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One-sentence summary: A fast-ticking evolutionary epigenetic clock in plants facilitates
phylogenetic insights into the recent past.

Abstract: Molecular clocks are the basis for dating the divergence between lineages over
macro-evolutionary timescales (~105-108 years). However, classical DNA-based clocks tick too
slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation
changes at a subset of cytosines in plant genomes possess a clock-like behavior. This
‘epimutation-clock’ is orders of magnitude faster than DNA-based clocks and enables phylogenetic
explorations on a scale of years to centuries. We show experimentally that epimutation-clocks
recapitulate known topologies and branching times of intra-species phylogenetic trees in the selfing
plant A. thaliana and the clonal seagrass Z. marina, which represent two major modes of plant
reproduction. This discovery will open new possibilities for high-resolution temporal studies of
plant biodiversity.

Main Text:
Reconstructing the tree of life is a central goal in evolutionary biology. A key challenge is to

infer the approximate date when two lineages diverged from each other in the past (1, 2). In
addition to fossil and archaeological evidence, molecular clocks have emerged as an important tool
to perform such dating (2, 3). Constant-rate clock calibrations such as those originally introduced by
Zuckerkandl and Pauling (4) are based on the premise that neutral mutations in DNA (or proteins)
accumulate at a fixed rate, so that nucleotide differences increase with time. If the mutation rate is
known, it becomes possible to deduce when two lineages shared their most recent common ancestor
(MRCA). Although the modern use of molecular clocks relies on a number of strong modeling
assumptions (5), in practice, they are often the only means to obtain temporal information for parts
of a phylogeny where fossil or archaeological records are lacking (3).

The low mutation rate found in most species limits the use of DNA-based clocks. With a
rate of ~10-9-10-8 (per site per year), they may offer sufficient temporal resolution over larger
timescales (~104 to 108 years) but are less accurate in recent time (< 103 years from the present), as
too few mutations accumulate to permit reliable tree inference and dating (6). However, it may be
of interest to infer shallow divergence times of just a few decades to hundreds of years, for
example, when assessing associations with species range shifts, colonization events, or
environmental changes (7). In self-fertilizing or clonal species with short life cycles, new lineages
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can diverge rapidly due to extensive genetic drift, restricted gene flow, and divergent natural
selection (8). In the recent past, many such events have co-occurred with the emergence of modern
civilizations and may in part even be driven by human activities (e.g., migration or trade). To
improve the resolution in studying shallow divergences and their timing, a new class of molecular
clocks is needed, whose tick-rate is orders of magnitude faster than that of DNA. We recently
proposed that DNA cytosine methylation could provide a biomolecular basis for such a clock in
plants (9), but this possibility has not been explored rigorously.

DNA cytosine methylation is a conserved base modification in eukaryotes (10). Stochastic
enzymatic failure or off-target DNA methyltransferase activity at CG dinucleotides leads to lasting
methylation losses or gains (i.e., epimutations) in daughter cells and their decedent cell lineages
(11). Such CG methylation changes have been observed within the lifetime of mammals and have
been extensively exploited as a DNA methylation clock of aging (12). However, unlike in
mammals, many somatically-acquired CG epimutations are stably inherited across clonal and sexual
generations in plants (13–15), and thus hold high-resolution information about the evolutionary
histories of cell lines or clonal and sibling lineages (11, 16). Estimates in several plant species
indicate that CG epimutations are effectively neutral at the genome-wide scale and occur at a rate
that is ~10,000 - 100,000 times higher than the genetic mutation rate per unit time (13, 14, 17–20).
Here we show that the rapid accumulation of CG epimutations in plant genomes defines a
fast-ticking evolutionary clock (henceforth ‘epimutation-clock’), which can be used for the
reconstruction and dating of phylogenies.

Discovery of clock-like regions in A. thaliana
We set out to construct a robust epimutation-clock by first searching for genomic regions

whose CG epimutation rates are invariant to genetic and environmental perturbations. To do this,
we used the selfing plant Arabidopsis thaliana as a model to generate mutation accumulation lines
(MA-lines) from seven diverse natural accessions (i.e., genotypes) as founders (Fig. 1A, Fig. S1A
and Materials and Methods (21)). These MA pedigrees had a depth of 17 generations with nine
whole genome bisulfite sequencing (WGBS) measurements per pedigree, on average (see Fig. S1A
(21) for details). To evaluate the impact of environmental factors, we also generated A. thalianaMA
lines grown under biotic stress (repeated exposure to Pseudomonas syringae and salicylic acid) and
combined these data with published MA-lines grown under abiotic stress (exposure to high salinity
and drought conditions, (22, 23), Fig. 1A, Fig. S1B-D (21)). The depth of these latter MA pedigrees
varied from 7-13 generations and had ~9 WGBS measurements per pedigree.

Epimutation analysis of these different MA-lines revealed specific genomic regions, whose
CG epimutation rates were largely invariable across the 14 different genetic or environmental
perturbation experiments (Fig. 1B-E, Fig. S2, Table S1-S4 and Materials and Methods (21)).
These clock-like regions were in stark contrast with other regions where rates were 5-fold more
variable on average (Fig. 1B, Table S1, S5 (21)). We found that clock-like regions displayed
specific epigenomic features and comprised about 16.1% of all CGs in the genome (~896,323 of
CG total sites, Fig. 1B, Table S2-S3, Fig. S3 (21)). The majority of clock-like regions (~60%) were
located within gene body methylated (gbM) genes (Fig. S3B (21)). In A. thaliana, gbM genes
comprise a subclass of ~5,000 genes that display elevated CG methylation (24). Although the
precise function of gbM is unclear, the nucleotide sequences and steady-state methylation levels of
these genes are generally conserved across diverse plant species (25, 26). Interestingly, we recently
identified these same regions as epimutation hotspots in A. thaliana (27). Their average epimutation
rates exceed the genome-wide average by one order of magnitude (~10-3 versus 10-4 per CG site, per
haploid genome, per generation). Hence, the biomolecular properties of these regions form the basis
for a robust epimutation-clock, whose fast mCG substitution rate can facilitate high-resolution
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inference about divergence events in the recent past. We here use the term “mCG substitution rate”
to refer to the number of fixed CG methylation changes that occur over a specific time interval.

Clock calibration and phylogenetic inference in A. thaliana
To confirm the existence of such clock-like regions, we analyzed the largest A. thalianaMA

pedigree available (here named MA1_1 and MA1_2 (13, 14), see Fig. 2A). This MA pedigree
features 15 independent lineages with a maximum depth of 32 generations. WGBS samples were
available from generations 3, 31, and 32. In total, we detected 46,597 segregating CG epimutations
within the clock-like regions after ~31 generations. By contrast, only 99 segregating SNPs were
detected genome-wide over this timescale (28). This shows that epimutations in the relatively small
clock-like regions are overall much more abundant than genome-wide SNPs. Using pairwise
distances based on the GTR2 substitution model (Materials and Methods (21)), we performed
neighbor-joining clustering of the samples on the basis of their mCG status within the clock-like
regions and were able to recapitulate the known topology (Fig. 2B). Hence, the rapid accumulation
of epimutations is highly informative about divergence events as recent as a few generations.

Estimates of the mCG substitution rates were highly consistent across lineages (Fig. 2C-D),
yielding rates of 4.43 ± 0.229 x 10-4 and 4.34 ± 0.214 x 10-4 (± SE, Supplementary text, Table S6
(21)) for MA1_1-G31 and MA1_2-G31, respectively. We then applied the mean mCG substitution
rate of MA1_1-G31 to the methylation data of MA1_2-G31 to infer the time until its MRCA. This
estimate indicated that the MRCA lived approximately 30.4 ± 2.94 generations ago (95% CI, Fig.
2E, Table S7-S8, Fig. S4 (21)), which is remarkably close to the actual depth of the pedigree (31
generations). By contrast, attempts to date the MRCA using available SNP data from the MA lines
were biased and more variable, yielding an estimate of 28.2 ± 8.22 generations (95% CI), an
uncertainty of nearly ~29.19% of the total age of the phylogeny (Fig. 2E, Table S7, Materials and
Methods (21)). Together these results indicate that CG epimutations are much more robust and
informative over these short timescales than DNA mutations, a conclusion that is strongly
supported by theoretical arguments and extensive simulation studies (6, 29), Table S9-S10, Fig.
S5-7 (21)).

We sought to extrapolate these insights to natural settings. Hagmann et al. (30) sequenced
the genomes and DNA methylomes of 13 A. thaliana accessions collected around the Great Lakes
and the East Coast of the United States (Fig. 3A), which all belong to a large haplogroup HPG1 (30,
31). As A. thaliana is not native to North America, it has been hypothesized that these lineages were
introduced with the arrival of the early European settlers (30, 32). The average genetic distance
between the 13 lineages and the HPG1 pseudo reference genome is about 245 nucleotide positions,
providing evidence for their close kinship. In line with previous work (30, 33–36), clustering
accessions based on CG methylation produced nearly identical phylogenetic trees compared to
SNP-based clustering, which indicates that they can capture the same evolutionary relationships
between lineages (Fig. 3B-C). Attempts to date the MRCA for 12 non-recombinant lineages (30,
32) based on the available SNP data and three published SNP substitution rates from mutation
accumulation experiments (28, 32, 37) yielded estimates ranging from the year 1792 ± 59.2 years
(95% CI) to 1766 ± 66.2 years (95% CI, Fig. 3F, Table S11 (21)). As an alternative method, we
also combined SNP data from these 12 taxa (ingroups) with that of different herbarium samples
(outgroups) as input for Bayesian tip calibration with BEAST (38). The mean values of the
estimated divergence time of the 12 taxa ranged from the year ~1949 to the year ~1792, depending
on the set of herbarium outgroups used (Fig. 3G, Table S12, Supplementary text (21)). This
extensive uncertainty is partly corroborated by our simulation studies, which indicate that a DNA
mutation rate of 10-9would yield large estimation errors for founding events occurring as recently as
a few centuries ago (Table S9, Supplementary text (21)).
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To help resolve the temporal questions about the origin of these lineages, we reanalyzed the
WGBS data and applied the experimentally calibrated epimutation-clock. Our analysis placed the
MRCA of these 12 lineages in the year 1863 ± 19 years (95% CI, Fig. 3D-F, Table S11 (21)). This
estimate provides solid evidence for a very recent MRCA. As North American herbarium samples
of A. thaliana can be found that are older than this date (32), our results support the notion that
these lineages belong to a clade of a larger phylogeny whose breadth has not been sufficiently
sampled and/or are the result of serial founding events on this continent. Broader sampling of North
American accessions would be necessary to further study the introduction time of A. thaliana.

Inference and timing of recent clonal phylogenies in Z. marina
The rapid formation and radiation of new plant lineages are particularly prevalent in species

with facultative clonal reproduction through the production of runners, stolons or tillers. These
comprise an estimated 40% of plant species on earth (39), many of which are of significant
ecological relevance. The marine flowering plant Zostera marina is an important example of these.
As most seagrasses, Z. marina is the foundation of entire ecosystems (40). It has important
ecosystem functions in carbon storage, biodiversity enhancement, coastal protection, and is
currently being developed as a seagrass genomic model (41). Along with sexual reproduction
carried out fully under water, including subaqueous pollination, clones can grow several football
fields large (41). Previously, the accumulation of somatic genetic variation (as SNPs) has been
observed in large mega-clones (42). However, a dating of clones less than a decade old is elusive,
but highly useful to elucidate the demographic structure, longevity, and ultimately vulnerability of
seagrasses to a changing ocean environment.

To demonstrate that the epimutation-clock is a powerful tool for the reconstruction and
dating of clonal phylogenies over short time scales, we took advantage of two Z. marina clones that
had been cultured since 2004 for ecological experiments in Bodega Bay, California (Materials and
Methods, Supplementary text and Table S13-14 (21)). These two clones (clone R and clone G)
were initiated and propagated independently from each other in large tanks under ambient light,
temperature and flow-through of ocean water (Fig. 4A). Sixteen ramets were sampled from each
clone in 2021, corresponding to a clonal age of 17 years (Materials and Methods (21)). WGBS
was performed for 15 ramets of clone R, as one ramet did not belong to this clone (43). As for clone
G, all 16 ramets were sequenced using WGBS, and technical replicates were generated by
sequencing five aliquots of one sample independently (Materials and Methods (21)). As extensive
epigenomic information is lacking for the de novo identification of clock-like regions in Z. marina,
we used gbM genes as a proxy of the epimutation-clock (Materials and Methods, Fig. S4, S8,
Table S8 (21)). For comparison, we also generated deep (100x) re-sequencing data for SNP
identification in a subset of these ramets (Materials and Methods (21)).

