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The lower estimate by Gohberg and Krupnik (1968) and the 
upper estimate by Hollenbeck and Verbitsky (2000) for the 
norm of the Riesz projection P on the Lebesgue space Lp

lead to ‖P‖Lp→Lp = 1/ sin(π/p) for every p ∈ (1, ∞). Hence 
L2 is the only space among all Lebesgue spaces Lp for which 
the norm of the Riesz projection P is equal to one. Banach 
function spaces X are far-reaching generalisations of Lebesgue 
spaces Lp. We prove that the norm of P is equal to one on 
the space X if and only if X coincides with L2 and there 
exists a constant C ∈ (0, ∞) such that ‖f‖X = C‖f‖L2 for all 
functions f ∈ X. Independently from this, we also show that 
the norm of P on X is equal to one if and only if the norm 
of the backward shift operator S on the abstract Hardy space 
H[X] built upon X is equal to one.
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1. Introduction

For a function f ∈ L1 on the unit circle T := {z ∈ C : |z| = 1}, let

f̂(n) = 1
2π

π∫
−π

f
(
eiθ

)
e−inθ dθ, n ∈ Z

be the Fourier coefficients of f . Let X be a Banach function space on T . We postpone 
the technical definition until Section 2.1 and mention here only that X is continuously 
embedded into L1. Let

H[X] := {g ∈ X : ĝ(n) = 0 for all n < 0}

denote the abstract Hardy space built upon the Banach function space X. In the case 
X = Lp, we will use the standard notation Hp := H[Lp]. We will also use the following 
notation:

em(z) := zm, z ∈ C, m ∈ Z.

It is easy to see that the backward shift operator S, defined by

(Sf)(t) := e−1(t)
(
f(t) − f̂(0)

)
, t ∈ T ,

is bounded on the space H[X]. Consider the operators C and P , defined for a function 
f ∈ L1 and an a.e. point t ∈ T by

(Cf)(t) := 1
πi

p.v.
∫
T

f(τ)
τ − t

dτ, (Pf)(t) := f(t) + (Cf)(t)
2 ,

respectively, where the integral is understood in the Cauchy principal value sense. The 
operator C is called the Cauchy singular integral operator and the operator P is called 
the Riesz projection. The latter term can be explained by the fact that if P is bounded 
on a Banach function space X, then one has H[X] = P (X) (see [23, Lemma 1.1]).

The lower estimate by Gohberg and Krupnik (see [16, Ch. 9, Theorem 9.1]) and the 
upper estimate by Hollenbeck and Verbitsky [18] for the norm of the Riesz projection P
on the Lebesgue space Lp lead to

‖P‖Lp→Lp = 1/ sin(π/p), 1 < p < ∞. (1.1)

Hence L2 is the only space among all Lebesgue spaces Lp for which the norm of the 
Riesz projection P is equal to one. On the other hand, [5, Theorem 7.7] implies that

‖S‖H2→H2 = 1, ‖S‖Hp→Hp > 1 for p ∈ (1,∞) \ {2}.
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Thus, for the class of Lebesgue spaces Lp with 1 < p < ∞, one has

‖P‖Lp→Lp = 1 ⇐⇒ ‖S‖Hp→Hp = 1. (1.2)

Banach function spaces provide a far-reaching generalisation of Lebesgue spaces. 
The class of Banach function spaces includes Lebesgue spaces Lp, 1 ≤ p ≤ ∞, Or-
licz spaces Lϕ, Lorentz spaces Lp,q, all other rearrangement-invariant spaces (see, e.g., 
[3, Ch. 2 and 4]), as well as, variable Lebesgue spaces Lp(·) (see, e.g., [10]), which are not 
rearrangement-invariant.

It follows from [21, Theorem 4.5, Corollary 4.6] that if X is a reflexive rearrangement-
invariant Banach function space such that P : X → X is bounded, then

‖P‖ess
X→X := inf{‖P −K‖X→X : K is compact on X}

≥ 1
sin(πmin{pX , 1 − qX}) , (1.3)

where pX and qX are the Zippin indices of the space X (see [28, pp. 27-28] for their 
definition and the proof of the inequalities 0 ≤ pX ≤ qX ≤ 1, which are valid for 
arbitrary rearrangement-invariant Banach function spaces).

So, if pX 
= 1/2 or qX 
= 1/2, then ‖P‖X→X ≥ ‖P‖ess
X→X > 1. We note in passing 

that if X is a rearrangement-invariant Banach function space such that P : X → X is 
bounded, then P is maximally noncompact on X, that is,

‖P‖X→X = ‖P‖ess
X→X

(see [24, Theorem 1.1]).
Estimate (1.3) does not exclude the possibility of ‖P‖X→X = 1 if pX = qX = 1/2. 

Note that, for instance, the Lorentz spaces L2,r, 1 < r < ∞, are reflexive rearrangement-
invariant Banach function spaces (see, e.g., [3, Ch. 4, Section 4]) with the Zippin indices 
pL2,r = qL2,r = 1/2 (see, e.g., [28, pp. 27–28]), and the operator P is bounded on L2,r

for every 1 < r < ∞ (the latter follows from Calderón’s extension of the Marcinkiewicz 
interpolation theorem [3, Ch. 4, Theorem 4.13]). On the other hand, it follows from 
Holmstedt’s formula (see [19, Theorems 4.2–4.3]) for the K-functional for Lorentz spaces 
that for δ ∈ (0, 1) and 1 ≤ r ≤ ∞, the space Xδ,r := (L2/(1−δ), L2/(1+δ))1/2,r, obtained 
from the Lebesgue spaces L2/(1−δ) and L2/(1+δ) by the K-method of real interpolation 
(see, e.g., [3, Ch. 5]), coincides with the Lorentz space L2,r up to equivalence of the 
norms. Since the K-method of real interpolation is exact (see, e.g., [3, Ch. 5, Theorem 
1.12]), we conclude from (1.1) that

‖P‖Xδ,r→Xδ,r
≤ ‖P‖1/2

L2/(1−δ)→L2/(1−δ)‖P‖1/2
L2/(1+δ)→L2/(1+δ)

= 1√
sin π(1−δ)

2

1√
sin π(1+δ)

2

= 1
sin π(1+δ)

2

.
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Hence, for every ε > 0 and r ∈ [1, ∞], one can find δ > 0 such that

‖P‖Xδ,r→Xδ,r
≤ 1

sin π(1+δ)
2

< 1 + ε. (1.4)

Thus, for every ε > 0 and r ∈ [1, ∞], one can equip the Lorentz space L2,r with an 
equivalent norm ‖ · ‖L2,r

ε
such that ‖P‖L2,r

ε →L2,r
ε

< 1 + ε (it is enough to take ‖ · ‖L2,r
ε

:=
‖ · ‖Xδ,r

, where δ satisfies (1.4)).
So, the following natural question arises: can the norm of the Riesz projection P on 

a (not necessarily rearrangement-invariant) Banach function space X be equal to one if 
X does not coincide with L2? The first main result of the paper gives a negative answer 
to this question.

Theorem 1.1 (Main result 1). Let X be a Banach function space such that ‖P‖X→X = 1. 
Then X coincides with L2 and there exists a constant C ∈ (0, ∞) such that

‖g‖X = C‖g‖L2 for all g ∈ X. (1.5)

Our second main result deals with the extension of property (1.2) to the setting of 
Banach function spaces.

Theorem 1.2 (Main result 2). Let X be a Banach function space. Then ‖P‖X→X = 1 if 
and only if ‖S‖H[X]→H[X] = 1.

