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Key Points 

 
Question: How do brain morphometric features relate to later psychosis conversion in 

individuals at clinical high-risk for developing psychosis (CHR)?  

Findings: In the largest coordinated international analysis to date, lower cortical thickness, but 

not cortical surface area or subcortical volume, was more pronounced in CHR, in a manner 

highly consistent with thinner cortex in established psychosis. Regions that displayed lower 

cortical thickness in future psychosis converters additionally displayed abnormal associations 

with age. 

Meaning: CHR status and later transition to psychosis is robustly associated with lower cortical 

thickness. Abnormal age associations and specificity to cortical thickness may point to aberrant 

postnatal brain development in CHR, including pruning and myelination.  



 

Abstract 
 
Importance: The ENIGMA clinical high-risk for psychosis (CHR) initiative, the largest pooled 
CHR-neuroimaging sample to date, aims to discover robust neurobiological markers of 
psychosis risk. 
 
Objective: We investigated baseline (i.e., when participants were initially ascertained) structural 
neuroimaging differences between CHR subjects and healthy controls (HC), and between CHR 
participants who later developed a psychotic disorder (CHR-PS+) and those who did not (CHR-
PS-). We assessed associations with age by group and conversion status, and similarities 
between the patterns of effect size maps for psychosis conversion and those found in other 
large-scale psychosis studies. 
 
Design, Setting, and Participants. Baseline T1-weighted MRI data were pooled from 31 
international sites participating in the ENIGMA CHR Working Group. MRI scans were processed 
using harmonized protocols and analyzed within a mega- and meta-analysis framework from 
January-October 2020. 

 

Main Outcome(s) and Measure(s): Measures of regional cortical thickness (CT), surface area 

(SA), and subcortical volumes were extracted from T1-weighted MRI scans. Independent 

variables were group (CHR, HC) and conversion status (CHR-PS+, CHR-PS-, HC). 

 

Results: The final dataset consisted of 3,169 participants (CHR=1,792, HC=1,377, age range: 

9.5 to 39.8 years, 45% female). Using longitudinal clinical information, we identified CHR-PS+ 

(N=253) and CHR-PS- (N=1,234). CHR compared to HC exhibited widespread lower CT 
measures (average d=-0.13, range: -0.09 to -0.17), but not SA or subcortical volume. Lower 
cortical thickness measures in the fusiform, superior temporal, and paracentral regions were 
associated with psychosis conversion (average d=-0.22, average confidence interval: -0.35-0.0). 
Age showed a stronger negative association with left fusiform CT measures (F=9.8, p=4.9e-05, 
q=5.9e-04) and left paracentral CT measures (F=5.9, p=4.9e-03, q=0.02) in HC, compared to 
CHR-PS+. CT measures of psychosis conversion effect sizes resembled patterns of CT 
differences observed in ENIGMA studies of schizophrenia (ρ=0.35, confidence interval=.12-.55, 
ppermute=0.004) and individuals with 22q11.2 Microdeletion and a psychotic disorder diagnosis 
(ρ=0.43, confidence interval=.20-.61 ppermute=0.001).  
 
Conclusions and Relevance: We provide evidence for widespread subtle, lower CT measures 
in CHR. The pattern of CT measure differences in CHR-PS+ was similar to those reported in 
other large-scale investigations of psychosis. Additionally, a subset of these regions displayed 
abnormal age associations. Widespread disruptions in CT coupled with abnormal age 
associations in CHR may point to disruptions in postnatal brain developmental processes. 
  



 

1. INTRODUCTION 

The clinical high-risk paradigm is a widely used framework to investigate mechanisms 

underlying psychosis vulnerability. Help-seeking individuals who do not meet diagnostic criteria 

for a psychotic disorder, but typically present with subthreshold psychotic symptoms and 

accumulating risk factors, are considered at clinical high-risk (CHR) for developing psychosis1. 

