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A B S T R A C T

Mapping woody vegetation from aerial images is an important task bluein environment monitoring and
management. A few studies have shown that semantic segmentation methods involving deep learning achieve
significantly better performance in mapping than methods involving field-based measurement and handcrafted
features. However, current deep networks used for mapping vegetation require labour-intensive pixel-level
annotations. Thus, this paper proposes the use of image-level annotations and a weakly supervised semantic
segmentation (WSSS) network for mapping woody vegetation based on Unmanned Aerial Vehicle (UAV)
imagery. The network comprises a Localization Branch (LB) and an Attention Relocation Branch (ARB). The
LB is trained in stage 1 of the mapping to identify regions with the most discriminative vegetation, while
the ARB is introduced to better mine semantic information, which enhances the ability of the class activation
maps (CAMs) to represent useful information. The ARB inherits the weights from the LB in stage 2 and uses a
Multi-layer Attention Refocus Structure (MARS) into the network to expand the receptive field to enable the
model to process global features. Thus, same-category regions that are located farther apart are better captured.
Finally, the region focused by the dual branches are integrated to more accurately cover the areas to be
segmented. Using UAV imagery datasets, namely UOPNOA and MiniFrance, along with quantitative metrics and
qualitative results, the network demonstrates performance better than existing state-of-the-art related methods.
The effectiveness and generalization of each module of the network are validated by ablation experiments. The
code for implementing the network will be accessible on https://github.com/Mr-catc/DWSLNet.
1. Introduction

Woody vegetation constitutes a vital component of global ecosys-
tems, playing a pivotal role in facilitating the circulation of energy
and nutrients within the ecosystems, enhancing water quality, and
contributing to the regulation of floods and land erosion (Chapin et al.,
2011). However, the combined impacts of climate change and human
activities have adversely affected woody vegetation, thereby undermin-
ing the overall stability of the ecosystems. Consequently, accurate and
timely monitoring of woody vegetation is crucial for promoting social
sustainability and maintaining ecological balance.

Vegetation mapping is an essential means of monitoring woody
vegetation (Chen et al., 2023; Wu et al., 2022). The traditional way for
mapping woody vegetation involves field-based measurements, which
tends to be time-consuming and labour-intensive, particularly when
applied over large areas. Remote sensing (RS) technology, especially
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satellite imagery, has proven to be an effective tool for addressing
the challenges encountered by traditional vegetation mapping methods
(Shen et al., 2021; Shafeian et al., 2021; Xiao et al., 2021). More
recently, new technologies such as the combination of Unmanned
Aerial Vehicle (UAV) and deep learning (Li et al., 2022), have shown
promising value for accurately mapping woody vegetation. Fig. 1 shows
example images from two datasets acquired by UAV, namely UO-
PONA (Pedrayes et al., 2021) and MiniFrance (Castillo Navarro et al.,
2020), that we investigated for such mapping.

The recent advancement of deep learning methods has facilitated
substantial progress in the research and application of vegetation map-
ping. For instance, Trenčanová et al. (2022) introduced an approach
by utilizing convolutional neural network based framework (U-Net)
for forest fire management, planning, and prevention to automati-
cally detect shrub coverage in high-resolution images captured by
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Fig. 1. Example images from UOPONA and MiniFrance datasets.
an UAV. Wang et al. (2021) investigated optimal methods for early
detection and classification of invasive eastern red cedar using UAV
imagery and semantic segmentation algorithms in multi-species forests.
However, these methods depend on strongly supervised learning which
necessitates the presence of pixel-level annotations during the training.
The creation of such data involves significant human effort, making the
creation of such a dataset extremely expensive.

To address this issue, a weakly supervised semantic segmentation
(WSSS) approach employing labels at the image level is proposed
in our study, which is specifically designed for woody vegetation.
This approach only requires image-level labels, which is easier to be
obtained than pixel-level labels. Fig. 2 shows the basic stages, where
class activation maps (CAMs) (Zhou et al., 2016) only requires the
original image and image-level labels to generate pseudo-labels. CAMs
are capable of highlighting the feature regions that are sensitive for
classification tasks, and obtaining the initial class-specific areas. The
method is then extended to produce pseudo labels (Ahn et al., 2019),
which can be used in fully supervised semantic segmentation. Overall,
there are two challenges in designing a weakly supervised method for
mapping woody vegetation.

