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Abstract9

The Shortest Superstring problem is an NP-hard problem, in which given as input a set of10

strings, we are looking for a string of minimum length that contains all input strings as substrings.11

The Greedy Conjecture (Tarhio and Ukkonen, 1988) states that the GREEDY algorithm, which12

repeatedly merges the two strings of maximum overlap, is 2-approximate. We have recently shown13

(STOC 2022) that the approximation guarantee of GREEDY is at most 13+
√

57
6 ≈ 3.425. Before14

that, the best established upper bound for this was 3.5 by Kaplan and Shafrir (IPL 2005), which15

improved upon the upper bound of 4 by Blum et al. (STOC 1991). To derive our previous result,16

we established two incomparable upper bounds on the overlap sum of all cycle-closing edges in an17

optimal cycle cover and utilized lemmas of Blum et al.18

We improve the more involved one of the two bounds and, at the same time, make its proof19

more straightforward. This results in an improved approximation guarantee of
√

67+2
3 ≈ 3.39620

for GREEDY. Additionally, our result implies an algorithm for the Shortest Superstring problem21

having an approximation guarantee of
√

67+14
9 ≈ 2.466, improving slightly upon the previously best22

guarantee of
√

57+37
18 ≈ 2.475 (STOC 2022).23
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1 Introduction30

The shortest superstring problem naturally models a scenario when we have a set of overlap-31

ping strings which we need to represent in a compressed form. However, unlike in typical32

lossless data compression such as Lempel-Ziv schemes, we would like the input strings to33

be human-readable in the result. That is, the compressed representation of input strings34

should be a string over the same alphabet that contains all of the strings as substrings. This35

viewpoint of superstrings as compressed representations has been the crux of their very recent36

application for representing k-mers, which are k-long substrings of a genomic sequence [19].37

These k-mers are typically highly overlapping and in such cases, the shortest superstring of38

k-mers has length close to the theoretical minimum of the number of distinct k-mers.39

Formally, we define the Shortest Superstring problem (SSP) as follows: For a given set of40

strings S (over a fixed alphabet), compute a minimum-length common superstring for the41

input strings, i.e., a string that contains any s ∈ S as a substring. SSP is a classical and42

well-studied problem mentioned in several algorithmic textbooks, e.g., [25, 18, 9, 5]. SSP43

is APX-hard (i.e., it is NP-hard to obtain a (1 + ε)-approximation for some ε > 0) and44
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remains so even when restricted to binary alphabets or input strings having the same length45

r ≥ 3 [24].46

Therefore, assuming P ̸= NP, the best we can hope for are constant-guarantee approxima-47

tion algorithms. However, determining the best possible constant guarantee is a long-standing48

open problem, studied for more than three decades. First, Blum et al. [3] designed an al-49

gorithm for which they proved an upper bound of 3 on its approximation ratio. Several papers50

subsequently obtained better approximations using various algorithms [22, 6, 13, 1, 2, 4, 20, 16]51

and the currently best approximation guarantee is 37+
√

57
18 ≈ 2.475 [7]. In contrast, the52

hardness result only rules out a 1.003-approximation [12].53

Perhaps the most well-known approximation algorithm for SSP is GREEDY which it-54

eratively merges two strings of maximum overlap until only one string remains (if there55

are more pairs of strings with maximum overlap, we choose arbitrarily). GREEDY is an56

appealing choice to implement in practice due to its simplicity and close-to-optimal results57

in experiments [8, 14, 19]. However, the worst-case behavior of GREEDY is far from un-58

derstood. Blum et al. [3] showed that GREEDY is 4-approximate, an upper bound which59

was improved to 3.5 by Kaplan and Shafrir [11] and recently, in our previous work, to60

13+
√

57
6 ≈ 3.425 [7]. It is easy to see that GREEDY is at least 2-approximate by considering61

the input {c(ab)k, (ba)k, (ab)kc} for k → ∞ [21]. The Greedy Conjecture states that this62

lower bound is tight [21]. Despite an extensive effort to prove or disprove this, the three63

works [3, 11, 7] comprise the only improvements to the approximation guarantee of GREEDY64

since the conjecture was first made.65

Our results. We make progress on determining the optimal approximation guarantees of66

GREEDY and of another, more involved algorithm; the latter one improves the best proven67

approximation guarantee for SSP. In particular, we show the following theorems.68

▶ Theorem 1. The approximation guarantee of GREEDY is at most
√

67+2
3 ≈ 3.396.69

▶ Theorem 2. An algorithm from the literature that combines GREEDY and a Max-ATSP70

approximation algorithm (outlined in Appendix A.2) computes a superstring of length at most71 √
67+14

9 ≈ 2.466 times the optimal.72

Furthermore, our result implies improved approximation guarantees for two algorithms73

which are variants of GREEDY established in [3], namely TGREEDY and MGREEDY (outlined74

in Appendix A.2).75

As in previous work, all our improved approximation bounds follow from a better inequality76

that relates certain overlaps between strings to the cost of the optimal solution.77

2 The General Setting and Our Technical Contribution78

Preliminaries. The set of input strings is denoted by S = {s1, ..., s|S|}. Without loss of79

generality, it is assumed that no string of S is a substring of another string of S. The length80

of a string s is the number of its characters and we denote it by |s| ∈ Z+. The concatenation81

of two strings s and t is denoted by st. A substring of s starting at character i and ending at82

character j ≥ i of s is denoted by s[i, j].83

By ov(s, t) we denote the maximum overlap to merge a string s to the left of a string84

t ̸= s, i.e., the longest suffix of s that is a prefix of t. By ov(s, s) we denote the maximum85

self-overlap of string s with itself, which is smaller than |s|. By pref(s, t) we denote the86

prefix of s that remains after removing the overlap with t; thus, s = pref(s, t)ov(s, t) and87

|pref(s, t)| = |s| − |ov(s, t)|.88
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2.1 Overlap Graph, Cycle-Closing Edges, and Overlap Inequalities89

The overlap graph Gov plays a central role in SSP approximation, including the analysis of90

GREEDY. It is a complete directed graph with self-loops in which vertices correspond to the91

input strings, and the weight of each edge (s, t) equals the overlap length |ov(s, t)|.92

Note that the optimal solution OPT for a fixed input corresponds to an optimal (maximum93

overlap) Hamiltonian path in Gov; however, finding such a path is in general a hard problem.94