An estimated 18-20% of CHR individuals develop a psychotic disorder within 2 years of 

identification2, although conversion rates vary, likely due to heterogeneous recruitment and 

sampling strategies, and interventions applied3. However, despite decades of research, the 

nature of morphometrical differences associated with psychosis conversion remains largely 

unknown. Here, we aim to address this question by combining all available structural 

neuroimaging data in CHR to date, in an attempt to better understand group differences 

associated with psychosis risk and conversion in this population. 

A large body of work has used structural magnetic resonance imaging (sMRI) to 

investigate morphometric brain differences in CHR individuals4–20. However, the extent to which 

characteristic baseline (i.e., when participants are initially ascertained and assessed at a first 

study visit) structural neuroimaging differences exist between those at CHR who later develop a 

psychotic disorder (CHR-PS+) compared to those who do not (CHR-PS-) is debated. Many 

studies failed to find baseline differences between CHR-PS+ and CHR-PS-4,14,21,22, though a 

meta-analysis and multi-center study found lower prefrontal and temporal volumes or cortical 

thickness measured by MRI (which we will refer to as CT) in CHR-PS+16,23.  High attrition rates 

in CHR samples24, coupled with low psychosis conversion rates2,25, often yield insufficient power 

to detect between-group structural brain differences. Moreover, small sample sizes can be 

associated with inflated effect sizes26, so effect sizes of prior studies that found structural brain 

differences in CHR may be overestimated. Although multi-site consortia aim to address these 

challenges, the largest published sMRI studies to date included fewer than 50 CHR-PS+21,23. 

Furthermore, it is currently unknown whether group differences are robust enough to predict 

outcomes. 

Importantly, many CHR participants are adolescents or young adults, a time frame 

associated with psychosis onset27,28. Prefrontal-temporal  brain regions, which are typically 

implicated in psychosis, show protracted developmental courses continuing through 

adolescence29,30, suggesting that morphometric differences associated with psychosis risk vary 

with age. Indeed, there are developmental influences on psychotic symptom presentation31, 

perhaps driven by differences in regional brain changes. It is not fully understood how age-

related patterns in brain morphometry in CHR differ from normal development. Thus, using a 

developmental framework to examine whether morphometric differences in CHR are influenced 

by age may provide important insights into mechanisms associated with psychosis risk, and the 

stability of neuroimaging measures associated with psychosis risk across development. 

Finally, it is unknown whether baseline brain differences associated with future 

conversion to psychosis resemble those observed in other large-scale psychosis studies. 

Understanding whether morphometric differences in CHR overlap with those observed in 

individuals who have schizophrenia32,33 and individuals with a genetic subtype of psychosis34,35  

will provide insights into convergent or distinct differences across the psychosis spectrum. 

https://www.zotero.org/google-docs/?blzs1r
https://www.zotero.org/google-docs/?t1ZAOF
https://www.zotero.org/google-docs/?qzBXsu
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https://www.zotero.org/google-docs/?ZSTXOE
https://www.zotero.org/google-docs/?44BoPH
https://www.zotero.org/google-docs/?g6oJca
https://www.zotero.org/google-docs/?jE4OgC
https://www.zotero.org/google-docs/?Ihyd9a
https://www.zotero.org/google-docs/?xJKfiV
https://www.zotero.org/google-docs/?111a3P
https://www.zotero.org/google-docs/?B2jRWZ
https://www.zotero.org/google-docs/?Q3K2U3
https://www.zotero.org/google-docs/?0zPaQV
https://www.zotero.org/google-docs/?pbyGSQ


 

To address these questions, we founded the Enhancing Neuro Imaging Genetics through 

Meta-Analysis (ENIGMA) Clinical High Risk for Psychosis Working Group in 2018. Using baseline 

sMRI data and longitudinal clinical information from 31 sites, this study addressed the following 

questions:  

1. Do CHR and healthy control (HC) participants differ in CT, surface area (SA), 

and/or subcortical volumes?  

2. Is there a neuroanatomic signature associated with future transition to a psychotic 

disorder (CHR-PS+ versus CHR-PS- versus HC)? 

3. Do structural neuroimaging measures identified in Aims 1 and 2 display group 

differences in age associations, suggestive of abnormal developmental 

trajectories? 