The first challenge is due to woody vegetation in RS images having
high intra-class heterogeneity and low inter-class heterogeneity. For
example, Fig. 3(a) shows sparse gaps without canopy cover may exist
within forest areas, while areas with canopy cover may occur within
shrub areas. Furthermore, as demonstrated in Fig. 3(b), distinguishing
between foreground and background in some images is challenging. To
overcome this, we incorporate Multi-layer Attention Refocus Structure
(MARS) into our network, which enhances the ability of the network
to extract contextual information and reassign weights to channels
and spaces by incorporating position information into channel atten-
tion. This significantly improves the classification performance of the
network for distinguishing foreground and background with similar
features and different woody vegetation classes, as well as the ability
of the network to accurately respond to different features in CAMs.

The second challenge is due to the features of woody vegetation RS
images being heavily repetitive and having a multi-region distribution.
However, the CAM generated by traditional classification networks
can only focus on the most discriminative region, which significantly
2

reduces the accuracy of weakly supervised methods. Thus, we pro-
pose a novel dual-branch network which incorporates MARS. The two
branches of this network are the Localization Branch (LB) and Attention
Relocation Branch (ARB). The LB is similar to a traditional classification
network, emphasizing the most significant feature regions. A training
strategy involving two stages is implemented. First, the LB is trained,
and then the ARB is trained by adding MARS based on the inher-
ited weights of the LB. By modelling long-range dependencies more
effectively, the MRAS enables the ARB to focus on crucial regions for
segmentation that may be overlooked by the LB. Additionally, we add
the CAM generated by the LB to the training of the ARB as an extra
guidance, enabling the ARB branch to respond more accurately to the
boundaries of the region to be segmented. Finally, we integrate the
CAM generated by both the LB and ARB to more accurately cover the
region to be segmented.

Our contributions in this paper are as follows:

• We have pioneered the application of WSSS for mapping woody
vegetation using only labels at the image level, and addressed
the problem associated with the level of heterogeneity in woody
vegetation, which causes to a certain extent the difficulty of
segmentation using image-level annotations.

• We present a novel dual-branch integrated framework. The LB is
initially trained to identify crucial target regions, followed by the
ARB inheriting the weights of the LB for a distinct perspective. Ul-
timately, the integrated CAMs from the dual-branch significantly
improve the precision of the segmentation.

• We propose ARB, which relocates the target area by fusing MARS,
to facilitate the responsiveness of the network to large-scale
feature-repeated areas, and accurately locate multiple segmented
regions. Thus, enhancing the ability of the model to effectively
segment the target.

• The effectiveness of the network is verified via experiments on
UOPNOA and the MiniFrance datasets. We compare our method
with other WSSS networks through qualitative and quantitative
evaluations of their performance. The results show a substantial
enhancement in the segmentation performance of our method
over other networks.
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Fig. 2. Weakly supervised semantic segmentation pipeline.
Fig. 3. Example images of the first challenge: (a) high intra-class heterogeneity; and (b) low inter-class heterogeneity.
2. Related work

2.1. Weakly supervised semantic segmentation

It is prohibitively expensive to generate pixel-level annotations.
To address this challenge, weakly supervised methods that require
minimal human intervention have been developed to make them more
practical and accessible. These methods aim to strike a balance between
data limitations and maintaining the accuracy of semantic segmenta-
tion tasks. They can be classified according to the type of annotations
used: scribble (Lin et al., 2016), image-level (Ahn and Kwak, 2018),
bounding box (Dai et al., 2015), and point (Bearman et al., 2016).
It is essential to use the least human intervention for image-level
annotations for the method to be accessible. Hitherto, most studies re-
lated to image-level annotations involve leveraging CAMs produced by
classification networks. From the CAMs, high-quality pseudo-labels are
generated and subsequently employed to train full supervised semantic
segmentation networks. The research directions in this field can be
broadly classified into two categories: generating more accurate initial
seed regions and refining pseudo labels to obtain greater precision.