On the other hand, finding an optimal cycle cover CC in Gov can be done efficiently. In95

particular, in a variant of GREEDY, called MGREEDY, such a cycle cover is produced as a96

by-product. Observe that the total overlap of edges in CC is only larger than that of the97

optimal Hamiltonian path OPT; indeed, by adding the edge between the endpoints of OPT,98

we obtain a Hamiltonian cycle, which is a particular cycle cover (not necessarily optimal).99

The GREEDY algorithm can be stated as a heuristic for a Hamiltonian path in Gov: Sort100

the edges of Gov by their overlap lengths non-increasingly, then go over the sorted list and101

add the i-th edge ei to the path unless:102

(i) there would be a vertex of indegree or outdegree more than one after adding ei (that is,103

edge ei shares a head node or a tail node with an edge picked in a previous step), or104

(ii) ei closes a cycle.105

The crucial difference between GREEDY for computing an approximate superstring and106

MGREEDY for the optimal cycle cover CC is the condition (ii), not present in the latter, i.e.,107

MGREEDY is defined just by condition (i). Call an edge of CC cycle-closing if it is the last108

edge of its cycle added by MGREEDY to CC (i.e., it has the smallest overlap on the cycle,109

breaking ties arbitrarily).110

To obtain a bound on the approximation guarantee of GREEDY, we intuitively need a111

suitable upper bound on the total overlap of cycle-closing edges, denoted o (strictly speaking,112

when analyzing GREEDY we consider only the optimal cycle cover of a certain subset of113

nodes in Gov, but this does not make a difference for our technical contribution; we explain114

these details in Appendix A.1). Furthermore, the overlap bound should be in terms of the115

length (and not overlap) of OPT.116

This intuition was formalized in [3], who proved that o ≤ 3 · n, where n is the length117

of the optimal solution OPT. Moreover, they show that such a bound is sufficient for a118

constant upper bound on the approximation ratio of GREEDY. Later works improved the119

inequality to o ≤ 2.5 · n [11] and to o < 2.425 · n [7]. Our technical contribution is to show120

that o < 2.396 · n.121

In fact, these overlap inequalities are proven and applied in a stronger form of o < n+β ·w,122

where w is a lower bound on n. To define w, we associate each edge (s, t) of the overlap123

graph Gov also with a length which equals the prefix length |pref(s, t)| = |s| − |ov(s, t)|. Then124

w is the total length of all edges in the optimal cycle cover CC.125

2.2 Main technical result126

We now state our main technical contribution.127

▶ Theorem 3. Let S be any input set of strings, and consider an optimal superstring of128

length n and an optimal cycle cover CC of length w, computed using MGREEDY. Let o be the129

sum of overlaps of all cycle-closing edges of CC. Then it holds that130

o ≤ n + β · w for β = (
√

67 − 4)/3 ≈ 1.396131

ISAAC 2023
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The proofs of Theorems 1 and 2 using Theorem 3 are the same as in previous work, but we132

provide an outline for completeness. In Appendix A.1 we describe how Theorem 3 implies the133

improved upper bound on the approximation guarantees of GREEDY, using another inequality134

from Blum et al. [3]. Then, in Appendix A.2, we show how to derive better approximation135

guarantees for a family of SSP algorithms that are based on a Max-ATSP approximation136

algorithm; the argument is the same as in previous work (e.g., see [4, 15, 16, 7]).137

2.3 Overview of the proof of Theorem 3138

We build on our previous work [7], where one of the conceptual contributions was in classifying139

the cycles of CC into three main types. To define them, for a cycle c of CC we let140

o(c) = the overlap of the cycle-closing edge of c, i.e., the smallest overlap on cycle c, and141

w(c) = the total length of edges on c, i.e., the sum of prefixes of the edges of c.142

The classification is done according to the o(c)/w(c) ratio.143

▶ Definition 4. For parameter β defined in Theorem 3, a cycle c of CC is144

extra large, if o(c) ≤ β · w(c),145

large, if β · w(c) < o(c) ≤ 2w(c), and146

small, if 2w(c) < o(c).147

The intuition behind the names is that short cycles contain highly periodic strings (e.g.,148

abcabcabca), whereas strings in large cycles are not so periodic (e.g., abcdeabcd)149

In order to prove that o ≤ n + β · w for β = (
√

67 − 4)/3, we will assume, without loss150

of generality, that CC contains no extra large cycle. This follows by the argument in [7,151

Section 5.1], though for a different overlap to length ratio threshold between large and extra152

large cycles (which was suitably chosen to match the upper bound o ≤ n + 1.425w). For153

completeness, we repeat the proof in Appendix B.154

Our analysis in [7] proceeds by showing two incomparable bounds: one better if large155

cycles have much larger total length than small cycles, and another one for the other case.156

Namely, letting ws be the sum of lengths of all small cycles and wℓ be the sum of lengths of157

large cycles, the first upper bound is158

o ≤ n + ws + 1.5wℓ (1)159

and the second upper bound is160

o ≤ n + wℓ + 31 + 3 ·
√

57
14 ws ≈ n + wℓ + 3.832ws . (2)161

Using the better of (1) and (2) together with w = ws + wℓ, it follows that o ≤ n + 1.425w162

(recall that the extra large cycles are not taken into account here).163

Our improvement and simplification comes from a better version of the second upper164

bound. Specifically, we show165

o ≤ n + wℓ + (γ − 1) · ws ≈ n + wℓ + 2.884ws , (3)166

where γ = (
√

67 + 19)/7 ≈ 3.884. In [7], the bound was shown by first modifying the167

input in such a way that the overlap graph Gov has the property that all short cycles in the168

optimal cycle cover only consist of a single edge that is a self-loop. The analysis is then169

done utilizing this somewhat simpler cycle cover. However, the modification of the input170

introduces an additional loss that has to be accounted for in the bound. Our analysis is more171
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direct and works with the original optimal cycle cover, which eliminates the need for the172

input modification and therefore the additional loss. This brings new technical complications173

because certain properties no longer hold in these more general cycle covers. Nevertheless,174

we are able to provide a slightly simpler and more straightforward analysis.175

Choice of parameters. To combine the two incomparable bounds, o ≤ n + ws + 1.5 · wℓ176

and o ≤ n + (γ − 1) · ws + wℓ, we set λ = 1
2γ−3 . As long as γ ≥ 2, this means λ ∈ [0, 1]. We177

then multiply the first bound by (1 − λ) and the second bound by λ and add them together.178