4. Is the pattern of morphometric alteration associated with psychosis conversion 

similar to that observed in ENIGMA studies of psychosis? 

 

 

2. METHODS 

 

Participants  

We included 1,792 CHR and 1,377 HC from 31 sites participating in the ENIGMA CHR 

Working Group (Table 1). CHR data consisted of CHR-PS+ (N=253), CHR-PS- (N=1,234), and 

CHR individuals without follow-up data (CHR-UNK, N=305). CHR participants met CAARMS 

(N=821) or SIPS (N=971) CHR criteria (see details in Supplement). Site-specific 

inclusion/exclusion criteria are detailed in eTable 1. All sites obtained Institutional Review Board 

approval prior to data collection. Informed written consent was obtained from every participant 

or the participant’s guardian (for participants <18 years). All studies were conducted in 

accordance with the Declaration of Helsinki36. 

 

Image Acquisition and Processing 

Thirty-one sites contributed T1-weighted MRI brain scans from 50 MRI scanners: forty-

two 3T scanners, and 8 1.5 Tesla scanners (eTable 2). Scanners were manufactured by 

Siemens (N=23), Phillips (N=8), GE (N=18), and Toshiba (N=1). A breakdown of the number of 

HCs, CHR-PS+, and CHR-PS- for each scanner is reported in eTable 3. After processing the 

data using Freesurfer analysis software37–39, we extracted 68 CT, 68 SA, and 16 subcortical 

volume measures. We also examined 3 global neuroimaging measures: total intracranial 

volume, mean CT, and total SA, resulting in 155 neuroimaging measures. We implemented the 

ENIGMA consortium quality assessment pipeline32–35,40,41. A priori power calculations are 

included in the Supplement. 

 

 

 

 

 

Statistical Analyses 

 

https://www.zotero.org/google-docs/?vOzRAn
https://www.zotero.org/google-docs/?Il68KF
https://www.zotero.org/google-docs/?jZUa2L


 

Group and conversion-related differences in structural neuroimaging metrics 

We assessed group differences using general linear models (GLMs) within a mega-

analysis framework, with each sMRI measure (i.e., CT, SA or subcortical volume) as the 

dependent variable and group (HC/CHR) or conversion status (CHR-PS+/CHR-PS-/HC) as the 

independent variable. We included age, age2, sex, and estimated total intracranial volume (ICV) 

as covariates in all models, and corrected for multiple comparisons (N=155) using the False 

Discovery Rate (FDR42) method. q-values<0.05 were considered statistically significant. 

For all structural neuroimaging measures, we calculated Cohen’s d effect sizes from the 
GLMs between two (CHR vs. HC) or three groups of interest (CHR-PS+ vs. HC; CHR-PS+ vs. 
CHR-PS-; CHR-PS- vs. HC). Based on recent work demonstrating that neuroCombat 
harmonization increases statistical power within a mega-analytic framework43, primary analyses 
were conducted within a mega-analysis framework using data that were corrected for 
site/scanner effects using neuroCombat harmonization. Additional analyses were conducted to 
assess the robustness of results obtained using this approach (details and results reported in 
Supplement). 

For all neuroimaging measures, we investigated sMRI differences associated with the 
specific psychosis-risk syndromes (e.g., Attenuated Positive Symptom Syndrome; details in 
Supplement). 

To evaluate the stability of group and conversion status differences, we performed 

analyses statistically controlling for baseline psychotropic medication exposure. To assess site 

effects, we conducted jackknife resampling analyses, i.e., iteratively removing one site’s data 

and re-running respective analyses44. sMRI measures that failed to show a group or conversion 

status effect at q<0.05 in >10% of jackknife iterations (i.e., 4/31 sites) were considered 

“unstable”. 

To assess the meaningfulness of obtained effect sizes we used two analytic 

approaches: equivalence testing (to assess whether observed differences fell within the upper 

and lower bounds of a predefined smallest effect size of interest, providing support for the 

absence of a meaningful effect) and minimal-effects testing (to assess whether observed effects 

were greater than the same pre-defined effect size45). Upper/lower bounds (representing the 

positive/negative predefined smallest effect size of interest) were set to d = +/- 0.15 (further 

details and effect size rationale in Supplement). 