The paper is organized as follows. In Section 2, we recall definitions of a Banach func-
tion space and its associate space X ′, of the subspace Xa of all functions of absolutely 
continuous norm and of the subspace Xb, which is the closure of the set of all simple 
functions in X. Further, we note that if Xa = Xb, then the set of trigonometric polyno-
mials P is dense in Xb. We also need a few notions from the theory of analytic functions 
on the open unit disk D, Poisson integrals, and the Hilbert transform H. After these 
preliminaries, we recall that if f ∈ Lp is a real-valued function and u is an inner function 
vanishing at zero, then H(f ◦ u) = (Hf) ◦ u. We conclude Section 2 by recalling several 
known facts about the Riesz projection scattered in our previous papers. We start Sec-
tion 3 by proving a property of the norm in a real Hilbert space, and then give a proof 
of Theorem 1.1.

As far as Theorem 1.2 is concerned, the proof of the implications

‖P‖X→X = 1 =⇒ ‖S‖H[X]→H[X] = 1,

‖S‖H[X]→H[X] = 1 =⇒ ‖Pg‖X ≤ ‖g‖X for all continuous g (1.6)

is not difficult. The main difficulty lies in extending the estimate ‖Pg‖X ≤ ‖g‖X in (1.6)
to all g ∈ X when X is not separable. This difficulty is addressed in Section 4 where we 
refine [23, Theorem 3.7] and [25, Theorem 3.3] and show that if the Hilbert transform 
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H is of weak type from the space C of continuous functions to a Banach function space 
X, then Xa = Xb. This implies that if the Riesz projection P is bounded from C to a 
Banach function space X, then Xa = Xb and P is dense in Xb. This observation is a key 
ingredient in the proof of Theorem 1.2 given in Section 5.

Finally, in Section 6, we extend [5, Theorem 7.7] to the setting of Banach function 
spaces X and show that the norm of P on X can be expressed in terms of Toeplitz 
operators.

2. Preliminaries

2.1. Banach function spaces and their associate spaces

Let M be the set of all measurable extended complex-valued functions on T equipped 
with the normalized measure dm(t) = |dt|/(2π) and let M+ be the subset of functions 
in M whose values lie in [0, ∞].

A mapping ρ : M+ → [0, ∞] is called a Banach function norm if, for all functions 
f, g, fn ∈ M+ with n ∈ N, and for all constants a ≥ 0, the following properties hold:

(A1) ρ(f) = 0 ⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) ρ(1) < ∞,

(A5)
∫
T

f(t) dm(t) ≤ Cρ(f)

with a constant C ∈ (0, ∞) that may depend on ρ, but is independent of f . When 
functions differing only on a set of measure zero are identified, the set X of all functions 
f ∈ M for which ρ(|f |) < ∞ is called a Banach function space. For each f ∈ X, the 
norm of f is defined by ‖f‖X := ρ(|f |). The set X equipped with the natural linear space 
operations and this norm becomes a Banach space. If ρ is a Banach function norm, its 
associate norm ρ′ defined on M+ by

ρ′(g) := sup

⎧⎨⎩
∫
T

f(t)g(t) dm(t) : f ∈ M+, ρ(f) ≤ 1

⎫⎬⎭ , g ∈ M+,

is a Banach function norm itself. The Banach function space X ′ determined by the 
Banach function norm ρ′ is called the associate space (Köthe dual) of X. The associate 
space X ′ can be viewed as a subspace of the Banach dual space X∗ (see [3, Ch. 1, 
Sections 1-2]).
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2.2. Density of trigonometric polynomials in the subspace Xb

The characteristic (indicator) function of a measurable set E ⊂ T is denoted by χE . 
A function f in a Banach function space X is said to have absolutely continuous norm 
in X if ‖fχγn

‖X → 0 for every sequence {γn} of measurable sets such that χγn
→ 0

almost everywhere as n → ∞. The set of all functions of absolutely continuous norm in 
X is denoted by Xa. If Xa = X, then one says that X has absolutely continuous norm. 
Let S0 be the set of all simple functions on T . Let Xb denote the closure of S0 in the 
norm of X. We refer to [3, Ch. 1, Section 3] for properties of the subspaces Xa and Xb.

For n ∈ Z+ := {0, 1, 2, . . . }, a function of the form 
∑n

k=−n αkek, where αk ∈ C

for all k ∈ {−n, . . . , n}, is called a trigonometric polynomial of order n. The set of all 
trigonometric polynomials is denoted by P.

Lemma 2.1 ([23, Lemma 2.1]). Let X be a Banach function space. If Xa = Xb, then the 
set of trigonometric polynomials P is dense in Xb.

2.3. Classes of analytic functions on the open unit disk

Let D denote the open unit disk in the complex plane C. Recall that a function F
analytic in D is said to belong to the Hardy space Hp(D), 0 < p ≤ ∞, if

‖F‖Hp(D) := sup
0≤r<1

⎛⎝ 1
2π

π∫
−π

|F (reiθ)|p dθ

⎞⎠1/p

< ∞, 0 < p < ∞,

‖F‖H∞(D) := sup
z∈D

|F (z)| < ∞.

Let g be a measurable function on T with log |g| ∈ L1. An outer function (of absolute 
value |g|) is a function f = λG with λ ∈ C, |λ| = 1, and

G(z) := exp

⎛⎝ 1
2π

π∫
−π

eiθ + z

e,θ − z
log |g(eiθ)| dθ

⎞⎠ , z ∈ D.

The Smirnov class D(D) consists of all functions f analytic in D, which can be repre-
sented in the form f = f1/f2, where f2 is outer and f1, f2 ∈

⋃
0<p≤∞ Hp(D) (see, e.g., 

[29, Definition 3.3.1]). Recall that an inner function is a function u ∈ H∞(D) such that 
|u(eiθ)| = 1 for a.e. θ ∈ [−π, π].

Lemma 2.2. If u is an inner function such that u(0) = 0, then u is a measure preserving 
transformation from T onto itself.

This lemma goes back to Nordgren (see corollary to [30, Lemma 1] and also [9, Re-
mark 9.4.6], [23, Lemma 2.5], [12, Theorem 5.5]).
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For a finite collection z1, . . . , zn ∈ D and γ ∈ T , the function

B(z) = γ
n∏

j=1

z − zj
1 − zjz

is called a finite Blaschke product. As is well known, every finite Blaschke product satisfies

|B(z)| < 1 for z ∈ D, |B(ζ)| = 1 for ζ ∈ T

(see, e.g., [13, Section 3.1]).

2.4. The Hilbert transform and Poisson integrals

The Hilbert transform of a function f ∈ L1 is defined by

(Hf)
(
eiϑ

)
:= 1

2π p.v.
π∫

−π

f
(
eiθ

)
cot ϑ− θ

2 dθ, ϑ ∈ [−π, π].

For ϑ ∈ [−π, π] and r ∈ [0, 1), let

Pr(ϑ) := 1 − r2

1 − 2r cosϑ + r2 , Qr(ϑ) := 2r sinϑ

1 − 2r cosϑ + r2

be the Poisson kernel and the conjugate Poisson kernel, respectively.

Theorem 2.3. Let 1 < p < ∞. If f ∈ Lp is a real-valued function, then the function 
defined by

w(reiϑ) = 1
2π

π∫
−π

f(eiθ)(Pr + iQr)(ϑ− θ) dθ, ϑ ∈ [−π, π], r ∈ [0, 1), (2.1)

belongs to the Hardy space Hp(D) and Imw(0) = 0. Its nontangential boundary values 
w(eiϑ) as z → eiϑ exist for a.e. ϑ ∈ [−π, π] and

Rew(eiϑ) = f(eiϑ), Imw(eiϑ) = (Hf)(eiϑ) for a.e. ϑ ∈ [−π, π]. (2.2)

This statement is well known (see, e.g., [27, Ch. I, Section D and Ch. V, Section 
B.2◦]).

