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Abstract 

In magnetic materials with strong spin-lattice coupling, magnon-phonon interactions can 
change the sensitivity of the lattice thermal conductivity in an applied magnetic field. Using an 
out-of-plane applied field to change MnBi2Te4 between antiferromagnetic (AFM), canted 
(CAFM) and ferromagnetic (FM) phases, we controlled the lattice thermal conductivity, 
generating both a positive and a negative magnetic field dependence. The in-plane thermal 
conductivity decreases with field in the AFM phase, remains approximately constant in the 
CAFM phase, and increases with field in the FM phase. We explain this in terms of the field-
induced changes of the magnon gap which modifies magnon-phonon scattering. We also report 
thermal Hall data measured in the same configuration.  
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Introduction 
The thermal conductivity of a solid has contributions from phonons, electrons and 

magnons. The thermal conductivity of the electrons can be modulated in a magnetic field via the 
Lorentz force, giving rise to magnetoresistance, which is a negative magneto-thermal 
conductivity, or the recently discovered thermal chiral anomaly which gives a positive magneto-
thermal conductivity [1]. Magnons couple directly to magnetic fields and the thermal 
conductivity can be altered by the Zeeman effect, red- or blue-shifting the magnon dispersion, 
which alters the thermal occupation of magnon states. Phonons by themselves are not generally 
considered to be directly affected by a magnetic field. However, in magnetic materials with 
strong spin-lattice coupling, magnon-phonon interactions can thoroughly change that picture. 
Understanding these interactions can open ways to control the lattice thermal conductivity in 
active thermal devices (e.g. heat switches) with a magnetic field. 

MnBi2Te4, a magnetic topological insulator, crystalizes in the space group 𝑅3̅𝑚.  It 
consists of septuple van der Waals layers of Te-Bi-Te-Mn-Te-Bi-Te. This creates a structure that 
integrates a central layer of MnTe octahedra inside the Bi2Te3 archetype, making it a magnetic 
relative of the 3D topological insulator Bi2Te3. MnBi2Te4 has an A-type antiferromagnetic 
(AFM) structure: the Mn2+ spins have moments that are aligned in the out-of-plane direction, are 
ferromagnetically coupled within each layer, but are weakly antiferromagnetically coupled with 
neighboring layers. The Néel temperature is TN = 25 K [2]. In an out-of-plane magnetic field with 
temperatures below TN, the bulk magnetic ordering undergoes a spin-flop transition followed by 
a canted AFM (CAFM) ordering. Further increasing the field leads to a phase where the spins in 
all layers align, making MnBi2Te4 appear ferromagnetic (FM) at high field  [2,3] (depicted in Fig 
1(a)). Theory predicts that interplay between the magnetic structure and the topologically 
nontrivial bands produces rich topological phase transitions in an applied magnetic field  [4–7]. 
Raman spectroscopy studies in MnBi2Te4 show strong coupling between spin and lattice. In 
these studies, certain A1g optical phonon modes have peak intensity strongly affected by the 
magnetic ordering  [8,9]. Therefore, we expect magnetic ordering transitions in MnBi2Te4 to 
exhibit nonmonotonic magneto-electrothermal transport phenomena. 

In this study we measure the in-plane thermal conductivity (𝜅𝑥𝑥) of AFM-MnBi2Te4 from 
2 K to 30 K in an out-of-plane magnetic field. Characteristic changes in 𝜅𝑥𝑥 coincide with the 
boundaries of the field-induced magnetic phase transitions in this material. 𝜅𝑥𝑥 decreases with 
field in the AFM phase, has relatively small field dependence in the canted phase, and increases 
again with field in the FM phase (Fig. 1(a)). The measured data agrees with reported thermal 
transport data in literature [10,11]. The magnitude and sign of the changes cannot be explained 
by either the magnon thermal conductivity or the electronic thermal conductivity. We interpret 
our results in terms of a magnon-number non-conserving magnon-phonon confluence interaction 
process. We propose that the magnon gap plays a crucial role in controlling the phase space of 
energy-momentum that allows magnon-phonon scattering [12], suggesting that two magnon to 
one phonon scattering is the dominant spin and lattice interaction in MnBi2Te4. Theoretical and 
experimental studies have suggested a thermal Hall effect originating from magnon-phonon 
interactions  [13–20]. We also report thermal Hall data measured in the same configuration. Our 
measured thermal Hall signal is dominated by electronic thermal Hall contributions, which show 
an anomalous thermal Hall effect at the spin-flop transition which strongly resembles the 
electrical Hall data. The magnitude of the thermal Hall signal is close to an estimation using the 
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Wiedemann Franz Law. The result points toward an electronic origin of thermal Hall signal and 
shows no evidence for a thermal Hall signal originated from magnon-phonon interaction. 