 

Group and conversion-related differences in sMRI age-associations 

We used general additive models (GAM)46,47 to model group and conversion status 

differences in the relationship between age and sMRI measures (further details in 

Supplement). First, we examined the effect of group (HC vs. CHR) as a function of age in the 

56 neuroimaging measures that differed at q<.05 between HC and CHR. Next, we conducted 

GAM analyses on the four sMRI measures on which CHR-PS+, CHR-PS-, and HC differed from 

each other (i.e., left paracentral CT, right paracentral CT, left fusiform CT, right superior 

temporal CT) in analyses of psychosis conversion. We examined the effect of baseline age, 

group/conversion status, and the interaction between the two variables. Sex and estimated ICV 

were included as covariates. Similar to previous work examining age effects during adolescent 

development48,49, we restricted our sample’s age range to 12-25 years (eTable 4). Details on 

post-hoc analyses for significant interaction effects are provided in the Supplement. 

 

https://www.zotero.org/google-docs/?yGYHrM
https://www.zotero.org/google-docs/?MTkmLH
https://www.zotero.org/google-docs/?4rOA5q
https://www.zotero.org/google-docs/?MsNhEs
https://www.zotero.org/google-docs/?g8NbHV
https://www.zotero.org/google-docs/?CTyIJV


 

Comparison of psychosis conversion-related effects to other ENIGMA findings  

We computed Spearman’s rank correlations to assess the extent to which the pattern of 

observed effect sizes (Cohen’s d’s for CHR-PS+ vs. HC and CHR-PS-) correlated with the 

pattern found in prior psychosis studies, specifically the ENIGMA Schizophrenia (SZ vs. HC32,33) 

and ENIGMA 22q11.2 Deletion Syndrome (22q11DS with psychosis vs. 22q11DS without 

psychosis34,35) Working Groups. As a control, we compared CHR-PS+/CHR-PS- vs. HC effect 

sizes to MDD vs. HC40,41 effect sizes published by the Major Depressive Disorder Working 

Group (details in Supplement) . 

 

3. RESULTS 

 

Sample Characteristics 

Site demographics are reported in Table 1. Intelligence quotient (IQ) comparisons 

between HC and CHR are reported in eTable 5. Within each site, baseline IQ measures were 

largely similar in CHR-PS+, CHR-PS-, and CHR participants without follow-up information 

(eTable 6). For symptom measures, CHR participants without follow-up data had less severe 

baseline positive, negative, and disorganized symptoms on the SIPs, in comparison to CHR-

PS+ and CHR-PS- (eTable 7). In comparison to CHR-PS+ and CHR-PS-, CHR participants 

without follow-up data had less severe cognitive changes on the CAARMS (eTable 7). Few 

CHR participants reported typical (<1%) and/or atypical antipsychotic (12.4%) medication use 

(eTable 8). 

 

Widespread lower CT in CHR versus HC 

In neuroCombat-harmonized GLM mega-analyses, CHR participants compared to HC 

had smaller global neuroimaging measures: estimated ICV (d=-0.13, CI=-0.2 to -0.06), mean CT 

(d=-0.18, CI=-0.25 to -0.11) and total SA (d=-0.15, CI=-0.22 to -0.08). We also observed 

significant group effects in fifty-three additional GLMs (q<0.05, eTable 9). The largest group 

effects were observed for widespread lower CT in CHR vs. HC (42/68 comparisons, d range=-

0.09 to -0.17; Figure 1A for overview; eTable 9 and eFigure 1 for details). Few subcortical 

(3/16) and SA (8/68) group differences were observed. No group-by-sex interactions were 

detected (all q>0.05). 

We present results of possible confound analyses, including ICV, medication and site 

effects, equivalence testing, and effects of neuroCombat harmonization in the Supplement, 

eTables 10-13, and eFigures 1-2. No sMRI measures were uniquely sensitive to psychosis-risk 

syndrome (see Supplement and eTables 14-17 for results).  