The next lemma will play an important role in the proof of Theorem 1.2.

Lemma 2.4. Let 1 < p < ∞, f ∈ Lp be a real-valued function and u be an inner function 
such that u(0) = 0. Then H(f ◦ u) = (Hf) ◦ u.
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Proof. By Lemma 2.2, u : T → T is a measure preserving transformation. Therefore the 
operator g �→ g ◦ u is isometric, and hence bounded, on Lp. So, it is sufficient to prove 
the equality H(f ◦ u) = (Hf) ◦ u for all f from a dense subset of Lp.

We will suppose that f is Hölder continuous. Then it follows from [17, Ch. IX, §1, 
Theorem 1] that

F (reiϑ) := 1
2π

π∫
−π

f(eiθ)Pr(ϑ− θ) dθ, ϑ ∈ [−π, π], r ∈ [0, 1],

is continuous in D and

Rew(eiϑ) = F (eiϑ) = f(eiϑ) for all ϑ ∈ [−π, π], (2.3)

where w is the function defined by (2.1). Further, [17, Ch. IX, §5, Theorem 5] implies 
that w is Hölder continuous on D. Hence Imw(eiϑ) is Hölder continuous on [−π, π]. It 
follows from Theorem 2.3 that Imw(eiϑ) = (Hf)(eiϑ) for a.e. ϑ ∈ [−π, π]. Since f is 
Hölder continuous, we conclude from Privalov’s theorem (see, e.g., [9, Theorem 3.1.1] or 
[33, Ch. III, Theorem 13.29]) that Hf is Hölder continuous. Since the functions Imw(eiϑ)
and (Hf)(eiϑ) are equal almost everywhere and they are continuous, we conclude that 
they are equal everywhere:

Imw(eiϑ) = (Hf)(eiϑ) for all ϑ ∈ [−π, π]. (2.4)

Let W := w◦u. Then W ∈ Hp(D) (see [11, Section 2.6, Corollary to Theorem 2.12])), 
and ImW (0) = Imw(u(0)) = Imw(0) = 0. It follows from (2.3)–(2.4) and u(eiϑ) ∈ T

for a.e. ϑ ∈ [−π, π] that

ReW (eiϑ) = Re(w ◦ u)(eiϑ) = (f ◦ u)(eiϑ), (2.5)

ImW (eiϑ) = Im(w ◦ u)(eiϑ) =
(
(Imw) ◦ u

)
(eiϑ) =

(
(Hf) ◦ u

)
(eiϑ) (2.6)

for a.e. ϑ ∈ [−π, π]. According to Theorem 2.3,

ImW (eiϑ) = (H (ReW ))(eiϑ) (2.7)

for a.e. ϑ ∈ [−π, π] (see (2.2)). Combining (2.5)–(2.7), we get

(
(Hf) ◦ u

)
(eiϑ) = ImW (eiϑ) = (H (ReW ))(eiϑ) = (H (f ◦ u))(eiϑ)

for a.e. ϑ ∈ [−π, π]. �
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2.5. Some known facts on the Riesz projection

In this subsection we list several known facts about the operator P , which will be 
used in this paper.

Lemma 2.5 ([23, formula (1.4)]). If f ∈ L1 is such that Pf ∈ L1, then

(Pf)̂(n) =
{

f̂(n), if n ≥ 0,
0, if n < 0.

Lemma 2.6 ([22, Lemma 3.1]). Let f ∈ L1. Suppose there exists g ∈ H1 such that 
f̂(n) = ĝ(n) for all n ≥ 0. Then Pf = g.

Theorem 2.7 ([25, Theorem 3.4]). Let X be a Banach function space and X ′ be its 
associate space. If P : Xb → X is bounded, then P : X → X is bounded, P maps Xb

into itself,

‖P‖X→X = ‖P‖Xb→Xb
, (2.8)

and the adjoint of the bounded operator P : Xb → Xb is the operator P : X ′ → X ′, which 
implies that the latter is also bounded.

3. Proof of the first main result

3.1. A property of the norm of a real Hilbert space

Lemma 3.1. Let H be a real Hilbert space, � be a norm equivalent to ‖ · ‖H, and �′ be the 
associate norm,

�′(x) := sup {|〈y, x〉H| : y ∈ H, �(y) ≤ 1} , x ∈ H,

where 〈·, ·〉H denotes the inner product in H. If

�(x)�′(x) = ‖x‖2
H for all x ∈ H, (3.1)

then there exists a constant C ∈ (0, ∞) such that

�(x) = C‖x‖H for all x ∈ H. (3.2)

Proof. Fix a ∈ H \ {0} and put

C := �(a)
. (3.3)
‖a‖H



10 O. Karlovych, E. Shargorodsky / Journal of Functional Analysis 285 (2023) 110158
If x = 0, then (3.2) holds trivially. If x ∈ H \ {0} and a are linearly dependent, then 
there exists λ ∈ C \ {0} such that x = λa, and

C = |λ|�(a)
|λ|‖a‖H

= �(λa)
‖λa‖H

= �(x)
‖x‖H

,

which implies (3.2).
Now suppose that a and x ∈ H \ {0} are linearly independent. Let L be the two-

dimensional subspace spanned by a and x. Choosing an orthonormal basis in L we can 
identify L with R2 and ‖ · ‖H with the standard Euclidean norm ‖ · ‖ on R2. With a 
slight abuse of notation, we denote the norms generated by � and �′ on R2 by the same 
symbols.

Since � is positively homogeneous of degree 1, it can be represented in the form

�(r cos θ, r sin θ) = rΦ(θ), r > 0, θ ∈ [0, 2π), (3.4)

where

Φ(θ) := �(cos θ, sin θ), θ ∈ [0, 2π).

Let

m := inf
θ∈[0,2π)

Φ(θ).

Then

Φ(θ) ≥ m > 0 for all θ ∈ [0, 2π). (3.5)

On the other hand, since all norms on R2 are equivalent, there exists M ∈ (0, ∞) such 
that �(·) ≤ M‖ · ‖. Then

|Φ(θ) − Φ(θ′)| = |�(cos θ, sin θ) − �(cos θ′, sin θ′)|
≤ �

(
(cos θ, sin θ) − (cos θ′, sin θ′)

)
≤ M‖(cos θ, sin θ) − (cos θ′, sin θ′)‖

= 2M
∣∣∣∣sin θ − θ′

2

∣∣∣∣ ≤ M |θ − θ′| (3.6)

for all θ, θ′ ∈ [0, 2π). It follows from (3.5)–(3.6) that R := 1/Φ is also Lipschitz continuous 
and hence absolutely continuous.

Take any

w ∈ S� := {z ∈ R2 : �(z) = 1} = {(R(θ) cos θ,R(θ) sin θ) : θ ∈ [0, 2π)}.
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It follows from (3.1) and the definition of �′ that the function

S� � z �→ 〈z, w〉

achieves its maximum on S� at z = w. In other words, for any θ0 ∈ [0, 2π), the function

F (θ) :=
〈
(R(θ) cos θ,R(θ) sin θ), (R(θ0) cos θ0, R(θ0) sin θ0)

〉
H

= R(θ0)R(θ)(cos θ cos θ0 + sin θ sin θ0) = R(θ0)R(θ) cos(θ − θ0)

achieves its maximum at θ = θ0. If R is differentiable at θ0, then

0 = F ′(θ0) = R(θ0)
(
R′(θ) cos(θ − θ0) −R(θ) sin(θ − θ0)

)∣∣
θ=θ0

= R(θ0)R′(θ0).