In-plane thermal conductivity in an out-of-plane magnetic field 

Single crystals of MnBi2Te4 were grown by adapting the previously established flux 
method [21] by slow cooling Bi2Te3 and MnTe powders in approximately a 5:1 ratio into an 
alumina Canfield crucible and centrifuging at 595 oC.  Crystals with lengths and widths of 3-8 
mm and thicknesses of 10 – 200 µm were prepared for transport measurements. Hall effect 
characterization of the carrier concentration (see Supplemental Material) of the samples shows 
that electrons are the majority charge carriers. The electron concentration at 20K is about 6∙1019 - 
1∙1020 cm-3. This is very similar to other values reported, typically ranging from 7∙1019 - 1∙1020 
cm-3 [22,23]. The carrier concentration indicates that the Fermi level is about 0.3 eV into the 
conduction band [4]. The n-type defects responsible for doping were explored by Hou et al. and 
Du et al. both experimentally and computationally [24,25]. MnBi2Te4 growth faces challenges 
with donor BiMn+ anti-site defects [22,26], which heavily n-type dope the crystal.  

Figure 1(b) shows the temperature dependence of the in-plane thermal conductivity 𝜅𝑥𝑥 
without applied magnetic field. This agrees with data previously reported in the 
literature [10,21]. The electronic thermal conductivity was reported to follow a T1 law [21], and 
can be estimated from the resistivity of the sample using the Wiedemann-Franz law with the 
free-electron Lorenz ratio to be of the order of 0.2 W m–1 K–1 at 100K.  It is generally much 
smaller than the total 𝜅𝑥𝑥. At temperatures slightly above 30 K, which are above the TN of 24.5 
K, the lattice thermal conductivity dominates. Around TN and below, both the lattice thermal 
conductivity and the magnon thermal conductivity 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒 + 𝜅𝑚𝑎𝑔𝑛𝑜𝑛 must be considered, while 
the electronic thermal conductivity diminishes and contributes less than 0.05 W m–1 K–1 to the 
total thermal conductivity of 2.62 W m–1 K–1. In yttrium iron garnet (YIG), 𝜅𝑚𝑎𝑔𝑛𝑜𝑛 was 
estimated to be up to ~1 W m-1 K-1 at 2 K and becomes a significant contribution as temperature 
decreases [27]. If 𝜅𝑚𝑎𝑔𝑛𝑜𝑛were significant in MnBi2Te4 in this range, we would see an increase 
of 𝜅𝑥𝑥 as the temperature decreases below TN, yet we observe a clear suppression of 𝜅𝑥𝑥 in this 
temperature range. A similar anomaly in 𝜅𝑥𝑥(𝑇)  was observed in some other magnetic materials 
near the ordering temperature [28–30].  Comparing the experimental data above and below the 
Neel temperature TN = 24.5 K, one notices that 𝜅𝑥𝑥(𝑇) below TN is much smaller compared to 
what it would be if the data above TN were simply extrapolated following the 1/T law expected 
for the Umklapp-dominated lattice thermal conductivity. Combined with the observation of a 
peak in heat capacity at the Neel temperature [31], we conclude that magnons emerge at T<TN 
and the magnons do not carry much additional heat but instead induce strong phonon-magnon 
scattering in the ordered phase. 

The field dependence of the in-plane thermal conductivity 𝜅𝑥𝑥(𝐵𝑧) is shown in Fig. 1(c-
d). Note that Fig. 1(c) shows data in vicinity of TN, while Fig. 1(d) shows data at lower 
temperatures. As the temperature decreases towards the ordering temperature, 𝜅𝑥𝑥(𝐵𝑧) develops 
an interesting field dependence. At 29.2K, we observe a slight increase in 𝜅𝑥𝑥(𝐵𝑧) with an 
applied magnetic field up to 9 T. This magnetic field induced increase in thermal conductivity 
grows larger as the temperature approaches TN. Below TN, 22 K < T < 25 K, 𝜅𝑥𝑥 decreases at low 
field and increases linearly at high field. Far below TN, T < 22K, the canted AFM ordering phase 
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appears in the intermediate field region. Our data in Fig. 1(d) shows that 𝜅𝑥𝑥 saturates in this 
region with only a weak field dependence. In the FM phase, the field dependence becomes a 
linear increase with field. In Fig. 1(a) we plot the derivative dxx / dBz as as function of Bz and T 
and overlay the known magnetic phase diagram [2,3]. Discontinuities in dxx / dBz coincide 
precisely with the magnetic phase boundaries, indicating that the changes in thermal conductivity 
are related to the magnetic phases [2,3].  

