1 T magnetic
field, this wave will exceed the speed of light once the density
falls below n0 ∼ 2.6× 1017 m−3. This can quite easily occur
in plasma edge simulations whose domain often includes a
near-vacuum region such as the far scrape-off layer (SOL) in
tokamak simulations.

Going on to include finite electron mass, the dispersion
relation becomes

ω2

1+
k2c2

ω2
pe

1(
1+ me

mi

)
+ iωη

k2

µ0

(
1−

k2∥c
2
sm

ω2

)

= k2∥V
2
A

[
k2

k2⊥
+ k2ρ2

sm +
k2∥c

2
sm

ω2

(
ω2

k2∥ V
2
A

− k2

k2⊥

)]
, (26)

where we note we could rewrite the skin depth contribu-
tion as k2c2/ω2

pe = k2ρ2
s V2

A/v
2
te. (If the common approx-

imation to Ampère’s law in the strongly magnetised limit
µ0 j∥ ≈−∇2

⊥A∥ is used, k→ k⊥ in (24) and (26)). Equation
(26) is well behaved at large perpendicular length scales
k⊥ → 0: neglecting resistivity and finite electron mass, the
ρsm contribution → 0 with k⊥ and we recover the decoupled
shear Alfvén and ion acoustic waves, as noted in [14]:(
ω2 − k2∥V

2
Ak

2/k2⊥

)(
ω2 − k2∥ c

2
s

)
= 0. Equation (26) is also

now well behaved when k⊥ becomes large. We can first see
this by considering the cold plasma limit, neglecting resistiv-
ity: only the first term on the right hand side survives, and we
obtain the electromagnetic modification of (21) [35]

ω2k2me

Ω2
i k

2
∥mi

+

(
1+

me

mi

)(
ω2

k2∥V
2
A

− k2

k2⊥

)
= 0,

which leads to the inertial Alfvén wave dispersion relation,

ω2 = k2∥V
2
A

/k2⊥
k2

+
k2⊥c

2

ω2
pe

1(
1+ me

mi

)
 . (27)

(It can be of interest to note that in the standard notation of
Stix [39] this result corresponds to the full solution Sk2⊥c

2 +
Pk2∥c

2 −PSω2 = 0, unlike the quasi-electrostatic mode dis-
cussed there which neglects the PS coupling term.)

Now neglecting only the acoustic wave corrections in (26)
for simplicity, we find that the modified frequencies of the res-
istive wave solution (20) are

ω2
0 = k2∥ V

2
A

(
k2

k2⊥
+ k2⊥ρ

2
s

)
(
1+ k2c2

ω2
pe

1(
1+ me

mi

))

×

1− η2k4

4µ2
0k

2
∥ V

2
A

1(
1+ k2c2

ω2
pe

1(
1+ me

mi

))( k2

k2⊥
+ k2⊥ρ

2
s

)
 ,
(28)
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γ =− ηk2

2 µ0

1(
1+ k2c2

ω2
pe

1(
1+ me

mi

)) , (29)

when the term in the square bracket is positive, for example at
low k⊥. Upon neglecting resistivity, this recovers the standard
dispersion relation [34] describing the combination of inertial
(Te → 0) and kinetic Alfvén waves

ω2
0 = k2∥ V

2
A

(
k2

k2⊥
+ k2⊥ρ

2
s

)/1+
k2c2

ω2
pe

1(
1+ me

mi

)
 ,

which reduces in the large k⊥ limit to a wave with electron
thermal speed, ω2

0 → k2|| v
2
te. Returning to (26) to consider the

limit of finite resistivity and high k⊥, the ωpe, resistive and
ρsm terms dominate and we recover the well-behaved form as
in (19),

ω2 + iωη
v2te

µ0 V2
A ρ

2
s
= k2∥v

2
Te, (30)

which has the approximate strongly damped solution at large
collisionality ω ≈−i(0.51/τei)+ (k2∥v

2
teτei/0.51).

Note that we do not need to include relativistic corrections
to the electron mass in order to limit the wave speed, except in
the cases where vte or VA exceed c. The former occurs at Te >
500 keV so would not be relevant to plasma edge simulations,
but the latter occurs at n0 < 0.66× 1017 m−3 for a magnetic
field of 5 T, so may become an issue when simulating the edge
of large fusion devices.