On the one hand, certain methods focus on expanding CAMs that
only attend to salient regions. For instance, adversarial erasing (Wei
et al., 2017) trains a network on more challenging regions by selectively
removing the most easily identifiable areas. Multiple attention maps are
3

integrated at different stages of the training of the OAA method (Jiang
et al., 2019). The quality of segmentation by SEAM (Wang et al., 2020)
is enhanced by reducing the disparity between the affine transformed
and the original image result. On the other hand, some networks
refine pseudo labels to obtain more accurate ones. AffinityNet (Ahn
and Kwak, 2018) learns the semantic similarity between neighbouring
coordinates and achieves semantic propagation through a random walk
strategy. IRNet (Ahn et al., 2019) generates transformation matrices
from boundary activation mapping. Furthermore, some approaches em-
ploy additional supervision. Approaches (Jiang et al., 2022; Lee et al.,
2021b) utilize saliency maps as extra supervision, providing relevant
foreground and background information to the model. CLIMS (Xie
et al., 2022) introduces natural language supervision by employing con-
trastive language-image pre-training models to obtain more accurate
CAM.

From the perspective of network architecture, existing weakly su-
pervised methods mostly adopt a single-branch or double-branch frame-
work. Single-branch networks add modules after traditional classifi-
cation networks, which can easily lead to the loss of some original
information. Double-branch networks add special structures to one
branch and train two mutually influential branches in parallel. How-
ever, due to the indistinct features of woody vegetation in RS images,
the branch with the added special structure may easily introduce
significant errors during training, affecting the training of the other
branch. In contrast, our method innovatively employs a double-branch

phased training approach. The LB branch focuses accurately on the
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most salient features of the segmentation area but struggles to cover the
entire area to be segmented. Therefore, we introduce the ARB branch,
which inherits the weights from the LB branch and incorporates MARS,
enabling it to pay attention to a broader range of areas to be segmented.
Finally, we integrate the CAMs generated by the two branches through
weighted aggregation, resulting in high-quality CAMs.

2.2. Mapping woody vegetation in remote sensing imagery

Mapping woody vegetation cover represents a significant domain
within RS imagery. Owing to complex terrains and diverse vegetation
types, mapping woody vegetation has consistently faced numerous
challenges. In traditional processing of woody vegetation RS images,
manual feature extraction methods are prevalent, such as those based
on spectral features (De Petris et al., 2019; Fisher et al., 2017). Due
to the advancement in machine learning, methods that combine man-
ual feature extraction with machine learning techniques have been
widely adopted (Purwanto et al., 2022; Zhou et al., 2021; Nasiri et al.,
2023). Additionally, the fusion of multi-source RS data (multispectral,
high-resolution, LiDAR, etc.) has emerged as a significant research
trend (Yang et al., 2021; Rüetschi et al., 2021; Schindler et al., 2021).
However, traditional machine learning algorithms typically classify
images based on shallow features, providing scope for performance
enhancement.

The recent development of deep learning, benefiting from its auto-
mated feature extraction capabilities and robust generalization perfor-
mance, has motivated the direct application of deep learning algorithms
to woody vegetation RS imagery in order to obtain the corresponding
mapping of woody vegetation cover. These studies generally target
visible light band woody vegetation RS images and convert woody
vegetation cover mapping tasks into semantic segmentation. Numerous
methods have achieved promising results in the RS domain by adapting
semantic segmentation models which were initially intended for natural
scene images, e.g., U-Net (Ronneberger et al., 2015) and FCN (Long
et al., 2015) have achieved high performance. Methods using U-Net-
based semantic segmentation (Flood et al., 2019; Alzu’bi and Alsmadi,
2022; Waldeland et al., 2022) for woody vegetation in various regions
have yielded favourable results. Research investigating the application
of FCN architecture in woody vegetation mapping has also been con-
ducted (La Rosa et al., 2021). However, these aforementioned methods
depend on fully supervised learning which necessitates an enormous
quantity of pixel-level annotations. The majority of existing woody
vegetation RS images lacks such pixel-level annotations, leading to
substantial costs when obtaining labelled data. To tackle the high
labelling costs associated with fully supervised approaches, methods
that require less annotation effort have increasingly garnered interest.
For instance, Schmitt et al. (2020) attempted to train semantic seg-
mentation models using lower-resolution annotation data to generate
higher-precision results, achieving relatively good outcomes in global
forest cover mapping. Additionally, Puthumanaillam and Verma (2023)
proposed a few-shot semantic segmentation method for forest semantic
segmentation, which somewhat reduced labelling costs. Overall, efforts
to minimize labelling costs for mapping woody vegetation cover are
still in their infancy. Concurrently, reducing labelling costs may di-
minish effective information during model training, lowering model
accuracy. Therefore, considerable effort is required from researchers to
minimize labelling costs while maintaining high model accuracy.