Theory for 𝜿𝒙𝒙(𝑩𝒛) 

The field dependence of the thermal conductivity below TN is unlikely to be due to 
electrons, because they contribute less than 0.05 W m–1 K–1 to 𝜅𝑥𝑥 and the resistivity data show 
less than a 2% decrease in a 9 T magnetic field at 25 K. Therefore, we must look at phonon and 
magnon contributions. Above TN, a high magnetic field polarizes the paramagnet into a forced, 
more ferromagnetically ordered state; thus, magnetic scattering of phonons is reduced. This 
explains well the 𝜅𝑥𝑥 (𝐵𝑧) data above TN. 

The 𝜅𝑥𝑥 (𝐵𝑧) trends below TN can be summarized as follows: A decrease in  𝜅𝑥𝑥 (𝐵𝑧)  in 
the AFM phase that becomes more linear at lower temperature, a sharp drop at the spin-flop 
transition, a relatively small field dependence in the CAMF phase, and a linear increase with 
field in the FM phase.  Strong suppression of thermal conductivity in the AFM phase and a sharp 
drop at the spin-flop transition were also reported in the multiferroic materials [19] and 
Ni3TeO6  [18] although the origin was not well established. A linear increase in thermal 
conductivity with magnetic field was also reported in Na2Co2TeO6 [32] and attributed to a 
reduction of magnon-phonon scattering. An increase in thermal conductivity at high field was 
observed in Bi-Sb topological insulators and attributed to the thermal chiral anomaly [1]. This 
occurs when an applied magnetic field is colinear with the heat flux and parallel to the Weyl 
point separation [1]. Although the FM phase of MnBi2Te4 is predicted to be a Type II Weyl 
semimetal with Weyl points separation from Γ-Z [7], in our experimental setup, the applied heat 
flux direction is perpendicular to the Weyl point separation, ruling out the thermal chiral 
anomaly. The theory of Fermi arc mediated entropy transport in Weyl semimetals [33] also 
predicts an increase of thermal conductance that is linear with an applied magnetic field that is 
perpendicular to the surfaces that host topologically protected Fermi arcs. In our experimental 
setup, it is possible that a small, unintentional misalignment of the out-of-plane magnetic field 
exists, so there may be a small in-plane magnetic field component Bin-plane perpendicular to the 
arcs. However, no change was observed when the Bin-plane component was increased intentionally 
by setting a small (but intentionally) misaligned angle between the applied magnetic field and the 
sample’s out-of-plane direction (see Supplementary Materials), contrary to the theoretical 
prediction. In our samples, we note that the position of the Fermi level (see Methods section) of 
MnBi2Te4 is far (0.3 eV) from the bulk gap. Thus, the measured magneto-thermal transport 
behavior is unlikely to be due to topological properties.  

To understand the behavior of the 𝜅𝑥𝑥(𝐵𝑧) data below TN, we calculated the evolution of 
the magnon bands and inferred the consequences for magnon-phonon interactions. We used 
atomistic spin dynamics (see Supplementary Materials) based on the Heisenberg model 
parametrized from inelastic neutron scattering measurements of MnBi2Te4 [34]. The 
Hamiltonian is 
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ℋ = −
1
2

∑ 𝐽𝑖𝑗𝐒𝑖 ∙ 𝐒𝑗 −
1
2

∑ 𝐒𝑖 ∙ 𝐒𝑗 −
1
2

∑ 𝐽𝑐
anisoS𝑖

𝑧S𝑗
𝑧

〈𝑖𝑗〉⊥

− 𝐷 ∑(S𝑖
𝑧)2

𝑖〈𝑖𝑗〉⊥〈𝑖𝑗〉∥

− ∑ 𝜇𝑠𝐁 ⋅ 𝐒𝑖
𝑖

 (1) 

where i labels the Mn ions, 𝐒𝑖 are unit vectors, 𝐽𝑖𝑗 are the pairwise intralayer exchange 
interactions, 𝐽𝑐 is the nearest-neighbor interlayer exchange, 𝐽𝑐

aniso is the nearest-neighbor 
interlayer anisotropic two-ion exchange, 𝐷 is the single-ion uniaxial anisotropy energy, 𝜇𝑠 =
5𝜇𝐵 is the size of the Mn magnetic moment in Bohr magnetons and 𝐁 is the externally applied 
magnetic field in Tesla. The magnon-band dispersions in the ordered magnetic phases are 
calculated by solving the Landau-Lifshitz-Gilbert equation and calculating the spin-spin 
correlation functions in frequency and reciprocal space. The value of all parameters and the 
methods are detailed in the Supplementary Materials. 