 

Thinner paracentral, fusiform, and superior temporal CT are associated with psychosis 

conversion 

Forty-eight structural neuroimaging measures exhibited a significant overall effect of 

psychosis conversion status in GLM mega-analyses using neuroCombat harmonized data 

(q<0.05, Figure 1B; eFigure 3 and eTable 18). Most significant differences were observed for 

CT measures (N=37). Within these 48 regions, we conducted pairwise GLMs between HC vs. 

CHR-PS+, HC vs. CHR-PS- and CHR-PS+ vs. CHR-PS-. Out of these 48 regions, CHR-PS+ 

differed from CHR-PS- and HC on four neuroimaging measures.  

https://www.zotero.org/google-docs/?RXIpxi
https://www.zotero.org/google-docs/?hD6RZn
https://www.zotero.org/google-docs/?7P4XCb


 

In comparison to HC and CHR-PS-, CHR-PS+ exhibited lower CT in bilateral 

paracentral, right superior temporal, and left fusiform regions (Figure 2, average d of four sMRI 

measures=-0.22). CHR-PS+ and CHR-PS- (vs. HC) exhibited thinner cortex in the left superior 

temporal and right fusiform regions; similar trends were observed for CHR-PS+ vs. CHR-PS- 

differences (p<0.08; Figure 1C). Using minimal-effects testing, we observed that effect sizes for 

bilateral paracentral (L Z=-2.43, p=0.02; R Z=-1.86 p=0.06), right superior temporal (Z=-2.29, 

p=0.02) and left fusiform (Z=-2.00, p=0.05) in CHR-PS+ vs. HC were all significantly greater 

than 0.15, at least at trend level, underscoring the presence of notable group differences.  

In all remaining comparisons of regions that exhibited a statistically significant effect of 

psychosis conversion status, CHR-PS+ and CHR-PS- differed from HC at p<.05. However, 

CHR-PS+ did not differ from CHR-PS- in any remaining comparisons (eTable 18). We observed 

no conversion status-by-sex interactions (all q>0.05) and results remained stable when length of 

follow-up period was included as a covariate. 

We present results of confound analyses (medication, site effects, equivalence testing) 

in the Supplement, eFigure 2, and eTables 19-21. There were no statistically significant 

psychosis-risk syndrome-by-conversion status interactions (eTable 22). 

 

Altered age-associations in CHR-PS+ and CHR-PS- compared to HC 

In GAM analyses, we observed no statistically group-by-age interactions for the 56 

neuroimaging measures that differed between CHR and HC (q>0.05, eTable 23). We then 

conducted GAM analyses on the four sMRI measures on which CHR-PS+ displayed lower CT 

compared to HC and CHR-PS-  in psychosis conversion group analyses. These sMRI measures 

were left paracentral CT, right paracentral CT, left fusiform CT, and right superior temporal CT. 

Two measures displayed a significant psychosis conversion status-by-age interaction. For each 

group-by-age interaction analysis, we assessed group differences in age-effects in these 

comparisons (i.e., HC vs. CHR-PS+, HC vs CHR-PS-, and CHR-PS+ vs. CHR-PS-). 

In left fusiform, age-CT associations differed between CHR-PS+ vs. HC (F=9.8, p=4.9e-

05, q=5.9e-04) and CHR-PS- vs. HC (F=8.7, p=1.5e-04, q=9.1e-04, Figure 2A, left), but not 

between CHR-PS+ and CHR-PS- (F=1.3, p=0.3, q=0.5). Between ages 12-16, HC showed a 

stronger negative association between age and CT, compared to CHR-PS+ and CHR-PS-. 

Although the interaction was not statistically significant, a similar pattern emerged for the right 

fusiform CT (Figure 3A, right, and eTable 24). 

Age-effects in the left paracentral CT differed between CHR-PS+ vs. HC (F=5.9, p=4.9e-

03, q=0.02, Figure 2B, left), but not between CHR-PS- and HC (F=0.2, p=0.7,q=0.7) or CHR-

PS+ and CHR-PS- (F=1.9, p=0.2, q=0.5). Between 12-15.8 years of age, HC showed a stronger 

negative association between age and CT in comparison to CHR-PS+. Age-CT associations did 

not differ between CHR-PS- vs. HC (F=0.2, p=0.69). This pattern of results was not observed 

for the right paracentral CT (Figure 3B, right, and eTable 24). 