Our analysis revealed that the clones have generated 20,713 (clone R) and 21,008 (clone G)
fixed CG methylation changes in gbM genes over the course of 17 years, on average, compared
with only 31 and 47 fixed SNP changes (Materials and Methods (21)). Again, this constitutes a
large excess of epimutations relative to SNPs per unit of time, even though the effective genome
size of the former is orders of magnitude smaller. Although the true clonal phylogeny is unknown in
this experiment, an epimutation-clock based analysis revealed high-confidence phylogenetic trees in
both clones (Fig. 4B-C, Supplementary text (21)). We were unable to recapitulate the
phylogenetic trees using fixed SNPs (Fig. 4D-E). Instead, we observed that the bootstrap support
values in the SNP-based trees were low (~0.6, Supplementary text (21)), which indicates that there
is little phylogenetic information in the few SNPs captured among clonal ramets over these time
scales.
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To assess our ability to date the clones based on DNA methylation data, we calibrated our
epimutation-clock in clone R, using its known age of exactly 17 years (Fig. 4 F-H, Materials and
Methods (21)). Application of the calibrated clock to the phylogenetic tree of clone G estimates the
MRCA at 18.14 ± 3.01 years ago (95% CI), which aligns well with the actual founding date of this
clone. (Fig. 4H, Table S15 (21)). Applying the same approach using fixed SNPs led to variable
estimates 21.39 ± 11.59 years ago (95% CI), an uncertainty of one decade over this short timescale
(Fig. 4H).

Discussion and outlook
The existence of a fast-ticking evolutionary epigenetic clock in plants opens novel research

avenues at the interface between evolutionary biology and ecology (9). Our proof-of-principle study
focused on the application of this clock to the reconstruction and dating of shallow, intra-species
phylogenies that arise within clonal or selfing species over short timescales. The use of
epimutation-clocks may be extended to plant species with longer life cycles as the necessary
clock-calibration could rely on DNA methylation data from F2 intercrosses, rather than from
mutation accumulation lines. A promising extension of our work is to combine the clock-like
regions with modified coalescent methods to infer recent demographic changes (i.e. bottlenecks)
and selection at the population level. The rapid rate at which epigenetic diversity arises within the
clock-like regions will facilitate unprecedented temporal resolution. It can shed new light on
microevolutionary questions that have been challenging to resolve, such as the timing of
introduction of invasive species, the rate of poleward and upslope spread of species after the retreat
of the Pleistocene glaciers, and the consequences of anthropogenic activities for population
divergence. In an era of climate change, plant biodiversity is transforming at a fast pace. The ability
to monitor rapid population dynamics at the molecular level will help us gauge the fate of this
diversity going into the future.
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in (D) and (E). (F-G)The average depth of two gbM-based trees is 1.246 x 10-2 and 1.168 x 10-2 with CVs less than 11%. However, the average depth in the SNP trees is 
much more variable, with CVs are over 27%. (H) The estimated times to MRCA were further calibrated with these depths and substitution rates. 
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Materials and Methods 

Maximum likelihood estimation of pairwise divergence 

Let 𝑥 and 𝑦 be a pair of aligned sequences with a common ancestor 𝑜. Let the time 

between 𝑜 and 𝑥 be 𝑡1 and the time between time between 𝑜 and 𝑦 be 𝑡2. It is assumed that the 

evolution of each site (i.e., a locus) in the alignment follows an 𝑚-state continuous time Markov 

chain (CTMC), whose state space is 𝑤 = {𝑤1, 𝑤2, 𝑤3 …𝑤𝑚}. By the forward Kolmogorov 

equations for the finite state space CTMC, the transition probability matrix can be expressed as 

𝑃(𝑡) = 𝑒𝑄𝑡 for any 𝑡 ≥ 0, where 𝑄 is the substitution rate matrix. Let 𝑡 =  𝑡1 + 𝑡2, and let 𝑖 and 

𝑗 be the states of a site in sequence 𝑥 and 𝑦, respectively. When this Markov chain is time 

reversible, the probability of the site 𝑘 is 

 

𝑃(𝑖, 𝑗|𝑡1, 𝑡2, 𝑄) = 𝑃(𝑖, 𝑗|𝑡, 𝑄) = 𝜋𝑖𝑃𝑖𝑗(𝑡) 
(eq. 1) 

where 𝑃𝑖𝑗 is the 𝑖𝑗-th element in the transition probability matrix  𝑃(𝑡), and 𝜋𝑖 is the equilibrium 

frequency of state 𝑖 (1). We assume that sites evolve independently and have the same 

substitution rate. The joint probability of data 𝐷 is the product of the probabilities for individual 

sites, i.e.,  

 

𝑃(𝐷|𝑡, 𝑄) = Π𝑖∈𝑤Π,𝑗=𝑤𝑃(𝑖, 𝑗|𝑡, 𝑄)𝑛𝑖𝑗  

 

where 𝑛𝑖,𝑗 is the count of the sites whose states are 𝑖 in the sequence 𝑥 and 𝑗 in the sequence 𝑦. It 

follows that the log-likelihood function for these two sequences (1) is 

 

𝑙(𝑄, 𝑡|𝐷) = ∑ ∑ 𝑛𝑖𝑗𝑙𝑜𝑔 (𝑃(𝑖, 𝑗|𝑡, 𝑄))

𝑗∈𝑤𝑖∈𝑤

 

(eq. 2) 

The pairwise divergence between two sequences is defined by 

 

𝑑 = 𝜇𝑡 = −∑ 𝜋𝑖𝑄𝑖𝑖

𝑖∈𝑤

𝑡 

(eq. 3) 

where 𝑄𝑖𝑖 is a diagonal element in 𝑄. The substitution rate 𝜇 in (eq. 3) is the number of 

substitutions per site per unit time. The maximum likelihood estimates of the pairwise 

divergence 𝑑 can be obtained by maximizing the log-likelihood function in (eq. 2).  

 The substitution rate, though assumed constant, often varies across sites, due to the 

possible differences in chromatin structure and selection pressures (2–4). Let 𝑟 be the relative 

substitution rate of a site, and 𝜙(𝑟) is the probability density function (PDF) of 𝑟. Because the 

rate matrix 𝑄 is positive definite, we have 𝑄 = 𝑈𝐷𝑈−1 where 𝑈 is the matrix of eigenvectors 

and 𝐷 is a diagonal matrix in which the diagonal elements are the eigenvalues {𝜆1, … , 𝜆𝑚}. Thus, 

the transition probability matrix is 𝑃(𝑡) = 𝑒𝑄𝑡 = 𝑈𝐷∗𝑈−1 where 𝐷∗ is a diagonal matrix in 

which the 𝑖th diagonal value is equal to 𝑒𝜆𝑖𝑡. For each type of observed substitution from 𝑖 to 𝑗, 
the probability of observing 𝑖 and 𝑗 in two sequences at a site is given by 
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𝑃(𝑖, 𝑗|𝑡, 𝑄) = ∫ 𝜋𝑖𝑃𝑖𝑗(𝑡 ∙ 𝑟) ∙ 𝜙(𝑟)d𝑟
∞

0

= 𝜋𝑖 ∑ 𝑢𝑖𝑘𝑢𝑘𝑗
−1𝑀𝑟(𝜆𝑘𝑡)

𝑤

𝑘∈𝑤

 

(eq. 4) 

The 𝜆𝑘 is the 𝑘-th eigenvalue of 𝑄 (i.e., the 𝑘-th element in diagonal matrix 𝐷). The 𝑢𝑖𝑘 is the 

𝑖𝑘-th element in 𝑈. The 𝑢𝑘𝑗
−1 is the 𝑘𝑗-th element in 𝑈−1. The 𝑀𝑟(𝜆𝑘𝑡) is the moment-generating 

function (MGF) of 𝜆𝑘𝑡 , which is defined by 

 

𝑀𝑟(𝜆𝑘𝑡) = ∫ 𝑒𝜆𝑘𝑡∙𝑟
∞

0

𝜙(𝑟)d𝑟 

(eq. 5) 

The continuous gamma model (+Γ, (2) assumes the relative substitution rates 𝑟 among 

sites can be modeled by a gamma distribution with a probability density function: 

 

𝜙(𝑟) = 𝑔(𝑟; 𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
𝑒−𝛽𝑟𝑟𝛼−1 

(eq. 6) 

where Γ(𝛼) = ∫ 𝑒−𝑡𝑡𝛼−1d𝑡
∞

0
. Thus, the moment generating function is equal to  

 

𝑀𝑟(𝜆𝑘𝑡) = (1 − 𝜆𝑘𝑡/𝛽)−𝛼 
(eq. 7) 

If we set the mean of this rate 𝐸(𝑟) =
𝛼

𝛽
= 1, we have 𝛼 = 𝛽 and 𝑉𝑎𝑟(𝑟) =

𝛼

𝛽2 =
1

𝛼
. The 

invariable site + gamma model (I + Γ, (5) assumes a fraction of sites (with proportion 𝑝0) are 

invariant during evolution, the rest of the sites follows a gamma distribution 𝑔(𝑟; 𝛼, 𝛽). Thus, a 

moment-generating function of 𝜆𝑘𝑡 is  

 

𝑀𝑟(𝜆𝑘𝑡) = 𝑝0 + (1 − 𝑝0)(1 − 𝜆𝑘𝑡/𝛽)−𝛼 
(eq. 8) 

When we set 𝐸(𝑟) =
(1−𝑝0)𝛼

𝛽
= 1, we have 𝛽 = (1 − 𝑝0)𝛼.  

The three models above are a set of nested models. The continuous I + Γ model can be 

reduced to a continuous Γ model by fixing the invariable sites’ proportion 𝑝0 = 0. When 𝛼 → ∞, 

the continuous Γ model will converge to the constant rate model. With the new likelihood 

function for the continuous Γ or I + Γ model, we can find the maximum likelihood estimates of 

the parameters in the rate matrix 𝑄 as well as the pairwise divergence. The theory in this section 

will be used to derive the substitution models for the evolution of CpG methylation. 

 

 

A substitution model for methylome evolution in diploid self-fertilizing plants 

We model methylome evolution in diploid self-fertilizing plants using a two-state (state 

space 𝑠 = {𝑈𝑈,𝑀𝑀}) continuous-time Markov chain (CTMC), where the state 𝑈𝑈 is 

unmethylated homozygous, and 𝑀𝑀 is methylated homozygous. We do not consider 

epiheterozygous states 𝑈𝑀 or 𝑀𝑈, because epiheterozygous sites hardly provide any 

evolutionary information when mutation-drift equilibrium is reached. Now, let {𝑋𝑡} be the two-

state continuous-time Markov chain of epigenotypes, where  𝑋𝑡 = 0 (𝑖. 𝑒. , 𝑈𝑈) or 1 (i.e., 𝑀𝑀) at 

time 𝑡 ≥ 0. We use the term “substitution” in a broad sense here to denote the transition between 
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epigenotype states 𝑈𝑈 and 𝑀𝑀. Let 𝐴 be the substitution rate from state 0 to state 1, and 𝐵 be 

the substitution rate from 1 to 0. The rate matrix is given by 

 

𝑄 = [
−𝐴 𝐴
𝐵 −𝐵

] 

(eq. 9) 

The forward Kolmogorov differential equations indicate that the transition probability matrix is 

given by 

 

𝑃(𝑡) = [
𝑃00(𝑡) 𝑃01(𝑡)
𝑃10(𝑡) 𝑃11(𝑡)

] = 𝑒𝑄𝑡 

(eq. 10) 

where 𝑃𝑖𝑗(𝑡) = 𝑃(𝑋𝑡 = 𝑗|𝑋0 = 𝑖) is the probability of state 𝑋𝑡 = 𝑗 at time 𝑡 given the initial state 

𝑋0 = 𝑖. Moreover, the equilibrium probabilities (𝜋0, 𝜋1) can be derived by solving the equations 

 

 {

−𝐴𝜋0 + 𝐵𝜋1 = 0
   𝐴𝜋0 − 𝐵𝜋1 = 0
         𝜋0 + 𝜋1 = 1

, where 𝜋0 =
𝐵

𝐴+𝐵
 and 𝜋1 =

𝐴

𝐴+𝐵
.  