3. Methodology

First, we introduce the conventional method of generating CAMs.
This is followed by the basic architecture of the dual-branch integration
network incorporating MARS. The specific details of the MARS are
then discussed. Finally, we provide the loss functions for the two-stage
training process.
4

3.1. Preliminary (CAMs generation)

CAMs display specific attention regions for a given class within the
input image . A multi-label classification network is used to encode
the features of all classes. Since there is a corresponding image-level
label 𝑦 for each , the total number of classes is 𝑐. In training the
network, the output of the last convolutional layer of the network is the
feature 𝐹 () with 𝑁 channels. Subsequently, the last fully connected
ayer of the network is replaced by a global average pooling layer,
ransforming the feature into a vector 𝑉 . Finally, the vector of size 𝑁

is converted into predicted soft labels through a 1 × 1 convolution with
𝑁 input channels and 𝑐 output channels. The specific process is

𝑉 = 𝐺𝐴𝑃 (𝐹 ()), (1)

𝑆𝑐 = 𝑤𝑇
𝑐 ⋅ 𝑉 , (2)

where 𝐺𝐴𝑃 (𝐹 ()) performs global average pooling operation on the
feature map, 𝑤𝑇

𝑐 are channel weights for class 𝑐, and 𝑆𝑐 denotes the
final predicted score for class 𝑐. The CAMs 𝑀𝑐 (𝐼) for class 𝑐 is generated
using

𝑀𝑐 () = 𝑤𝑇
𝑐 ⋅ 𝐹 (), (3)

where 𝐹 () denotes the feature map before being input to 𝐺𝐴𝑃 , and 𝑤𝑇
𝑐

denotes the weights learned by the network for class 𝑐. Fig. 4 illustrates
the process of CAM.

However, as pointed out in most related works, while CAMs are able
to locate the most discriminative regions, they are unable to detect
challenging areas that are crucial for semantic segmentation tasks.
This is because the network is trained for classification, which causes
the generated CAMs to excessively focus on the most discriminative
regions. As a result, the efficacy of weakly supervised semantic segmen-
tation is greatly reduced. In this paper we address the issue by using
a novel dual-branch integration network that incorporates MARS. By
adding an attention-based relocation branch, the network can discover
other target areas and achieve better segmentation results through
weighted integration.

3.2. Network architecture

There are two branches, LB and ARB, in the network as shown in
Fig. 5. Similar to previous works, the LB employs the classification loss
function for optimization and generates Localization CAMs, 𝑀𝐿𝐵().
Since the LB targets classification tasks, the most distinct features for
classification are often activated during training. Consequently, the
resulting CAMs highlight the most distinguishing areas of the object
of interest.

Additionally, the MARS incorporated in ARB redistributes channel
and spatial weights, thereby serving an ‘‘expansion’’ and ‘‘complemen-
tary’’ function with respect to the CAM attention areas of the LB.
This approach addresses the task gap issue encountered in previous
works that utilized single-branch classification CAMs for segmentation
tasks and provides additional cues beneficial for semantic segmenta-
tion. More specifically, the ARB is trained by integrating MARS into
the pre-trained LB network. A detailed introduction to MARS will be
presented in the subsequent section. Owing to the larger receptive
field offered by the attention mechanism, the ARB can better focus on
context and capture more feature information globally. Furthermore,
the MARS operates across multiple stages of the ARB, facilitating the
identification of semantically similar information and the response to
a more extensive range of features in the CAMs.