Figure 2 shows the calculated magnon-band dispersions. For reference, the dashed lines 
qualitatively depict the lowest velocity, in-plane acoustic branch of the phonon dispersion of 
MnBi2Te4 based on the monolayer phonon dispersion [5], dispersing from 0 to 5 meV from the 
zone center to the edge. Our experiment data was measured from 3 K to 25 K, corresponding to a 
𝑘𝐵𝑇 scale of 0.25-2.15 meV. 

In zero magnetic field, the system is in the AFM phase and the magnons have a near 
linear dispersion (Fig. 2(a)). There are two modes with opposite magnon spin polarization, but in 
zero field these are degenerate. A 0.6 meV gap at the zone center is induced by the magnetic 
anisotropy, enhanced by the exchange energy in antiferromagnets. An external magnetic field 
along z breaks the symmetry between the spin-up and spin-down moments, thus lifting the 
degeneracy of the AFM magnon branches into two bands with a gap proportional to the external 
field strength (Fig. 2b-d). Increasing the magnetic field blueshifts one branch and redshifts the 
other.  The redshifted branch becomes the dominant scatterer since the thermal magnon density 
increases as the band moves to lower energies whereas the magnon occupation of the high-
energy branch decreases. Once the lower magnon mode has closed the energy gap at the zone 
center, further increasing the applied magnetic field causes an instability in the magnetic order, 
producing the spin-flop transition and the CAFM phase (Fig. 2(e)). In the CAFM phase, there is 
a gapless magnon branch attributed to a Goldstone mode and another high-energy branch. The 
gapless mode retains its dispersion throughout the CAFM regime without a dependence on the 
magnetic field. Above a critical field, the magnetic moments are forced to align with the 
magnetic field, and the FM phase is established with the upper branch being the ferromagnetic-
like branch and lower being of an antiferromagnetic branch with zero magnetization (Fig. 2(f-
h))  [35]. The magnetic field increases the energy of both modes, opening a gap in the zone 
center proportional to the Zeeman energy, 𝑔𝜇𝐵𝐵𝑧.  

The trends of 𝜅𝑥𝑥 (𝐵𝑧) can not be explained by magnon thermal conductivity based on 
the calculated magnon spectrum. The magnon gap closed by the field in the CAFM phase would 
result in a higher magnon density, thus increasing heat carrier density. Given the similar 
dispersion, magnon thermal conductivity would increase in the CAFM phase. This contrasts with 
the data presented in which 𝜅𝑥𝑥 approaches a minimum as the gap is closed, stays at the 
minimum when the gap is zero throughout CAFM phase and increases as the gap opens again.  



6 
 

To understand the changes in thermal conductivity in the different magnetic phases we 
consider the relationship between the magnon spectrum and the acoustic phonon dispersion. To 
first order, the dominant magnon-phonon interactions can be broken down into three classes: 
hybridization at crossing points of the dispersion, the magnon-number non-conserving 
confluence process, and magnon-number-conserving Cherenkov scattering [12].  

Magnon-phonon hybridization can occur at the touching points between magnon and 
phonon dispersions. The strength of magnon-phonon hybridization depends on the volume of the 
phase space at the touching point [13]. In all cases here the bands simply cross and so the 
hybridization is likely to be weak. In the CAFM phase, there is no magnon gap for the lower 
branch; thus, hybridization cannot happen on the lower branch, yet the thermal conductivity 
forms a minimum in this regime, suggesting hybridization is not the dominant mechanism to 
explain the data. From the neutron scattering data [34], the hybridization was also not observed; 
again, suggesting that it is a weak effect.  