 

Let 𝜇 be the number of substitutions per locus per generation. When the distribution of 

substitution rates is uniform, with (eq. 3), we have 

 

𝑑 = 𝜇𝑡 = −∑ 𝜋𝑖𝑄𝑖𝑖𝑡𝑖∈𝑠 =
2𝑘

(1+𝑘)
𝐴𝑡. 

(eq. 11) 

where 𝑘 =
𝐵

𝐴
.  

Thus, the transition probability matrix can be expressed as 𝑃 = 𝑒𝑄∗𝜏 ,where 𝑄∗ =
1

𝜇
𝑄 is the 

standardized rate matrix and 𝜏 = 𝜇𝑡 is the number of substitutions per site. When the substitution 

rates follow the continuous gamma distribution (GTR2 + Γ), we can estimate the pairwise 

divergence 𝑑̂ by the observed difference 𝑆 and a gamma parameter 𝛼 (estimated separately) 

between two sequences: 

𝑑̂(𝑆, 𝛼) =
𝛼

𝑐
∙ [(1 − 𝑐𝑆)−

1
𝛼 − 1] 

(eq. 12) 

where 𝑐 =
(1+𝑘)2

2𝑘
. Let 𝑛 be the length of the sequence. The large number variance (6) and 

coefficient of variation of 𝑑 are given by 

 

𝑉𝑎𝑟(𝑑̂) ≈ 𝑉𝑎𝑟(𝑆) ∙ (
d𝑑̂

d𝑆
)

2

=
𝑆(1 − 𝑆)

𝑛
∙ (1 − 𝑐𝑆)−2−

2
𝛼 

(eq. 13) 

𝐶𝑉(𝑑̂) =
√𝑉𝑎𝑟(𝑑̂)

𝐸(𝑑̂)
≈

√𝑆(1 − 𝑆)
𝑛 ∙ (1 − 𝑐𝑆)−1−

1
𝛼

𝑑̂(𝑆, 𝛼)
 

(eq. 14) 



 

 

5 

 

When invariable sites are added to this continuous gamma model (eq. 8), we have the GTR2 +
I + Γ model. When we set the expectation of the relative substitution rate 𝐸(𝑟) = 1 = (1 −
𝑝0)𝛼/𝛽, the 𝛽 = (1 − 𝑝0)𝛼. The estimate of the pairwise divergence is  

 

𝑑̂(𝑆, 𝛼, 𝑝0) =
𝛼(1 − 𝑝0)

𝑐
∙ [(1 −

𝑐𝑆

1 − 𝑝0
)
−

1
𝛼

− 1] 

(eq. 15) 

where 𝑐 =
(1+𝑘)2

2𝑘
.  Its variance and coefficient of variation are 

 

𝑉𝑎𝑟(𝑑̂) ≈ 𝑉𝑎𝑟(𝑆) ∙ (
d𝑑̂

d𝑆
)

2

=
𝑆(1 − 𝑆)

𝑛
∙ (1 −

𝑐𝑆

(1 − 𝑝0)
)−2−

2
𝛼 

(eq. 16) 

𝐶𝑉(𝑑̂) =
√𝑉𝑎𝑟(𝑑̂)

𝐸(𝑑̂)
≈

√𝑆(1 − 𝑆)
𝑛 ∙ (1 −

𝑐𝑆
(1 − 𝑝0)

)−1−
1
𝛼

𝑑̂(𝑆, 𝛼, 𝑝0)
 

(eq. 17) 

 

As mentioned in the last section, when 𝑝0 = 0, the GTR2 + I + Γ model can be reduced to the 

GTR2 + Γ model. We used a Python script to calculate the these pairwise divergence above, 

which is available at https://github.com/schmitzlab/Evolutionary-epigenetic-clock.  

 

A substitution model for methylome evolution in diploid clonal plants 

To understand the epigenotype dynamics in clonal plants, we proposed a three-state 

continuous time Markov chain (CTMC) model, referred to as the “baseline model” 

(Supplementary Text). Let 𝑠 = {𝑈𝑈, {𝑈𝑀,𝑀𝑈},𝑀𝑀} be the state space of this model.” 𝑈𝑈 is 

unmethylated homozygous and 𝑀𝑀 is methylated homozygous. In unphased diploid 

methylomes, the two epiheterozygotes 𝑈𝑀 and 𝑀𝑈 are considered as a single state, because they 

are indistinguishable in short-read WGBS data. We further assume that 1) methylation gain 

epimutations (𝑈 → 𝑀) and methylation loss epimutations (𝑀 → 𝑈) occur spontaneously and 

independently from each other, and 2) gain and loss epimutations can have different rates, as has 

been demonstrated in several plant species (7). As a result of assumption 1), direct transitions 

between 𝑈𝑈 and 𝑀𝑀 are negligible, because such transitions require two independent 

methylation or demethylation events on the same locus at the same time. In this section, 0, 1, and 

2 denote 𝑈𝑈, {𝑈𝑀,𝑀𝑈}, and 𝑀𝑀, respectively.  

Let {𝑋𝑡} be the continuous time Markov chain of epigenotypes and 𝑋𝑡 = 0, 1, or 2 for 

any time 𝑡 ≥ 0. Let 𝑎 be the number of methylation gain epimutations per CG site per year per 

haploid methylome. Let 𝑏 be the number of methylation loss epimutations per CG site per year 

per haploid methylome. Then, the transition rate matrix of 𝑋𝑡 is 

 

𝑄 = [
−2𝑎 2𝑎 0
𝑏 −𝑎 − 𝑏 𝑎
0 2𝑏 −2𝑏

] 

(eq. 18) 

As in the two-state model in the previous section, the transition probability function 𝑃(𝑡) = 𝑒𝑄𝑡 

and the equilibrium frequencies of epigenotypes are given by  
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[𝜋0, 𝜋1, 𝜋2] = [
𝑏2

(𝑎 + 𝑏)2
,

2𝑎𝑏

(𝑎 + 𝑏)2
,

𝑎2

(𝑎 + 𝑏)2
] 

(eq. 19) 

Let 𝜇 be the total number of substitutions per year per site per diploid methylome. Similarly, with 

(eq. 3), the value of 𝜇 can be calculated from the transition rate matrix 𝑄 and the equilibrium 

frequencies as follows: 

 

𝜇 = −∑ 𝜋𝑖𝑄𝑖𝑖
𝑖∈𝑠

=
4𝑎𝑏

𝑎 + 𝑏
 

(eq. 20) 

For this model, we used a Python script to obtain the maximum likelihood estimation of the 

pairwise divergence (see eq. 2-8, script available at https://github.com/schmitzlab/Evolutionary-

epigenetic-clock). By inputting gamma parameters and proportions of invariable sites, the script 

can also estimate the pairwise divergence under the gamma model and the invariable site + 

gamma model.  

 

Inferring Neighbor-joining trees with methylation data  

 To construct reliable distance-based phylogenetic trees, we used the neighbor-joining 

method (8) and the bootstrap method. Firstly, for each dataset (aligned methylation data or SNP 

data), we generated 500 bootstrap datasets (9). Next, we selected appropriate formulas according 

to the data type and among-site rate heterogeneity and calculated the divergence between 

sequences within each bootstrap sample. The neighbor-joining method was implemented with 

Biopython (10) and scikit-bio (11). The script is available at 

https://github.com/schmitzlab/Evolutionary-epigenetic-clock. Then, a total of 500 bootstrap trees 

were obtained and summarized with Dendropy (12) and sumTrees (13) for the final consensus 

tree. 

 

Inferring maximum likelihood tree and rate heterogeneity parameters with IQtree2 

 We reconstructed maximum likelihood trees with IQtree2 (14). For the reliability of 

results, we used the “-B 5000” option to construct each phylogeny with 5,000 rounds of ultrafast 

bootstrapping (UFBoot, (15). We used the “-m” option to specify the rate-variation-among-site 

models (Table S6, S11). When inferring the trees, the parameters in the rate-variation-among-site 

models (proportion of invariable sites and gamma distribution parameter) were estimated 

simultaneously.  

 

Estimating substitution rate and divergence time from inferred phylogenies 

Ohta and Kimura's seminal work laid the foundation for this field (6) by demonstrating 

how to use known divergence times to estimate the mean substitution rates on each lineage from 

a known phylogenetic tree. Their study also highlighted that the constancy of the substitution 

rate can be measured by its variance or standard error. Inspired by their study, we estimated the 

divergence time in two steps. Firstly, we used an inferred tree with known divergence time to 

estimate the substitution rate. Secondly, we fixed the substitution rate as a constant, and used it 

to calibrate divergence events in another tree. 
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For the first step, genetic divergence between the root node (the most recent common 

ancestor, i.e., MRCA) and a tip node (taxon) can be represented by the path length between them 

in a phylogenetic tree, which was estimated from CG methylation data. The path length is also 

denoted by the depth of the tip node. Under the assumption of a molecular clock, the 𝑛 tip nodes 

should have the same depth, which is denoted by 𝐷1. In real data analysis, the depths 

{𝑑1,1, 𝑑1,2, 𝑑1,3 …𝑑1,𝑛} of the 𝑛 tip nodes are a random sample from a probability distribution. 

The expectation, variance, standard error and coefficient of variation of 𝐷1 are 𝐸(𝐷1), 𝑉𝑎𝑟(𝐷1), 

and  

𝑆𝐸(𝐷1) = √𝑉𝑎𝑟(𝐷1) 
(eq. 21) 

𝐶𝑉(𝐷1) =
√𝑉𝑎𝑟(𝐷1)

𝐸(𝐷1)
 

(eq. 22) 

For these 𝑛 tips, the time to their MCRA is equal to a known constant 𝑇. We can define the 

substitution rate on a lineage with a random variable 𝜇 =
𝐷1

𝑇
. The expectation, variance, and 

coefficient of variation of 𝜇 are  

𝐸(𝜇) =
𝐸(𝐷1)

𝑇
 

(eq. 23) 

𝑉𝑎𝑟(𝜇) = 𝑉𝑎𝑟(𝐷1) (
d(𝜇)

d𝐷1
)

2

=
𝑉𝑎𝑟(𝐷1)

𝑇2
  

(eq. 24) 

𝐶𝑉(𝜇) =  
√𝑉𝑎𝑟(𝜇)

𝐸(𝜇)
=

√𝑉𝑎𝑟(𝐷1)/𝑇2

𝐸(𝐷1)/𝑇
=

√𝑉𝑎𝑟(𝐷1)

𝐸(𝐷1)
= 𝐶𝑉(𝐷1) 

(eq. 25) 

 

In the second step, we estimated the divergence time in another inferred phylogeny using 

the substitution rate estimated from the first step. For another rooted phylogeny (or a subtree 

with common ancestor) with 𝑚 tips, let {𝑑2,1, 𝑑2,2, 𝑑2,3 …𝑑2,𝑚} be the depth of these tips. 

Similarly, they are a set of samples of random variable 𝐷2. If the substitution rates from two sets 

of lineages follow the same distribution, we can use the estimated substitution rate to calibrate 

the time between a pair of nodes, such as between a tip and the root, or between a pair of tips. 

This idea has been widely utilized in many methods (6, 16, 17), since the emergence of 

molecular dating as a field of research. 