We found no significant age-by-conversion status interactions for the superior temporal 

CT (Figure 3C, and eTable 24); all groups showed negative CT-age associations. 

 

CT aberrations in CHR-PS+ resemble the pattern observed in SZ and 22q11DS with a 

psychotic disorder diagnosis, but not MDD 



 

 eFigure 4A provides a visual overview of CT differences in CHR-PS+ relative to SZ and 

individuals with 22q11DS and a psychotic disorder. The pattern of baseline CT differences in 

CHR-PS+ (CHR-PS+ vs. HC effect sizes) correlated significantly with that observed in SZ 

(ρ=0.35, ppermute=0.004, eFigure 4B top) and individuals with 22q11DS and psychosis (ρ=0.43, 

ppermute=0.001, eFigure 4B bottom). CT differences in CHR-PS+ did not correlate with those 

observed in MDD (CHR-PS+ ρ=-0.03) and slopes for CHR-PS+/SZ and CHR-PS+/MDD 

correlations significantly differed (Steiger’s Z=2.06, ppermute=0.008). No significant correlations 

were observed for SA (SZ ρ=-0.03; 22q11DS ρ=-0.06, eFigures 5-6). Subcortical volume 

differences in CHR-PS+ correlated with those observed in SZ (ρ=0.54, p=0.03) and a similar 

non-significant trend was observed for 22q11DS and psychosis (ρ=0.46, p=0.07, eFigures 5-6). 

Associations for CHR-PS- (vs. HC) effect sizes were similar to those reported here (see 

Supplement). 

  



 

4. DISCUSSION 

 

We conducted the largest multisite neuroimaging investigation to date in CHR 

participants, examining baseline structural neuroimaging measures associated with later 

transition to psychosis. We found widespread lower CTin CHR, consistent with previously-

reported CT differences in individuals with an established psychotic disorder. Compared to 

CHR-PS- and HC, at baseline, CHR-PS+ exhibited thinner cortex in bilateral paracentral, right 

fusiform and left superior temporal regions, with effect sizes significantly greater than what we 

considered to be meaningful a priori. Our results were robust to effects of medication exposure, 

sex, site, and length of follow-up period. Findings from this international effort suggest that 

conversion to psychosis amongst those at high risk is associated with lower CT at baseline. 

We identified widespread regional lower CT in CHR compared to HC. Lower CT has 

been observed in SZ, as well as other psychiatric disorders32,40,50. Importantly, the overall 

pattern of lower CT in CHR-PS+ and CHR-PS- resembled that observed in SZ and individuals 

with 22q11DS and a psychotic disorder, but not in MDD. For CHR-PS+, correlations with SZ CT 

differences were significantly greater than the relationship observed with MDD CT differences. 

Taken together, our results suggest that the overall constellation of reported CT differences in 

CHR resembles the general pattern of CT differences observed in SZ and genetic disorders 

associated with psychosis, and thus argues that widespread thinner cortex in CHR may be 

associated with their increased risk of psychosis. 

We also found that lower CT in paracentral, superior temporal and fusiform regions was 

associated with psychosis conversion; CHR-PS+ exhibited significantly lower CT than CHR-PS- 

and HC in these regions. Lower baseline CT and/or volume in these regions has previously 

been reported in CHR-PS+17,18 (data not used here). Furthermore, longitudinal CT decreases in 

these regions have been associated with transition to psychosis in CHR6,19,20. The magnitude of 

altered CT in CHR-PS+ in paracentral, superior temporal and fusiform regions was highly 

consistent with findings in SZ33,51,52 and lower fusiform and paracentral CT has been observed in 

voice hearers without a diagnosis of SZ53. Given that both help-seeking and non help-seeking 

individuals on the psychosis spectrum exhibit alterations in these regions, CT in paracentral, 

superior temporal and fusiform areas may display a dose-response association with psychosis 

risk. While this interpretation also aligns with our observation that CT in these regions differed 

between CHR-PS+, CHR-PS-  and HC (with the lowest CT for CHR-PS+), this explanation 

remains speculative in light of the cross-sectional nature of the data. 