2.2.1. Space charge effects and displacement current. It is
reasonable to suppose that if a wave is foundwhich exceeds the
speed of light, then we should re-examine the approximations
made to Maxwell’s equations in deriving the reduced MHD
equations. In this section we therefore consider the effect of
including space charges (breakdown of quasi-neutrality), and
then displacement current.

The vorticity equation arises from current continuity, (2),
under the quasi-neutrality assumption, that is the charge dens-
ity ρ≃ 0. This assumptionmay break down at small scales and
low densities, and charge continuity becomes

∇· J=−∂ρ

∂t
= ϵ0∇2 ∂ϕ

∂t
, (31)

where the Coulomb gauge ∇·A= 0 is used here. This modi-
fies the vorticity equation equation (8) to:

∂U
∂t

=∇·
(
bJ||
)
, U≃ min0

B2
∇2

⊥ϕ+ ϵ0∇2ϕ, (32)

where the vorticity U has been defined to include the space
charge term and can be written as:

U=
1
µ0

(
1
V2
A

∇2
⊥ϕ+

1
c2
∇2ϕ

)
. (33)

This results in the dispersion relation, neglecting finite electron
mass and ion acoustic effects:

ω2 + iωη
k2

µ0
= k2||V

2
A
k2

k2⊥

[
c2

c2 +V2
A

(
k2/k2⊥

) + k2⊥ρ
2
s

]
, (34)

Equation (34) suggests a way to limit the shear Alfvén waves
to less than light speed at low density, which will be explored
further in section 4. It does not however solve the problem at
high k⊥, and waves with arbitrarily high group speed along the
magnetic field are still supported.

Since we are not evolving the perpendicular components
of the vector potential A, displacement currents in the per-
pendicular direction are not included here: they would modify
the perpendicular components of A, but do not lead to motion
of charges, and so would not modify charge continuity (vorti-
city). As we are explicitly evolving only the parallel compon-
ent of the displacement current, but not the parallel component
of the magnetic field, the ordinary light wave will not appear
in the dispersion relation. Ampère’s law keeping only A|| and
including the displacement current becomes

J|| =− 1
µ0

∇2A|| + ϵ0
∂

∂t
∂||ϕ+ ϵ0

∂2A||

∂t2
. (35)

Continuing to retain space charge, the vorticity equation
becomes

ω
[(min0

B2
+ ϵ0

)
k2⊥ + ϵ0k

2
||

]
ϕ= k||

(
k2⊥
µ0

−ω2ϵ0

)
A||

+ k2||ϵ0ωϕ. (36)

Note that the ϵ0 k2|| term on the left (from space charge) cancels
with the same term on the right (from displacement current).
The dispersion relation then becomes

ω2 + iωη
k2

µ0

(
1− ω2

k2c2

)
= k2||V

2
A
k2

k2⊥

[
c2

c2 +V2
A

(
k2/k2⊥

) + k2⊥ρ
2
s

(
1− ω2

k2c2

)]
, (37)

which at large k⊥ without resistivity leads to the same wave as
when displacement current is not included, (34). This means
that these equations can have waves with speeds (both group
and phase) along the magnetic field greater than the speed of
light, without including the electron mass. However, we see
that including the parallel displacement current is not essen-
tial to provide effective limitation of the wave speeds in low
density regions.

For ease of reference, the low and high k⊥ limits of the
dispersion relations presented in this section are summarised
in the appendix, table A1.

3. Nonlinear timestep benchmark

To demonstrate the practical importance of the various dis-
persion relations derived above, we benchmark nonlinear

6
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Figure 1. Radial position of the filament centre of mass for
electrostatic, zero electron mass (blue solid); electrostatic, finite
electron mass (orange dashed); electromagnetic, zero electron mass
(green dotted); and electromagnetic, finite electron mass (red
dash-dotted) cases.

simulations using different versions of Ohm’s law. We use
STORM [28, 40], which is typical of BOUT++ drift-reduced
fluid models, and choose as a test case a simulation of an isol-
ated scrape-off layer (SOL) filament, in simplified slab geo-
metry, based on the cold-ion case in [41]. Isolated filament
simulations have a moderate computational cost but include
important features of edge/SOL turbulence simulations, being
highly non-linear and including sheath boundary conditions.
More details of the model and simulation setup are given
in appendix B and ref. [42].