Using ws + wℓ = w we get o ≤ n + ( 3
2 − 1

4γ−6 ) · w. In Theorem 3, we want to show that179

o ≤ n + β · w and so if180

3
2 − 1

4γ − 6 ≤ β (4)181

we are done. We will also need182

3 · (β − 2
γ − 2) ≥ 1 (for Lemma 6) (5)183

or equivalently184

γ ≥ 2 + 6
3β − 1 (for Lemma 12(b)). (6)185

The maximum of these two lower bounds (4) and (5) on β is minimized for γ = (
√

67+19)/7186

and at this point both bounds are equal to (
√

67 − 4)/3, which is our choice for β. Apart187

from this, we will use a number of further inequalities that hold for this choice of parameters188

(but are not tight). Namely,189

5
2 + 1

2(β − 1) ≤ γ (for Lemma 12(c)) , (7)190

β ≥ γ

γ − 1 (for Lemma 12(d)) , and (8)191

γ ≥ 2 (for Lemma 12(d)) . (9)192
193

3 Analysis194

In this section we show our improved second bound o ≤ n + wℓ + (γ − 1) · ws, following a195

similar general strategy as in [7].196

3.1 Proof Outline197

Consider a directed Hamiltonian cycle CC0 of maximum total overlap in Gov. This cycle is198

in particular also a (not necessarily maximum) cycle cover. Therefore, the total overlap of199

CC0 must be bounded from above by the total overlap of CC. Our goal is to show something200

stronger than this: that there is a gap between the total overlap of CC0 and the total overlap201

of CC that depends in a specific way on the properties of the cycles in CC. Specifically, let L202

and S denote the sets of large and small cycles in CC, respectively, and let |CCi| denote the203

total overlap of a cycle cover CCi. Then we want to show that the total overlap |CC| of CC204

is by at least205 ∑
c∈S

(
o(c) − γ · w(c)

)
+
∑
c∈L

(o(c) − 2 · w(c)) (10)206

ISAAC 2023
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larger than the total overlap |CC0| of CC0. Showing this is sufficient to establish o ≤207

n + wℓ + (γ − 1) · ws because208

n ≥
|S|∑
ℓ=1

|sℓ| − |CC0| ≥
|S|∑
ℓ=1

|sℓ| − |CC| +
∑
c∈S

(o(c) − γ · w(c)) +
∑
c∈L

(o(c) − 2 · w(c))209

≥
∑
c∈S

w(c) +
∑
c∈L

w(c) +
∑
c∈S

(o(c) − γ · w(c)) +
∑
c∈L

(o(c) − 2 · w(c))210

=
∑
c∈S

(o(c) − (γ − 1) · w(c)) +
∑
c∈L

(o(c) − w(c))211

= o − (γ − 1) ·
∑
c∈S

w(c) −
∑
c∈L

w(c) = o − (γ − 1) · ws − wℓ .212

213

Related cycles. Before proceeding to describe how we show (10), we borrow the following214

definition of related cycles from [7] that is useful to improve our final bounds slightly. We215

note that a simpler version of our proof could still be carried out without this additional216

concept, but at the cost of a slightly weaker bound.217

▶ Definition 5. We define a relation R between cycles as follows. A small cycle c of CC is218

related to a large cycle c′ of CC if w(c) ≤ (β/2 − 1/6) · w(c′) and there exists an edge e in Gov219

that has one endpoint in cycle c, the other endpoint in cycle c′ and satisfies |ov(e)| ≥ β · w(c′).220

In this case, we write (c, c′) ∈ R.221

In [7], the following lemma is shown. We use different values for β and γ, but the proof222

of the lemma only requires that 3 · (β − 2/(γ − 2)) ≥ 1 and this is still satisfied for our new223

choice of β = (
√

67 − 4)/3 and γ = (5 − 3β)/(3 − 2β).224

▶ Lemma 6 (Lemma 7.3 in [7]). For every large cycle c′ of CC, at most two different small225

cycles of CC are related to c′.226

Transforming cycle cover CC0 into CC in small steps. We analyze the difference of the227

total overlap between CC0 and CC in small steps, gradually changing the Hamiltonian cycle228

CC0 into a sequence of cycle covers CC0, CC1, CC2, . . . until we obtain CC. We modify a cycle229

cover CCi by removing two edges f = (v′, v) and f ′ = (u, u′) from CCi \ CC and replace230

them with the new edges e = (u, v) and e′ = (v′, u′). The resulting set of edges forms a (not231

necessarily optimal) cycle cover again. Furthermore, if the edges are chosen such that e ∈ CC232

or e′ ∈ CC (or both), then the resulting cycle cover is closer to the cycle cover CC in the sense233

that the cardinality of the symmetric difference of the corresponding edge sets decreases.234

For a cycle cover CCi, let M(CCi) be the set of small cycles c in CC for which CCi235

contains no edge with one endpoint in c and the other endpoint being a string not in c. We236

define237

ϕ(i) =
∑

c∈M(CCi)

(
min{|ov(ê)| | ê ∈ CCi connects two strings of c} − γ · w(c)238

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
.239

240

The idea is to perform such edge swaps to obtain a sequence CC0, CC1, CC2, . . . , CCk = CC241

of cycle covers, such that each cycle cover CCi is closer to CC than the previous one CCi−1242
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and such that |CCi| ≥ |CC0| + ϕ(i). Then this implies (10) since243

|CC| − |CC0| = |CCk| − |CC0| ≥ ϕ(k)244

=
∑

c∈M(CC)

(
min{|ov(ê)| | ê ∈ CC connects two strings of c} − γ · w(c)245

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
246

=
∑
c∈S

(
min{|ov(ê)| | ê ∈ CC connects two strings of c} − γ · w(c)247

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
248

=
∑
c∈S

(
o(c) − γ · w(c) −

∑
c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
249

=
∑
c∈S

(o(c) − γ · w(c)) −
∑
c∈S

∑
c′:(c,c′)∈R

(
w(c′) − o(c′)

2

)
250

≥
∑
c∈S

(o(c) − γ · w(c)) −
∑
c∈L

(2 · w(c) − o(c)) ,251

252

where the last step follows from Lemma 6 and the fact that for large cycles c′, by definition,253

2w(c′) ≥ o(c′).254

We use induction to show that it is possible to construct the desired sequence of cycle255

covers that satisfies |CCi| ≥ |CC0|+ϕ(i). The base case is i = 0 and we have ϕ(i) = 0 because256