Since woody vegetation in RS images provides high intra-class het-
erogeneity and low inter-class heterogeneity, the two branches of the
network provide distinct perspectives. This helps the network to focus
on the various regions to be segmented, effectively mitigating the issue
of single-branch CAMs only concentrating on the most salient regions.
This is akin to the ‘‘multi-view’’ theory (Allen-Zhu and Li, 2020),
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Fig. 4. The CAM process involves the weighting of each feature channel, resulting in the final CAM that reveals the network’s region of interest.
Fig. 5. The network architecture.
where similarly structured but separately trained models learn different
sub-views of the features in the dataset, and the model integration
effectively enhances accuracy. Finally, the integration of CAMs between
the two branches can be represented as

𝑀𝑎𝑙𝑙() = 𝛽𝑀𝐿𝐵() + (1 − 𝛽)𝑀𝐴𝑅𝐵(), (4)

where 𝑀𝑎𝑙𝑙() represents the integrated CAMs, 𝛽 denotes the weight-
ing coefficient, 𝑀𝐿𝐵() represents the CAM output from the LB, and
𝑀𝐴𝑅𝐵() represents the CAM output from the ARB.

Moreover, we observed that using 𝑀𝐿𝐵() as guidance during the
training process of the ARB improves accuracy to a certain extent.
Although there is currently no quantitative analysis on the impact of
attention mechanism on the response region of CAMs, we believe this
might be related to the imprecise response of the attention mechanism
to boundary regions in classification networks. While the inclusion
of the attention mechanism helps the model to understand the con-
textual semantic information, the larger receptive field also results
in inaccurate responses of the generated CAMs in boundary regions.
By incorporating guidance from the CAM generated by the LB, the
CAM produced by the ARB is better constrained within the target
segmentation area, thereby improving the performance of the network.
5

The following pseudo code shows the training and generation process
of our network.

3.3. Multi-layer attention refocus structure

Within our network, the ARB incorporates MARS to enable it to
inherit the LB weights while reconstructing spatial and channel infor-
mation across multiple stages of the network, offering distinct attention
perspectives compared to LB and facilitating target region relocaliza-
tion. This MARS-based relocalization approach is particularly effective
for addressing the issue of a single branch focusing solely on the
most prominent feature areas in woody vegetation RS images with
extensive feature repetition or multiple separated regions. Moreover,
the multi-layered structure of MARS enhances network robustness and
generalizability compared to single-layer attention module, circum-
venting performance instability caused by single-pass attention mech-
anisms. Furthermore, MARS contributes to more pronounced target
area responses in the CAM generated by ARB, ultimately improving
the accuracy of pseudo label segmentation determined by CAM. We
employ Coordinate Attention (CA) which was proposed by Hou et al.



International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103499Y. Cheng et al.
Fig. 6. Individual attention module in MARS enables synchronized embedding of channel and spatial information through coordinate pooling in both X and Y directions.
Algorithm 1: Pseudocode of DMAMNet
Input: 𝑛 woody vegetation RS images with image-level labels

[𝐷1,… , 𝐷𝑛]
Output: CAMs [𝑀1,… ,𝑀𝑛]
Training Phase 1:
Input labelled images and minimize the loss function 𝐿𝐵 to
train LB.
Training Phase 2:
Integrate LB weights into ARB and incorporate MARS.
Input labelled images and minimize the loss function 𝐴𝑅𝐵 to
train ARB.
Generate CAMs:
for 𝑖 ← 1 to 𝑛 do

Input test images 𝐷𝑖 into LB to get predicted CAM 𝑀𝐿𝐵 ;
𝑀𝐿𝐵 ← 𝐿𝐵(𝐷𝑖);
Input test images 𝐷𝑖 into the ARB to get predicted CAM
𝑀𝐴𝑅𝐵 ;

