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Abstract 1 

This review explores the evolution of dietary protein intake requirements and recommendations, with 2 

a focus on skeletal muscle remodeling to support healthy ageing based on presentations at the 2023 3 

Nutrition Society summer conference. In this review, we describe the role of dietary protein for 4 

metabolic health and ageing muscle, explain the origins of protein and amino acid requirements, and 5 

discuss current recommendations for dietary protein intake, which currently sits at ~0.8g·kg·-1day-1. 6 

We also critique existing (e.g., nitrogen balance) and contemporary (e.g., indicator amino acid 7 

oxidation) methods to determine protein/amino acid intake requirements and suggest that existing 8 

methods may underestimate requirements, with more contemporary assessments indicating protein 9 

recommendations may need to be increased to >1.0g·kg·-1day-1. One example of evolution in dietary 10 

protein guidance is the transition from protein requirements to recommendations. Hence, we discuss 11 

the refinement of protein/amino acid requirements for skeletal muscle maintenance with advanced age 12 

beyond simply the dose (e.g., source, type, quality, timing, pattern, nutrient co-ingestion) and explore 13 

the efficacy and sustainability of alternative protein sources beyond animal-based proteins to facilitate 14 

skeletal muscle remodeling in older age. We conclude that, whilst a growing body of research has 15 

demonstrated that animal-free protein sources can effectively stimulate support muscle remodeling in 16 

a manner that is comparable to animal-based proteins, food systems need to sustainably provide a 17 

diversity of both plant and animal source foods, not least for their protein content but other vital 18 

nutrients. Finally, we propose some priority research directions for the field of protein nutrition and 19 

healthy ageing.   20 

 21 

Introduction  22 

The topic of protein nutrition is continually evolving with considerable interest in recommendations 23 

for skeletal muscle health across the health- and lifespan continuum. Proteins, or more specifically 24 

their constituent subunits of amino acids (AA), represent the building blocks of body tissues, 25 

including muscles (skeletal, cardiac and smooth), bone, skin, and organs. A large proportion of 26 

ingested dietary protein-derived AA are directed to these peripheral tissues following extraction by 27 

the splanchnic tissues (intestine, stomach, spleen, pancreas)(1–3). Dietary protein is essential for 28 

various physiological functions including movement (e.g., contractile proteins, tissue remodeling), 29 

structure (e.g., collagen), transport and storage (e.g., haemoglobin), cell signaling (e.g., 30 

communication pathways), enzymes (to facilitate biochemical reactions), immune function (e.g., 31 

antibodies), hormones as chemical messengers regulating various physiological processes (e.g., 32 

insulin) and receptors (e.g., insulin receptor), as well as energy provision. Hence, protein nutrition 33 

plays a crucial role in human health across the lifespan, as well as during recovery from catabolic 34 

stress (e.g., frailty, cancer cachexia, surgery, sepsis, enforced physical inactivity / disuse, energy 35 

restriction)(4–7). This brief synopsis of an oral presentation delivered at the 2023 UK Nutrition Society 36 

summer conference (Nutrition at key stages of the lifecycle) explores the evolution of dietary protein 37 
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requirements and recommendations, with a focus on skeletal muscle remodeling to support healthy 38 

ageing. The main purpose of this review is to (i) discuss how dietary protein requirements (i.e., what 39 

is needed for survival) and recommendations (i.e., scientific guidelines to achieve optimal biological 40 

outcomes) have evolved in the context of healthy ageing and (ii) provide concise, evidence-based, and 41 

practically relevant protein guidelines for older adults with a focus on skeletal muscle health. For a 42 

recent critical narrative review of the scientific evidence on dietary protein requirements and 43 

recommendations for healthy older adults, see Nishimura et al., (2023)(8). 44 

 45 

Musculoskeletal health in an ageing society: a role for dietary protein?  46 

Globally, ageing is associated with increased healthcare costs and social service needs(9). In addition, 47 

the gap between lifespan (i.e., total lived age) and health span (i.e., years of life free from 48 

disease)(10,11) continues to grow, compounded by a decrease in habitual physical activity levels and 49 

increased prevalence of diseases associated with advanced age(12,13). Indeed, lifelong engagement in 50 

exercise (e.g., Master athletes) results in the better maintenance of skeletal muscle mass into older age 51 

and may be considered a more true model of inherent ageing (i.e., represents ageing, per se, rather 52 

than the detriments seen due to inactivity)(14,15). Moreover, while the cause(s) of age-related muscle 53 

loss (otherwise termed ‘sarcopenia’) is clearly multifaceted, a key contributor is malnutrition, and in 54 

particular a reduced dietary protein intake(16). Indeed, higher protein intakes have been associated with 55 

greater retention of lean mass in older individuals in some(17), but not all(18), studies. Hence, with 56 

advanced age, it seems prudent to tailor protein intake recommendations to counter age-related 57 

changes in the metabolic response of skeletal muscle to ingested protein, as well as reduced physical 58 

activity. Importantly, with regard to attenuating age-related muscle loss, the roles of skeletal muscle 59 

go beyond locomotion to critical actions such as chewing and swallowing, breathing, maintenance of 60 

body posture and thermogenesis. Combined with the misalignment of health- and lifespan, this 61 

highlights an urgent unmet need in an ageing society to comprehensively understand protein intake 62 

requirements and develop appropriate recommendations.  63 

 64 

Skeletal muscle protein synthesis: a primary role of dietary protein  65 

The primary nutritional value of dietary protein is the provision of AA for the synthesis of new, 66 

functional proteins, including skeletal muscle (termed muscle protein synthesis, MPS). While a 67 

sufficient quantity of non-essential amino acids (NEAA) can be supplied endogenously, an exogenous 68 