We compare electrostatic and electromagnetic models both
neglecting and including electron inertia. The evolution of the
filaments simulated with these four different models are essen-
tially identical, due to the very low β ≈ 2.6× 10−4 in the
L-mode SOL conditions of our test case, as shown for example
by the radial position of the centre of mass in figure 1. The
slight difference visible between electrostatic and electromag-
netic models originates in a small transient at the start of the
simulations as the parallel current develops from the initial
value of zero, which happens almost instantly in the electro-
static simulations, but at the speed of the Alfvén wave in the
electromagnetic simulations.

BOUT++ simulations usually use the CVODE implicit
time solver from the SUNDIALS suite [43], as the simula-
tions shown in this section do, so do not have a strict Courant-
Friedrichs-Lewy (CFL) constraint [44] on the time step, as
would be the case if an explicit scheme were used. How-
ever, CVODE adapts the time step used to satisfy relative and
absolute tolerance criteria while aiming to minimise the num-
ber of iterations, so the resulting time step is related to the

frequency of the fastest mode in the system, as we will now
describe.

We compare the mode frequencies from the dispersion rela-
tions presented with the internal time step, number of itera-
tions per time step and wall-clock time from the simulations,
given in table 1. The analytical mode frequencies are evalu-
ated using the background parameters at the midplane of the
simulations. The maximum parallel wavenumber present in
the simulations k∥,max = 2π/2∆∥ is the shortest wavelength
that can be represented without aliasing on a grid with parallel
spacing∆∥. Similarly the maximum perpendicular wavenum-
ber k⊥,max = 2π/2∆⊥ is set by the perpendicular grid spacing
∆⊥, while the minimum perpendicular wavenumber is set by
the box size k⊥,min = 2π/L⊥. The maximum damping rate for
the resistive, diffusive mode (16) in the electrostatic, zero elec-
tron inertia model and the maximum frequency (20) for the
electrostatic, finite electron inertia model are evaluated with
k⊥,min. For the electromagnetic, finite electron inertia model
(28) also uses k⊥,min, as for the parameters of this test the
Alfvén speed is higher than the electron thermal speed and
we also evaluate it with k≈ k⊥ for consistency with the imple-
mentedmodel. Themaximum frequency for the kinetic Alfvén
wave (25) is evaluated with k⊥,max. We see that the average
time steps taken by CVODE in the simulations are ordered as
the inverse mode frequencies, table 1, and the time step and
number of iterations per step are fairly consistent in all phases
of the simulation, figure 2. The time steps for both electro-
static and electromagnetic models with finite electronmass are
slightly smaller than the inverse mode frequencies (by a factor
between 2 and 3), as would be expected when the simulations
are resolving these waves.

The time step for the strongly damped electrostatic, zero
electron mass model is 100 times longer than the inverse of
the damping rate (16), showing that the implicit time-solver
algorithm used by CVODE is able to step over this mode. The
time step is nearly as long as in the electrostatic, finite electron
mass case, although significantly more iterations per time step
are required, leading to a wall-clock time that is three times
longer.

The time step in the electromagnetic, zero electron mass
case is slightly longer than the inverse of the maximum mode
frequency. Note that this is the maximum k⊥ mode, which will
be most affected by numerical dissipation since its wavelength
is at the grid scale, and also by collisional dissipation present
in the STORM model that was not included in the analytic
dispersion relation, so the mode may be expected to have a
significant damping rate. It seems that this damping is enough
for CVODE to step over the frequency of this mode, at the cost
of a higher number of iterations per step than required for the
electromagnetic, finite electron inertia model.

The electromagnetic, finite electron inertia model as imple-
mented in STORM requires an additional inversion to solve
Ampère’s law for the parallel velocities and A∥ [41], which is
not required in the electromagnetic, zero electron inertiamodel
where Ohm’s law evolves A∥ directly. Such inversions are typ-
ically a significant part of the run-time of BOUT++ simula-
tions, here taking 13% of the run time for the electromagnetic,
zero electron inertia model, and 36% for the electromagnetic,

7
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Table 1. The time step, iteration count and wall-clock time for electrostatic (ES) and electromagnetic (EM) models compared to the analytic
mode frequency |ωanalytic|. Equation number for the dispersion relation evaluated for |ωanalytic| given in the DR column.