Cherenkov scattering, which conserves the magnon number, can be expected in all 
magnetic phases. This process involves a magnon scattering into a phonon and a lower energy 
magnon. The scattering rate for this process depends on the detailed shape of the magnon 
dispersion but is allowed by energy and momentum conservation throughout the Brillouin zone. 
The scattering cross section will have some field dependence as the magnon dispersion changes 
with field, but no angular momentum is transferred to the lattice and both total energy and total 
linear momentum of the two magnons and one phonon are conserved; thus it cannot alter the 
thermal transport. Finally, we suggest that the magnon-number non-conserving confluence 
processes where both energy and angular momentum is transferred is the most relevant process 
in explaining our data. In this process, two magnons interact with a phonon. The process must 
obey the conservation of energy and angular momentum 𝜖𝐤 + 𝜖𝐤′ − 𝜔𝐪𝜆 = 0, where 𝜖𝐤 is a 
magnon dispersion and 𝜔𝐪𝜆 is the phonon dispersion with polarization 𝜆. Crucially, this process 
is forbidden for phonons at energies less than twice the size of the magnon gap. These low 
energy phonons, corresponding to long wavelengths, typically can travel long distances across 
the lattice without scattering. They also have a very large thermal population according to Bose-
Einstein statistics. Thus, they are the dominant heat-carrying phonons. As the magnon gap closes 
to zero in the CAFM phase, the confluence process is allowed everywhere in the Brillouin zone 
and interactions between magnons and the dominant heat-carrying phonons can occur.  The zero 
gap in the CAFM phase also leads to a higher magnon density.  In the end, two factors work 
together to explain the flat and lower thermal conductivity data in the CAFM phase: lower 
momentum phonons being scattered, and higher magnon density causing more scattering. These 
two factors have the opposite field dependence in the AFM and FM phases. In the AFM phase, 
the forbidden region becomes smaller with field, while in the FM phase, the forbidden region 
expands with field. This explains the opposite field dependence of thermal conductivity in these 
two phases. In Fig. 1(a), we notice that the magnetic field dependence dxx / dBz becomes larger 
in both AFM and FM phases as the temperature decreases. This behavior can be explained in 
term of the smearing of the forbidden gap at finite temperature. 

Thermal Hall effect 
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Thermal Hall effect can arise as a result of magnon-phonon interactions in 
antiferromagnets, as suggested by some theoretical studies. If the magnon-phonon interaction is 
strong, anti-crossing points at magnon-phonon hybridization can generate hotspots of Berry 
curvature and thermal Hall effe  [14] ct [14]. In an out-of-plane external magnetic field, both 
antiferromagnets  [15] and ferromagnets  [16] may have magnon-polaron bands that can carry 
Chern number, even though the individual magnon and phonon bands are topologically trivial by 
themselves. This could give rise to a phonon Hall effect. Our magnon band calculation shows 
that there is a possibility that magnon-phonon hybridization can occur in MnBi2Te4. However, 
this effect is not seen in neutron scattering data [34]. The thermal Hall effect, in the form of 
magnetic field dependence of xy, was measured and is shown in Fig. 3(a). Above TN, 𝜅𝑥𝑦  is a 
linear function of the field up to 9 T with the slope 𝑑𝜅𝑥𝑦/𝑑𝐵𝑧 decreasing as the temperature 
decreases. Below TN, the absolute value of  𝜅𝑥𝑦 shows an abrupt increase at the spin-flop 
transition with increasing field. xy, is congruent with the electrical Hall resistivity (see 
Supplementary Materials and Ref. [36]). In Fig. 3(b), we show the calculated 𝜅𝑥𝑦,𝑊𝐹𝐿 = 𝜎𝑥𝑦𝐿0𝑇 
from the Wiedemann Franz law (WFL), where 𝐿0 is the free electron value. 𝜎𝑥𝑦𝐿0𝑇 is about half 
of the measured value for 𝜅𝑥𝑦. Figures 3(c) and (d) show raw data points and averaged curves at 
T=10.6 K and 15.3 K, respectively. A drop in 𝜅𝑥𝑦 at 3.5 T is observed, coinciding with the spin-
flop transition, and we attribute it to the anomalous thermal Hall effect. The close agreement 
within an order of magnitude indicates that the majority of thermal Hall conductivity is 
electronic in origin and is from the bulk. However, it is unexpected that the measured xy, is 
much larger than the estimated value using WFL, i.e., 𝜅𝑥𝑦 > 𝜎𝑥𝑦𝐿0𝑇.  If xy is purely electronic 
and the Lorenz number is identical to the free electron value, 𝜅𝑥𝑦 is shorted by the lattice thermal 
conductivity, and we would expect 𝜅𝑥𝑦 < 𝜎𝑥𝑦𝐿0𝑇. The WFL with the free electron Lorenz ratio 
strictly only holds for elastic diffuse scattering.  It is therefore not a priori for thermal transport in 
magnetic field or in the anomalous case of a magnetic material. In this case, it could be attributed 
to either a doubling of the Lorenz ratio over the free electron value, or to a magnon contribution, 
or to a chiral phonon effect either due to skewed magnetic scattering [37] or magnon-polaron 
bands  [13–20]. If there is a phonon Hall effect, it would also be visible at the CAFM to FM yet 
we do not see evidence for this. Perhaps, the effect is too small compared to the electronic signal. 
Revisiting the interpretation of the 𝜅𝑥𝑦 data and neutron scattering data [34],  we conclude that 
there is no evidence of magnon phonon hybridization but the main interaction between magnon 
and phonon in MBT is a scattering effect, which we explained, controlled by the magnon band 
gap. 