Hence R is an absolutely continuous function with R′ = 0 a.e. So, R is constant. Then it 
follows from (3.4) that �(z)/‖z‖ is constant for z ∈ L \ {0}. This observation and (3.3)
imply that

C = �(a)
‖a‖H

= �(a)
‖a‖ = �(x)

‖x‖ = �(x)
‖x‖H

,

which implies (3.2) in the case when x and a are linearly independent. �
3.2. Proof of Theorem 1.1

Since P : X → X is bounded, we have Xa = Xb (see [23, Theorem 3.7]) and (Xb)∗ =
X ′ (see [3, Ch. 1, Corollary 4.2]). Take any ε > 0 and any g ∈ Xb such that |g| ≥ ε a.e. 
on T . Put log+ |z| := max{0, log |z|} for z ∈ C. Since

log |z| = log+ |z| − log+(1/|z|), log+ |z| ≤ |z|, z ∈ C,

it follows from |g| ≥ ε a.e. on T and g ∈ L1 that log |g| ∈ L1. Then, by Szegő’s theorem 
(see, e.g., [29, Theorem 2.6.1]), the outer function

G(z) := exp

⎛⎝ 1
2π

π∫
−π

eiθ + z

e−θ − z
log |g(eiθ)| dθ

⎞⎠ , z ∈ D,

belongs to H1(D) and |G| = |g| a.e. on T . Then G ∈ H1∩X = H[X]. Since P is bounded 
on X, it follows from Lemma 2.5 and the uniqueness theorem for Fourier series (see, e.g., 
[26, Ch. 1, Theorem 2.7]) that PG = G a.e. on T . Taking into account that g ∈ Xb

and |G| = |g|, we deduce from [3, Ch. 1, Theorem 3.11 and Definition 3.7]) that, in fact, 
G ∈ Xb. By the Hahn-Banach theorem, there exists ϕ ∈ (Xb)∗ such that ‖ϕ‖(Xb)∗ = 1
and ϕ(G) = ‖G‖Xb

. Since (Xb)∗ is isometrically isomorphic to X ′, there exists u ∈ X ′

such that ‖ϕ‖(Xb)∗ = ‖u‖X′ and
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ϕ(f) = 1
2π

π∫
−π

f(eiθ)u(eiθ) dθ, f ∈ Xb.

Thus ‖u‖X′ = 1 and

‖G‖X = ‖G‖Xb
= 1

2π

π∫
−π

G(eiθ)u(eiθ) dθ.

It follows from Theorem 2.7 that the adjoint operator of P : Xb → Xb is the operator 
P ∗ = P : X ′ → X ′ and

‖P‖X′→X′ = ‖P‖Xb→Xb
= ‖P‖X→X = 1.

So, the function

u+ := Pu ∈ H[X ′] ⊂ H1

satisfies ‖u+‖X′ ≤ 1 and

‖G‖X = 1
2π

π∫
−π

G(eiθ)u(eiθ) dθ = 1
2π

π∫
−π

(PG)(eiθ)u(eiθ) dθ

= 1
2π

π∫
−π

G(eiθ)(Pu)(eiθ) dθ = 1
2π

π∫
−π

G(eiθ)u+(eiθ) dθ (3.7)

(see [25, Lemma 4.1]). Using Hölder’s inequality (see [3, Ch. 1, Theorem 2.4]) and taking 
into account that ‖u+‖X′ ≤ 1, one gets

‖G‖X = Re

⎛⎝ 1
2π

π∫
−π

G(eiθ)u+(eiθ) dθ

⎞⎠ = 1
2π

π∫
−π

Re
(
G(eiθ)u+(eiθ)

)
dθ

≤ 1
2π

π∫
−π

|G(eiθ)| |u+(eiθ)| dθ ≤ ‖G‖X‖u+‖X′ ≤ ‖G‖X .

Then ‖u+‖X′ = 1,

1
2π

π∫
−π

Re
(
G(eiθ)u+(eiθ)

)
dθ = 1

2π

π∫
−π

|G(eiθ)| |u+(eiθ)| dθ. (3.8)

Since |G| |u+| − Re (Gu+) ≥ 0 a.e. on T , it follows from (3.8) that
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Re (Gu+) = |G| |u+| a.e. on T .

Hence ψ := G u+ ∈ L1 is a nonnegative function and logψ = log |G| + log |u+|. Since 
|G| = |g| ≥ ε a.e. on T and ‖u+‖X′ = 1, we have G, u+ 
= 0. Taking into account that 
G, u+ ∈ H1, we deduce from [29, Corollary 2.2.3] that log |G| ∈ L1 and log |u+| ∈ L1. 
Thus logψ ∈ L1. By Szegő’s theorem (see, e.g., [29, Theorem 2.6.1]), there exists an 
outer function Ψ ∈ H2(D) such that |Ψ| = ψ1/2 a.e. on T . So,

Gu+ = ψ = |Ψ|2 = ΨΨ a.e. on T ,

whence (u+

Ψ

)
= Ψ

G
a.e. on T . (3.9)

Since Ψ ∈ H2(D) and G ∈ H1(D) are outer functions, we conclude that Ψ/G belongs 
to the Smirnov class D(D). Moreover, Ψ ∈ L2 and 1/G ∈ L∞. Hence Ψ/G ∈ L2. Then, 
in view of a generalization of Smirnov’s theorem (see, e.g., [29, Section 3.3.1(g)] or [11, 
Theorem 2.11]), Ψ/G ∈ H2(D) ⊂ H1(D). Similarly, Ψ ∈ H2(D) is an outer function and 
u+ ∈ H[X ′] ⊂ H1. Let us extend u+ to the unit disk analytically:

u+(z) := 1
2π

π∫
−π

u+(eiθ) 1 − r2

1 − 2r cos(ϕ− θ) + r2 dθ, z = reiϕ ∈ D.

Then u+ ∈ H1(D). So, u+/Ψ ∈ D(D). On the other hand,

u+

Ψ =
(

Ψ
G

)
∈ L2.

Hence, applying Smirnov’s theorem once again, one gets

u+

Ψ ∈ H2(D) ⊂ H1(D).

So, we have shown that F := u+/Ψ ∈ H2(D) and F ∈ H2(D) (see (3.9)). Taking into 

account that F̂ (n) = F̂ (−n) for all n ∈ Z, we conclude that F̂ (n) = 0 for all n ∈ Z \{0}, 
that is, F is constant. Let us denote this constant by λ. Then (3.9) implies that

u+ = λΨ = |λ|2G. (3.10)

Since ‖u+‖X′ = 1, one gets G ∈ X ′ and |λ|2 = ‖G‖−1
X′ . It now follows from (3.7) and 

(3.10) that

‖G‖X = |λ|2
2π

π∫
−π

G(eiθ)G(eiθ) dθ = 1
‖G‖X′

1
2π

π∫
−π

|G(eiθ)|2 dθ =
‖G‖2

L2

‖G‖X′
.
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Thus

‖G‖X‖G‖X′ = ‖G‖2
L2 .

So, for every g ∈ Xb such that |g| ≥ ε a.e. on T , one has g ∈ X ′, g ∈ L2, and

‖g‖X‖g‖X′ = ‖g‖2
L2 . (3.11)

Take any g ∈ Xb and set

Ωn :=
{
ζ ∈ T : |g(ζ)| ≥ 1

n

}
, hn := gχΩn

+ 1
n
χT\Ωn

, n ∈ N.

Then

‖g − hn‖X ≤ 2
n
‖χT\Ωn

‖X ≤ 2
n
‖e0‖X , n ∈ N.

Hence {hn} converges to g in X as n → ∞.
On the other hand, it is not difficult to see that for all m, n ∈ N,

|hm − hn| ≤
2

min{m,n} a.e. on T .