Model DR 1/|ωanalytic| (ns) Time step (ns) Iterations/step Wall-clock time (h)

ES, zero-me (16) 0.00991 0.828 8.76 30.4
ES, finite-me (20) 2.47 0.899 3.64 11.5
EM zero-me (25) 3.18 7.31 6.41 3.21
EM, finite-me (28) 25.8 9.25 4.35 2.36

Figure 2. (a) Internal time step (thick lines) and magnitude of the inverse linear mode frequency (thin, horizontal lines) and (b) number of
RHS evaluations per internal time step for electrostatic, zero electron mass (blue solid, using (16)); electrostatic, finite electron mass (orange
dashed, using (20)); electromagnetic, zero electron mass (green dotted, using (25)); and electromagnetic, finite electron mass (red
dash-dotted, using (28)) cases.

finite electron inertia model. Despite this, the wall-clock time
for the electromagnetic, finite electron inertia model is shorter
than the zero electron inertia model by a factor of 0.74, due to
the longer time step and lower number of iterations per step.

4. Conclusion

We have presented a linear analysis of electrostatic and elec-
tromagnetic waves supported by a minimal drift-reduced fluid
model. Though simplified, equations (7)–(9) contain the key
features of a wide class of models which are used in the
plasma community. This analysis sheds light on the observa-
tion that once parallel electron pressure gradients are included
in Ohm’s law, electrostatic simulations often encounter
difficulties.

We recognise the origin of this as dispersion relationswhich
diverge at small k⊥. If finite electron mass is not included
then this appears as parallel diffusion which becomes faster
as 1/k2⊥, whilst if finite electron mass is included then a par-
allel wave is found whose speed increases like 1/k⊥. Use of
an electromagnetic Ohm’s law without electron mass removes
the difficulty at small k⊥, but leads to unphysical behavior due
to kinetic Alfvén waves at large k⊥, resulting in wave speeds
which increase with k⊥ without limit.

A system using an electromagnetic Ohm’s law with finite
electron mass is found to be well behaved, with parallel wave
speeds limited by the Alfvén speed at low k⊥ and the elec-
tron thermal speed at high k⊥, as discussed in [14]. Retain-
ing electromagnetic terms is therefore important for limiting

the speed of waves in the system, and we have demonstrated
that this can reduce the computational cost of nonlinear sim-
ulations by allowing longer time steps to be taken at accept-
able iteration counts, even in the very low beta conditions of
the L-mode SOL. Elsewhere, it has been found numerically
that electromagnetic effects can modify the propagation and
stability of plasma blobs [30] and turbulence [14] by slowing
parallel wave propagation. It has also been previously noted
[13] that the electrostatic approximation can lead to inconsist-
encies and incorrect results even at low β.

Plasma edge simulations can include low density regions,
resulting in the Alfvén velocity exceeding the speed of light.
Adding ϵ0 to the perpendicular Laplacian term in the vorticity
limits VA to be slower than the speed of light, and can be easily
added to existing code. This gives the modified equations:

∂n
∂t

= −∇ ·
(
bn0 v||e

)
, (38)

∇·
(
min0
B2

d∇⊥ϕ

dt
+ ϵ0

∂

∂t
∇⊥ϕ

)
= ∇·

(
bJ||
)
, (39)

me

e

∂v||e
∂t

−
∂A||

∂t
= − 1

en0
∂||pe + ∂||ϕ+ ηJ||, (40)

J|| =− 1
µ0

∇2
⊥A||, (41)
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which have the dispersion relation:

ω2

(
1+ ρ2

sk
2
⊥
V2
A

v2te

)
+ iω

k2⊥η
µ0

= k2||V
2
A

[
c2

c2 +V2
A

+ k2⊥ρ
2
s

]
.