𝑀𝐴𝑅𝐵 ← 𝐴𝑅𝐵(𝐷𝑖);
Fuse 𝑀𝐿𝐵 and 𝑀𝐴𝑅𝐵 to generate the final CAM 𝑀𝑎𝑙𝑙;
𝑀𝑎𝑙𝑙 ← 𝛽𝑀𝐿𝐵 + (1 − 𝛽)𝑀𝐴𝑅𝐵 ;

return CAMs [𝑀1,… ,𝑀𝑛];

(2021) as the individual module within MARS due to its lightweight
efficacy. As a streamlined Channel and Spatial Attention mechanism,
CA simultaneously redistributes spatial and channel weights, prevent-
ing long-distance dependency information loss caused by distribution
modelling. Fig. 6 shows the basic structure of the individual attention
module in MARS.

The CA involves two sequential phases: embedding coordinate in-
formation and generating coordinate attention. It captures long-range
dependencies and channel correlations with accurate positional infor-
mation, which aids the network in accurately localizing objects of
interest. Typically, channel attention employs global average pool-
ing to encode spatial information, resulting in the loss of substantial
positional information. Coordinate information embedding, however,
preserves positional information by utilizing one-dimensional average
pooling in both vertical and horizontal directions. Specifically, it en-
codes each channel separately in the vertical and horizontal directions
by employing two different convolution kernels, either (ℎ, 1) or (1, 𝑤),
i.e.,

𝑧ℎ𝑐 (ℎ) =
1
𝑊

∑

0≤𝑖<𝑊
𝑥𝑐 (ℎ, 𝑖), (5)

𝑧𝑤𝑐 (𝑤) = 1
𝐻

∑

0≤𝑗<𝐻
𝑥𝑐 (𝑗, 𝑤), (6)

where 𝑥𝑐 (ℎ,𝑤) represents the value at channel 𝑐, height ℎ, and width
𝑤 of the input 𝑋, while 𝑧ℎ𝑐 (ℎ) denotes the average pooling result at
height ℎ for channel 𝑐, and 𝑧𝑤𝑐 (𝑤) represents the average pooling result
at width 𝑤 for channel 𝑐.
6

Function 𝐹1 is a shared 1 × 1 convolution transformation employed
to concatenate the outputs of the above two pooling layers, i.e.,

𝑓 = 𝛿(𝐹1([𝑧ℎ; 𝑧𝑤])), (7)

where the concatenation operation along the spatial dimensions is
denoted by [⋅; ⋅], 𝛿 denotes the non-linear activation function, and the
combined encoding result obtained from both horizontal and vertical
directions is denoted by 𝑓 .

The resulting tensor is represented by two attention enhanced vec-
tors, each with an identical number of channels, corresponding to the
vertical and horizontal directions, respectively, i.e.,

𝑓ℎ, 𝑓𝑤 = 𝑆𝑝𝑙𝑖𝑡(𝑓 ). (8)

Next, 𝐹ℎ and 𝐹𝑤 are two 1 × 1 convolution transformations that are
exploited to convert the channel numbers of 𝑓ℎ and 𝑓𝑤 to match the
channel count of the input tensor. This process can be represented as

𝑠ℎ = 𝜎(𝐹ℎ(𝑓ℎ)), (9)

𝑠𝑤 = 𝜎(𝐹𝑤(𝑓𝑤)), (10)

where 𝜎 denotes the sigmoid activation function. Finally, the output of
CA at location (𝑖, 𝑗) for input 𝑋, i.e., 𝑌 (𝑖, 𝑗), is given by

𝑌 (𝑖, 𝑗) = 𝑋(𝑖, 𝑗) ⋅ 𝑠ℎ(𝑖) ⋅ 𝑠𝑤(𝑗). (11)

Thus, unlike conventional channel attention modules that only pro-
cess the redistribution of different channel weights, CA also encodes
spatial information. The pooling results generated in both directions
allow each pixel to reflect whether the object of interest is present in
the corresponding row and column. By employing MARS, the network
has a larger receptive field without losing positional information, en-
abling more accurate modelling of long-range dependencies on a global
scale. In addition, the inclusion of MARS allows the ARB to generate
different attention perspectives from the LB, discovering some hard-
to-identify target areas. Therefore, after integrating the dual branches,
the CAM response regions become more accurate, leading to improved
segmentation results.