Conclusion 

In summary, we show that MnBi2Te4 exhibits a significant and complex field-dependent 
magneto-thermal conductivity. We elucidate the mechanism to be one where phonons carry the 
heat and are subjected to magnetic scattering. More specifically, the two magnon scatter one 
phonon process is likely the dominant interaction that affects thermal transport in MBT in an 
out-of-plane magnetic field. Magnon-phonon interactions can induce an important field 
dependence to the amount of heat carried by the lattice, potentially opening a new mechanism to 
realize heat switches, an enabling technology for solid-state heat engines and controlled cooling 
technologies. 
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Tables and Figures 

 
 

Fig. 1.  (a) The magnetic ordering phase diagram, full lines from the literature [2,3].  The color 
map is reconstructed by taking the field derivatives dκxx/dB of the following frames.  The large 
negative value near the boundary of AFM phase corresponds to the spin-flop transition. (b) 
Temperature dependence of total in-plane thermal conductivity 𝜅𝑥𝑥. 𝜅𝑥𝑥 decreases at the ordering 
temperature TN=24.5K indicating scattering of phonon to magnon. (c, d) Field dependence of in-
plane thermal conductivity 𝜅𝑥𝑥(𝐵𝑧). Across the ordering temperature, 𝜅𝑥𝑥(𝐵𝑧) develops 
contrasting behavior at different field ranges. Above TN, 𝜅𝑥𝑥 plateaus at low field then slightly 
increases with field. Below TN, 𝜅𝑥𝑥 decreases with field at low field and increases linearly in 
field at high field. The magnetic field at which the field dependence changes correspond to the 
transition from AFM to FM ordering. Below 20 K, in addition to the initial decrease in AFM 
phase and linear increase in FM phase, there is a plateau in the magnetic field range 
corresponding to the Canted AFM ordering phase.  
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Fig. 2. Calculated magnon band evolution in an out-of-plane magnetic field. (a-d) magnon bands 
in the AFM ordering phase (e) magnon bands in the canted AFM ordering phase and (f-h) 
magnon bands in FM ordering phase. The dashed lines qualitatively depict the lowest velocity, 
in-plane longitudinal acoustic branch of the phonon dispersion of MnBi2Te4 based on the 
monolayer phonon dispersion [5]. The light-shaded regions mark the forbidden region for 
magnon number non-conserving confluence process.  
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Fig. 3. Thermal Hall conductivity and comparison with Wiedemann Franz Law. (a) Thermal Hall 
conductivity 𝜅𝑥𝑦 verses applied magnetic fields measured below TN. (b) Thermal Hall 
conductivity calculated from Wiedemann Franz Law 𝜅𝑥𝑦 = 𝜎𝑥𝑦𝐿0𝑇 at corresponding 
temperatures. Quantitatively, measured thermal Hall conductivity is approximately twice as large 
as values predicted by Wiedemann Franz Law. (c, d) Blown-up plots of 𝜅𝑥𝑦 data at 15.3 K and 
10.6 K shows an anomalous thermal Hall effect with a distinctive jump at the spin-flop 
transition. Individual data points are shown along with the lines connecting their mean values at 
each magnetic field. Dashed lines are linear fit drawn through the low field data points in the 
CAFM phase. The axes on the right shows corresponding thermal Hall conductivity calculated 
using WFL and electrical conductivity for comparison. 
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I. ATOMISTIC SPIN DYNAMICS

A. Methods

MnBi2Te4 belongs to the R3m (166) space group. We performed calculations using the magnetic primitive cell which has the
basis vectors

a = a( 0.500000, 0.288675, 6.293360)

b = a(�0.500000, 0.288675, 6.293360)

c = a( 0.000000,�0.577350, 6.293360)

(S1)

with the lattice constant a = 4.3337 Å. In the primitive cell, there are only two Mn atoms, one of each of the antiferromagnetic
sublattices. In fractional coordinates, these are located at

MnA = (0.0, 0.0, 0.0)

MnB = (0.5, 0.5, 0.5).
(S2)

We use the Hamiltonian and parameters for MnBi2Te4 suggested in Ref. S1 on the basis of linear spin wave theory fitting of
inelastic neutron scattering measurements. The Hamiltonian written in our conventions is

H =�
1

2

X

hijik

JijSi · Sj �
1

2

X

hiji?

JcSi · Sj

�
1

2

X

hiji?