The estimated time between a tip and the root (i.e., time to MRCA of all tips) can be 

defined by the random variable 

 

𝑡 =
𝐷2

𝜇̅
 

(eq. 26) 

where the 𝜇̅ is the sample mean value of substitution rates estimated from the first step (which is 

a constant instead of a random variable). The expectation, variance, coefficient of variation, and 

95% confidence interval are 
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𝐸(𝑡) =
𝐸(𝐷2)

𝜇̅
 

(eq. 27) 

𝑉𝑎𝑟(𝑡) =  𝑉𝑎𝑟(𝐷2) (
d(𝑡)

d𝐷2
)

2

=
𝑉𝑎𝑟(𝐷2)

𝜇̅2
 

(eq. 28) 

𝐶𝑉(𝑡) =  
√𝑉𝑎𝑟(𝑡)

𝐸(𝑡)
=

√𝑉𝑎𝑟(𝐷2)/𝜇̅2

𝐸(𝐷2)/𝜇̅
=

√𝑉𝑎𝑟(𝐷2)

𝐸(𝐷2)
= 𝐶𝑉(𝐷2) 

(eq. 29) 

𝐶𝐼(𝑡) =  𝐸(𝑡) ± 1.96 × √𝑉𝑎𝑟(𝑡) 
(eq. 30) 

We can calculate the values of statistics in (eq. 21-30), by replacing the expectation and variance 

of 𝐷1 and 𝐷2 with the sample mean and sample variance. In Fig 2C, Fig 3D, Fig 4F, we show the 

mean values and standard error (the error bars) of “a single taxon’s depth” with the sample mean 

and (eq. 21). In Fig. 2D, Fig 2E, and Fig 4G, the CVs were calculated with (eq. 22) and (eq. 25). 

In Fig 2E, Fig 3F, and Fig 4H, we showed the mean values and 95% CIs of “time between a 

taxon and the root” with (eq. 27) and (eq. 30). We implemented the methods above with R 

scripts which is available at https://github.com/schmitzlab/Evolutionary-epigenetic-clock. 

 

 

Simulations 

To investigate the accumulation of genetic mutations and epimutations in diploid selfing 

and clonal plants, we generated forward simulation data with a Python script (available at 

https://github.com/schmitzlab/Evolutionary-epigenetic-clock) and package, simuPop (18). We 

simulated eight sets of mutation accumulation (MA) lines for each propagation type (Table S9-

S10). To emulate real-world MA experiments, each set of MA lines shared a single common 

ancestor, whose genome or methylome were assumed to be at equilibrium. Then, as the progeny 

of each common ancestor, 50 independent MA lines were simulated with an identical 

propagation type (selfing or clonal), substitution rates, genome sizes (or the number of CpG 

sites), and generation time for 500 generations (from G0 to G500, Fig. S5). During the 

simulation, the generation time was assumed to be constant and discrete, and there is no 

overlapping between generations. The substitution rates in the simulation were defined by the 

probability of having a kind of substitution between two generations (see Supplementary Text 

for details). The GTR2 model (14) was employed between every two generations to introduce 

epimutations into the simulated epimutation clock regions. For the simulated genomes, the 

distribution of DNA point mutations followed the K80 model (19). We established the haploid 

size of the simulated genome at 100 MB (totaling 2 × 106 nucleotides per diploid genome), a 

magnitude comparable to the mappable genome size of A. thaliana (20). Each of the simulated 

epigenetic clock regions includes 2 × 105 CpG sites for each diploid methylome). This number 

is as large as 10~20% of the epigenetic clock regions we identified from A. thaliana and Z. 

marina. Generally, longer sequences can provide higher statistical robustness (eq. 15-17). This 

simulation provided insight into the best performance of SNP-based methods and the 

performance of methylation-based methods in the most disadvantaged situations.  

From G0 to G500, we measured the pairwise divergence between each progeny and the 

common ancestor (i.e., the depth in the tree of life) every ten generations. As phased methylomes 

are usually not available, we used unphased methylation data from simulated epimutation clock 
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regions to reflect the performance of epigenetic-clock-based methods. The P-distance, MK 

distance (21), and GTR2 distance were used for the epimutation clock regions from simulated 

selfing plants. The baseline distance was applied to the epimutation clock regions from simulated 

clonal plants. For simulated genomes, the SNP data was phased. In each set of the 50 MA lines, 

the sample average, sample standard deviation, and coefficient of variation (CV) of depth can be 

calculated as described previously. All calculations were implemented with Python scripts (10, 

22), https://github.com/schmitzlab/Evolutionary-epigenetic-clock) 

 

Discovery of epigenetic clock-like regions in A. thaliana 

To identify genomic regions where epimutations accumulate in a clock-like fashion, we 

analyzed WGBS data from a total of 14 different A. thaliana MA pedigrees (Fig. 1A, Fig. S1). 

We created seven MA pedigrees in different genetic backgrounds. To that end, we used seven 

different natural accessions as founders and propagated 2-3 lineages per founder by single seed 

descent for 17 generations separately (Fig. S1A). The founder accessions were Col-0, Hi-0, Kn-

0, Ler-0, Mt-0, Og-0, and Tsu-0. We refer to these MA pedigrees as MA-accessions. For the 

MA-accessions, seeds were planted and grown in 16-h-day lengths, and samples were collected 

from young above-ground tissue. Leaf tissue was flash frozen in liquid nitrogen and DNA was 

extracted using a Qiagen Plant DNeasy kit (Qiagen, Valencia, CA, USA) based on the 

manufacturer’s instructions. To evaluate the impact of environmental factors, we also generated 

A. thaliana MA lines that were grown under multi-generational biotic stress (repeated exposure 

to Pseudomonas syringae or salicylic acid), as well as matched controls. We refer to these MA 

pedigrees as MA-Pst, MA-SA, MA-control-Pst&SA, respectively. These MA lines were 

propagated as four lineages per treatment from the same ancestor for 12 generations. The 

majority of the sequenced samples were derived from G2, G6, and G11 (Fig. S1C). DNA 

methylation sampling strategy is a sibling design, which means the samples are obtained from 

siblings of progenitors. The treatments for the samples from G1 to G11 are on leaves at 3, 4, and 

5 weeks of age, except for the sequenced samples. DNA was extracted from leaf tissue. Two 

further MA pedigrees were grown under multi-generational abiotic stress (saline and drought 

stress), as well as their controls. We refer to these MA pedigrees as MA-saline, MA-drought, 

MA-control-saline, and MA-control-drought respectively (Fig. S1B, Fig. S1D). Details 

concerning the construction of these pedigrees and DNA extraction protocols can be found in 

their original publications (23, 24). We used the above 14 MA pedigrees for the discovery of 

clock-like regions.  

For the MA-accessions, MethylC-seq libraries were prepared based on the protocol 

described in a previous study (25). Libraries were sequenced at Genewiz on a NovaSeq 6000 

platform (Illumina) in a paired-end or single-end 150bp format. The sequences of the MA-

accessions have been submitted to the GEO repository under number GSE223810. And for the 

sequences of MA-Pst, MA-SA, and MA-control-Pst&SA have been submitted to the GEO 

repository under number GSE223861. For MA-saline and MA-control-saline, and MA-drought 

and MA-control-drought, FASTQ files were downloaded from the GEO (BioProject numbers 

PRJNA259090 and PRJNA368978 respectively). All WGBS data were processed using the 

MethylStar pipeline (Shahryary et al., 2020), using TAIR10 (26) as a reference. When 

applicable, different files corresponding to the same sample were merged at the BAM stage 

using “samtools merge -n” (Samtools version 1.11).  For all samples, cytosine-level methylation 

states were called as either methylated (“M”), unmethylated (“U”) or intermediate methylated 

(“I”) using Methimpute (27). Methimpute is a hidden markov model with binomial emission 
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densities. It is capable of making accurate methylation calls even for cytosines with missing or 

low read counts. Another advantage of Methimpute is its ability to identify not only 

epihomozygotous unmethylated (UU) or epihomozygous methylated sites (MM), but also 

epiheterozygous sites (MU). Knowledge of epiheterozygous sites is absolutely necessary when 

studying epimutation accumulation in clonal species / lineages, as most epimutations are of the 

form UU <-> MU, or MM <-> MU. 

It is important to note that Methimpute actually reduces to a standard binomial model in 

samples with large read coverage, which is the case in the present study. In such situations, 

Methimpute does not impute anything, but just performs binomial calling similar to the standard 

binomial model that has been employed in many other studies (e.g. Becker et al.. 2011, Schmitz 

et al. 2011, van der Graaf et al. 2015). The only difference is that Methimpute makes use of its 

underlying hidden markov structure for statistical inference. To demonstrate this latter point we 

here conducted a side-by-side comparison between Methimpute and the standard binomial model 

using the MA-pedigree “MA-accession Col-0” as an example. Focusing on the CS clock-regions, 

we found that Methimpute’s methylation calls are highly correlated with those from the standard 

binomial model (corr = 0.98). Further, we used the CG methylation state calls obtained from the 

standard Binomial model to estimate epimutation rates in “MA-accession Col-0”. We found that 

the estimated gain and loss rates are remarkably close to each other (Table S4). In this table, 

“Original_two-state” and “Using_binom_test” are based on two-state methylation calls (UU and 

MM) only, as epiheterozygotes (MU) cannot be called with the standard binomial model. The 

omission of the MU state in these approaches could account for the slight downward bias in the 

estimated epimutation rates when compared with the estimates provided in “Original”. 

The genome coordinates of the 36 chromatin states (CS) were retrieved from the Plant 

Chromatin State Database (28). Using these coordinates, we partitioned the methylomes of the 

MA-pedigrees into different CS. Following Hazarika et al. (29), we estimated global as well as 

CS-specific CG methylation gain rates (𝛼) and loss rates (𝛽) in all 14 MA-pedigrees separately. 

Estimation was performed using the R package AlphaBeta (version 1.10.0, (7). In all cases, we 

fit a neutral model (ABneutral) to the data. Having obtained estimates of the gain rate and the 

loss rate for the 36 CS in each MA pedigree, we calculated the coefficient of variation (CV) of 

these rates across pedigrees. The CV for a given CS is defined as the ratio of the population 

standard deviation to the population mean. During calculation, the population standard deviation 

and the population mean were replaced with their unbiased estimates, sample standard deviation 

and sample mean from each pedigree. A high CV value for a given CS, would indicate that 

epimutation rates in that particular CS are susceptible to either environmental and/or genetic 

perturbations. Conversely, a low CV value for a given CS would indicate that epimutation rates 

in that particular CS are robust. The CV values obtained for the gain and loss rates are displayed 

in Fig. 1B, Fig. S2B, and Table S1. We observed a cluster of five CS that showed low CV values 

for both gain and loss rates. These CS were CS3, CS4, CS5, CS6 and CS9. Genomic regions 

indexed by these CS were selected and combined to define epigenetic clock-like regions. The 

rest of the genomic regions were defined as “non-CS-clock”. 

We explored the annotation enrichment in CS corresponding to clock-like regions. To 

this end, annotation files for genes and TEs in gff3 format were downloaded from Ensembl 

Plants (http://plants.ensembl.org/info/data/ftp). The list of gbM genes was obtained from the 

Supplementary Data 3 in the previous work (30).  

 

Experimental calibration of an epimutation clock in A. thaliana  



 

 

11 

 

For clock calibration, we used WGBS data from MA pedigrees MA1_1 and MA1_2 (31, 

32), Fig. 2A). These MA lines were propagated by single-seed descent for 30 generations and are 

the largest experimental MA system currently available in A. thaliana (33). Detailed descriptions 

of the growth conditions and plant material of MA1-1 and MA1-2 can be found in the original 

publications (31–33). FASTQ files of MA1_1 and MA1_2 was downloaded from GEO 

(BioProject number PRJNA271082). 

We processed all WGBS data with the MethylStar pipeline (34), using TAIR10 as a 

reference (26). For all samples, cytosine-level methylation states were called as either methylated 

(“M”), unmethylated (“U”) or intermediate methylated (“I”) using a three-state Hidden Markov 

Model (27). Given that most epimutations are neutral (7), and the MA lines had been maintained 

by single-seed selfing propagation for multiple generations, we assumed that the A. thaliana 

methylome is at (epi)mutation-drift equilibrium. The number of fixed epimutations per locus per 

generation should be approximately equal to the number of epimutations per CG sites per 

generation per haploid methylome. Thus, homozygous sites are sufficient to infer evolutionary 

histories. We selected all CG sites within the clock-like regions from the MA 1_1 and MA 1_2 

WGBS datasets and removed epiheterogeneous sites. In total, 452,341 epihomozygous sites were 

used for phylogenetic inference. Epigenotype calls with posterior probability lower than 0.8 or 

coverage below 1 were marked as missing data.  

We merged the MA1_1 and MA1_2 pedigrees, as they are derived from the same founder 

individual. We assumed all CG sites on the epimutation clock regions evolved at the same rate. 