This implies that {hn} is a Cauchy sequence in Y , where Y stands for X ′ or L2. Since 
X and Y are continuously embedded into L1, one concludes that {hn} converges to g in 
Y . So,

Xb ⊆ X ′ ∩ L2. (3.12)

It follows from the above that (3.11) holds with hn in place of g. Passing to the limit as 
n → ∞, one gets (3.11) for every g ∈ Xb.

Take now any v ∈ L2. Let

χ0 := χ{ζ∈T :|v(ζ)|<1}, χ1 := χ{ζ∈T :|v(ζ)|≥1}.

Since |vχ0| ≤ 1 a.e. on T , we have vχ0 ∈ X. Let us show that vχ1 ∈ X. If χ1 = 0 a.e. 
on T , then there is nothing to prove. Otherwise, put

vn := χ1 min{|v|, n}, n ∈ N.

Then vn ∈ L∞ ⊂ X and

‖vn‖X‖χ1‖X′ ≤ ‖vn‖X‖vn‖X′ = ‖vn‖2
L2
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(see (3.11)). Since vn ↑ |v|χ1 as n → ∞, it follows from [3, Ch. 1, Lemma 1.5] that 
vχ1 ∈ X and

‖vχ1‖X ≤ ‖vχ1‖2
L2

‖χ1‖X′
.

Therefore v = vχ0 + vχ1 ∈ X. So, taking into account (3.12), we conclude that

Xb ⊆ L2 ⊆ X.

Since Xb, X and L2 are continuously embedded into L1, it follows from the closed graph 
theorem that the embeddings Xb ⊆ L2 ⊆ X are also continuous and

C1‖g‖X ≤ ‖g‖L2 ≤ C2‖g‖X for all g ∈ Xb (3.13)

holds with some constants C1, C2 ∈ (0, ∞).
Finally, take any g ∈ X and set gn := min{|g|, n}. Then gn ∈ L∞ and gn ↑ |g| as 

n → ∞. Hence, by Fatou’s lemma (see [3, Ch. 1, Lemma 5.1]), ‖gn‖X ↑ ‖g‖X < ∞, and 
it follows from (3.13) that ‖gn‖L2 ↑ � < ∞ for some constant � ≤ C2‖g‖X . So, |g| ∈ L2, 
i.e. g ∈ L2 for every g ∈ X, i.e. X ⊆ L2. We conclude that X = L2 and (3.11), (3.13)
hold for all g ∈ X (cf. [3, Ch. 1, Corollary 1.9]). It is now left to apply Lemma 3.1. �
4. Necessary condition for the boundedness of the Hilbert transform from C to 
a Banach function space X

4.1. Operators of weak type from C to a Banach function space X

Let M0 denote the subset of all almost everywhere finite functions in M. It is well 
known (see, e.g., [14, Theorems 29.4.3 and 29.4.6] or [3, Ch. 1, Exercise 1]) that M0
can be equipped with a metric d so that (M0, d) is a complete linear metric space and 
the convergence in this metric is equivalent to the convergence in measure. Let X be a 
Banach function spaces over the unit circle. We say that a linear operator A : C → M0
is of weak type (C, X) if there exists a constant L > 0 such that for all λ > 0 and all 
f ∈ C,

∥∥χ{ζ∈T : |(Af)(ζ)|>λ}
∥∥
X

≤ L
‖f‖C
λ

. (4.1)

We denote the infimum of the constants L satisfying (4.1) by ‖A‖weak
C→X and the set of all 

operators of weak type (C, X) by W(C, X).
The proof of the following lemma is the same as that of [23, Lemma 3.1].

Lemma 4.1. Let X be a Banach function space over the unit circle T . If A : C → X is 
bounded, then A ∈ W(C, X) and ‖A‖weak

C→X ≤ ‖A‖C→X .
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4.2. Mapping of a finite family of separated arcs to a single arc

We will say that two open arcs in T are separated if the distance between them is 
positive, i.e. if they are disjoint and do not have common endpoints.

Theorem 4.2. If E ⊂ T is a finite union of pairwise separated open arcs,

E =
n⋃

k=1

(
eiak , eibk

)

= ∅,

and � ⊂ T is an open arc such that m(�) = m(E), then there exists a finite Blaschke 
product u satisfying u(0) = 0 and such that u−1(�) = E.

Proof. The proof can easily be extracted from the proof of [7, Theorem 7.2] (note that 
the published version [8] of [7] contains a stronger variant of Theorem 7.2 equipped with 
a different proof that came from [31, Lemma 5.1]). We provide details here for the sake 
of completeness as a detailed proof of (4.4) (see below) was omitted in [7].

Take ω ∈ T \ closE and consider

ϕ(z) := i
ω + z

ω − z
.

This is a conformal homeomorphism of the unit disk D onto the upper half-plane C+ :=
{ζ ∈ C : Im ζ > 0} and a diffeomorphism from T \ {ω} onto R. Let

K(ζ) :=
n∏

k=1

∣∣i− ϕ
(
eiak

)∣∣
|i− ϕ (eibk)| ·

ζ − ϕ
(
eibk

)
ζ − ϕ (eiak) .

Then K maps C+ into itself, R \
{
ϕ
(
eiak

)}n

k=1 into R, and

K−1((−∞, 0)) =
n⋃

k=1

(
ϕ
(
eiak

)
, ϕ

(
eibk

))
(see [4, Proposition 2.1, Part (3)]).

If � is an arc such that m(�) = m(E), then there exists a ∈ R such that � =(
eia, ei(a+2πm(E))). Let

ψ(v) := eia
v − eiπm(E)

v − e−iπm(E) .

Then ψ is a conformal homeomorphism of C+ onto D and a diffeomorphism from R onto 
T \

{
eia

}
(see, e.g., [2, Theorem 13.16]). It is easy to see that ψ−1(�) = (−∞, 0).
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Let

u := ψ ◦K ◦ ϕ.

Clearly, u is a rational function. It is analytic in D and maps D into itself and T \(
{ω} ∪

{
eiak

}n
k=1

)
into T \

{
eia

}
. The latter implies that u does not have poles in T

and hence is also analytic in a neighbourhood of T . Therefore

lim
|z|→1−

|u(z)| = 1.

It follows from [13, Theorem 3.5.2] (see also [13, Lemma 13.1.4] and [15, Ch. II, Sect. 6]) 
that u is a finite Blaschke product.

We have

u−1(�) = ϕ−1 (K−1 (ψ−1(�)
))

= ϕ−1 (K−1 ((−∞, 0))
)

= ϕ−1

(
n⋃

k=1

(
ϕ
(
eiak

)
, ϕ

(
eibk

)))
=

n⋃
k=1

(
eiak , eibk

)
= E.

It is now left to show that u(0) = 0.
Since ϕ is a fractional linear transformation, it preserves the cross-ratio of any four 

points (see, e.g., [2, Theorem 13.23]). So,(
ϕ(z) − ϕ

(
eiak

)) (
ϕ(0) − ϕ

(
eibk

))
(ϕ(z) − ϕ (eibk)) (ϕ(0) − ϕ (eiak)) =

(
z − eiak

)
eibk

(z − eibk) eiak
, k = 1, . . . , n.