(e.g., dietary) supply of essential amino acids (EAA, sometimes referred to as ‘indispensable’ AA) is 69 

necessary for the stimulation of MPS, subsequent skeletal muscle remodeling and to remain in a 70 

positive (or net) protein balance(19). Indeed, all body tissues including skeletal muscle remain in a 71 

constant state of turnover, with the old, damaged proteins most likely degraded (via muscle protein 72 

breakdown) concurrently with the synthesis of new, functional proteins (via muscle protein 73 

synthesis)(3). Whilst muscle loading, via exercise/physical activity, represents the most potent 74 
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stimulator of MPS and skeletal muscle remodeling(20), in the absence of a sufficient exogenous supply 75 

of all nine EAA, skeletal muscle will remain in a state of net negative protein balance (i.e., net protein 76 

synthesis < net protein breakdown) that will ultimately lead to muscle loss and the associated 77 

metabolic, morphological, and functional consequences(13). Moreover, dietary protein is required 78 

throughout life to replace irreversibly oxidized AA that cannot be synthesized in the body (i.e., EAA) 79 

and is particularly important given that protein is the only macronutrient that does not have an 80 

inactive compartment to serve as a reservoir. Accordingly, in practice, each of the >1000 meals 81 

consumed across a year, assuming 3 main meals/day, provides an opportunity for dietary protein to 82 

support skeletal muscle remodeling to attenuate the loss of skeletal muscle that is typically observed 83 

with advancing age(13).  84 

 85 

A brief historical perspective on devised protein requirements and recommendations for adults 86 

According to published records, proteins were first recognized as a distinct class of biological 87 

molecules by French chemist Antoine-François Fourcroy in the 18th Century and described by the 88 

Dutch chemist Gerardus Johannes Mulder as “unquestionably the most important of all known 89 

substances in the organic kingdom. Without it, no life appears possible on our planet. Through its 90 

means, the chief phenomena of life are produced” (21,22). Since the 18th Century, or even before, many 91 

scientists have dedicated their professional careers to determining protein requirements and 92 

recommendations for humans (Figure 1). The first recorded evidence of protein requirements and 93 

recommendations appeared in ~1877 and was credited to Carl von Voit who was a German 94 

physiologist and dietitian. Von Voit made the recommendation that a 70kg person whom undertakes a 95 

‘moderate’ level of work should consume 118g of protein per day and referred to this value as the 96 

‘lowest limit’ of supply to avoid risk of ‘damage to health’(23,24). This figure was devised despite a 97 

dietary survey carried out in Munich by von Voit, that suggested a protein intake of 52g per day was 98 

sufficient for good health (later, in ~1900, von Voit would recommend a protein requirement of 1.0g 99 

per kilogram of body weight per day based on the dietary intake of highly productive factory workers) 100 

(23,24). In contrast, at the beginning of the 20th Century, supporters of nutritional reform recommended 101 

a daily protein intake of <30g per day. A key representative of nutritional reform was the Danish 102 

nutritionist, Mikkel Hindhede, who conducted experiments demonstrating long-term adherence to 103 

diets with a daily protein intake of <30g per day(25). Hindhede also suggested that earlier estimates of 104 

>100g per day were exaggerated and highlighted the observation that recommendations were based on 105 

non-animal foods that were considered ‘less protein dense and cheaper than a meat-based diet’. As 106 

such, these recommendations were claimed to have helped avoid famine during World War 1(25).  107 

 108 

During the 20th Century, with significant advances in science and communication, a concerted effort 109 

was made by international committees to devise universal guidelines for protein intake 110 

recommendations. While the originally proposed daily allowance of 1.0g of protein per kilogram of 111 
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body weight for adults represented a figure of appealing simplicity, this recommendation was not 112 

based on scientific evidence. Accordingly, in 1955 the Food and Agriculture Organization (FAO) 113 

assembled a committee, led by Professor Emile Terroine, to define the average/minimum 114 

requirements and the recommended allowance for dietary protein (see below for definitions of each) 115 

(26). The average requirement for protein intake was set at 0.35g·kg-1·day-1 for adults. Protein 116 

requirements and recommendations were revisited in 1963 by a Joint FAO/World Health 117 

Organization (WHO) Expert Committee(26), with an average protein requirement of 0.59g·kg-1·day-1 118 

agreed that factored in nitrogen losses and the additional requirements for growth.  119 

 120 

The FAO/WHO Expert Committee reconvened on multiple occasions in the years that followed to 121 

continue to refine protein recommendations, which included, for a brief period, sex-specific guidance 122 

(0.44 and 0.40g·kg-1·day-1 for men and women, respectively). In 1981, a joint FAO/WHO/UNU 123 

Expert Committee calculated the mean protein requirement based on short-term and longer-term 124 

nitrogen balance studies (this technique is discussed below) and concluded no clear evidence of sex 125 

differences in nitrogen losses and thus protein requirements or recommendations(26). The average 126 

requirement for highly digestible, good-quality protein (e.g., meat, milk, fish, egg) was set at 127 

0.60g·kg-1·day-1 for both sexes. To translate this estimate of the average protein requirement to a level 128 

sufficient to cover individual variation within a population group, an estimated value of 2 standard 129 

deviations above the average physiological requirement would be expected to meet the needs of the 130 

majority of the population. Hence, the lower end of the safe intake of good quality, highly digestible 131 

protein was therefore set at 0.75g·kg-1·day-1. In 2007, and informed by a meta-analysis of nitrogen 132 

balance studies, a Joint FAO/WHO/UNU expert consultation, recommended 0.83g·kg-1·day-1 of 133 

protein to meet the requirements of most (97.5%) healthy adults(27,28) (also see Rand et al., 2003(29)). 134 