M(CC0) = ∅. (Strictly speaking, it may happen that M(CC0) ̸= ∅; however, in such a case,257

the optimal Hamiltonian cycle CC0 is a small cycle of CC, thus CC0 = CC. Moreover, in such258

a case, (1) implies o < n + w.)259

In the following, we assume that we have a cycle cover CCi with |CCi| ≥ |CC0| + ϕ(i)260

and we show how to construct CCi+1 such that |CCi+1| ≥ |CC0| + ϕ(i + 1) and such that261

the symmetric difference between CCi+1 and CC is smaller than the symmetric difference262

between CCi and CC. Specifically, we will identify a swap of four edges as described above to263

obtain CCi+1 from CCi such that:264

one of the edges that are swapped in belongs to CC, which implies that the symmetric265

difference between CCi+1 and CC will decrease, and266

|CCi+1| − |CCi| ≥ ϕ(i + 1) − ϕ(i).267

This proves the claim due to the induction hypothesis.268

3.2 Important Lemmas269

We begin with the following bound on the overlap between two strings from different cycles270

of CC.271

▶ Lemma 7 (Lemma 9 in [3]). Let c and c′ ≠ c be two cycles in CC. It holds that |ov(s, s′)| <272

w(c) + w(c′) for any two strings s ∈ c and s′ ∈ c′.273

When changing cycle cover CCi into CCi+1, we identify an edge e = (u, v) ∈ CC \ CCi274

that we add into CCi+1. This triggers removal of edges f = (v′, v) and f ′ = (u, u′) from275

CCi and addition of one more edge e′ = (v′, u′) that does not belong to CCi but may or276

may not be in CC; see Figure 1. In the following, we provide several lower bounds on277

ISAAC 2023
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u v

u′ v′

e ∈ CC \ CCi

f ′ ∈ CCi \ CC f ∈ CCi \ CC

e′ /∈ CCi

Figure 1 Illustration of the notation used in lemmas in Section 3.2.

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)|, which is the total overlap length difference between CCi278

and CCi+1. The first lemma is the well-known Monge Condition.279

▶ Lemma 8 (Lemma 7 in [3]). Let e = (u, v), f = (v′, v), f ′ = (u, u′), e′ = (v′, u′) be edges280

in Gov, such that max{|ov(e)|, ov(e′)|} ≥ max{|ov(f)|, |ov(f ′)|}. Then |ov(e)| + |ov(e′)| −281

|ov(f)| − |ov(f ′)| ≥ 0.282

The following lemma is shown in [7, Lemma 7.5] for the special case of inputs where each283

small cycle of CC consists of one string. Below, we generalize it for any input and cycle.284

▶ Lemma 9. Let e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′) be edges in Gov such285

that e is an edge in cycle c in CC. Then,286

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| > |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c) .287

Before proving Lemma 9, we recall a few definitions from the literature. Consider a cycle288

c of CC having k nodes s1, s2, . . . , sk. Assuming that the cycle-closing edge of c is (sk, s1),289

we define s(c) as the string pref(s1, s2)pref(s2, s3) . . . pref(sk, s1).290

A semi-infinite string is a string obtained by concatenating an infinite number of finite291

strings. A semi-infinite string s is periodic if s = ts for a non-empty string t, that is, s = t∞.292

A string t is a factor of a string s if s = tiy for an integer i > 0, where y is a (possibly293

empty) prefix y of t. By factor(s) of s, we denote the shortest factor of s and we define294

period(s) = |factor(s)|. Finally, we say that a string s has a periodicity of length q for q ≤ |s|295

if s is a prefix of the semi-infinite string x∞ for some string x of length q.296

Next, we need a basic observation.297

▶ Observation 10. Let s and t be two strings that are substrings of some string z. Then,298

|ov(s, t)| > min{|s|, |t|} − period(z).299

Proof. We can assume without loss of generality (w.l.o.g.) that |s| ≤ |t|. This is because,300

otherwise, let sR, tR, and zR be the reverse of the strings s, t, and z, respectively. We301

observe that ov(tR, sR) = ov(s, t) and period(zR) = period(z). Clearly also |sR| = |s|,302

|tR| = |t|. Therefore, the inequality in the statement of the observation is equivalent to303

|ov(tR, sR)| > min{|sR|, |tR|} − period(zR). Hence, if |s| > |t| then |tR| ≤ |sR| and we can304

apply the arguments below to the strings tR, sR, and zR instead of s, t, and z (in this order).305

Since s and t are substrings of z we can write them as s = z[i, i + |s| − 1] and t =306

z[j, j+|t|−1] for some i and j. Because of the period of z, we can assume that i ∈ [1, period(z)]307

and j ∈ [1, period(z)].308

If j ≥ i, we have ov(s, t) = z[j, i+ |s|−1] and hence |ov(s, t)| = i− j + |s| > |s|−period(z).309
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If j < i and j + period(z) > |z|, then j + period(z) > |z| ≥ i + |s| − 1 and hence,310

|ov(s, t)| ≥ 0 > j − i ≥ |s| − period(z).311

If j < i and j + period(z) ≤ |z|, we observe that t = z[j, j + |t| − 1] also has z[j +312

period(z), min{j + |t|−1+period(z), |z|}] as a prefix (indeed, if j + |t|−1+period(z) ≤ |z|313

this is not just a prefix of t, but exactly t). Since i ≤ j + period(z) and |s| ≤ |t|, we314

have ov(s, t) = z[j + period(z), i + |s| − 1] and hence, |ov(s, t)| = i − j + |s| − period(z) >315

|s| − period(z). ◀316

Proof of Lemma 9. Since ov(f) and ov(f ′) are substrings of s(c)∞, we use Observation 10317

to get318

|ov(e′)| ≥ |ov(ov(f), ov(f ′))|319

> min{|ov(f)|, |ov(f ′)|} − period(s(c)∞) ≥ min{|ov(f)|, |ov(f ′)|} − w(c) .320
321

It follows that322

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)|323

> |ov(e)| + min{|ov(f)|, |ov(f ′)|} − w(c) − |ov(f)| − |ov(f ′)|324

= |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c) .325
326

◀327

The following lemma is, also, due to [7]. Here, we state it in a slightly different way, but328

the proof is essentially the same and included in Appendix C for completeness.329

▶ Lemma 11. Consider the edges e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′)330

between (not necessarily different) nodes u, u′, v, v′ in Gov. Suppose u′ and v′ are strings in331

the same cycle c′ of CC and that whichever of f or f ′ has larger overlap connects a string332

from cycle c and a string from cycle c′ ̸= c (if |ov(f)| = |ov(f ′)| then it is sufficient if one of333

them satisfies this). If |ov(e)| ≥ w(c) + w(c′), then334

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| > |ov(e′)| − w(c′) .335

The following lemma draws conclusions from the previous ones in a way that will be336

useful later for our analysis.337

▶ Lemma 12. Consider the edges e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′)338

between (not necessarily different) nodes u, u′, v, v′ in Gov. Suppose e is an edge in a cycle c339

of CC. Suppose further that |ov(e)| ≥ max{|ov(f)|, |ov(f ′)|} and the edge of f and f ′ that has340

larger overlap connects a string of cycle c and a string of cycle c′ ≠ c (if |ov(f)| = |ov(f ′)|,341

then either one of f and f ′ may satisfy this condition). All of the following statements hold:342