Then we constructed a neighbor-joining tree (8) for all individuals based on the GTR2 distance 

(Fig 2B). We used individuals from G3 as the outgroups in the inferred phylogenies. The 

inferred phylogeny provided important information for data cleaning. 1) For the G3 lineages, the 

number of fixed epimutations is significantly higher than that in other lineages. This is likely due 

to the unfixed epiheterozygous sites in the methylome of their common ancestor. Moreover, 

three generations are not sufficiently long enough to reach mutation-drift equilibrium. 2) Line 79 

had a much higher depth than other G31 individuals. A previous study observed the line 69 has 

more epimutations as well, which might be related to a SNP in a protein-coding gene (31). 

However, the mechanism behind the higher depth observed in line 79 is unknown and needs 

further study.  

We excluded G3 and line 79 individuals and used the rest of G31 and G32 in subsequent 

analysis. Based on a series of rate heterogeneity models, we used IQtree2 (14) to estimate the 

maximum likelihood trees (ML trees) and the parameters. Then, we substituted these parameters 

into distance calculation formulas, and obtained a series of distance-based phylogenetic trees. 

Thus, each ML tree has a corresponding distance tree that is biologically equivalent to it. We set 

the midpoint as the root of each phylogeny. Using these phylogenies, we estimated the 

substitution rates on each G31 lineage from MA1_1 or MA1_2 with the methods mentioned in 

the previous sections (eq. 21-25, Materials and Methods). Based on the mean values of per-

lineage substitution rates from each data source, we further estimated the times to the MRCA on 

each lineage (eq. 26-30, Materials and Methods).  

 

Inferring divergence times in A. thaliana natural populations with an epimutation clock 

We analyzed published WGBS data from 13 different North American accessions, which 

were collected in the field from locations around the Great Lakes and the East Coast of the USA. 

Details concerning these samples, including DNA extraction protocols can be found in the 

original paper (35). For the North American accessions, FASTQ files were downloaded from the 
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European Nucleotide Archive under accession number PRJEB5331. All WGBS data were 

processed using the MethylStar pipeline (34), using TAIR10 as a reference (26).  For all samples, 

cytosine-level methylation states were called as either methylated (“M”), unmethylated (“U”) or 

intermediate methylated (“I”) using a three-state Hidden Markov Model (27). 

To conduct a preliminary analysis of the evolutionary history among the 13 accessions 

(taxa), we used the method previously used to explore the relationship between MA1_1 and 

MA1_2. Specifically, assuming a constant evolutionary rate across all CG sites, we constructed 

the phylogenetic trees using the same epimutation clock regions, GTR2 distance formula and 

neighbor-joining method. We set their midpoints as the root, as the geological outgroup from 

Long Island (NY) is not significantly diverged from the other samples.  

In previous studies, Yng-53 was identified as a hybrid accession (35, 36). Therefore, we 

removed it from the dataset and only focused on the remaining 12 non-recombinant accessions. 

For the phylogenetic trees, we applied the same set of methods that we used on G31 individuals 

in the MA lines. The midpoint of each inferred phylogeny was set as the root. Using the methods 

we described in previous sections, we estimated the number of substitutions on each lineage (eq. 

21-25) and further estimated time between the root and each taxon from each inferred phylogeny 

(eq. 26-30, Materials and Methods).  

 

Inferring evolutionary histories with A. thaliana SNP data 

 We analyzed SNP data from the same A. thaliana MA lines (20) and North American 

accessions (35, 36). For MA lines, the genomes of five (29, 49, 59, 69, and 119) G30 individuals 

were collected and sequenced (20), Fig. 2A). We denoted this dataset by “MA-SNP”. We used 

the observed number of SNPs per site (P-distance) and the JC69 distance to construct the 

neighbor-joining trees (see previous sections for details of neighbor-joining tree and bootstrap 

methods).  

For 13 samples from Hagmann et al. (35), we explored their evolutionary relationships 

with a neighbor-joining tree based on P-distance between their segregating SNP sites (Fig. 2C). 

The P-distance NJ tree were constructed with MEGA (37). For the 12 non-recombinant taxa, we 

further reconstructed their NJ tree with P-distance. Also, we inferred maximum likelihood trees 

from segregating SNPs with IQtree2 (14). We allowed IQtree2 to optimize the best-fit model by 

using the option “-m MFP”. Each of these phylogenies was rooted with the mid-point. For each 

tip in the phylogenies, we measured its depth and estimated its time to the root with the same 

methods we introduced in previous sections (Fig. 2D-F).  

We also applied Bayesian tip-calibration to date the divergence event of these 12 taxa 

using BEAST (38–40). We used the SNP data collected from modern and herbarium specimen 

samples together with their collection dates from a previous publication (36). Using SNP data 

and sample collection dates as input, BEAST can output a Bayesian phylogeny and times of 

divergence events (i.e., internal nodes) inside the phylogeny. We applied tip-calibration to 97 

taxa from the original dataset, three taxa were removed as the collection dates were missing in 

the original paper’s supplementary information. We set the same priors and the models that were 

used in the original paper (Table. S12). We used these 12 taxa and different outgroups as input of 

Bayesian tip-calibration to determine the time of the MRCA of the 12 non-recombinant modern 

taxa (Table. S12). To avoid having the Bayesian model converge to an incorrect tree topology, 

we set these 12 taxa as a mono-clade in the prior. To ensure the tree priors (which are related to 

the population demographic histories) does not influence the results, we used the “skygrid” 

model in the prior, which was applied in the previous study (36). Then, we confirmed the 
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analysis by changing the tree prior model into “constant population size”. For each combination 

of input datasets (12 taxa and a set of outgroups) and priors, we launched two independent 

BEAST runs to guarantee the MCMC samplings sufficiently converged. With BUEAti (39), we 

generated the XML files that included the SNP data and setting as the direct input for BEAST 

software. The chain lengths of the MCMC sampling were fixed at one billion. During MCMC 

sampling, BEAST randomly attempted possible phylogenies and model parameters, and 

computed the corresponding posterior probabilities. Every 10,000 iterations, the phylogeny and 

parameters were stored in the output files. We trimmed the first 10% of samples as burn-in and 

used the rest of samples for the following analysis. The model parameters were summarized with 

Tracer (40). The phylogenies were summarized with treeAnnotator (39) for the maximum clade 

credibility trees, in which the node heights were defined with time of the MRCA. We extracted 

the mean and 95% highest posterior density intervals of the 12 taxa’s divergence times from the 

summarized results (Table S12, Fig. 2G).  

 

Identifying gbM genes in Z. marina 

Chromatin states have not been defined for Z. marina. Therefore, we used CpG sites from 

gene–body methylated (gbM) genes, where epimutations that behave in a clock-like manner are 

highly enriched. We extracted 20,244 genes that are less than 10kb in the Z. marina genome 

(Zmarina-668-v2.0) using the latest version of gene annotation (Zmarina-668-v3.1, available at 

https://phytozome-next.jgi.doe.gov). The gbM gene identification followed a previously 

established pipeline (30). The thresholds of P-value and Q-value were set as 0.05. Minor 

modifications included processing of WGBS reads with ‘paired-end-pipeline’ function with 

‘trim-reads’ option in Methylpy (41). This pipeline allowed us to extract a list of gbM genes 

from the WGBS reads that were generated from a single sample.  

To minimize the misidentification and influence from environmental factors or 

genotypes, we used Z. marina WGBS data from three data sources across the East Pacific Ocean 

to the North Atlantic Ocean. We denoted them by “data source 1”, “data source 2”, and “data 

source 3”. The data source 1 included 23 WGBS datasets, which were collected from a Z. marina 

natural clone from Ängsö Island, Finland, covering an area of at least 300m x 200m (data source 

1). This clone was used in a previous study (42).  

Data source 2 had 24 WGBS samples from 21 ramets. Three clones with a branching 

history of 4 years: Three small patches of Z. marina were collected from Kiel, Germany. Each 

patch was assumed to be derived from a single seedling based on visual observation after 

excavating them via SCUBA diving. Their size of between 20 and 30 leaf shoots and could be 

reached by rhizome branching (4-5 branching events) within one year. Hence, we assumed that 

the branching history before sample collection was 1 year. They were then transferred to 

GEOMAR Helmholtz Center for Ocean Research Kiel and cultured in in ambient flowing 

seawater from Kiel Fjord in the indoor "Zosteratron" set up under a natural time course of water 

temperatures and light conditions, in ambient sediment collected close to the plants. All tanks 

had a wave generator at a frequency of about 0.5 Hz. Leaf shoots including the meristematic 

regions were taken for tissue samples after they had been cultured for 3 years. The total 

branching history is thus 4 years. 

In data source 3, two ramets have been sampled from Bodega Harbor, CA, United States 

in 2004. They had been used as the founder of two clones. After 17 years of growth in lab 

conditions, a total of 40 WGBS samples were collected and sequenced.   
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We identified a list of possible gbM genes for every single sample using the pipeline 

mentioned above (Fig. S6A). The gbM lists from the same data source show substantial overlap. 

In samples from Ängsö Island, Finland (data source 1), 3,290 genes were identified as gbM 

genes in 90% of the samples (i.e., in at least 21 samples). With the same cut-off, 3,474 genes and 

3,573 genes were identified in 90% of samples within data source 2 and data source 3, 

respectively (Fig. S6B). We defined the intersection of these three lists of gbM genes as “core 

gbM gene list” and used them in the following analyses (Fig. S6C, Table S14).  

 

Experimental calibration of an epigenetic evolutionary clock in Z. marina 

We studied two clones with a branching history of 17 years (referred to as clone R and 

clone G, Fig. 4A): The two clones with a branching history of 17 years were the same as those 

previously studied by Yu et al. (43). Each clone was initiated by a single leaf shoot (44). WGBS 

was performed for 15 ramets of clone R, as one ramet (including 5 technical replicates of WGBS 

samples, which are R10_01, R10_02, R10_03, R10_04, and R10_05) did not belong to this 

clone, it was removed from later analysis (43). They were cultured at Bodega Bay Marine lab in 

outdoor tanks in ambient sediment and under flowing seawater under a natural time course of 

water temperatures and light conditions. Any flowering shoots observed were removed to 

maintain the clonal lineage. Leaf shoots including the meristematic regions were taken for tissue 

samples after they had been cultured for 17 years.  

The protocol for pre-processing of samples and DNA extraction was same with the 

previous study (42). WGBS libraries were constructed by BGI (Beijing Genomics Institute) and 

then sequenced on a NovaSeq 6000 platform (Illumina) in a paired-end 150bp format. All Z. 

marina WGBS data were processed using the MethylStar pipeline (34), using Z. marina (version 

3.1, (45) as a reference. Summary statistics, including sequencing depth, mapping efficiency, 

bisulfite conversion using the lambda spike-in control and coverage for each sample are found in 

Table S13. For all samples, cytosine-level methylation states were called either methylated 

(“M”), unmethylated (“U”), or intermediate methylated (“I”) using a three-state Hidden Markov 

Model (Taudt et al. 2018). All Z. marina WGBS sequence data have been submitted to the SRA 

repository under BioProject numbers PRJNA933356, PRJNA943354, and PRJNA943356.  

As the “baseline model” was not well-supported by software based on maximum 

likelihood or Bayesian methods, we used the distance-based approach, which we have applied to 

A. thaliana epimutation data, to construct the evolutionary tree of Z. marina. The first step of this 

method is estimating the rate heterogeneity parameters (such as gamma parameter 𝛼 and 

invariable sites 𝑝0). The second step is using the estimated parameters and sequence data as input 

and calculate the pairwise distances, which can further be used in neighbor-joining tree 

construction.  

For the first step, IQtree2 can estimate the rate heterogeneity parameters with the naïve 

Bayesian method by using the “--rate” option (14). We finally decided to use only the gamma 

corrected baseline model (baseline +Γ) that we introduced in previous sections (eq. 2-8, eq. 18, 

Materials and Methods). We concerned about if the proportion of invariable sites 𝑝0 in the 

gamma invariable sites model (i.e., +I + Γ) can be accurately estimated from molecular data. 