Consistent with previous CHR studies examining baseline neuroimaging associations 

with later conversion to psychosis17, we did not observe widespread subcortical volume or SA 

differences associated with later psychosis transition. Taken together, these results suggest that 

CT reductions may be among the most widespread, robust, and specific morphometric changes 

associated with psychosis risk and conversion, compared to SA or subcortical volume. 

An intriguing pattern of findings emerged from the psychosis conversion-by-age 
analyses. In comparison to HC, CHR-PS+ and CHR-PS- exhibited significantly lower 
paracentral and fusiform regions CT from ~12-18 years of age. Our analyses investigating age-
associated rates of change (estimated using cross-sectional data) seemed to indicate a steeper 
decline in slope for HC during this timeframe, which reached a plateau in adulthood. CHR-PS-, 
however, displayed a slower decline, and results in CHR-PS+ were indicative of a reduced or 
delayed rate of change. Relative to the normative timetable (in HC), these findings may suggest 

https://www.zotero.org/google-docs/?edDw0C
https://www.zotero.org/google-docs/?Q1P5lE
https://www.zotero.org/google-docs/?sHi4ei
https://www.zotero.org/google-docs/?1MPKt4
https://www.zotero.org/google-docs/?YNC4gt
https://www.zotero.org/google-docs/?T0OuVm


 

an accelerated developmental decrease in paracentral and/or fusiform CT in CHR-PS- and 
CHR-PS-, with the greatest declines occurring in CHR-PS+. If indeed normative CT decreases 
during adolescence represent a period of specialization (where higher-level systems that 
contribute to adult outcomes are formed54,55), lower CT, most apparent in CHR-PS+, could 
reflect impairments in optimal specialization. However, these observations are speculative and 
the veracity of these patterns will be most accurately captured with longitudinal analyses that 
encompass a wide age range (e.g., early childhood through adulthood). 

The neuroanatomic pattern of group differences and age-associated disruptions 

observed in CHR may provide important insights into mechanisms underlying increased risk for 

psychosis. Pre-clinical models56,57  and recent genome-wide association studies58 suggest that 

genetic variants associated with SA are linked to the regulation of neural progenitor cells during 

fetal development, while genetic markers associated with CT were associated with regulatory 

processes in adulthood. Thus, CT differences may be the end result of maladaptive maturation-

related mechanisms that occur during post-fetal development, including proliferation, synaptic 

pruning and/or myelination59–62. Thinner CT, particularly in early adolescence (Figure 3), could 

reflect abnormal synaptic plasticity or pruning, which have both been implicated in in vitro SZ 

models63. Although excessive synaptic pruning is one plausible explanation for thinner cortex 

associated with psychosis transition, recent evidence suggests that intracortical myelination 

and/or expression of myelin-related genes may be mechanisms of cortical thinning64,65. To 

better understand neurobiological mechanisms underlying psychosis transition in CHR, 

investigations of concomitant measures of cortical thickness, macroscale white matter tracts, 

and intracortical myelination are necessary. Finally, it is also possible that lower CT is not a 

mechanism of psychosis, and can instead be attributed to environmental factors or social 

determinants associated with psychosis66,67, or that lower CT occurs in response to other 

possible biological mechanisms underlying psychosis (e.g., HPA stress response68). 

Even if CT reductions in CHR were robust, effect sizes for between-group differences 

were nevertheless small-to-moderate and accounted for ~1% of the variance in CHR-PS+ vs. 