(a) |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ 0.343

(b) If w(c) ≥ (β/2 − 1/6) · w(c′), then |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − γw(c).344

(c) If w(c) ≥ (β − 1) · w(c′), then |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − γw(c) −345

w(c′)/2 + w(c)/2.346

(d) Furthermore, if v′ and u′ are strings in the same cycle in CC, then also |ov(e)| + |ov(e′)| −347

|ov(f)| − |ov(f ′)| ≥ max{|ov(e′)| − γw(c′), |ov(e)| − γw(c) + |ov(e′)| − γw(c′)}.348

Proof. We show the relevant lower bounds on |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| separately.349

(a) Due to Lemma 8, we have |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ 0.350
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(b) If w(c) ≥ (β/2 − 1/6) · w(c′), due to Lemma 9, we have351

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c)352

≥ |ov(e)| − 2w(c) − w(c′) ≥ |ov(e)| − γw(c) ,353
354

where the second step uses Lemma 7 and the last inequality follows from 2+6/(3β−1) = γ.355

(c) If w(c) ≥ (β − 1) · w(c′), we have due to Lemma 9 that356

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c)357

≥ |ov(e)| − 2w(c) − w(c′)358

= |ov(e)| − 5
2w(c) − w(c′)/2 − w(c′)/2 + w(c)/2359

≥ |ov(e)| − γw(c) − w(c′)/2 + w(c)/2 ,360
361

where the second step uses Lemma 7 and the last inequality follows from 5/2 + 1/(2(β −362

1)) ≤ γ.363

(d) Suppose v′ and u′ are strings in the same cycle in CC. If |ov(e)| ≥ w(c)+w(c′), we apply364

Lemma 11 to get |ov(e)|+|ov(e′)|−|ov(f)|−|ov(f ′)| ≥ |ov(e′)|−w(c′) ≥ |ov(e′)|−γw(c′).365

Otherwise, we have |ov(e)| < w(c) + w(c′) and hence,366

|ov(f)| ≤ w(c) + w(c′) = w(c′) + γw(c) − (γ − 1)w(c)367

≤ w(c′) + (γ − 1)o(c) − (γ − 1)w(c)368

≤ w(c′) + (γ − 1)|ov(e)| − (γ − 1)w(c) < γw(c′) ,369
370

since it holds β ≥ γ
γ−1 and o(c) > βw(c) for any large or small cycle c (recall that we371

assume that CC contains no extra large cycle). We get |ov(e)| + |ov(e′)| − |ov(f)| −372

|ov(f ′)| ≥ |ov(e′)| − |ov(f)| ≥ |ov(e′)| − γw(c′).373

Suppose v′ and u′ are strings in the same cycle in CC. Due to Lemma 7,374

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| + |ov(e′)| − 2 max{|ov(f)|, |ov(f ′)|}375

≥ |ov(e)| − 2w(c) + |ov(e′)| − 2w(c′)376

≥ |ov(e)| − γw(c) + |ov(e′)| − γw(c′) .377
378

◀379

3.3 The Induction Step380

We specify how an edge swap is made at a fixed step i in which we obtain cycle cover CCi+1381

from CCi. We start by identifying the largest-overlap edge m = (vt, wh) in CCi \CC, breaking382

ties arbitrarily. Six further edges will be important. First, let eh = (vh, wh) and et = (vt, wt)383

be the edges in CC that share heads and tails with m, respectively. Further, let f ′
1 = (vx, wt)384

and f ′
2 = (vh, wx) be the two edges in CCi \ CC that share heads with et and tails with eh,385

respectively. Lastly, define e′
1 = (vx, wh) and e′

2 = (vt, wx). See Figure 2 for a summary of386

this notation. It is important to note that the six strings vh, wh, vx, wx, vt, and wt are not387

necessarily different.388

With this, we can define two potential edge swaps. In the first one, we add et and e′
1 to389

the cycle cover and instead remove m and f ′
1. In the second one, we add eh and e′

2 to the cycle390

over and instead remove m and f ′
2. Which one of these two swaps we will perform depends391

on a few properties of the edges involved. First of all, we assume that |ov(eh)| ≥ |ov(et)|.392
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vh wh

wx vt

vx

wt

m
∈

CC
i
\

CC

eh ∈ CC

et ∈ CC

f ′
2 ∈ CCi \ CC f ′

1 ∈ CCi \ CC

e′
2

e′
1

Figure 2 Illustration of the notation. Note that we also allow nodes to be equal to one another
here, e.g., it could be that wt = wx, in which case et = e′

2, vh = vx, eh = e′
1, and f ′

1 = f ′
2.

Otherwise, all the remaining arguments follow symmetrically by considering et instead of eh393

and vice versa. Furthermore, we have that394

|ov(eh)| ≥ |ov(m)| , (11)395

since otherwise |ov(m)| > |ov(eh)| ≥ |ov(et)| and m would be added to CC by the greedy396

algorithm for the optimal cycle cover before eh and et, contradicting the choice of m as an397

edge of largest overlap in CCi \ CC.398

We observe that there are two reasons why ϕ(i + 1) may be larger than ϕ(i).399

The first potential reason is a difference between the sets M(CCi+1) and M(CCi). We400

know that M(CCi+1) ⊇ M(CCi), because if a cycle c is in M(CCi), then there is no edge401

in CCi connecting a string of c to a string of another cycle. That means that the edges f402

and f ′ that we remove from CCi in the process of constructing CCi+1 either have both403

their endpoints in c or both their endpoints not in c. If both endpoints of both edges f404

and f ′ are part of c, then also the two edges that are swapped in to obtain CCi+1 from405

CCi have their endpoints entirely in c. Therefore, c would still be in M(CCi+1) after the406

swap. If both endpoints of both edges f and f ′ are outside of c, then also the two edges407

that are swapped in to obtain CCi+1 from CCi have their endpoints entirely outside of408

c. Again, c would still be in M(CCi+1) after the swap in this case. Finally, if one of f409

and f ′ has both endpoints in c and the other one has both endpoints outside of c, then410

the two edges that are swapped in both have one endpoint in c and the other endpoint411

outside of c. However, this is not possible because one of the edges we swap in is eh or et412

and must therefore be part of the optimal cycle cover CC.413

We can further observe that M(CCi+1) \ M(CCi) must either be equal to ∅, {c}, {c′}, or414