This concern has been raised since it the model was proposed (5), and this question seems 

remained open after decades of debating (1, 46–49). Also, in A. thaliana MA1_1 and MA1_2, 

the estimated number of epimutations per lineages given by gamma invariable sites models and 

gamma models didn’t show large differences (Supplementary Text). For the second step, we 

generated 500 bootstrap datasets for each methylome from two 17-years old clones. Each 
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bootstrap dataset contained the same number of CpG sites as the original dataset. We inferred the 

pairwise divergence for every pair of methylomes in each bootstrap dataset based on the 

estimated parameters and the rate-variation-among-sites models (baseline +Γ) introduced above 

(eq. 2-8, eq. 18, Materials and Methods). We obtained the neighbor-joining trees for the 

bootstrap samples as well as the summarized phylogenies (see previous section for details, 

Materials and Methods). We extracted the depth of each taxon from the summarized phylogenies 

(for details of methods please refer to the previous sections, Materials and Methods, Fig 4F). We 

further evaluated the variations of the depth (Fig. 4G) and calibrated the time between each taxon 

and its clone (Fig. 4H, Table S12). 

 

Inferring evolutionary histories of Z. marina clones from segregating SNPs 

 The genomic data available for the two 17-year-old clones were also analyzed (43), 

including 6 ramets for clone G and 5 ramets for clone R. We used a two-step strategy to generate 

a multi-sample alignment file. 1. Identifying fixed SNPs using Mutect2 (50). Mutect2 requires a 

“normal” sample and a “tumor” sample for each run, and detects the somatic mutations in the 

“tumor” sample. Our goal was to detect the fixed somatic mutations, which was visualized by a 

histogram of variant read frequency. Since mosaic mutations and fixed mutations overlapped at 

the low-frequency region, we only focused on the somatic mutation with variant read frequency 

>= 0.5, which represented around half of the total number. The collection of the SNPs across all 

Mutect2 runs was used for further analysis. 2. Obtaining multi-sample genotypes using GATK4. 

We conducted joint SNP calling on all samples using GATK4. The multi-sample genotypes for 

the target SNPs were extracted, based on which a multi-sample alignment file was constructed. 

 

Supplementary Text 

Relationship between GTR2 model and baseline model 

Here we prove that (eq. 18) can be obtained from the GTR2 model (14). On a haploid 

methylome, each CpG site can either be methylated (M) or unmethylated (U). The GTR2 model 

is sufficient for describing the evolution of a haploid methylome with transition probability 

matrix: 

 

𝑃(𝑡) = 𝑒𝑄𝐺𝑇𝑅2𝑡, where 𝑄𝐺𝑇𝑅2 = [
−𝑎 𝑎
𝑏 −𝑏

] 

(eq. 31) 

, where 𝑎 and 𝑏 have the same definition as in (eq. 18). By solving [𝜋𝑈 , 𝜋𝑀] ∙ 𝑄𝐺𝑇𝑅2 = 0, the 

equilibrium frequencies of unmethylated CG sites and methylated CG sites are 

 

[𝜋𝑈, 𝜋𝑀] = [
𝑏

𝑎 + 𝑏
,

𝑎

𝑎 + 𝑏
] 

(eq. 32) 

Also, with (eq. 3) we have the expected total number of methylation gain and methylation loss 

epimutations per year per CG site is 

𝜇𝐺𝑇𝑅2 =
2𝑎𝑏

𝑎 + 𝑏
 

(eq. 33) 

In a diploid genome, we can have the following possible epigenotypes at a locus: unmethylated 

homozygous (𝑈𝑈), two kinds of epiheterozygous (𝑈𝑀 and 𝑀𝑈) and methylated homozygous 
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(𝑀𝑀). In a diploid methylome from a clonal plant, and assuming independence between 

epialleles, the transition among these four epigenotypes can be represented with a continuous-

time Markov chain model too. Let this continuous-time Markov chain be 𝑋 = {𝑋𝑛} with state 

space 𝑠 =  {𝑈𝑈, 𝑈𝑀,𝑀𝑈,𝑀𝑀} and transition probability matrix 𝑃(𝑡) = 𝑒𝑄𝑡. The 𝑄 can be 

derived from 𝑄𝐺𝑇𝑅2 (eq. 31).  

 

𝑄 = [

−2𝑎 𝑎 𝑎 0
𝑏 −𝑎 − 𝑏 0 𝑎
𝑏 0 −𝑎 − 𝑏 𝑎
0 𝑏 𝑏 −2𝑏

] = 𝑄𝐺𝑇𝑅2 ⊕ 𝑄𝐺𝑇𝑅2 

(eq. 34) 

The ⊕ here indicates the Kronecker sum. For epigenotypes 𝐼 and 𝐽 ∈ {𝑈𝑈,𝑈𝑀, 𝑀𝑈,𝑀𝑀}, the 

number of transitions in unit time from 𝐼 to 𝐽 is the off-diagonal element 𝑄𝐼,𝐽 in 𝑄. For four 

possible states (four epigenotypes), the vector of equilibrium frequencies is: 

[𝜋𝑈𝑈, 𝜋𝑈𝑀, 𝜋𝑀𝑈, 𝜋𝑀𝑀] = [
𝑏

𝑎 + 𝑏
,

𝑎

𝑎 + 𝑏
]⨂ [

𝑏

𝑎 + 𝑏
,

𝑎

𝑎 + 𝑏
] = [

𝑏2

(𝑎 + 𝑏)2
,

𝑎𝑏

(𝑎 + 𝑏)2
,

𝑎𝑏

(𝑎 + 𝑏)2
,

𝑎2

(𝑎 + 𝑏)2
] 

(eq. 35) 

The ⨂ here indicates the Kronecker product. With (eq. 3), the expected total number of 

methylation gain and methylation loss epimutations per diploid methylome per locus per year is 

𝜇 = −∑𝜋𝐼𝑄𝐼,𝐼

𝐼∈𝑠

=
4𝑎𝑏

𝑎 + 𝑏
 

(eq. 36) 

The model above cannot be applied to unphased methylomes, as the states 𝑈𝑀 and 𝑀𝑈 are 

indistinguishable from each other. To solve this problem, we can re-partition the state space 𝑠 

into three subsets 𝐸1 = {𝑈𝑈}, 𝐸2 = {𝑈𝑀,𝑀𝑈} and 𝐸3 = {𝑀𝑀}. They correspond to three 

epigenotypes: methylated homozygous, epi-heterozygous, and the unmethylated homozygous. 

Then we have a new set: 

 𝑠̃ = {𝐸1, 𝐸2, 𝐸3}  =  {{𝑈𝑈}, {𝑈𝑀,𝑀𝑈}, {𝑀𝑀}} 
(eq. 37) 

Let 𝑋̃ = {𝑋𝑛̃} be a continuous-time Markov chain with state space 𝑠̃ = {𝐸1, 𝐸2, 𝐸3}. The 𝑋̃ is 

called a “lumped chain” of the Markov chain that we defined in (eq. 34). The 𝑠̃ is called a 

“partition” of the states in 𝑠 (51, 52). Let 𝑈 be the 3 × 4 matrix whose 𝑖-th row is the probability 

vector having equal components for states in 𝐸𝑖 and 0 for remaining states. Let 𝑉 be the 4 × 3 

matrix whose 𝑗-th column is a vector with 1’s in the corresponding to states in 𝐸𝑗 and 0’s 

otherwise (51). Then we have  

 

𝑈 = [

1 0 0 0

0
1

2

1

2
0

0 0 0 1

] , 𝑉 =  [

1 0 0
0 1 0
0 1 0
0 0 1

] 

(eq. 38) 

Let the transition probability function of 𝑋̃ be 𝑃(𝑡) = 𝑒𝑄̃𝑡. The transition rate matrix 𝑄̃ of 

𝑋̃ satisfies (51, 52):  
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𝑄̃ = 𝑈𝑄𝑉 = [
−2𝑎 2𝑎 0
𝑏 −𝑎 − 𝑏 𝑎
0 2𝑏 −2𝑏

] 

(eq. 39) 

It finally leads us to the transition rate matrix that we defined for unphased diploid methylomes 

from clonal plants in (eq. 18). Let 𝜋̃ be the vector of equilibrium frequencies of 𝐸1, 𝐸2 and 𝐸3. It 

can be obtained by adding the from the equilibrium frequencies of four states in state space 𝑠 =
 {𝑈𝑈, 𝑈𝑀,𝑀𝑈,𝑀𝑀} by adding corresponding components in the same subset of partition 𝑠̃ (52). 

Thus, we have 

 

𝜋̃ = [𝜋𝑈𝑈, (𝜋𝑈𝑀 + 𝜋𝑀𝑈), 𝜋𝑀𝑀] = [
𝑏2

(𝑎 + 𝑏)2
,

2𝑎𝑏

(𝑎 + 𝑏)2
,

𝑎2

(𝑎 + 𝑏)2
] 

(eq. 40) 

It is easy to check that  𝜋̃ ∙ 𝑄̃ = 0. The per year evolutionary rate of this model can be obtained 

with (eq. 3). Namely,  

𝜇 = −∑𝜋̃𝐾𝑄̃𝐾,𝐾

𝐾∈𝑠̃

=
4𝑎𝑏

𝑎 + 𝑏
 

(eq. 41) 

 

Please note that the unit of 𝜇 and 𝜇 is the number of methylation gain and methylation loss 

epimutations per diploid methylome per locus per year. However, for the GTR2 model, the unit 

of 𝜇𝐺𝑇𝑅2 is the number of methylation gain and methylation loss epimutations per haploid 

methylome per CpG site (locus) per year.  

 

Continuous-time Markov chain model and discrete-time Markov chain model for epimutations 

The accumulation of mutations over time is a key concept in evolutionary genetics. It can 

be described by a Markov chain model. In the first section of Materials and Methods, we 

introduced modeling substitution with continuous time Markov chain models (CTMC models, 

eq. 1-8), which are more frequently used for phylogenetics. However, in some cases, such as 

generating forward-time simulation data, discrete-time Markov chain models (DTMC models) 

are widely used too (18, 53). Here, we will show the DTMC models that we used in simulation 

have equivalent biological meaning with our CTMC models that we used in phylogenetic 

analysis. For the same divergence time, their transition probability matrices have the same 

values. Also, they have the same equilibrium frequencies for all states.  

 

Please note again the following assumptions: 1) all methylation gain and loss 

epimutations are spontaneous and independent, 2) the rate of methylation gain and loss 

epimutations are different. For an unmethylated CG site, denote the probability of methylation 

gain epimutations in consecutive generations by 𝛼. For a methylated CG, denote the probability 

of a methylation loss epimutation in consecutive generations by 𝛽. The two assumptions above 

lead us to a DTMC model for haploid methylomes. This model and GTR2 model (eq. 31) should 

have the same biological meaning. Let  

 

𝑃 = [
1 − 𝛼 𝛼

𝛽 1 − 𝛽
] 

(eq. 42) 
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be the homogeneous one-step transition probability matrix. The n-step transition probability 

matrix 𝑃(𝑛) of this new model is: 𝑃(𝑛) = 𝑃𝑛 with 𝑛 = 0, 1, 2….The equilibrium frequencies 𝜋′ =
[𝜋𝑈′, 𝜋𝑀′] should satisfy 𝜋′ ∙ 𝑃 = 𝜋′ and 𝜋𝑈

′ + 𝜋𝑀
′ = 1. As the result, 

 

𝜋′ = [𝜋𝑈′, 𝜋𝑀′] = [
𝛽

𝛼 + 𝛽
,

𝛼

𝛼 + 𝛽
] 

(eq. 43) 

If and only if  
𝛼

𝛽
=

𝑎

𝑏
= 𝑘 

(eq. 44) 

We have 𝜋′ = [𝜋𝑈′, 𝜋𝑀′] = 𝜋 = [𝜋𝑈, 𝜋𝑀], where 𝜋 = [𝜋𝑈, 𝜋𝑀] are equilibrium frequencies of 

GTR2 model in (eq. 32). Also, if  

𝑎 + 𝑏 = −𝑙𝑜𝑔 (1 − 𝛼 − 𝛽) 
(eq. 45) 

we have 𝑃𝑛 = 𝑒𝑄𝐺𝑇𝑅2𝑡 when 𝑡 = 𝑛. For two haploid methylomes with divergence time 𝑇, let be 

𝑆𝐼,𝐽 = 𝜋𝐼 ∙ 𝑃𝐼,𝐽(𝑇) be the probability of observing a substitution from 𝐼 to 𝐽 at a site. When (eq. 

44) and (eq. 45) hold, (eq. 31) and (eq. 42) always can lead us to the same value of 𝑆𝐼,𝐽. 