Janiso
c Sz

i · Sz
j �D

X

i

(Sz
i )

2
�

X

i

µsB · Si

(S3)

where factors of 1/2 are for the double counting in the sum and Si are unit vectors. Jij are the isotropic intraplane exchange
energies, Jc is the isotropic interplane exchange energy, Janiso

c is the anisotropic interplane exchange energy, D is a single-ion
uniaxial anisotropy, µs is the size of the magnetic moment and B is an externally applied magnetic field in Tesla. h· · · i indicates
that a sum is performed only over a limited number of neighbours and k denotes inp-lane and ? out-of-plane neighbours. The
parameters values and units are given in tables S1 and S2.

We solve the spin dynamics using the Landau-Lifshitz equation

dSi

dt
= �� [Si ⇥Hi + ↵Si ⇥ (Si ⇥Hi)] , (S4)
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TABLE S1. Exchange constants for the Hamiltonian (S3). Jk are intra-plane and Jc are interplane interactions. A single interaction vector is
given in fractional coordinates; equivalent vectors can be generated from the R3m space group operations. The interaction distances are given
in units of the lattice constant (a).

symbol vector (fractional coordinates) number distance (lattice constants) value (meV)
Jk1 ( 1, 0,�1) 6 1.000000 0.5825
Jk2 ( 1, 1,�2) 6 1.732051 -0.0825
Jk3 ( 0, 2,�2) 6 2.000000 0.0175
Jk4 ( 1, 2,�3) 12 2.645751 -0.0075
Jk5 ( 0, 0, 3) 6 3.000000 0.0400
Jk6 ( 0, 2, 2) 6 3.464102 0.0325
Jk7 ( 0, 1, 3) 12 3.605551 0.0200
Jc ( 1

2 ,
1
2 ,�

1
2 ) 6 3.199207 -0.1625

Janiso
c ( 1

2 ,
1
2 ,�

1
2 ) 6 3.199207 -0.0575

TABLE S2. Model parameters used in the Hamiltonian (S3) and Landau-Lifshitz equation (S4).

Symbol Value
D 0.2035 meV
µs 5µB

↵ 0.05
� 1.76⇥ 1011rad s�1T�1

where � is the gyromagnetic ratio and ↵ is a damping parameter with the values given in Table S2. The effective field Hi on
each lattice site is

Hi = �
1

µs

@H

@Si
+ ⇠i (S5)

with ⇠i being a vector of stochastic processes that provide thermal fluctuations. The temperature is introduced through a quantum
thermostat that obeys the quantum fluctuation dissipation theorem [S2] with the statistical properties of ⇠i defined as

h⇠a,i(t)i = 0; h⇠a,i⇠b,ji! = �ij�ab
2↵

�µ�

~!
e�~! � 1

, (S6)

where a and b are Cartesian components, ! is the frequency, � = (kBT )�1 is the inverse thermal energy with kB is the
Boltzmann constant and T is the temperature, ~ is Dirac’s constant, h· · · i is a statistical time average and h· · · i! is a statistical
average in frequency space. The stochastic process which produces this coloured noise is generated by solving a set of second-
order stochastic partial differential equations (see refs. S2 and S3 for details). These equations and the Landau-Lifshitz equation
are numerically integrated with a fourth-order Runge-Kutta integration scheme with a timestep �t = 1 fs.

The noise introduced by the thermostat induces spin fluctuations which result in a thermal distribution of magnons within the
spectrum. The use of a quantum thermostat ensures that the magnons have a Planck distribution.

B. Validation of model parameters

In Ref. S1 the spin vectors have length S = 5/2 but in our model the spin vectors are of unit length and the size of the
spin moment appears in the parameter µs. Therefore, our exchange interactions are J this work

ij = SJLi et al.
ij . The double counting

convention and the exact definition of hiji in Ref. S1 are unclear. Therefore, we calculated the neutron scattering cross section
within our code (Fig. S1 and compared it with their experimental and simulated spectra to ensure that our models are equivalent.

Our neutron scattering cross section is calculated from

S(Q,!) =
g2nr

2
c

2⇡~
X

ab

⇣
�ab � Q̂aQ̂b

⌘

⇥

X
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e�iQ·(rd�rd0 )
X
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e�iQ·(Rl�Rl0 )

⇥

Z 1

�1
e�i!t

⇥⌦
Sa
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dt, (S7)
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FIG. S1. MnBi2Te4 neutron scattering cross sections at T = 2 K and Bz = 0.1 T to compare with Ref. S1 Fig. 2

where a, b = {x, y, z} are Cartesian components, Rl is the position of the l-th unit cell, rd is the d-th position in the unit cell,
gn = 1.931 is the neutron g-factor, rc = e2/mec2 = 2.8 fm is the classical electron radius with e, me, and c the elementary
charge, the mass of the electron and the speed of light, Q is the scattering vector and Q̂ = Q/|Q|. �ab is the Kronecker delta
function. S(Q, E) = S(Q, ~!).