Taking the limits as z → ω, we get

i− ϕ
(
eibk

)
i− ϕ (eiak) =

(
ω − eiak

)
eibk

(ω − eibk) eiak
, k = 1, . . . , n. (4.2)

By the inscribed angle theorem, the angle at ω subtended by the arc 
(
eiak , eibk

)
is equal 

to (bk − ak)/2. Hence

eibk − ω

|eibk − ω|

(
eiak − ω

|eiak − ω|

)−1

= ei(bk−ak)/2, k = 1, . . . , n. (4.3)

Taking into account (4.2)–(4.3), we get

K(i) =
n∏

k=1

∣∣i− ϕ
(
eiak

)∣∣
|i− ϕ (eibk)| ·

i− ϕ
(
eibk

)
i− ϕ (eiak) =

n∏
k=1

∣∣∣∣ω − eibk

ω − eiak

∣∣∣∣ · ω − eiak

ω − eibk
ei(bk−ak)

=
n∏ eiak − ω

|eiak − ω|

(
eibk − ω

|eibk − ω|

)−1

ei(bk−ak) =
n∏

e−i(bk−ak)/2ei(bk−ak)
k=1 k=1
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=
n∏

k=1

ei(bk−ak)/2 = exp
(
i

n∑
k=1

(bk − ak)/2
)

= eiπm(E). (4.4)

Hence

u(0) = ψ(K(ϕ(0))) = ψ(K(i)) = ψ
(
eiπm(E)

)
= 0,

which completes the proof. �
4.3. Estimates for the Hilbert transform of a piecewise linear bump function

In this subsection, we prove a lower estimate for the Hilbert transform of a piecewise 
linear bump function, which will play an important role in what follows.

Lemma 4.3. Let 0 < β < π
2 , 0 < ε < min

{
β, π

2 − β
}
, and

g
(
eiθ

)
:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(θ + π)/ε, −π ≤ θ ≤ −π + ε,

1, −π + ε < θ < −β,

−(θ + β − ε)/ε, −β ≤ θ ≤ −β + ε,

0, −β + ε < θ ≤ π.

(4.5)

Then

∣∣(Hg)
(
eiη

)∣∣ > 1
π

∣∣∣∣log
(√

2 sin β + ε

2

)∣∣∣∣− ε

2π for all η ∈ [π − β, π]. (4.6)

Proof. Take any η ∈ [π − β, π]. Since cot η−θ
2 ≤ 0 for θ ∈ [−π, −β], we have

(
Hg

)
(eiη) = 1

2π

π∫
−π

g
(
eiθ

)
cot η − θ

2 dθ

= 1
2π

⎛⎜⎝ −π+ε∫
−π

+
−β∫

−π+ε

+
−β+ε∫
−β

⎞⎟⎠ g
(
eiθ

)
cot η − θ

2 dθ

≤ 1
2π

−β∫
−π+ε

cot η − θ

2 dθ + 1
2π

−β+ε∫
−β

∣∣∣∣cot η − θ

2

∣∣∣∣ dθ. (4.7)

An easy calculation shows that

1
2π

−β∫
cot η − θ

2 dθ = 1
π

log sin η + π − ε

2 − 1
π

log sin η + β

2 . (4.8)

−π+ε
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Since

π

2 < π − β + ε

2 ≤ η + π − ε

2 ≤ π − ε

2 < π

for η ∈ [π − β, π], we have

1
π

log sin η + π − ε

2 ≤ 1
π

log sin
(
π − β + ε

2

)
= 1

π
log sin β + ε

2 . (4.9)

Similarly, the inequalities

π

2 ≤ η + β

2 ≤ π + β

2 < π

for η ∈ [π − β, π], imply that

1
π

log sin η + β

2 ≥ 1
π

log sin π + β

2 = 1
π

log cos β2 . (4.10)

Taking into account

0 <
β

2 <
β + ε

2 <
π

4 ,

we see that

sin β + ε

2 <
1√
2
< cos β2 .

Hence

− 1
π

log cos β2 <
1
π

log
√

2 < − 1
π

log sin β + ε

2 . (4.11)

Combining (4.8)–(4.11), we arrive at

1
2π

−β∫
−π+ε

cot η − θ

2 dθ <
1
π

log sin β + ε

2 + 1
π

log
√

2

= 1
π

log
(√

2 sin β + ε

2

)
= − 1

π

∣∣∣∣log
(√

2 sin β + ε

2

)∣∣∣∣ . (4.12)

Since

π − ε ≤ η + β − ε ≤ η − θ ≤ η + β ≤ π + β
2 2 2 2 2
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for η ∈ [π−β, π] and θ ∈ [−β, −β+ε], the function cotϕ is decreasing for ϕ ∈
[
π−ε

2 , π+β
2

]
, 

and

0 < cot π − ε

2 = − cot π + ε

2 < − cot π + β

2 = tan β

2 ,

we have

1
2π

−β+ε∫
−β

∣∣∣∣cot η − θ

2

∣∣∣∣ dθ ≤ ε

2π max
ϕ∈

[
π−ε

2 ,π+β
2

] | cotϕ|

= ε

2π tan β

2 ≤ ε

2π tan π

4 = ε

2π . (4.13)

It follows from (4.7), (4.12), and (4.13) that for η ∈ [π − β, π],

−
∣∣(Hg

)
(eiη)

∣∣ ≤ (
Hg

)
(eiη) < − 1

π

∣∣∣∣log
(√

2 sin β + ε

2

)∣∣∣∣+ ε

2π ,

which immediately implies (4.6). �
4.4. Necessary conditions for the Hilbert transform to be of weak type (C, X)

In this subsection, we show that if the Hilbert transform is of weak type (C, X) for 
some Banach function space X, then Xa = Xb.

Let E be a union of pairwise disjoint arcs of small measure. Then

F (m(E); ε) := 1
π

∣∣∣log
(√

2 sin
(
πm(E) + ε

2

))∣∣∣− ε

2π (4.14)

is large whenever ε > 0 is small. We start by constructing a continuous real-valued 
function f depending on ε such that |f | ≤ 1 while the modulus of the Hilbert transform 
of f exceeds F (m(E); ε) on the set E. This function is the composition of the piecewise 
linear bump function from Lemma 4.3 and the finite Blaschke product from Theorem 4.2.

Lemma 4.4. Let E ⊂ T be a finite union of pairwise disjoint open arcs such that 
0 < m(E) < 1

4 . Then for every positive ε < 2πmin
{
m(E), 1

4 −m(E)
}

there exists a 
continuous function f : T → R such that |f | ≤ 1 and

∣∣(Hf)
(
eiη

)∣∣ > 1
π

∣∣∣log
(√

2 sin
(
πm(E) + ε

2

))∣∣∣− ε

2π for all eiη ∈ E. (4.15)

Proof. If the pairwise disjoint open arcs constituting E are pairwise separated, set E0 :=
E. Otherwise, let E0 be the union of E with the set of common endpoints of the non-
separated arcs in the family constituting E. In this case, E0 is obtained from E by 
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merging adjacent open arcs into bigger ones and reducing the total number of arcs. Either 
way, E0 is a finite union of pairwise separated open arcs, E ⊆ E0, and m(E0) = m(E).

Let g be defined by (4.5) with β = 2πm(E), u be the finite Blaschke product from 
Theorem 4.2 with � = {eiθ ∈ T : θ ∈ (π − 2πm(E), π)} and with E0 in place of E. 
Consider f := g ◦ u. Since g and u are continuous on T , so is f . Since Hf = H(g ◦ u) =
(Hg) ◦ u in view of Lemma 2.4, it follows from Lemma 4.3 that

∣∣(Hf)
(
eiη

)∣∣ =
∣∣(Hg)

(
u
(
eiη

))∣∣ > 1
π

∣∣∣log
(√

2 sin
(
πm(E0) + ε

2

))∣∣∣− ε

2π

for all eiη such that u 
(
eiη

)
∈ �, i.e. for all eiη ∈ u−1(�) = E0. This immediately implies 

(4.15). �
Corollary 4.5. Let E ⊂ T be a finite union of pairwise disjoint open arcs such that 
0 < m(E) < 1

4 . Then there exists a continuous function f : T → R such that |f | ≤ 1
and ∣∣(Hf)

(
eiη

)∣∣ > 1
2π

∣∣∣log
(√

2 sin
(
πm(E)

))∣∣∣ for all eiη ∈ E. (4.16)

Proof. Let F (m(E), ε) be defined by (4.14). Since it is continuous in ε, there exists ε > 0
such that F (m(E), ε) − F (m(E), 0) > F (m(E), 0)/2, whence

F (m(E), ε) > F (m(E), 0)/2.