To this end, these data provide the fundamental evidence base which informs protein requirements 135 

and recommendations by relevant authoritative bodies. 136 

 137 

Amino acid requirements: taking dietary protein requirements and recommendations one step 138 

further? 139 

The concept of devising AA, in addition to or instead of protein, requirements and providing specific 140 

recommendation for each EAA is appealing given that not all dietary protein sources contain an 141 

identical AA profile. However, this concept is challenging to implement in practice. Hence, 142 

recommendations for intake of specific AA have been limited, as discussed elsewhere(30,31). The 143 

concept of AA requirements is ostensibly based on knowledge that the EAA content of a protein 144 

source, rather than the gross protein per se, dictates the metabolic availability and ‘quality’ of a 145 

protein source, with implications for muscle anabolic potential, and must be ingested in the diet. A 146 

seminal rodent study in the early 20th century revealed low survival rates in rats fed a diet exclusively 147 

containing zein (derived from maize/corn which constitutes an ‘incomplete’ low-quality protein, 148 
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deficient in lysine and tryptophan) compared with rats fed casein from cow's milk, a high-quality 149 

protein with a full complement of EAA. Through a series of investigations(32–35), this led biochemist 150 

and nutritionist, Professor William Cumming Rose, to the discovery of the EAA threonine(32–35). 151 

Through manipulation of rodent diets, Rose demonstrated that 10 amino acids are essential for rats 152 

and have to be consumed via the diet as they cannot be synthesised in sufficient amounts without 153 

dietary intervention. Follow up work demonstrated that 8 amino acids are essential for adult humans 154 

(isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine). Longer-155 

term studies established histidine as essential for adult humans, bringing the total to nine (and eleven 156 

non-essential amino acids)(36). In brief, Rose’s human experiments involved the provision of 157 

rudimentary diets to healthy male graduate students, consisting of corn starch, sucrose, butterfat 158 

without protein, corn oil, inorganic salts, the known vitamins, a large brown "candy" made of liver 159 

extract flavoured with peppermint oil (to supply any unknown vitamins), and mixtures of highly 160 

purified individual AA. In addition to nitrogen balance data to support his conclusions, Rose also 161 

noted a higher prevalence of symptoms of nervousness, exhaustion, and dizziness when participants 162 

were deprived of an EAA(33). Although Rose’s work received some criticism including concerns over 163 

the validity of prescribed diets, his findings remain fundamental to our current understanding of 164 

human AA requirements and human protein metabolism. Accordingly, subsequent research revealed 165 

that only EAA are required to increase MPS(37). Notwithstanding, whilst all EAA must be obtained 166 

through diet, even when not acquired acutely (i.e., during a single meal), a true AA deficiency is 167 

difficult to achieve longer-term via a habitual diet which likely contains a variety of different proteins 168 

and wholefood sources to an extent that complete deficiency is avoided(38). The key factor(s) that 169 

discerns an EAA from a NEAA in humans remains to be fully established, but is likely attributed to a 170 

combination of evolutionary mechanisms and as a means to regulate energetically expensive cellular 171 

processes (e.g., MPS)(39,40). Moreover, there is no evolutionary advantage for the endogenous 172 

generation of EAA, as they are sufficiently available through a "standard diet", and circumvent the 173 

need to use long, complicated, and energy consuming pathways that would be required to synthesize 174 

sufficient quantities of all EAA.  175 

 176 

Nitrogen balance: determining protein requirements in humans  177 

The requirements for EAA and thus dietary protein have been determined by multiple methods to 178 

inform protein requirements and recommendations. Historically, descriptive or gross measures 179 

including growth and nitrogen balance have been used. To this end, the estimated average 180 

requirement (EAR) and recommended daily allowance (RDA) (discussed below) have been 181 

determined by the single endpoint of the amount of protein intake required to maintain nitrogen 182 

equilibrium (namely food nitrogen intake minus nitrogen excreted [urine, faeces, sweat skin and 183 

hair]), otherwise referred to as ‘nitrogen balance’(41). However, concerns have been raised regarding 184 

the use of this technique for determining protein requirements, not least that recommendations are 185 
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based on good quality protein(29) and that readouts of nitrogen balance has limited utility beyond 186 

nitrogen balance itself which lacks sufficient physiological relevance to outcomes related to lean body 187 

mass(42). In brief, nitrogen balance requires a minimum of 3 days per level of test intake (i.e., amount 188 

of dietary intake of protein) and 7–10 days of adaptation are needed to each intake of protein(43). In 189 

addition, complete collection and quantification of all sources of nitrogen excretion, mostly in urine 190 

and faeces, are required but this is practically challenging. Moreover, the nature of the nitrogen 191 

balance calculation is often associated with significant variability given that nitrogen intake and 192 

excretion are independently associated with significant error, thereby lacking sufficient sensitivity(42).  193 

 194 

The validity of the nitrogen balance technique has also been criticized given that a zero nitrogen 195 

balance on a lower protein intake may reflect biological accommodation (i.e., individuals can adapt to 196 

insufficient/suboptimal protein intakes by reducing nitrogen excretion)(42,44–46). In addition, studies 197 

have demonstrated an apparent disconnect between positive nitrogen balance and projected 198 

improvements in lean body mass(41,42). Clearly, there are several limitations and additional 199 

considerations associated with the nitrogen balance technique that question the validity of current 200 

estimates of protein recommendations(41,42,47). Indeed, even as early as 2002 the ‘dietary reference 201 

intakes’ report from The Food and Nutrition Board of the Institute of Medicine (The National 202 

Academies) stated that “due to the shortcomings of the nitrogen balance method, it is recommended 203 

that the use of nitrogen balance should no longer be regarded as the ‘gold standard’ for the 204 

assessment of the adequacy of protein intake and that alternative means should be sought” (Institute 205 

of Medicine of the National Academies)(41). In contrast, recent data suggest that nitrogen balance may 206 

be useful in detecting EAA deficiencies in low intake states given that consumption of the protein 207 

RDA (~0.80g⋅kg−1⋅d−1) following a strict, low-quality protein, vegan diet for ≥1-year has been shown 208 

to be inadequate to achieve nitrogen balance(48). Furthermore, the reanalysis of previously published 209 

nitrogen balance data, when using a different analytical approach (via 2-phased linear crossover 210 

analysis), revealed a higher population estimate of 1.0g⋅kg−1⋅d−1, which approaches the protein 211 

requirement determined using more contemporary methods(49).  212 

 213 

As a potential alternative to nitrogen balance for determining protein requirements, the Nitrogen-15 214 