C. Magnon Spectrum Calculation

Simulations calculating the neutron scattering cross section using (S7) are useful to compare with neutron scattering exper-
iments. However, the results obscure the details of the underlying theoretical magnon spectrum due to the projection onto the
scattering vector (�ab � Q̂aQ̂b) and the effect of the structure factor.

We calculate the theoretical magnon spectrum in a reduced-zone scheme so that it contains all bands. This is essentially the
dynamical structure factor where the spins have been transformed so that we study their fluctuations around a common reference
state.

We first apply a rotation,Wd, to each spin position d of the unit cell:

S̃d =Wd · Sd (S8)

such that the spin is rotated to align with the z-axis and the oscillations of the spin are about this axis. We then calculate the total
dynamical structure factor as

Wab(k,!) =
1

2⇡

X

d

e�ik·rd
X

l,l0

e�ik·(Rl�Rl0 )

⇥

Z 1

�1
e�i!t

hD
S̃a
ld(0)S̃

b
l0d0(t)

E
�

D
S̃a
ld

ED
S̃b
l0d0

Ei
dt. (S9)

where k is a reciprocal space vector in the first Brillouin zone. To produce the figures in the main text, we plot the transverse
components of the dynamical structure factor (Wxx(k,!) +Wyy(k,!))1/2.
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The resulting figures contain all bands in the magnon spectrum, and the intensity reflect their thermal occupation.
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II. SUPPLEMENTAL DATA

FIG. S2. Resistivity and Hall resistivity data. (a) Field dependence of in-plane resistivity ⇢xx(Bz). At Spin flop transition, the resistivity drop,
attributed to spin valve effect. (b) Hall resistivity ⇢xy(Bz) shows anomalous Hall effect at the spin-flop transition.

FIG. S3. Experimental test for presence of Fermi arc thermal transport. (a) In-plane thermal conductivity xx(Bz) with B in the out-of-plane
direction (b) In-plane thermal conductivity xx(Bz) with B 10° intentionally misaligned from the the out-of-plane direction shows no change
of slope in the FM phase.

https://doi.org/10.1103/physrevb.104.l220402
https://doi.org/10.1103/physrevb.100.140401
https://doi.org/10.1103/physrevb.86.064305
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FIG. S4. Thermal conductivity data at temperatures T � 50K. (a) Longitudinal thermal conductivity xx(Bz), (b) Thermal Hall conductivity
xy(Bz).

FIG. S5. Magneto thermal conductivity xx(Bz) data at temperatures T  6K

FIG. S6. Moment verses magnetic field on samples: (a) first sample with which data was reported in the main text shows sharp spin-flop
transition in accordance with data reported in literature (b) second sample shows faint magnetic ordering transition and higher value of moment
per formula unit, indicating the sample contains large number of free Mn atoms which act as paramagnetic free spins
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FIG. S7. Thermal conductivity and magneto thermal conductivity of second sample. (a) Thermal conductivity  of the second sample forms
higher peak in at low temperature and no visible cusp at Neel temperature suggesting smaller magnon scattering and additional contribution
from paramagnetic spins in this sample. (b) Magneto thermal conductivity of the second sample at temperatures from 10 to 30 K. While this
sample still shows a faint change of d/dB at transitioning magnetic fields, these changes are small compared to the changes of d/dB in the
first sample. This is because there is an additional large decaying thermal conductivity contribution from free spins that is constrained in an
applied magnetic field.

FIG. S8. Field dependence of the Seebeck Sxx(Bz) and Nernst Sxy(Bz) thermoelectric power. Both Sxx(Bz) and Sxy(Bz) are small in
absolute value.(a) Below TN , the Seebeck coefficient shows an increase with Bz in the CAFM phase and plateaus out at high field in FM phase.
The small thermoelectric coefficients are consistent with a metallic system and are another result of the high Fermi level due to unintentional
defect doping. In the canted AFM phase below TN, the Seebeck coefficient is slightly increased, in accordance with the slight decrease of
resistivity and the Mott relation. (b)The Nernst thermopower shows a sharp change of slope at the spin-flop transition below TN . Comparing
to the magnetization data (Figure S6), the Nernst data are characteristic of the anomalous Nernst effect. Below 20 K, Sxy(Bz) has a small
slope near zero field. At the spin-flop transition, Sxy(Bz) jumps at the same point that the magnetization changes abruptly.