(42)

This is now well behaved at high and low k⊥, and in low dens-
ity regions. Adding the ϵ0∇⊥ϕ term to the vorticity will have
the effect of including the perpendicular electric field energy
ϵ0E2

⊥ into the conserved energy of the system, but does not
introduce a new transfer channel. This will have the effect of
bounding the total energy in perpendicular electric fields, and
so may improve numerical stability. In addition we find that
the parallel part of ϵ0∇2 does not need to be included in (39),
and does not provide a way to introduce parallel coupling into
the vorticity equation. This is because it cancels with the dis-
placement current in the divergence of parallel current as dis-
cussed in section 2.2.1.
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Appendix A. Summary of limits

Table A1. Leading order terms in the low and high k⊥ limits of the dispersion relations presented in this paper, neglecting resistivity and
taking k∥ ≪ k⊥ so that k2/k2⊥ ≈ 1. The column headings me and cs denote whether electron mass and ion acoustic terms, respectively, are
included. k⊥ terms leading to divergence are highlighted in bold.

Model me? cs? k⊥ → 0 k⊥ →∞

Electrostatic (19) ✓ 7 ω2 = k2∥v
2
te/k

2
⊥ρ

2
s ω2 = k2∥v

2
te

Electrostatic (23) ✓ ✓ ω4 =
(
ω2 − k2∥c

2
sm

)
k2∥v

2
te/k

2
⊥ρ

2
sm ω2 (ω2 − k2∥ v

2
te

)
= 0

Electromagnetic (24) 7 ✓
(
ω2 − k2∥V

2
A

)(
ω2 − k2∥c

2
s

)
= 0 ω2 (ω2 − k2∥V

2
A k2

⊥ρ
2
s

)
= 0

Electromagnetic (26) ✓ ✓
(
ω2 − k2∥V

2
A

)(
ω2 − k2∥c

2
sm

)
= 0 ω2 (ω2 − k2∥v

2
te

)
= 0

Electromagnetic with space charge (34) 7 7 ω2 = k2∥ V
2
Ac

2/
(
c2 +V2

A

)
ω2 = k2∥ V

2
A k2

⊥ρ
2
s

Electromagnetic with ∥ displacement current, space charge (37) 7 7 ω2 =
k2∥ V2

Ac
2

(c2+V2
A)

(
1+k2∥ V2

A ρ2
s/c

2
) ω2 =

k2∥ V2
A k2

⊥ ρ2
s(

1+k2∥ V2
A ρ2

s/c
2
)

Electromagnetic with perp. space charge (42) ✓ 7 ω2 = k2∥ V
2
Ac

2/
(
c2 +V2

A

)
ω2 = k2∥ v

2
te

In this appendix we collect the asymptotic limits of the dis-
persion relations presented above.

Appendix B. Filament simulations

In this appendix we briefly describe the STORM model and
simulation setup used for the nonlinear seeded filament simu-
lations discussed in section 3. For more details see the cold
ion model in [41], and the setup for the simulation shown
in figure 1(a) there, which is identical to the electromag-
netic, finite electron mass case here. Simulation inputs and
post-processing scripts needed to reproduce the figures in
this paper are available in Zenodo at https://doi.org/10.5281/
zenodo.5525078.

B.1. Models

The STORM model was originally electrostatic, with finite
electron mass [28]. An electromagnetic, finite electron mass
variant was described in [45]. Our test case is based on
the cold ion reference case from [41], which introduced
hot ion effects to the electromagnetic, finite electron mass
model. For this benchmark we have implemented zero elec-
tron mass versions of both electrostatic and electromagnetic
models. For all variants the STORM code solves a continuity
equation

∂n
∂t

=−∇ ·
(
bnve∥

)
− 1
B
b×∇ϕ ·∇n

+∇×
(
b
B

)
·∇pe − n∇×

(
b
B

)
·∇ϕ+ Sn

+∇· (D⊥∇⊥n) , (B.1)

where Sn is the density source; an electron temperature
equation

∂Te

∂t
=−ve∥∂∥Te −

1
B
b×∇ϕ ·∇Te −

2
3n

∇·
(
bqe∥

)
+

2Te

3n
∇×

(
b
B

)
·
(
∇pe − n∇ϕ+

5
2
n∇Te

)
− 2Te

3
∇·
(
bve∥

)
+

2
3

(
vi∥ − ve∥

)(
ηJ∥ −

0.71
e

∂∥T

)
+

2SE
3n

+
v2e∥Sn

3emen
− TeSn

n
+

2
3n

∇· (κe⊥∇⊥Te) ,

(B.2)

where the parallel electron thermal conduction is qe∥ =
−3.16enTτei∂∥T/me − 0.71nT