CHR-PS- comparisons. The subtle nature of these morphometric differences underscores the 

importance of adequate statistical power, achievable only through large-scale multi-site 

collaborations. Consistent with recent work showing that SZ polygenic risk scores only improved 

differentiation of CHR-PS+ and HC (not CHR-PS+ from CHR-PS-)69, we anticipate that 

baseline, univariate sMRI metrics will have a similar impact on psychosis risk prediction 

algorithms. Given the logistic and financial challenges that MRI brings, the use of MRI metrics in 

isolation may not be feasible or useful for psychosis risk prediction. A viable solution may be to 

adopt sequential assessment frameworks, as recently implemented70. Alternatively, sMRI 

differences may be a better predictor of general psychopathology, and would be better suited for 

transdiagnostic risk prediction models71. 

 

Limitations 

One limitation common to multi-site studies is that data were collected from multiple 

scanners, although leave-one-out analyses suggest that site effects were not prominent. 

Secondly, this initial study focused on baseline cross-sectional data, and did not investigate 

progressive sMRI changes associated with psychosis conversion, as identified in prior work6,18–

21,72. Finally, CHR status is associated with heterogeneous outcomes73–75 and neuroimaging 

phenotypes may differentiate amongst variability in psychosocial functioning and/or amongst 
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other psychiatric diagnoses (e.g., mood and anxiety disorders). These are two future goals of 

the ENIGMA CHR Working Group, now that feasibility of this collaboration has been 

established. 

 

Conclusions and Future Directions 

In the largest study of brain abnormalities in CHR to date, we found robust evidence for a 

subtle, widespread pattern of CT differences, consistent with observations in psychosis. The 

specificity of these differences to CT - as well as age-associated deviations in regions sensitive 

to psychosis conversion - may point to abnormal development processes. These findings also 

point to age ranges (i.e., early adolescence) when morphometric abnormalities in CHR might be 

greatest. 
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Table and Figure Legends  
 

Table 1. Demographic descriptives for every site in HC and CHR, and CHR-PS+ and CHR-PS-. 
The Ns for CHR-PS+ and CHR-PS- do not always sum to the sample CHR N because most 
sites lose individuals to follow-up (CHR-UNK).   
 
Figure 1. Effect sizes for mega-analysis of group and conversion status. A. Overview of effect 
sizes for HC vs. CHR. The top row reflects the results of the overall generalized linear model. A 
deeper purple color indicates a greater effect of group (HC vs. CHR) in this region. We 
observed the greatest effects of group in cortical thickness measures. The second row indicates 
the pairwise effect sizes for HC vs. CHR, in regions that were statistically significant (q<0.05) in 
the overall comparison (top row of A.). Regions that were not statistically significant in the 
overall comparison are in gray. In comparison to HC, CHR exhibited lower cortical thickness 
across the cortex. Red color indicates that HC has a larger value in comparison to CHR for this 
region. B. Overview of effect sizes for HC vs. CHR-PS+ vs. CHR-PS-. The top row reflects the 
results of the overall generalized linear model. A deeper purple color indicates a greater effect 
of conversion status (HC vs. CHR-PS+ vs. CHR-PS-) in this region. The second and third rows 
indicate the pairwise effect sizes for HC vs. CHR-PS+ and CHR-PS- vs. CHR-PS+, respectively.  
Pairwise comparisons are presented in regions that were statistically significant (q<0.05) in the 
overall comparison (top row of B.). Regions that were not statistically significant in the overall 
comparison are in gray. Regions that CHR-PS+ had lower cortical thickness in comparison to 
HC and CHR-PS-, CHR-PS+ are highlighted in yellow.  
 
Figure 2. Bar graphs for regions in which CHR-PS+ (pink) had lower CT in comparison to CHR-
PS- (purple) and HC (green).  
 
Figure 3. Age effects of regions that exhibited an effect of conversion status. HC are in green, 
CHR-PS+ are pink, and CHR-PS- are purple. Each graph has a line of best fit for the effect of 
age on the respective neuroimaging measures. Shading around the line indicates the standard 
error. The bars underneath the age plots reflect the derivative of the slope, i.e., the rate of 
change taking place at a particular age, scaled as a pseudo t-statistic, based on the posterior 
simulation. Age effects are plotted for A. fusiform cortical thickness, B. paracentral cortical 
thickness, and C. superior temporal cortical thickness. 
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