(15N, a rare stable isotope of nitrogen) End-Product method has also been proposed(50,51), a technique 215 

that has been employed for >50 years to measure the turnover of the entire nitrogen pool of the 216 

body(51). In brief, the 15N End-Product method involves the oral ingestion of a labelled nitrogen (e.g., 217 

15N-glycine, 15N-alanine) to determine nitrogen flux, or nitrogen turnover at the whole-body level. 218 

This method is based on the assumption that metabolically active nitrogen is freely exchanged 219 

between nitrogen-containing tissues and the metabolic nitrogen pool (e.g., amino acids)(52). Nitrogen 220 

appearance in the metabolic pool occurs exogenously via the diet and endogenously via protein 221 

breakdown with nitrogen disappearance occurring through protein synthesis and nitrogen excretion as 222 
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end-products, primarily urea or ammonia in the urine(53). Measurements of whole-body protein 223 

breakdown, in addition to synthesis, can also be calculated by measuring protein intake. However, 224 

similar to nitrogen balance, this technique is associated with measurement error and technical 225 

challenges. The calculation of nitrogen flux, protein synthesis, protein breakdown and net protein 226 

balance using this technique are described elsewhere(51,54,55).  227 

 228 

Contemporary approaches for determining whole-body protein requirements 229 

A more contemporary and arguably comprehensive method to determine protein requirements is 230 

called the indicator amino acid oxidation (IAAO) technique(42,56–58). The most common application of 231 

IAAO is to provide an oral AA mixture to human subjects. Using IAAO, an EAA is ‘labelled’ with a 232 

stable isotope (usually 13C) and the appearance of this label in the breath (carbon dioxide, 13CO2) is 233 

used to quantify AA oxidation as an indicator of protein or a single EAA requirement. IAAO was 234 

developed based on the principle that all EAA are required in sufficient quantities for protein 235 

synthesis. In theory, if a single AA is limiting or provided in excess, AA oxidation will be observed. 236 

Stable isotopes are naturally occurring atoms (e.g., carbon, oxygen, nitrogen, sulphur) containing 237 

extra neutrons, whose metabolic fate replicates their more common isotope, permitting a distinction 238 

between common and rare isotopes that are detectable (or ‘traceable’) in biology. Similar to nitrogen 239 

balance, the IAAO technique provides subjects with graded protein (or AA) intakes across multiple 240 

trials during which the indicator AA is provided at a continuous, excess, amount, and adaptation of 241 

only 3-4 hours is required(59). When the intake of protein/AA is low, the availability of one or more 242 

EAA will be limiting for protein synthesis, and thus will be oxidised. As protein intake levels 243 

increase, the excess and thereby the oxidation of the indicator AA decreases, reflecting an increased 244 

incorporation of AA into protein. The AA intake level at which AA oxidation becomes minimal is 245 

termed the ‘breakpoint’ and represents the intake level that maximises whole-body protein synthesis 246 

rates. The same concepts apply for the assessment of EAA requirements, except that graded amounts 247 

of the EAA are provided while all other AA are provided in excess(3). Fundamentally, this technique is 248 

based on the principle that beyond lean tissue itself, there is no inactive compartment to serve as a 249 

reservoir for AA and therefore AA must be partitioned between incorporation into protein or 250 

oxidation.  251 

 252 

Evidence from the application of IAAO suggests that current recommendations for dietary protein 253 

may underestimate minimum protein requirements for whole-body balance by as much as 50%, 254 

including in older people(43,60–63). Indeed, a recent review of the literature suggests that protein 255 

requirement estimates using the IAAO method range from ~5%–260% greater than the RDA across a 256 

range of populations(58). A key criticism of IAAO is that participants are only adapted to the test 257 

intake on the study day, however, adaptation to longer periods does not seem to impact estimates of 258 

dietary requirements(56,64). In addition, it also is feasible that oxidation (and thus IAAO) reflects 259 
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fluctuations in protein synthesis only rather than protein breakdown(56) that serves as a key component 260 

in accurately determining net protein balance, albeit less critical in healthy adult populations(65,66). 261 

Clearly, current protein recommendations warrant consideration in the context of best available tools 262 

to provide valid estimates of required intakes, and this may be achieved with the employment of 263 

multiple assessments including IAAO. Understanding the specific EAA requirements across the 264 

health- and lifespan continuum and the provision of easy-to-access resources relating to dietary 265 

protein sources is of particular interest, particularly in the context of healthy ageing. Moreover, other 266 

emerging methods to measure protein kinetics may be suitable for estimating protein requirements 267 

including the use of deuterium oxide (heavy water) and D3-Creatine, but require investigation to 268 

confirm their utility in accurately determining protein requirements and recommendations in a range 269 

of populations(51,67). 270 

 271 

Current UK recommendations for dietary protein intake: a misunderstood concept?  272 

Formalised dietary protein recommendations have been devised for >100 years(68). Nonetheless, 273 

optimal and/or recommended protein intakes across the health- and lifespan remain unclear(4). The 274 

current UK Recommended Dietary Allowance (RDA) for protein intake is based on a normal 275 

distribution of population requirements and an estimated average requirement (or ‘EAR’, satisfying 276 

the requirements of ~50% of the population) of ~0.55-0.60g⋅kg−1⋅d−1, and is set at 0.75g⋅kg−1⋅d−1 for 277 

healthy adults (~50-55g per day for a 70-75kg individual). The general purpose of the RDA, which is 278 

set at the EAR plus two standard deviations, is to meet basic nutritional requirements and avoid 279 

deficiencies in 97-98% of the population. Nevertheless, the protein RDA can easily be misrepresented 280 

and misinterpreted(41). Indeed, the protein RDA is not a ‘recommendation’ nor an ‘allowance’, but 281 

rather an ‘adequate intake amount’ to avoid a negative nitrogen balance in the majority of the 282 

population(41). This notion creates a further problem in that, unlike other macronutrients, the RDA for 283 

protein is not based on a health outcome (e.g., association with disease, function, lean tissue mass). 284 