By Lemma 4.4, there exists a continuous real-valued function f such that (4.15) holds. 
Combining (4.15) with the above inequality, we arrive at (4.16). �

Next we show that if E is a finite union of pairwise disjoint open arcs of small measure 
and H ∈ W(C, X), then ‖χE‖X = O(1/F (m(E), 0)).

Lemma 4.6. Let X be a Banach function space over the unit circle T . If the Hilbert 
transform H is of weak type (C, X), then for every finite union E of pairwise disjoint 
open arcs such that 0 < m(E) < 1

4 , one has

‖χE‖X ≤ 2π‖H‖weak
C→X∣∣log

(√
2 sin

(
πm(E)

))∣∣ . (4.17)

Proof. Let

λ = 1
2π

∣∣∣log
(√

2 sin
(
πm(E)

))∣∣∣ .
By Corollary 4.5, there exists a function f ∈ C such that |f | ≤ 1 and

χE(τ) ≤ χ{ζ∈T : |(Hf)(ζ)|>λ}(τ), τ ∈ T .
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Therefore, by the lattice property, taking into account that H ∈ W(C, X), we obtain

‖χE‖X ≤
∥∥χ{ζ∈T : |(Hf)(ζ)|>λ}

∥∥
X

≤ 1
λ
‖H‖weak

C→X‖f‖C

≤ 2π‖H‖weak
C→X∣∣log

(√
2 sin

(
πm(E)

))∣∣ ,
which completes the proof. �

Now we are in a position to prove the main result of this section.

Theorem 4.7. Let X be a Banach function space over the unit circle T . If the Hilbert 
transform H is of weak type (C, X), then Xa = Xb.

Proof. Consider a sequence {γj}j∈N of measurable subsets of T such that χγj
→ 0 a.e. 

on T as j → ∞. By the dominated convergence theorem,

m(γj) =
∫
T

χγj
(τ) dm(τ) → 0 as j → ∞.

Without loss of generality, one can assume that 0 < m(γj) < 1
8 for all j ∈ N. For every 

j ∈ N, there exists an open set Ej such that γj ⊆ Ej and m(Ej) ≤ 2m(γj). Each Ej is 
the union of an at most countable family of pairwise disjoint open arcs:

Ej =
Nj⋃
k=1

�j,k, Nj ∈ N ∪ {∞}.

If Nj is finite, set Ej := Ej . Otherwise, let En
j =

⋃n
k=1 �j,k. Since χEn

j
↑ χEj

a.e. as 
n → ∞, it follows from the Fatou property (A3) that∥∥∥χEn

j

∥∥∥
X

↑
∥∥χEj

∥∥
X

as n → ∞.

Then there exists nj ∈ N such that

∥∥∥χEnj
j

∥∥∥
X

≥ 1
2
∥∥χEj

∥∥
X
.

Set Ej := Enj

j . Then Ej is a finite union of pairwise disjoint open arcs,

1
2m(Ej) ≤

1
2m(Ej) ≤ m(γj) <

1
8 ,

∥∥χEj

∥∥
X

≥ 1
2
∥∥χEj

∥∥
X

≥ 1
2‖χγj

‖X .

By Lemma 4.6, for every j ∈ N,
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‖χγj
‖X ≤ 2‖χEj

‖X ≤ 4π‖H‖weak
C→X∣∣log

(√
2 sin

(
πm(Ej)

))∣∣ ≤ 4π‖H‖weak
C→X∣∣log

(√
2 sin

(
2πm(γj)

))∣∣ .
Since m(γj) → 0 as j → ∞, the above estimate implies that ‖χγj

‖X → 0 as j → ∞. 
Thus the constant function 1 has absolutely continuous norm. Then it follows from [3, 
Ch. 1, Theorem 3.8] that for every measurable set E ⊂ T , its characteristic function χE

has absolutely continuous norm. Thus, by [3, Ch. 1, Theorem 3.13], Xa = Xb. �
The above theorem and Lemma 4.1 immediately imply the following.

Corollary 4.8. Let X be a Banach function space over the unit circle T . If the Hilbert 
transform H is bounded from the space of continuous functions C to a Banach function 
space X, then Xa = Xb.

5. Proof of the second main result

5.1. Necessary condition for the boundedness of the Riesz projection from C to 
a Banach function space X

We start this section by rephrasing Corollary 4.8 in terms of the Riesz projection. It 
improves [23, Theorem 3.7] and [25, Theorem 3.3].

Theorem 5.1. If the Riesz projection P is bounded from the space of continuous functions 
C to a Banach function space X, then Xa = Xb.

Proof. If f ∈ C ⊂ L1, then

Pf := 1
2(f + iHf) + 1

2 f̂(0) (5.1)

(cf. [15, p. 104], [6, Section 1.43] and also [23, formula (1.3)]). Since C is continuously 
embedded into L1, the functional f �→ f̂(0) is continuous on the space C. Then it follows 
from (5.1) that P : C → X is bounded if and only if H : C → X is bounded. It follows 
from this observation and Corollary 4.8 that Xa = Xb. �
5.2. A relation between the backward shift and the Riesz projection

The next lemma relates the backward shift operator with the Riesz projection.

Lemma 5.2. If f ∈ H1, then

Sf = P (e−1f). (5.2)
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Proof. Lemma 2.6 implies that Pf = f . Hence

(P (e−1f))(t) = (e−1f)(t) + (C(e−1f))(t)
2

= e−1(t)
f(t) + (Cf)(t)

2 + 1
2 (C(e−1f))(t) − e−1(t)(Cf)(t))

= e−1(t)(Pf)(t) + 1
2πi p.v.

∫
T

(
1
τ
− 1

t

)
f(τ)
τ − t

dτ

= e−1(t)f(t) − 1
2πi

∫
T

f(τ)
τt

dτ = e−1(t)f(t) − e−1(t)
2π

π∫
−π

f
(
eiθ

)
dθ

= e−1(t)f(t) − e−1(t)f̂(0) = e−1(t)
(
f(t) − f̂(0)

)
= (Sf)(t). �

5.3. Necessary conditions for the backward shift operator to have norm one

In this subsection we point out a consequence of ‖S‖H[X]→H[X] = 1.

Lemma 5.3. If X is a Banach function space and ‖S‖H[X]→H[X] = 1, then

‖Pg‖X ≤ ‖g‖X for all g ∈ P. (5.3)

Proof. Let Q := I − P . For any trigonometric polynomial

g(eiθ) =
N∑

k=−M

gke
ikθ,

where M, N ∈ Z+, one has

Pg = P (e−1e1g) = P (e−1P (e1g)) + P (e−1Q(e1g)) = P (e−1P (e1g)).

Since P (e1g) ∈ H[X] ∩P ⊂ H1, it follows from Lemma 5.2 and the above equality that 
Pg = SP (e1g). Repeating the above argument M times, we get

Pg = SMP (eMg).