 

In any diploid methylome from a clonal plant, we further assume that spontaneous 

epimutations occurring on homologous chromosomes are independent from each other. This 

leads us to a DTMC model for phased diploid methylomes whose 1-step transition probability 

matrix is 

𝑃 = [
1 − 𝛼 𝛼

𝛽 1 − 𝛽
]⨂ [

1 − 𝛼 𝛼
𝛽 1 − 𝛽

] 

 

The ⨂ here indicates the Kronecker product, i.e.   

𝑃 =

[
 
 
 
(1 − 𝛼)2 (1 − 𝛼)𝛼 (1 − 𝛼)𝛼 𝛼2

(1 − 𝛼)𝛽 (1 − 𝛼)(1 − 𝛽) 𝛼𝛽 (1 − 𝛽)𝛼
(1 − 𝛼)𝛽 𝛼𝛽 (1 − 𝛼)(1 − 𝛽) (1 − 𝛽)𝛼

𝛽2 (1 − 𝛽)𝛽 (1 − 𝛽)𝛽 (1 − 𝛽)2 ]
 
 
 

 

(eq. 46) 

The equilibrium frequencies are 

𝜋′ = [𝜋𝑈𝑈′, 𝜋𝑈𝑀′, 𝜋𝑀𝑈′, 𝜋𝑀𝑀′] = [
𝛽

𝛼 + 𝛽
,

𝛼

𝛼 + 𝛽
]⨂ [

𝛽

𝛼 + 𝛽
,

𝛼

𝛼 + 𝛽
] 

Namely,  

𝜋′ = [
𝛽2

(𝛼 + 𝛽)2
,

𝛼𝛽

(𝛼 + 𝛽)2
,

𝛼𝛽

(𝛼 + 𝛽)2
,

𝛼2

(𝛼 + 𝛽)2
] 

(eq. 47) 

We have a CTMC model defined in (eq. 34), whose transition rate matrix was denoted by 𝑄. 

With (eq. 44) and (eq. 45), we can make 𝑃𝑛 = 𝑒𝑄𝑡 for any 𝑡 = 𝑛. It means the DTMC model 

defined in (eq. 46) has the same biological meaning as the CTMC model defined in (eq. 34), 

when (eq. 44) and (eq. 45) hold.  Again, if the two epi-heterozygous states are not differentiated 

(unphased diploid methylome), the state space of (eq. 46) can be divided into three subsets. The 

new space state is 𝑠̅ = {𝐸1, 𝐸2, 𝐸3}  =  {{𝑈𝑈}, {𝑈𝑀,𝑀𝑈}, {𝑀𝑀}}. According to the definition of 
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lumping (51), the 𝑃̃ is a lumped 1-step transition probability matrix of 𝑃 defined in (eq. 46) with 

partition 𝑠̅. Thus, we have: 

 

𝑃̃ = 𝑈𝑃𝑉 = [

(1 − 𝛼)2 2(1 − 𝛼)𝛼 𝛼2

(1 − 𝛼)𝛽 (1 − 𝛼)(1 − 𝛽) + 𝛼𝛽 (1 − 𝛽)𝛼

𝛽2 2(1 − 𝛽)𝛽 (1 − 𝛽)2

], 

(eq. 48) 

 

where 𝑈 and 𝑉 are same with what are in (eq. 39). The equilibrium frequencies are 

 

𝜋′̃ = [𝜋𝑈𝑈′, (𝜋𝑈𝑀′ + 𝜋𝑀𝑈′), 𝜋𝑀𝑀′] = [
𝛽2

(𝛼+𝛽)2
,

2𝛼𝛽

(𝛼+𝛽)2
,

𝛽2

(𝛼+𝛽)2
]. 

 

When we have (eq. 44) and (eq. 45), the DTMC model defined by (eq. 48) corresponds to the 

“baseline model” we proposed in (eq. 39). The model in (eq. 48) has recently been used for 

epimutation rates estimation in the software package AlphaBeta (7). This establishes a 

connection between our current work and previous studies.  

 

Accuracies of estimating pairwise divergence on genomes and methylomes from selfing plants  

In this section, we illustrate that estimating pairwise divergence from CG methylation is 

more robust than using DNA point mutations for recent evolutionary histories of selfing-plants. 

We further show that estimating pairwise divergence from DNA sequence data can be variable 

over short timescales, as too few SNPs will have accumulated. To see this, assume SNPs on a 

pair of DNA sequences follows the JC69 model (54). Let 𝑝̂ be the observed divergence (P-

distance) between them. The estimated genetic distance under JC69 model 𝑑̂𝐽𝐶69 (eq 21) is a 

function of 𝑝̂ (54):  

𝑑̂𝐽𝐶69 = −
3

4
log (1 −

4

3
𝑝̂) 

(eq. 49) 

The sequence length is denoted by 𝑛. The large sample variance of 𝑑̂𝐽𝐶69 (eq. 50) was derived by 

Kimura and Ohta in 1972 (55): 

 

𝑉𝑎𝑟(𝑑̂𝐽𝐶69) = [
d𝑑̂𝐽𝐶69

d𝑝̂
]

2

∙ 𝑉𝑎𝑟(𝑝̂) =
9𝑝̂(1 − 𝑝̂)

(3 − 4𝑝̂)2𝑛
= 𝑆𝐸(𝑑̂𝐽𝐶69)

2
 

(eq. 50) 

 

where the variance of 𝑝̂, 𝑉𝑎𝑟(𝑝̂) =
𝑝(1−𝑝)

𝑛
, and 𝑆𝐸(𝑑̂𝐽𝐶69) is the standard error of 𝑑̂𝐽𝐶69.  

 

We can reduce the GTR2 model to the MK model for binary traits (equivalent to JC69 model for 

binary traits, (21). We have the estimates of pairwise divergence under the MK model 

 

𝑑̂𝑀𝐾 = −
1

2
∙ log (1 − 2𝑆) 

(eq. 51) 

Let the number of sites be 𝑛. The large sample variance of 𝑑̂𝑀𝐾 is 
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𝑉𝑎𝑟(𝑑̂𝑀𝐾) =
𝑆(1 − 𝑆)

𝑛(1 − 2𝑆)2
 = 𝑆𝐸(𝑑̂𝑀𝐾)2 

(eq. 52) 

 

The 𝑆𝐸(𝑑̂𝑀𝐾) is the standard error of 𝑑̂𝑀𝐾. Since epimutation rate is roughly 10,000 times higher 

than DNA point mutation rate, for the same divergence time, 𝑑̂𝐺𝑇𝑅2 and 𝑑̂𝐽𝐶69 are not in the same 

scale. Comparing them with their standard errors or variances is unreasonable. The coefficient of 

variation (CV) of 𝑑̂𝐽𝐶69 is  

 

𝐶𝑉(𝑑̂𝐽𝐶69) =
𝑆𝐸(𝑑̂𝐽𝐶69)

𝑑̂𝐽𝐶69

= −
4

3
√

𝑝̂(1 − 𝑝̂)

𝑛
∙

1

(1 −
4
3

𝑝̂)log (1 −
4
3

𝑝̂)
 

 
(eq. 53) 

Similarly, we have  

𝐶𝑉(𝑑̂𝑀𝐾) =
𝑆𝐸(𝑑̂𝑀𝐾)

𝑑̂𝑀𝐾

= √
𝑆(1 − 𝑆)

𝑛(1 − 2𝑆)2
 ∙

−2

𝑙𝑜𝑔(1 − 2𝑆)
 

(eq. 54) 

From the (eq. 55) and (eq. 56), we can see both the observed divergence and the length of the 

sequences can influence the accuracy of estimation.  

To make this more concrete, consider the following example: For two individuals that 

diverged from each other 500 generations ago, if we collected SNPs from 100MB DNA 

sequences and 300,000 CG sites from each individual. Let the observed divergence among the 

DNA sequences be 10−8 × 1000 = 10−5 and observed divergence on methylome be 

10−4 × 1000 = 10−1. The CV of 𝑑̂𝑚𝑘 is about 0.685%. However, the CV of 𝑑̂𝐽𝐶69 is over 

3.16%. In our example, for 𝑑̂𝑚𝑘, the upper bound of 95% confidence intervals is only 1.34% 

higher than its mean (for the lower bound, it’s 1.34% lower than the mean). However, the upper 

bound (95% CI) of 𝑑̂𝐽𝐶69 is about 1.96 × 3.16% = 6.19% higher than the mean of  𝑑̂𝐽𝐶69. 

Hence, inferences of evolutionary histories on a scale of about 500 years will be more accurate 

when using CpG methylation data than with SNP data. 

 

Accuracies of estimating pairwise divergence on genomes and methylomes from clonal plants  

We will show that using CpG methylation data from clonal plants to infer pairwise 

divergence is more robust than the traditional SNP-based method. In this section, we denote 

three kinds of epigenotypes 𝑈𝑈, {𝑈𝑀,𝑀𝑈}, and 𝑀𝑀 by 0, 1 and 2. For 𝑖, 𝑗 ∈ {0,1,2}, let 𝑆𝑖,𝑗 be 

observed transitions from 𝑖 to 𝑗. For the substitution model we defined for unphased diploid 

methylome from clonal plants in (eq 2), we have 𝑆𝑖,𝑗 = 𝜋𝑖𝑃𝑖,𝑗(𝑡), where 𝜋𝑖 is equilibrium 

frequency of epigenotype 𝑖, 𝑃𝑖,𝑗(𝑡) is the transition probability function from epigenotype 𝑖 to 𝑗. 

Let 𝑆1 = 𝑆0,1 + 𝑆1,0 be the observed transitions between 𝑈𝑈 and {𝑈𝑀,𝑀𝑈}. Similarly, let 𝑆2 =
𝑆0,2 + 𝑆2,0 and 𝑆3 = 𝑆1,2 + 𝑆2,1 be observed proportion of transitions for 𝑈𝑈 ⟷ 𝑀𝑀, and 

{𝑈𝑀,𝑀𝑈} ⟷ 𝑀𝑀.  
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Thus, we have {

𝑆1 = 𝑐(1 − 𝑥)(𝑥 + 𝑘)

𝑆2 =
𝑐

2
(1 − 𝑥)2

𝑆3 = 𝑐(1 − 𝑥)(𝑥 +
1

𝑘
)

, where 𝑐 =
4𝑘2

(1+𝑘)4
, 𝑥 = 𝑒−(1+𝑘)𝑎𝑡. Same with definitions 

in previous sections, the number of methylation events per site per haploid methylome per 

generation is denoted by 𝑎. The ratio 𝑘 =
𝑏

𝑎
, where 𝑏 is the number of demethylation events per 

site per haploid methylome per generation. Again, to simplify the proof and demonstrating our 

basic ideas, we assume rates of methylation and demethylation are the same, i.e., 𝑘 =
𝑏

𝑎
= 1. 

Now, the expected observed transitions should follow {
𝑆1 = 𝑆3 =

1

4
(1 − 𝑒−4𝑎𝑡)

𝑆2 =
1

8
(1 − 𝑒−2𝑎𝑡)2

. Also, we have 

the expected divergence per locus per diploid methylome 𝑑 =
4𝑎𝑏

𝑎+𝑏
𝑡 = 2𝑎𝑡. Thus, the expected 

divergence can be either estimated from 𝑆1 or 𝑆2 with 

 

𝑑̂(𝑆1) = −
1

2
log (1 − 4𝑆1) 

(eq. 55) 

𝑑̂(𝑆2) = −log (1 − (8𝑆2)
1
2) 

(eq. 56) 

Like last section, the coefficient of variation of 𝑑̂(𝑆1) is 

𝐶𝑉 (𝑑̂(𝑆1)) =
d(𝑑̂(𝑆1))

d(𝑆1)
∙ √𝑉𝑎𝑟(𝑆1) ∙

1

𝑑̂(𝑆1)
=

2

1 − 4𝑆1
∙ √

(1 − 𝑆1)𝑆1

𝑛
∙

−2

log (1 − 4𝑆1)
 

(eq. 57) 

For 𝑑̂(𝑆2), the coefficient of variation is  

𝐶𝑉 (𝑑̂(𝑆2)) =
𝑑(𝑑̂(𝑆2))

𝑑(𝑆2)
∙ √𝑉𝑎𝑟(𝑆2) ∙

1

𝑑̂(𝑆2)
=

2

(−4𝑆2 + (2𝑆2)
1
2)

∙ √
(1 − 𝑆2)𝑆2

𝑛
∙

−1

log (1 − (8𝑆2)
1
2)

 

(eq. 58) 

 

Like the example in the last section, we assume there are two individuals that diverged 

from each other 500 years ago. From each individual, 100 MB DNA sequence and 300,000 CG 

sites per haploid methylome (300,000 epigenotypes) were collected. When the DNA mutation 

rate is 10−8 per site per year, the observed DNA sequence divergence is approximately equal to 

10−8 × 500 × 2 = 10−5. With the relative standard error function of JC69 model, the CV of 

𝑑̂𝐽𝐶69 is over 3.16%. When the epimutation rate is 10−4 per CG site per year, the expected 𝑆1 

should be 0.0824, and the expected 𝑆2 should be 0.00411. The 𝐶𝑉 (𝑑̂(𝑆1)) = 0.749% and 

𝐶𝑉 (𝑑̂(𝑆2)) = 1.573%. Thus, over short timescales, estimating divergence based on CG 

methylation data is far more robust than using DNA sequence data.    