{c, c′}, where c and c′ are the cycles that eh and et belong to in CC, respectively. (It is415

possible that c = c′.) To see this, observe that one edge being swapped out to obtain416

CCi+1 from CCi is m and that m has one endpoint (wh) in c and the other endpoint (vt)417

in c′. However, for each cycle of CC, it is clear from a parity argument that the number418

of edges of CCi connecting the cycle to other cycles must be even. Hence, for a cycle c′′ to419

be in M(CCi+1) \ M(CCi), each of the edges being swapped out must have a string from420

cycle c′′ as an endpoint. This can only be true for c or c′ and not for any other cycle.421

Overall, if this reason for the difference between ϕ(i + 1) and ϕ(i) applies, we have that422
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ϕ(i + 1) − ϕ(i) =
∑

c∈M(CCi+1)\M(CCi)

(
min{|ov(ê)| | ê ∈ CCi connects two strings of c} − γ · w(c)423

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
.424

425

The second potential reason why ϕ(i + 1) may be larger than ϕ(i) is that for a cycle
c ∈ M(CCi) the term min{|ov(ê)| | ê ∈ CCi connects two strings of c} could change.
However, this can only happen if M(CCi+1) \ M(CCi) = ∅ and, furthermore, it can
only happen for a cycle c when both edges f and f ′ that are swapped out have both
their endpoints in cycle c. In this case, all four strings involved in the swap (either
vh, wx, wh, and vt or vx, wt, wh, and vt), must be part of the same cycle in CC. If
the value min{|ov(ê)| | ê ∈ CCi+1 connects two strings of c} is larger than the value
min{|ov(ê)| | ê ∈ CCi connects two strings of c}, then an edge in arg min{|ov(ê)| | ê ∈
CCi connects two strings of c} must have been swapped out. This means, that if f

and f ′ are the edges being swapped out to obtain CCi+1 from CCi, then min{|ov(ê)| |
ê ∈ CCi connects two strings of c} = min{|ov(f)|, |ov(f ′)|}. If e and e′ are the two edges
being swapped in, the new value of min{|ov(ê)| | ê ∈ CCi+1 connects two strings of c} can
be at most min{|ov(e)|, |ov(e′)|} because e and e′ are in CCi+1 and satisfy the condition
that they connect two strings of c. So overall, in this situation,

ϕ(i + 1) − ϕ(i) ≤ min{|ov(e)|, |ov(e′)|} − min{|ov(f)|, |ov(f ′)|} .

In summary, we note that only one of the two reasons can apply for any fixed step i. If there426

is an increase of ϕ(i + 1) over ϕ(i) due to the first reason (a change in the set M(CCi+1)427

compared to M(CCi)), then there is no increase due to the second reason and vice versa.428

We are now ready to complete the proof by showing how to select one of the two identified429

swap operations such that the total overlap increases by at least ϕ(i + 1) − ϕ(i).430

If m connects two strings of the same cycle in CC, then observe that M(CCi+1) = M(CCi).431

We swap in eh and e′
2 and swap out f ′

2 and m. Since |ov(eh)| ≥ |ov(m)| by (11), we can432

apply Lemma 8 and establish that the total overlap does not decrease when this swap is433

performed.434

Furthermore, if vh, wh, vt, and wx all belong to the same cycle of CC, then the total
overlap increases by |ov(eh)| + |ov(e′

2)| − |ov(f ′
2)| − |ov(m)| ≥ |ov(e′

2)| − |ov(f ′
2)| ≥

min{|ov(eh)|, |ov(e′
2)|}−min{|ov(f ′

2)|, |ov(m)|}, where the second inequality uses |ov(f ′
2)| ≤

|ov(m)| by the definition of m. This is the only case in which

min{|ov(e)| | e is edge of CCi connecting two strings of cycle c}

can change for a cycle in c ∈ M(CCi) and the increase is at least min{|ov(eh)|, |ov(e′
2)|} −435

min{|ov(f ′
2)|, |ov(m)|} ≥ ϕ(i + 1) − ϕ(i), as required.436

If m connects strings of two different cycles in CC and |ov(et)| ≥ |ov(m)|. Let c be the437

cycle of eh and c′ be the cycle of et. If w(c) ≥ w(c′), we swap in e = eh and e′ = e′
2 and438

swap out f ′ = f ′
2 and m. Otherwise, we swap in e = et and e′ = e′

1 and swap out f ′ = f ′
1439

and m.440

We distinguish between these two cases:441

Suppose w(c) ≥ w(c′).442
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Then, if c′ ∈ M(CCi+1)\M(CCi), Lemma 12(d) applies and we know that the increase443

in total overlap due to the swap is |ov(e)|+ |ov(e′)|−|ov(m)|−|ov(f ′)| ≥ max{|ov(e′)|−444

γw(c′), |ov(e)|−γw(c)+|ov(e′)|−γw(c′)} ≥ ϕ(i+1)−ϕ(i), as required since ϕ(i+1)−ϕ(i)445

is either equal to |ov(e′)|−γw(c′) or equal to |ov(e)|−γw(c)+|ov(e′)|−γw(c′) depending446

on whether M(CCi+1) \ M(CCi) = {c′} or M(CCi+1) \ M(CCi) = {c′, c}.447

Otherwise, if c′ ̸∈ M(CCi+1) \ M(CCi), Lemma 12(a) and (b) both apply and we know448

that the increase in total overlap due to the swap is |ov(e)|+|ov(e′)|−|ov(m)|−|ov(f ′)| ≥449

max{0, |ov(e)| − γw(c)} ≥ ϕ(i + 1) − ϕ(i), as required since ϕ(i + 1) − ϕ(i) is either450

equal to 0 or equal to |ov(e)| − γw(c) depending on whether M(CCi+1) \ M(CCi) = ∅451

or M(CCi+1) \ M(CCi) = {c}.452

Suppose w(c) < w(c′).453

Then, the same argument as above holds with the only difference being that the roles of e454

and e′ and of c and c′ are reversed. Specifically, if c ∈ M(CCi+1)\M(CCi), Lemma 12(d)455

applies with the roles of e and e′ and the roles of c and c′ reversed. It follows that456

the increase in total overlap due to the swap is |ov(e)| + |ov(e′)| − |ov(m)| − |ov(f ′)| ≥457

max{|ov(e)| − γw(c), |ov(e′)| − γw(c′) + |ov(e)| − γw(c)} ≥ ϕ(i + 1) − ϕ(i), as required.458