Based on its definition, the protein RDA is therefore not intended, nor does it provide, an estimation 285 

of ‘optimal’ intakes, or exclude the possibility that less than the RDA represents a sufficient or 286 

optimal intake for a given individual.  287 

 288 

In addition to the RDA, the Acceptable Macronutrient Distribution Range (AMDR) for protein is set 289 

at 10-35% of total caloric intake and was developed to express dietary recommendations in the 290 

context of a complete diet. However, in isolation the AMDR is not considered helpful for dietary 291 

guidance. Indeed, the lowest level of protein intake reflected in the AMDR is higher than the RDA 292 

(when reference body weights of 57kg and 70kg are assumed for women and men, respectively)(41,69). 293 

In addition, if an individual were to meet the RDA for all macronutrients, only ~40% (depending on 294 

age, sex, activity level, and other factors) of the total energy requirement would be met, highlighting a 295 

wider issue with macronutrient recommendations(41). Moreover, protein recommendations are not 296 
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typically further delineated on the basis of other characteristics (e.g., age, sex, activity level, health 297 

status [exceptions discussed below]), despite data suggesting specific health benefits at levels of 298 

protein intake that significantly exceed the RDA(70,71). Based on its purpose and definition, the protein 299 

RDA may more appropriately be termed the “recommended minimum intake”, alongside 300 

recommendations to increase daily intake, as previously proposed(41). However, we would apply some 301 

caution to this recommendation as the RDA, or below, may represent a level of intake that is optimal 302 

for a proportion of the population. Indeed, a population-wide recommendation to increase the protein 303 

RDA, or at least a suggestion that the RDA is the absolute minimum, may not be sensible for 304 

individuals with existing kidney damage, whether this condition is formally diagnosed or is unknown. 305 

The discussion of personalised recommended vs. optimal vs. maximal protein intake(s) is an important 306 

consideration(4,70,72,73). Undoubtedly, numerous factors warrant consideration when devising protein 307 

recommendations across the health- and lifespan continuum and, where possible, a tailored approach 308 

to protein nutrition should be considered as part of a well-balanced diet to supply the increasing 309 

demand of specific nutrients associated with ageing to avoid malnutrition(74).  310 

 311 

Refining per meal protein recommendations for skeletal muscle anabolism in older age  312 

The primary metabolic regulator of skeletal muscle mass is the stimulation of MPS and has been 313 

shown to correlate with longer-term changes to skeletal muscle outcomes(75). The use of stable isotope 314 

methodology to measure the acute response of MPS to a single protein bolus has provided the 315 

scientific foundation to refine protein recommendations on a per meal basis. In healthy young adults, 316 

close to a consensus has been reached that a per meal dose of ~20–30g (~0.25–0.30g·kg-1) of high-317 

quality protein (equating to ~3g leucine; ~10g EAA; ~5g BCAA) is sufficient for the maximal (but 318 

transient; ~2–5h) stimulation of MPS. However, the AA composition, specifically the EAA profile 319 

and leucine content (the intracellular appearance of which seems particularly important for the 320 

stimulation of MPS(76)) of the protein source will ultimately influence the required protein dose for the 321 

maximal acute stimulation of MPS(77). Further, whilst young individuals demonstrate a robust 322 

response of MPS to these anabolic stimuli, a blunted response has been observed in older adults, 323 

termed ‘anabolic resistance’, which likely underpins muscle loss observed with ageing(71,78). For 324 

example, Moore and colleagues (2015)(71), performed biphasic linear regression and breakpoint 325 

analysis using data sets derived from multiple laboratories that measured the acute response of MPS 326 

after the ingestion of varying amounts (0-40 grams) of high-quality dietary protein (as a single bolus) 327 

in healthy older (mean of 71 years) and younger (mean of 22 years) men when normalized to body 328 

mass(71). Whilst no difference in basal postabsorptive MPS rates were observed between age groups, 329 

biphasic linear regression and breakpoint analysis revealed the slope of first line segment was lower in 330 

older men and that MPS reached a plateau after ingestion of 0.40 ± 0.19g·kg-1·meal-1 (95% CIs: 0.21-331 

0.59g·kg-1·meal-1) and 0.24 ± 0.06g·kg-1·meal-1 (95% CIs: 0.18-0.30g·kg-1·meal-1) in older and 332 

younger men, respectively. These data suggest that older adults may require almost 2 × the per meal 333 
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dose of protein to achieve a comparable MPS response to their younger counterparts(71). Moreover, the 334 

large overlapping confidence intervals (0.21-0.59g·kg-1·meal-1 and 0.18-0.30g·kg-1·meal-1 for older 335 

and young, respectively) highlight the inherent biological variability in MPS response to ingested 336 

protein, particularly with advancing age, suggesting personalised protein recommendations regardless 337 

of age, are warranted when devising future protein recommendations. However, it is worthy of note 338 

that whilst protein intake is an independent, albeit small, predictor of better retention of muscle mass 339 

in older age, exercise represents the main stimulus for muscle adaptative remodeling, particularly 340 

resistance exercise(17,79–83). Therefore, even in scenarios where alternative protein recommendations 341 

are reached, this could elicit only a small effect on muscle anabolism and remodeling in the absence 342 

of resistance exercise(17,79–83). In addition, it is important to caveat that these findings presented by 343 

Moore and colleagues(71), and others, are predominantly isolated to skeletal muscle and, even more so, 344 

the myofibrillar (i.e., contractile) proteins within skeletal muscle (largely from quadriceps muscle). 345 

Hence, these observations typically reflect the acute, fasted response to high-quality liquid forms of 346 

isolated protein.  347 

 348 

Optimising protein nutrition for muscle health can be more complex than simply recommending a 349 

daily total protein intake (e.g., source, type, quality, timing, pattern, nutrient co-ingestion). As a 350 

logical extension to per meal protein recommendations, the notion that daily protein intakes should be 351 

spread evenly between meals/servings (~3–4 hours) is intuitive, particularly in older adults that 352 

typically consume the majority of their daytime protein intake within a single meal(84). Indeed, a 353 

common proposal based on the ‘refractory period’ (or ‘muscle full effect’) of MPS(39) and that there is 354 

no inactive compartment to serve as a reservoir for protein, is that an even daily protein intake 355 

distribution across feeding events is superior to an uneven skewed distribution. However, conflicting 356 

findings have been reported from studies in older adults that have measured the response of MPS and 357 

lean mass outcomes to the manipulation of protein meal pattern(85–89), with some indications that meal 358 