(
vi∥ − ve∥

)
and SE is the energy

source; and a vorticity equation

∂Ω

∂t
=−∇ ·

(
1
B
b×∇ϕ ·∇ω

)
−∇ ·

(
∂∥
(
vi∥ω

))
+∇·

(
bJ∥
)
+ e∇×

(
b
B

)
·∇pe+∇· (µΩ∇⊥Ω) ,

(B.3)

where for this non-linear model we use a generalised vor-
ticity without Boussinesq approximation Ω=∇·ω, ω =
en∇⊥ϕ/ΩiB. The perpendicular dissipation parameters D⊥,
κ⊥ and µΩ take small, classical values as described in [41]
and do not have a significant influence on the results, being
retained mainly to ensure numerical stability.

The differences between variants are in the parallel
momentum equations. We use the parameters α and µ, where

α =

{
0 for electrostatic cases,
1 for electromagnetic cases,

µ =

{
0 for zero electron mass,
1 for finite electron mass,
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to express the ion parallel momentum equation as

∂

∂t

(
vi∥ +µα

e
mi
A∥

)
=−vi∥∂∥vi∥ −

1
B
b×∇ϕ ·∇vi∥

− e
mi

∂∥ϕ− eη
mi
J∥ +

0.71
mi

∂∥T−
vi∥Sn
n

(B.4)

and Ohm’s law as

µ
∂

∂t

(
ve∥ −α

e
me
A∥

)
=−µ

(
ve∥∂∥ve∥ +

1
B
b×∇ϕ ·∇ve∥ −

ve∥Sn
n

)
− e
men

∂∥pe +
e
me

∂∥ϕ+
eη
me
J∥ −

0.71
me

∂∥T. (B.5)

STORM uses Ampère’s law in the form

∇2
⊥A∥ =−µ0 J∥ (B.6)

B.2. Isolated filament simulation setup

The simulations are performed in slab geometry with a
constant magnetic field of B= 0.5 T. The effect of non-
uniform magnetic field is retained only through the curvature
terms ∇× (b/B) ·∇= 2(BRc)

−1∇z with radius of curvature
Rc = 1.5 m. The spatial grid has 240× 64× 128 points
in the radial, parallel and binormal directions x, y and
z. The grid size is Lx×L∥ ×Lz = 93.75ρs0 × 11000ρs0 ×
50ρs0, where ρs0 = ρs(T= 20 eV) = 1.29 mm, giving a
perpendicular grid spacing of 0.391ρs0 and a parallel grid
spacing of 172ρs0. The parallel boundaries use Bohm
sheath boundary conditions: vi∥,sh =±

√
eTsh/(mi +me),

ve∥,sh =±
√
mieTsh/2πme (mi +me)exp(−ϕsh/Tsh) and

qe∥,sh = (2− 0.5ln(2πme/mi))nshTshve∥,sh− 5pe,shve∥,sh/2−
menshv3e∥,sh/2e. The perpendicular boundaries are far enough
from the filament to have little effect: Neumann boundary
conditions are used in the radial direction for all variables
except ϕ, which is set equal to its background value; periodic
boundary conditions are used in the binormal direction.

A steady background plasma is created by bal-
ancing the sinks at the sheaths with sources Sn =
Sn0
[
exp
(
20
(
y/L∥ − 1/2

))
+ exp

(
−20

(
y/L∥ + 1/2

))]
and

SE = SE0 exp
(
−10 |y|/L∥

)
, whose prefactors are adjusted so

that the density and temperature at the mid-point of the simu-
lation domain are 8× 1018m−3 and 20 eV.

The filament simulations are run by adding a density per-
turbation on top of the background

∆n = A
1
2

[
1− tanh

(
(
y−L∥/4
L∥/8

)]
× 1

2

[
1− tanh

(
−y−L∥/4
L∥/8

)]
exp
(
− x2+z2

δ2
⊥

)
,

(B.7)

with amplitude A= 1.6× 1019m−3 and perpendicular width
δ⊥ = 5ρs0, and allowing the simulation to evolve for
1000Ω−1

i = 41.5 µs.
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