 

Simulation results 

 As we have derived in the previous section (eq. 14, eq. 17, eq. 55-56, eq. 59-60), the 

coefficient of variation (CV) of pairwise divergence was approximately inversely proportional to 
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the square root of sequence length. When the data type and substitution rates were constant, 

longer sequences would always lead to smaller variations. However, even when the simulated 

genomes had longer sequences (over 300 times longer), in our simulation results (Table S9-S10, 

Fig. S5-S7), regardless of the propagation types, the CV of depth observed from epimutations 

was smaller than that observed from SNPs. 

 

 

Epimutation accumulation in A. thaliana MA1_1 and MA1_2 

 In order to accurately infer the evolutionary histories of MA1_1 and MA1_2 from the 

epimutations, we utilized maximum likelihood and distance-based methods, as well as a range of 

different models to construct the phylogenetic trees. We found that although the distance-based 

method appears to be more straightforward, the epimutation number per lineage estimated by 

both methods were very similar in terms of mean and standard error. The mutual corroboration 

between these two methods gave us increased confidence in the results. Moreover, it suggested 

the reliability of the distance-based method, which ultimately led us to choose it for the data 

analysis of epimutation data from Z. marina.  

Furthermore, when we took into account the variation in substitution rate among sites, the 

depth and epimutation rates estimated by different models were very similar (Table S6). This 

implied that although the I + Γ model had one more parameter than the gamma model (i.e., the 

proportion of invariable sites, 𝑝0), this additional parameter did not seem to produce different 

results. Given the debate about the I + Γ model mentioned earlier (Materials and Methods), we 

finally chose to use the gamma model. As with most maximum likelihood-based software, 

IQtree2 utilized a discrete gamma distribution instead of a continuous gamma distribution. This 

well-known approximation method divides all sites into 𝑛 categories with equal proportions 

based on their evolutionary rates, and further estimates the gamma distribution parameter (𝛼(4). 

When the number of categories (𝑛) is sufficiently large, the discrete gamma distribution will 

converge the continuous gamma distribution. Thus, we chose 𝑛 = 12 and used the corresponding 

estimated value of 𝛼 in the continuous gamma distance to reconstruct the distance-based 

phylogenetic tree of the G31 individuals. The depth extracted from this tree were presented in the 

main text (Fig. 2C). Additionally, the epimutation rates of the G31 individuals were also 

estimated from this phylogenetic tree. 

 

 

Divergence time of 12 non-recombinant A. thaliana North American accessions 

 To determine the time of divergence event of 12 non-recombinant taxa from Hagmann et 

al. (35), we used three different strategies: 1) Dating divergence event with average depth and 

epimutation rates from MA lines (Fig. 3D-F). 2) Dating divergence event with average depth and 

the substitution rates of SNPs from MA lines (Fig. 3D-F). 3) Dating the divergence event with 

Bayesian tip-calibration and herbarium samples (Fig 3G).  

For the first strategy, we also observed that both the maximum likelihood and distance-

based methods, as well as different rate-variation-among-sites models, provided us with very 

similar depth estimates (Table S11). For the same reasons, we selected the estimated 𝛼 and 

phylogeny generated by the gamma model with the largest number of rate categories (𝑛 = 12) 

from all outputs of IQtree2. Then, we showed the subsequent results in main text (Fig. 3D-F).  

 For the second strategy, we mentioned it gave us wider CIs of time to the common 

ancestor of 12 taxa. We also found that the divergence times obtained by this strategy appeared 
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to be larger than those obtained by the first strategy. The previous study (35) has proposed a 

hypothesis that positive selection leads to higher substitution rates in the genomes of wild 

populations than those measured in the laboratory (20). Therefore, the second strategy could lead 

to an overestimation of divergence times. However, as claimed in the original paper (35), this 

hypothesis was difficult to verify. 

 Regarding the third strategy, firstly, performing Bayesian tip-calibration is never easy. 

This was because this method relies on the collection time of the samples and sequence 

divergence between the samples and the common ancestor (38, 39). When the strict molecular 

clock is still valid, the earlier collected samples should be less diverged from their common 

ancestor on the sequences. However, our previous theory showed that this correlation might 

become blurred when the timescale was too small (fewer mutations led to a larger coefficient of 

variation). We found that when the sample size was very large, the 95% highest posterior density 

(95% HPD) intervals of divergence times obtained were relatively small (Table S12). However, 

when we used different DNA samples from the specimens as outgroups for the 12 taxa, the mean 

divergence times of the 12 taxa shifted. Moreover, the HPD intervals of divergence times also 

increased. This further revealed the complexity of molecular dating (Table S12). We still needed 

more molecular evidence and advanced methods to infer the divergence times of these 12 taxa. 

 

 

gbM genes as a proxy for clock-like regions on A. thaliana methylomes  

 We demonstrated epimutation rate estimation and divergence time estimation using CpG 

sites on gbM genes from A. thaliana. We used a similar strategy, which had been applied to 

chromatin-state clock regions. We constructed the maximum likelihood trees with IQtree2 and 

“GTR2+G12” model for G31 (line 79 was excluded as an outlier), and G32 samples from A. 

thaliana MA1_1 and MA1_2. Based on the depth from G31 samples, the average epimutation 

rates in MA1_1 and MA1_2 are 2.78 × 10−4 and 2.71 × 10−4, respectively (Fig. S4, Table S8). 

With two samples T-test, epimutation rates on these two data sources are not significantly 

different from each other (P-value = 0.41). We applied the rate from MA1_2 gbM genes to 

MA1_1. For G31 samples from MA1_1, their estimated time to MRCA is 31.9 ± 3.43 

generations (95% CI), which agrees well with actual value of 31 generations.  

 Using the average epimutation rate (2.76 × 10−4) from all G31 samples, we estimated 

the divergence time of 12 non-recombining taxa from North American accessions (Fig. S4, Table 

S8). The MRCA for these taxa was inferred to date back to the year 1872±10.71 (95% CI), 

which is close to the CS-clock estimate obtained in our manuscript.  

 To investigate if the epimutation accumulation on each CpG site was influenced by the 

nearby CpG sites, we took 1 CG site in every 10 CG sites (size of neighborhood = 10) to 

generate subsets of the original dataset. This operation was replicated thrice, focusing on the 1st, 

5th, and 10th CpG sites within each identified neighborhood (refer to Figure S4, Table S8). 

Assuming that the epimutations occurring in the clock-like regions are independent and follow 

the same distribution, we would expect the number of accumulated epimutations to be similar 

across these subsets (i.e. not sensitive to the location in each neighborhood). Intriguingly, our 

new findings based on these subsets align precisely with this expectation, revealing no 

significant differences in the estimated epimutation rates.  
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Fig. S2. Epimutation rate of each chromatin state across the 14 different genetic and environmental MA lines. (A) Mean of gain or loss rate. (B) 
Coefficient of variation versus the mean for gain or loss rate. This shows that the states with the lowest coefficient of variation (CS-clock states, red 
color) are not because they have the largest gain or loss rate. 
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Fig. S3. Chromatin modifications and genomic annotations within defined chromatin states. (A) The enrichment of different chromatin modifica-
tions within each of the 36 chromatin states. (B) The percentage of genomic annotations of the five chromatin states that define the clock-like 
regions. “other_gene” was defined by removing gbM genes from the whole gene sets. “others” was defined by removing genes and TE from the 
whole genome.



Fig. S4. Comparative analysis of depth and tMRCA in gbM and CS-clock subsets. This figure illustrates the measurement of depth and time to the 
most recent common ancestor (tMRCA) across subsets of CS-clock regions and gbM genes in A. thaliana MA1_1, MA1_2, and North American 
accessions. We created subsets by selecting one CG site per every ten (neighbourhood size = 10) from the original data, with the process replicated 
thrice, targeting the 1st, 5th, and 10th CG sites within each neighbourhood (N10_0, N10_4, N10_9). (A) Depth of the G31 samples from MA1_1 and 
MA1_2. (B) Estimated tMRCA for G31 samples, drawn from both gbM genes and CS-clock regions (including their respective subsets). The average 
epimutation rate across all gbM CpG sites in G31 was used for each gbM gene subset. Similarly, for each subset of CS-clock regions, the average 
epimutation rate from all corresponding CpG sites in G31 was used. (C) Estimated tMRCA for 12 non-recombining taxa from the North American 
accessions. These estimations used the average epimutation rate of all gbM sites, sourced from G31.

0.000

0.005

0.010

CS-clock gbM

G
31

 m
ea

n

0

10

20

30

CS-clock gbM

G
31

 tM
RC

A
0

50

100

150

gbM

tM
RC

A Subset
All_sites
N10_0
N10_4
N10_9

A B C



G0

G10

G20

G30

G40

G50

G60

G500
1 2 3 4 504948474645444342

Fig. S5. Simulated MA lines. To study accumulation of SNPs and epimutations, we simulated 16 sets of MA lines. Each set of MA lines contained 50 
MA lines that shared a single common ancestor (G0). The simulated MA lines were propagated with either selfing or clonal propagation for 500 
generations. The substitution rates, generation time, and simulated sequence lengths were identical for all individuals in the same set of MA lines. 
Every 10 generations, the sequence divergence between the common ancestor and its descendants was measured and recorded. 



 

Fig. S6. Coefficient of variation of observed divergence in simulated selfing MA lines. We simulated accumulation of epimutations (Sim1-4, spots) 
and SNPs (Sim5-8, squares) on 8 sets of 50 simulated selfing MA lines. Within each set of MA lines, we measured the observed divergence every 
10 generations and evaluated their dispersion via coefficient of variations (CVs). From G0 to G500, the CVs of observed epimutations are always 
~50% lower than CVs of observed SNPs. 
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Fig. S7. Coefficient of variation of divergence in simulated clonal datasets. For clonal diploid plants, we also simulated the (epi)mutation accumula-
tion on epigenetic clock regions (1 × 105 CpG sites, Sim1-clonal - Sim4-clonal) and genome (1 × 109 base pairs, Sim5-clonal - Sim8-clonal). There were 
eight sets of 50 simulated MA lines. Each set of the MA lines started from a single founder individual (G0) and reproduced through asexual reproduc-
tion for 500 generations. Every 10 generations, we measured the divergence between every single individual and G0. (A) Coefficient of variation of 
observed divergence (P-distance). (B) Coefficient of variation of estimated divergence. We used baseline distance to estimate the divergence on 
epigenetic clock regions. For simulated genomes, we used the K80 distance. Both observed and estimated divergence suggests the epigenetic clock 
has higher statistical robustness while inferring recent evolutionary histories.  
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Fig. S8. Identifying gbM genes in Z. marina samples. (A) We identified gene-body methylation (gbM) genes from Z. marina samples from three 
data sources from various locations. From each sample, which corresponds to a WGBS dataset, a gbM gene list was generated with a published 
pipeline (30). (B) The gbM gene lists from the same data source showed high consistency. In samples from Ängsö Island, Finland (data source 
1), 3,290 genes were identified as gbM genes in 90% samples (i.e., in at least 21 samples). With the same cut-off, 3,474 genes and 3,573 genes 
were identified in 90% of samples within each of the other two data sources. Thus, three lists of highly reliable gbM calls were obtained. (C) 
We defined the intersection of three lists in (B) as “core gbM gene list” and used them in for analyses. 