1 (i.e., breakfast) is when muscle seems to be the most receptive to protein provision, as during sleep 359 

recycled AA are directed toward more critical organs and away from skeletal muscle(85–89). 360 

Accumulating evidence, though, also suggests that bedtime protein feeding may increase overnight 361 

MPS rates and enhance skeletal muscle remodeling(90). However, given that most of our understanding 362 

of MPS responses to protein provision is based on isolated protein sources, particularly in the acute 363 

postprandial phase, caution should be applied when translating to longer-term, habitual practices 364 

which consist predominantly of wholefoods of varying ‘quality’. Nevertheless, based on current 365 

understanding, it is generally accepted that recommended protein intakes for, especially active, older 366 

adults should exceed the current RDA and be raised to 1.0-1.2g·kg-1·day-1 based on 3 × ~0.4g·kg-367 

1·meal-1(91). Further, wholefoods are typically nutrient-dense and better represent habitual dietary 368 

patterns than isolated protein sources. Unlike isolated sources, protein-rich wholefoods contain other 369 

non-protein derived nutrients that theoretically may affect the stimulation of MPS, although this area 370 
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of research is in its infancy. Nevertheless, the preponderance of data suggests that protein-rich 371 

wholefoods do not inhibit the MPS response(92) and, combined with the pragmatism of having to 372 

account for ‘other’ nutritional needs, we would therefore recommend that the majority of an 373 

individuals’ protein intake should be derived from wholefood sources, where possible. 374 

 375 

For >20 years there has been suggestions that the RDA for protein may not be adequate for older 376 

people to maintain skeletal muscle(45). Whilst these guidelines markedly exceed the RDA, there is 377 

currently no evidence that high(er) protein diets are harmful to health (e.g., kidney, bone) in otherwise 378 

healthy individuals(93–96). Numerous studies in older adults support the notion of longer-term higher 379 

(than the RDA) protein intakes on lean mass outcomes (e.g., lean body mass, muscle mass, bone 380 

health, metabolic health, body composition, strength, function)(17,97–103). Furthermore, a series of 381 

studies have observed no harmful effects on blood lipid profiles, metabolic health, liver or kidney 382 

function when prescribing very high (3.4–4.4g·kg-1·day-1) protein diets for periods of up to 6 months, 383 

albeit in resistance-trained individuals(104–107). Notwithstanding, we acknowledge that achieving these 384 

high(er) protein intake recommendations can be challenging, particularly for older adults. Indeed, one 385 

in three older adults fail to consume even the protein RDA(74). This protein undernutrition is 386 

exaggerated in frail older adults owing to issues such as reduced appetite, dysphagia, medications 387 

and/or psycho-social barriers. Moreover, a low protein intake is associated with frailty(108). The 388 

consumption of high-quality protein foods and liquids, protein supplementation and/or fortification of 389 

foods increases the peripheral availability of dietary AA and thus represents a potentially effective 390 

strategy for compromised older populations that warrants further exploration. Indeed, multiple factors 391 

can impact the likelihood of malnutrition and our nutritional (and, specifically, protein) needs and 392 

these must inform interventional dietary approaches and dietary protein intake recommendations in 393 

older adults(109). 394 

 395 

Alternative protein sources for muscle protein synthesis in the 21st Century 396 

To date, formal protein recommendations have almost exclusively focussed on protein dose with 397 

relatively limited consideration to protein source or quality. In contrast, perhaps the most significant 398 

evolution in protein recommendations relates to the transition from typically higher-quality animal-399 

based to typically lower-quality plant-based protein sources. This trend is driven, at least in part, by 400 

increasing concerns surrounding the sustainability of animal-based protein production to meet 401 

growing global population demands(110). Protein quality is defined by a number of factors, including 402 

the AA content (particularly leucine), AA profile and AA bioavailability combined with protein 403 

and/or AA needs, and the digestion kinetics and delivery of AA to biological tissues for protein 404 

synthesis(111,112). Historically, animal proteins have been considered to stimulate a greater postprandial 405 

MPS response and thus superior for muscle anabolism, largely due to their relative high ‘quality’ (i.e., 406 

composition of EAA), high density of protein (i.e., proportion of protein per total weight) and high 407 
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digestibility. Indeed, early records of protein recommendations refer almost exclusively to animal-408 

based products as “highly digestible and good-quality protein”, while highlighting the need to 409 

consume more foods to reach protein requirements if derived from non-animal-based “less protein 410 

dense” sources. Consistent with this notion, some previous studies suggested that plant proteins were 411 

less potent in stimulating MPS compared with animal proteins at an equivalent dose(111). This notion 412 

was assumed to be attributed to the typically lower EAA content, limited content of a specific AA 413 

such as leucine, lower digestibility, and/or higher splanchnic extraction of AA of plant proteins(113,114). 414 

However, these potential issues can be overcome relatively simply via protein extraction, AA 415 

fortification, protein blends that exhibit complementary AA profiles and/or simply increasing protein 416 

intake to meet AA requirements(113,114). 417 

 418 

A growing body of research has demonstrated that animal-free protein sources can effectively 419 

stimulate MPS in a manner that is comparable to animal-based proteins(113,115–118), although this 420 

observation is likely to be context dependent. Indeed, at least in young ‘anabolically’ sensitive adults, 421 

even when a less favourable increase in plasma bioavailability (i.e., lower postprandial plasma AA) 422 

have been observed following the ingestion of non-animal compared with animal protein sources, 423 

markers of skeletal muscle anabolism are comparable(119). However, the application of an exclusively 424 

plant-based lower-quality protein diet may be concerning if insufficient quantities of protein (and thus 425 