Otherwise, if c ̸∈ M(CCi+1) \ M(CCi), Lemma 12(a) and (b) both apply (again with459

the roles of e and e′ and c and c′ reversed) and we know that the increase in total overlap460

due to the swap is |ov(e)| + |ov(e′)| − |ov(m)| − |ov(f ′)| ≥ max{0, |ov(e′)| − γw(c′)} ≥461

ϕ(i + 1) − ϕ(i), as required.462

If m connects strings of two different cycles in CC and |ov(et)| < |ov(m)|, then we swap463

in eh and e′
2 and swap out f ′

2 and m. Let c be the cycle of eh and c′ be the cycle of et.464

If M(CCi+1) = M(CCi), then Lemma 12(a) shows that the total overlap does not465

decrease, while the potential ϕ(i) does not increase.466

If c′ ∈ M(CCi+1) \ M(CCi), then wx and vt must both be strings in cycle c′ as467

otherwise, v′ is a string of cycle c′ and wx is a string of a different cycle and thus468

e′
2, which is an edge in CCi+1, would connect a string of cycle c′ to a string of469

another cycle. Thus, by Lemma 12(d), |ov(eh)| + |ov(e′
2)| − |ov(m)| − |ov(f ′

2)| ≥470

max{|ov(e′
2)| − γw(c′), |ov(eh)| − γw(c) + |ov(e′

2)| − γw(c′)} ≥ ϕ(i + 1) − ϕ(i), as471

required.472

If M(CCi+1) \ M(CCi) = {c} and (c, c′) ∈ R, we first observe473

w(c) ≥ |ov(m)| − w(c′) > |ov(et)| − w(c′) ≥ o(c′) − w(c′) ≥ (β − 1) · w(c′) ,474

where the third inequality follows from the fact that et is an edge of the cycle c′
475

and the last step follows because c′ is not extra large. Therefore, we can apply476

Lemma 12(c) which is sufficient because w(c)/2−w(c′)/2 = w(c)/2+w(c′)/2−w(c′) ≥477

|ov(m)|/2−w(c′) ≥ o(c′)/2−w(c′) and therefore, |ov(eh)|+|ov(e′
2)|−|ov(m)|−|ov(f ′

2)| ≥478

|ov(e)| − γw(c) − w(c′)/2 + w(c)/2 ≥ |ov(e)| − γw(c) − w(c′) + o(c′)/2 ≥ ϕ(i + 1) − ϕ(i),479

as required.480

If M(CCi+1) \ M(CCi) = {c} and (c, c′) ̸∈ R, there are two possibilities.481

1. If c′ is a small cycle, then w(c′) ≤ o(c′)−w(c′) ≤ |ov(et)|−w(c′) < |ov(m)|−w(c′) ≤482

w(c), where the first step uses the definition of a small cycle and the last step uses483

Lemma 7.484

2. If c′ is a large cycle and (c, c′) ̸∈ R, then, because |ov(m)| > |ov(et)| ≥ βw(c′) by485

the definition of related cycles, w(c) > (β/2 − 1/6) · w(c′).486

Either way w(c) > (β/2 − 1/6) · w(c′), which means that Lemma 12(b) implies487

|ov(eh)| + |ov(e′
2)| − |ov(m)| − |ov(f ′

2)| ≥ |ov(eh)| − γw(c) ≥ ϕ(i + 1) − ϕ(i), as required.488
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A Deriving Approximation Guarantees from Theorem 3552

The technical contribution of the paper is proving Theorem 3 that shows an improved553

inequality for overlaps of cycle-closing edges in terms of the optimal superstring length n554

and the length w of the optimal cycle cover CC. In the next two subsections, we explain how555

our improved approximation guarantees follow, using essentially the same arguments (and556

algorithms) as in previous work.557

A.1 The GREEDY Algorithm for SSP558

The |S|2 edges of the overlap graph Gov are assumed to be ordered by non-increasing overlap559

length. The GREEDY algorithm for SSP chooses edges from this order, unless an edge shares560

an endpoint with an already chosen edge or closes a cycle. The edges corresponding to the561

latter case are called bad back edges. As proven in [3], bad back edges do not intersect each562

other, forming a laminar family of edges. Each inner-most bad back edge forms a cycle563

in the output of GREEDY and each such cycle is called culprit. The sum of lengths of all564

culprit cycles is denoted by wc and the sum of overlap lengths of the cycle-closing edges of565

all culprits is denoted by oc.566

Blum et al. have shown the following two inequalities (Section 5 in [3]):567

|GREEDY(S)| ≤ 2n + oc − wc (12)568

o ≤ n + 2w (13)569
570

Moreover, the application of the GREEDY algorithm for the optimal cycle cover CC on571

the set of strings comprising the culprit cycles only, outputs the exact same set of culprit572

cycles (Lemma 15 in [3]). By this and (13) it follows that oc ≤ n + 2wc, which by (12) gives573

|GREEDY(S)| ≤ 4n, completing their proof.574

Theorem 3 shows that o ≤ n+
√

67−4
3 w which implies that oc ≤ n+

√
67−4
3 wc using the same575

syllogism (Lemma 15 in [3]). By this and (12), we have |GREEDY(S)| ≤
√

67+2
3 n ≈ 3.396 · n,576

completing our proof.577

A.2 SSP Algorithms Based on Max-ATSP Approximations578

Blum et al. proposed the following 4-approximate SSP algorithm, called MGREEDY:579

1. Apply GREEDY to find an optimal cycle cover CC.580

2. Open all cycle-closing edges in CC to obtain a set of strings called representatives.581

3. Concatenate the representatives in an arbitrary order.582

If instead of concatenating the representatives in the third step, we merge them using a583

Max-ATSP approximation algorithm (executed on the overlap graph of the representatives),584

then we will obtain an SSP approximation algorithm which, obviously, cannot perform585

worse. This is the idea behind the 3-approximate TGREEDY algorithm [3]. The Max-ATSP586

algorithm utilized as a black-box within TGREEDY is GREEDY, which had been already587

shown [21, 23] to be a 1
2 -approximate Max-ATSP algorithm for the overlap graphs.588

We will need the following theorem from [7], which has already appeared in similar forms589

in literature (e.g., [3, 4, 15]).590

▶ Theorem 13. If MGREEDY is a (2 + ζ)-approximate SSP algorithm and there exists a591