Since eMg ∈ H[X] ∩ P, we have P (eMg) = eMg. Hence, taking into account that 
‖S‖H[X]→H[X] = 1, we get

‖Pg‖X = ‖Pg‖H[X] = ‖SMP (eMg)‖H[X] ≤ ‖SM‖H[X]→H[X]‖P (eMg)‖H[X]

≤ ‖S‖MH[X]→H[X]‖P (eMg)‖H[X] = ‖eMg‖H[X] = ‖g‖X ,

which completes the proof of (5.3). �
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5.4. Proof of Theorem 1.2

Take f ∈ H[X] \ {0} such that f̂(0) = 0. Then Sf = e−1f , which implies that 
|Sf | = |f | a.e. on T . Hence ‖Sf‖H[X] = ‖f‖H[X]. On the other hand, f ∈ H[X] ⊂ H1. 
Then it follows from Lemma 2.6 that Pf = f . So, one always has

‖S‖H[X]→H[X] ≥ 1 and ‖P‖X→X ≥ 1. (5.4)

Necessity. Suppose ‖P‖X→X = 1. It follows from Lemma 5.2 that Sf = P (e−1f) for 
f ∈ H[X] ⊂ H1. Hence

‖Sf‖H[X] = ‖P (e−1f)‖X ≤ ‖P‖X→X‖e−1f‖X = ‖f‖X .

Hence ‖S‖H[X]→H[X] ≤ 1. This inequality and the first inequality in (5.4) imply that 
‖S‖H[X]→H[X] = 1.

Sufficiency. Suppose that ‖S‖H[X]→H[X] = 1. It follows from Lemma 5.3 and from 
Axioms (A2) and (A4) in the definition of a Banach function space that there exists 
k > 0 such that

‖Pg‖X ≤ ‖g‖X ≤ k‖g‖C for all g ∈ P. (5.5)

This inequality and the Weierstrass approximation theorem (see, e.g., corollary to [26, 
Ch. 1, Theorem 2.12]) imply that P : C → X is bounded. Then Theorem 5.1 implies 
that Xa = Xb. By Lemma 2.1, the set of trigonometric polynomials P is dense in Xb. 
Then the first inequality in (5.5) implies that

‖Pf‖X ≤ ‖f‖X for all f ∈ Xb.

Therefore ‖P‖Xb→X ≤ 1. Then Theorem 2.7 implies that

‖P‖X→X = ‖P‖Xb→X ≤ 1. (5.6)

Combining the second inequality in (5.4) with (5.6), we arrive at the equality ‖P‖X→X =
1. �
Remark 5.4. Let

(P0f)(t) := f(t) − f̂(0), t ∈ T .

Since |(P0f)(t)| = |(Sf)(t)|, we have ‖P0‖H[X]→H[X] = ‖S‖H[X]→H[X]. Hence it follows 
from Theorems 1.1 and 1.2 that if ‖P0‖H[X]→H[X] = 1, then X coincides with L2 and 
(1.5) holds.
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The same is true if ‖P0‖X→X = 1, since ‖P0‖H[X]→H[X] = ‖P0‖X→X = 1 in this case. 
Indeed, P0e1 = e1, whence ‖P0‖H[X]→H[X] ≥ 1. On the other hand, P0 : H[X] → H[X]
is the restriction of P0 : X → X to H[X], and 1 ≤ ‖P0‖H[X]→H[X] ≤ ‖P0‖X→X = 1.

It is easy to see that P0 : X → X is a projection onto a subspace of codimension one, 
and it is instructive to compare the above results to the following ones.

Suppose that X is a real separable Banach function space such that ‖P0‖X→X = 1. 
It follows from [3, Ch. 1, Corollary 5.6] that X = Xa. Then, by [32, Theorem 2] (see also 
[20, Theorem 4.3]), there exists a positive measurable function w such that

‖g‖X =

⎛⎝∫
T

g2(t)w(t) dm(t)

⎞⎠1/2

for all g ∈ X.

In this case, ‖P0g‖X ≤ ‖g‖X is equivalent to

(ĝ(0))2
∫
T

w(t) dm(t) ≤ 2ĝ(0)
∫
T

g(t)w(t) dm(t). (5.7)

It is easy to see that if w is non-constant, then there exists a simple function g such that 
ĝ(0) > 0 and 

∫
T g(t)w(t) dm(t) = 0. For such a function, (5.7) cannot hold. So, w has to 

be constant, which means that X coincides with L2 and (1.5) holds.
If X is a real separable rearrangement-invariant Banach function space, and there 

exists a projection Q : X → X onto a subspace of finite codimension such that 
‖Q‖X→X = 1, then X is isometric to L2 ([32, Theorem 4]), and hence X coincides 
with L2 and (1.5) holds (see [1, Theorem 1]).

6. The norm of the Riesz projection in terms of Toeplitz operators

Let X be a Banach function space on which the Riesz projection P is bounded. For 
a ∈ L∞, the Toeplitz operator T (a) on X is defined by

T (a)f = P (af), f ∈ H[X].

It is easy to see that

‖T (a)‖H[X]→H[X] ≤ ‖P‖X→X‖a‖L∞ .

Note that if P is bounded on X, then in view of Lemma 5.2, the backward shift operator 
S coincides with the Toeplitz operator T (e−1):

Sf = T (e−1)f, f ∈ H[X].

Following [15, Ch. IX, Section 2], let
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C + H∞ := {f + g : f ∈ C, g ∈ H∞}.

It is well known that C + H∞ is a closed subalgebra of L∞ generated by the set H∞ ∪
{e−1} (see, e.g., [15, Ch. IX, Theorem 2.2]).

The following theorem sharpens a part of [5, Theorem 7.7] and extends it from the 
setting of Lebesgue spaces Lp to the setting of Banach function spaces X.

Theorem 6.1. Let X be a Banach function space on which the Riesz projection is bounded 
and

cX := sup
n∈N

‖T (e−n)‖H[X]→H[X],

sX := sup
a∈(C+H∞)\{0}

‖T (a)‖H[X]→H[X]

‖a‖L∞
,

σX := sup
a∈L∞\{0}

‖T (a)‖H[X]→H[X]

‖a‖L∞
.

Then

cX = sX = σX = ‖P‖X→X .

Proof. It is clear that

cX ≤ sX ≤ σX ≤ ‖P‖X→X .

So, it is sufficient to show that

‖P‖X→X ≤ cX . (6.1)

By Theorem 2.7, ‖P‖X→X = ‖P‖Xb→X . Hence for any ε > 0 there exists f ∈ Xb such 
that ‖f‖X = 1 and

‖Pf‖X > ‖P‖X→X − ε.

Since P : X → X is bounded and C is continuously embedded into X (by Axioms 
(A2) and (A4) in the definition of a Banach function space), we see that P : C → X is 
bounded. Hence it follows from Theorem 5.1 that Xa = Xb. Then by Lemma 2.1, there 
exists a trigonometric polynomial

g(eiθ) =
N∑

k=−M

gke
ikθ

such that ‖f − g‖X < ε. Then ‖g‖X < 1 + ε and
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‖Pg‖X ≥ ‖Pf‖X − ‖P (f − g)‖X > ‖P‖X→X − ε− ‖P‖X→Xε.

Since eMg ∈ H[X], one has

T (e−M )(eMg) = P (e−MeMg) = Pg.

Therefore

‖T (e−M )‖H[X]→H[X] ≥
‖T (e−M )

(
eMg

)
‖H[X]

‖eMg‖H[X]
=

‖Pg‖H[X]

‖g‖X
= ‖Pg‖X

‖g‖X

>
‖P‖X→X − ε(1 + ‖P‖X→X)

1 + ε
.

Hence

cX >
‖P‖X→X − ε(1 + ‖P‖X→X)

1 + ε
for all ε > 0.

Passing to the limit as ε → 0, we arrive at (6.1). �
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