EAA) are consumed. This deficiency is exacerbated by the observations of reduced peripheral 426 

availability of AA with ageing (via increased splanchnic retention of AA(120)) which likely contributes 427 

to age-related muscle loss(120). Indeed, increased splanchnic retention of AA is also associated with 428 

plant-based proteins, due to their lower digestibility(118,121,122). It is, though, worthy of note that whilst 429 

the impact of insufficient provision of all EAA may be difficult to detect in tightly controlled acute 430 

metabolic studies, an accumulation of small AA deficiencies over an extended period of time may be 431 

important and result in a greater cumulative MPS deficit, with consequences for skeletal muscle 432 

health(123), as muscle breakdown, and thus atrophy, will likely need to increase to provide an 433 

endogenous supply of EAA for critical physiological tissues and organs(66,124). Nevertheless, in 434 

practice, humans rarely consume foods in isolation and mixed meals within a habitual diet likely 435 

contains sufficient amounts of all EAA. Based on current evidence, if protein intake is ≥1.6g·kg-1·day-436 

1, the long-term impact of protein source (within a mixed whole food diet) on muscle remodeling may 437 

be negligible(111). Indeed, for most people, the benefits of protein intake and different protein intake 438 

strategies seem to diminish greatly beyond ~1.6g·kg-1·day-1(7,111).  439 

 440 

Although largely speculative, it should be considered whether there are metabolic and molecular 441 

consequences of switching to an exclusively plant-based lower-quality protein diet in older age, 442 

having followed an omnivorous diet throughout the majority of an individual’s life. Indeed, 443 

individuals habituated to high protein, and thus high EAA, intakes may require a greater relative 444 
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protein intake to account for an attenuated peripheral dietary AA appearance and/or enhanced AA 445 

oxidative capacity(44) given that processes involved in the uptake of AA into muscle may be more 446 

efficient under scenarios of an impaired muscle anabolic potential(125). Whilst there is currently 447 

limited evidence to support any long-term detriment of a plant-based diet on musculoskeletal 448 

outcomes at an advanced stage of life(126,127), it is important to note that humans possess inherent 449 

adaptive biology which provides an evolutionary advantage(128,129), and raises the question, is nature 450 

smarter than people think? Hence, we cannot exclude the possibility that the same cannot be true for 451 

longer-term exposure to types of protein source, under conditions of chronic protein ingestion from 452 

lower- or higher-quality sources.  453 

 454 

Sustainability of different protein sources: a complex debate 455 

Alternative protein sources cannot be discussed without an acknowledgment of and appreciation for 456 

environmental sustainability. Much controversy and misinformation surround the sustainability 457 

associated with our food choices. Undoubtedly, rapid growth in global population has contributed to 458 

stressors in food systems that have clear consequences for the environment and the continued 459 

existence of our planet(130). Indeed, concerns surrounding the sustainability of increased production of 460 

animal-based proteins to meet growing consumer demands is driving nutritional research into 461 

alternative protein sources (e.g., plant, fungal, algal, insect, laboratory grown ‘meat’, ‘animal-free 462 

animal proteins’), which will represent an area of intense research for many years to come(110). A 463 

reductionist approach to this issue is to advise a global population switch to excessive plant-based 464 

diets(131), however, the sustainability of different protein (and food) sources is a hugely complex 465 

debate for multiple reasons. First, dietary protein sources differ by many characteristics (e.g., AA 466 

composition, digestion characteristics, protein density, nutritional composition, form) that justifies the 467 

need for assessments of environmental impact to include nutritionally relevant functional units(132–134). 468 

Indeed, a recent study suggests that, whilst their analysis revealed animals source foods still tended to 469 

be associated with higher environmental impacts than plant-based foods, shifting to a nutritionally 470 

relevant functional unit in life cycle analyses confirms a lower relative environmental impact of 471 

nutrient-dense foods compared with when using conventional units (e.g., per total weight, calories) 472 

(135,136). Further, when considering ‘ounce equivalents’ of protein food sources, which is a 473 

recommendation published by The Dietary Guidelines for Americans to help consumers meet protein 474 

requirements with a variety of protein food sources, consumption of ounce equivalents of animal-475 

based protein food sources, such as beef, pork, eggs, result in a greater gain in whole-body net protein 476 

balance than the ounce equivalents of plant-based protein food sources, such as tofu, kidney beans, 477 

peanut butter, mixed nuts, with further inter-individual variations between protein food sources of 478 

various types(137). Therefore, protein source, and by extension quality, is an important consideration in 479 

the context of fully understanding the environmental consequences of a given food source, which is 480 
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likely due to distinct differences in nutrient density (i.e., EAA profiles) and bioavailability of EAA for 481 

use by the body.  482 

 483 

Second, environmental consequences are associated with every stage of the food chain from 484 

agricultural production (e.g., farming methods, land use), processing and manufacturing (e.g., 485 

packaging, transportation), consumer activities (e.g., storage, cooking) and food waste disposal, and 486 

these consequences are not mutually exclusive for protein sources across the spectrum of protein 487 

‘quality’(138). In addition, lots of produce goes to waste during processing and transportation due to 488 

damage, with some forms of produce more vulnerable to damage than others(139). According to the 489 

FAO, ~1/3rd of all edible produced foods are wasted every year across the entire supply chain, 490 

accelerating environmental consequences associated with global food production, highlighting the 491 

need for immediate urgent alternative action(139). There is growing consensus that food systems need 492 

to sustainably provide a diversity of both plant and animal source foods, not least for their protein 493 