δ-approximate algorithm for Max-ATSP then there exists a (2 + (1 − δ) · ζ)-approximate SSP592

algorithm.593
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Showing that o ≤ n + (
√

67 − 4)w/3 ≈ n + 1.396w implies that MGREEDY is a 3.396-594

approximate SSP algorithm, since |MGREEDY(S)| = w +o ≤ w +n+(
√

67−4)w/3 < 3.396n.595

Moreover, the currently best Max-ATSP approximation algorithms are 2
3 -approximate, due596

to Kaplan et al. [10] or due to Paluch et al. [17]. Setting δ = 2
3 and ζ = (

√
67 − 4)/3 ≈ 1.396597

in Theorem 13, we obtain an SSP algorithm with approximation guarantee
√

67+14
9 ≈ 2.466.598

Finally, regarding TGREEDY, setting δ = 1
2 and ζ = (

√
67 − 4)/3 ≈ 1.396 in Theorem 13,599

we improve the approximation guarantee of TGREEDY to (
√

67 + 8)/6 ≈ 2.698, from600

(25 +
√

57)/12 ≈ 2.712 as shown in [7].601

B Dealing with extra large cycles (as in [7])602

Let S ⊆ S be the subset of strings that belong to all small and large cycles of CC. Observation603

5.1 in [7] implies that the optimal cycle cover for S̄ (in short CC(S)) consists of all small and604

large cycles of the optimal cycle cover for S (for simplicity denoted by CC(S) = CC), while605

the optimal cycle cover for S − S (in short CC(S − S)) consists of all extra large cycles of606

CC(S).607

Let ŵ denote the sum of lengths of the (extra large) cycles in CC(S − S) and let ô be the608

sum of overlap lengths of the cycle-closing edges of the cycles in CC(S − S). Similarly, let o609

be the sum of overlap lengths of the cycle-closing edges in CC(S) and let w be the sum of610

lengths of the cycles in CC(S).611

Proving o ≤ n + β · w for input S implies that o ≤ |OPT(S)| + β · w, and assuming this,612

we show o ≤ n + β · w. Indeed, we take the sum of inequality o ≤ |OPT(S)| + β · w with613

inequality ô ≤ β · ŵ (which holds by the definition of extra large cycles) and obtain:614

o = o + ô ≤ |OPT(S)| + β · w + β · ŵ = |OPT(S)| + β · w ≤ n + β · w615

where the penultimate step uses w = w + ŵ and the last inequality uses |OPT(S)| ≤616

|OPT(S)| = n, which follows from S ⊆ S. Therefore, for proving o ≤ n + β · w, we assume617

w.l.o.g. that CC(S) = CC has no extra large cycle.618

C Lemma 11 (slightly modified from [7])619

For completeness, we include a proof of Lemma 11. The proof is almost identical to the one620

in [7] with only very minor changes to make it more general.621

We start by stating a corollary, a version of which is already stated in [7] and in slight622

variations has been known already before (e.g. see Lemma 9 in [3] and Lemma 7 in [15]).623

▶ Corollary 14. Let c and c′ be any two cycles of CC. Any string h, which is a substring of624

both s(c)∞ and s(c′)∞,1satisfies |h| < w(c) + w(c′).625

This enables us to restate the proof of Lemma 11.626

Proof of Lemma 11. We show that |ov(e)| > |ov(f)| + |ov(f ′)| − w(c′), which implies the627

lemma. If min{|ov(f)|, |ov(f ′)|} ≤ w(c′), this inequality holds because by using Lemma 7,628

1 The definitions of s(c) and s∞ appear below Lemma 9.
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we get629

|ov(e)| ≥ w(c) + w(c′)630

> max{|ov(f)|, |ov(f ′)|}631

≥ max{|ov(f)|, |ov(f ′)|} + min{|ov(f)|, |ov(f ′)|} − w(c′)632

= |ov(f)| + |ov(f ′)| − w(c′) .633
634

Hence, for the remainder of the proof, we assume that we have min{|ov(f)|, |ov(f ′)|} > w(c′).635

Now, assume for contradiction that |ov(e)| ≤ |ov(f)| + |ov(f ′)| − w(c′). We claim that in
this case ov(e) has a periodicity of length w(c′), i.e., ov(e) is a prefix of x∞ for some string x

with |x| = w(c′). To show this, first recall that |ov(e)| ≥ w(c)+w(c′) > max{|ov(f ′)|, |ov(f)|}
by Lemma 7. Since ov(f) is a prefix of v and a suffix of v′ and since ov(e) is a prefix of v,
the first |ov(f)| characters of ov(e) are also a suffix of v′, i.e.,

ov(e)[1, |ov(f)|] = ov(f) = v′[|v′| − |ov(f)| + 1, |v′|] .

Similarly, since ov(f ′) is a prefix of u′ and a suffix of u and since ov(e) is a suffix of u, we get
that

ov(e)[|ov(e)| − |ov(f ′)| + 1, |ov(e)|] = ov(f ′) = u′[1, |ov(f ′)|] .

Observe that for all 1 ≤ i ≤ |ov(e)|−w(c′), a character at position i of ov(e) must be the same636

as the character at position i + w(c′) of ov(e). Indeed, if i + w(c′) ≤ |ov(f)|, this is true as v′
637

has a periodicity of length w(c′). If i > |ov(e)|−|ov(f ′)|, it is true because u′ has a periodicity638

of length w(c′). One of these two cases must apply because otherwise, i + w(c′) > |ov(f)|639

and i ≤ |ov(e)| − |ov(f ′)|, which implies |ov(f)| − w(c′) < i ≤ |ov(e)| − |ov(f ′)|, contradicting640

our assumption that |ov(f ′)| + |ov(f)| ≥ |ov(e)| + w(c′). Hence, ov(e) has a periodicity of641

length w(c′) (in particular, period(ov(e)) ≤ w(c′)).642

Next, we show that ov(e) is a substring of the semi-infinite string s(c′)∞. Because643

ov(e) has a periodicity of length w(c′) and s(c′)∞ has period w(c′), it is sufficient to argue644

that the first w(c′) characters of ov(e) are a substring of s(c′)∞. This is indeed the case645

since ov(e)[1, |ov(f)|] is a substring of v′ which is a substring of s(c′)∞ and we assume that646

|ov(f)| > w(c′).647

Since ov(e) is a substring of s(c′)∞ as well as of s(c)∞ (because ov(e) is a substring of a648

string that is part of c), Corollary 14 implies |ov(e)| < w(c) + w(c′) which contradicts the649

assumption of the lemma. ◀650
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