(and more specifically, EAA) content but other vital nutrients(140,141), to meet global nutritional 494 

requirements whilst minimizing environmental consequences(132,140,142,143). Accordingly, several early 495 

studies have investigated different means to increase the palatability and quality of protein sources 496 

that are disposed of during the food production process. For example, blue whiting and nile-tilapia are 497 

underutilised fish species containing high-quality protein and, following hydrolysation, have been 498 

investigated for their skeletal muscle anabolic properties using marine by-products that have 499 

traditionally been disposed of during production(144,145). In addition, the use of other food sources, 500 

including insects, have been proposed as an alternative approach to developing high quality protein 501 

with a lower carbon footprint to support skeletal muscle health(146,147). Indeed, the consumption of 502 

insects is already common, predominantly in Asia, Africa, and South America, and has gained huge 503 

interest in recent years as an alternative dietary protein source that may be produced on a more viable 504 

and sustainable scale and, as such, may contribute to global sustainability and food security(146–148). 505 

Cell- (or lab-) based meat, sometimes referred to as ‘cellular agriculture’, is also receiving increasing 506 

attention(149,150). However, the current energy cost associated with cellular agriculture is significantly 507 

higher than more traditional approaches and the feasibility of this concept to support global demand 508 

for food has been questioned(149,150). Undoubtedly, though, some of these approaches do have the 509 

potential to maximise sustainability of our food systems to support environmental longevity.  510 

 511 

Finally, malnutrition is widespread globally (including protein deficiency(151)) affecting billions of 512 

people, with deficiencies higher in lower income countries(136). Diets in higher income countries are 513 

typically high in nutrient poor ultra-processed foods, whereas lower income countries diets are 514 

dominated by starchy staple (low protein quality and density) foods that lack diversity, each creating 515 

their own unique challenges that likely require a nation-specific approach to sustainability and 516 

malnutrition(142,152). Further, there is strong evidence to suggest that specific types of foods, including 517 
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animal foods, are rich in unique nutrients that can otherwise be challenging to consume in sufficient 518 

amounts to promote optimal human health in their absence(132,136,141). Indeed, in some of the most 519 

prominent ‘blue zones’ across the globe (i.e., regions where people live significantly longer than the 520 

average, often with an extraordinary number of centenarians), whilst diets are often composed 521 

predominantly of plant-based foods, they also consist of varying amounts of animal foods that provide 522 

vital nutrients that seemingly contribute to extending longevity and vitality. Though beyond the scope 523 

of this review, an important consideration in our food choices for sustainability and malnutrition, as 524 

well as whole body metabolic health and longevity, is also how the food is prepared and the impacts 525 

of modern civilisation on food production, regardless of the source. In addition, approaches such as 526 

food fortification may also represent important strategies to combat population nutrient 527 

deficiencies(153,154). Undoubtedly, home and/or local produce, land use, food availability, food 528 

diversity, less (ultra) processed foods and acknowledging the nutritional value of all foods are all 529 

important considerations when addressing food systems in a more holistic manner in line with food 530 

demand. 531 

 532 

Priority future research directions: where next?  533 

This review has explored some of the most prevalent areas for future research in the field of protein 534 

nutrition and put forth some of the key issues and dilemmas that require further research endeavour. 535 

Indeed, it is important to recognise the nutritional value of all food types and advocate for foods 536 

supported by rigorous, high-quality research that is communicated with policy makers, rather than 537 

engaging in polarised public debates. Future research in the field of protein nutrition will likely be 538 

dominated by the exploration of novel, alternative, sustainable protein sources that can effectively 539 

support skeletal muscle remodeling across the health- and lifespan continuum. Undoubtedly, this new 540 

knowledge will encapsulate novel nutrition strategies (e.g., parenteral nutrition, AA fortification) to 541 

achieve higher protein intakes in progressively aged and diseased populations. However, as much of 542 

our understanding of skeletal muscle anabolic responses to protein are based on isolated liquid-form 543 

protein sources, this raises questions over the applicability of current consensuses to habitual 544 

practices. Hence, more research is needed into wholefood approaches, including the consumption of 545 

ultra-processed foods, that more closely reflect current typical habitual practices. Finally, there is 546 

preliminary evidence suggesting that sexual dimorphism to protein provision exists with advancing 547 

age. Given the clear gap in female-based research, future work should clarify the sex-specific 548 

requirements and recommendations for dietary protein. Undoubtedly, dietary requirements are likely 549 

to substantially vary across the globe and indeed across and within clinical populations, and this also 550 

must not be ignored when devising future recommendations. 551 
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Conclusion 552 

In this review we explored the evolution of human dietary protein intake requirements and 553 

recommendations, with a focus on skeletal muscle remodeling to support healthy ageing. Whilst 554 

current UK recommendations for dietary protein intake currently sit at ~0.8g·kg·-1day-1, accumulating 555 

evidence suggests that, at least in older healthy individuals, we may benefit from increasing these 556 

recommendations to >1.0g·kg·-1day-1, which has been verified with the use of more contemporary 557 

(e.g., indicator amino acid oxidation) methods to determine protein/amino acid intake requirements. 558 

However, recommendations could be refined further to consider other protein intake considerations 559 

such as the source, type, quality, timing, pattern and nutrient co-ingestion to provide sufficient 560 

essential amino acids for skeletal muscle remodeling. Nevertheless, a growing body of research has 561 

demonstrated that animal-free protein sources can effectively stimulate MPS and support skeletal 562 

muscle remodeling in a manner that is comparable to animal-based proteins, which have historically 563 

been considered superior in their anabolic potency. However, food systems do need to sustainably 564 

provide a diversity of both plant and animal source foods, not least for their protein content but other 565 

vital nutrients. Undoubtedly, future research in the field of protein nutrition will likely be dominated 566 

by the exploration of novel, alternative, sustainable protein sources that can effectively support 567 

skeletal muscle remodeling across the health- and lifespan continuum, particularly with wholefood 568 

approaches. 569 

 570 
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 574 

Figure 1 Legend 575 

A brief summary of the key landmarks in the historical evolution of dietary protein and amino acid 576 

(AA) requirements and recommendations for humans. Dietary recommendations are provided relative 577 

to body weight (i.e., kilogram, kg). EAA, essential amino acids; FAO, Food and Agriculture 578 

Organisation; WHO, World Health Organisation; RDA, recommended daily allowance; UNU, United 579 

Nations University; EAR, estimated average requirement.580 
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