3.4. Loss function

The predicted result 𝑌 is obtained at the beginning stage, which
denotes the probability of predictions for all categories. It is optimized
using 𝑐𝑙𝑎𝑠𝑠, the multi-label soft margin loss given by

𝑐𝑙𝑎𝑠𝑠 = − 1
𝑁

𝑁
∑

𝑖=1
(𝑌𝑖 log

(

1
1 + 𝑒−𝑌𝑖

)

+
(

1 − 𝑌𝑖
)

log
(

𝑒−𝑌𝑖
1 + 𝑒−𝑌𝑖

)

) ,

(12)

where 𝑁 represents the categories count, 𝑌𝑖 represents the predicted
label for category 𝑖, and 𝑌𝑖 represents the true label for category 𝑖.

After the first stage LB is trained, we begin training ARB. The
training loss for the second stage ARB incorporates both  and the
𝑐𝑙𝑎𝑠𝑠
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guidance from the CAM generated by the LB. The guidance loss can be
represented as

𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 = ‖𝑀𝐿𝐵 −𝑀𝐴𝑅𝐵‖1. (13)

This is equivalent to adding semantic regularization to the training
of ARB, and our experiments show that this improves accuracy to
some extent. Ultimately, the loss function consists of the classification
network’s multi-label soft margin loss and guidance loss, i.e.,

𝐴𝑅𝐵 = 𝑐𝑙𝑎𝑠𝑠 + 𝜆𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒. (14)

4. Experiments

4.1. Datasets

Our method is applied to two UAV-acquired RS datasets, namely
UOPNOA and MiniFrance. Of these, the UOPNOA dataset has images
from the northern highlands of the Iberian Peninsula in Spain and
consists of 33,699 images of size 256 × 256. The MiniFrance dataset
contains high-resolution RGB images of 16 cities in different regions
of France. Since only some of data are labelled, we chose the dataset
acquired in Nice. We cropped each original 10 000 × 10 000 pixels to a
size of 256 × 256 pixels. For both datasets, 1100 images are randomly
selected from the images containing forests and shrubs, and grouping
them into three sets in the ratio of 7:2:1, respectively for training,
validation and test.

4.2. Evaluation metrics

We chose the following evaluation metrics to evaluate the efficiency
of our network and for performance comparison:

mIoU = 1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃 𝑖
𝑇𝑃 𝑖 + 𝐹𝑃 𝑖 + 𝐹𝑁 𝑖

, (15)

Accuracy = 1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃 𝑖 + 𝑇𝑁 𝑖
𝑇𝑃 𝑖 + 𝑇𝑁 𝑖 + 𝐹𝑃 𝑖 + 𝐹𝑁 𝑖

, (16)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃 𝑖
𝑇𝑃 𝑖 + 𝐹𝑃 𝑖

, (17)

𝑒𝑐𝑎𝑙𝑙𝑖 =
1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃 𝑖
𝑇𝑃 𝑖 + 𝐹𝑁 𝑖

, (18)

F1-score = 1
𝑁

𝑁
∑

𝑖=1
2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

, (19)

where 𝑁 (equals 3) denotes the number of categories in the datasets we
used, and 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 respectively denote the true positive,
rue negative, false positive and false negative.

.3. Implementation

We used Pytorch to implement our experiments on NVIDIA’s 3090
PU with a memory size of 24G. During data preprocessing, we em-
loyed data augmentation techniques of horizontal flipping and ran-
om scaling, followed by random cropping the original images to
15 × 512 images as input for the network. For both datasets, we
dopted the Resnet50 architecture (He et al., 2016) as the founda-
ional framework and incorporated the pretrained weights used in
mageNet (Russakovsky et al., 2015). In the seed generation period,
e set both the training epochs and the batch size to 16. For UOPNOA
nd MiniFrance, the learning rates are respectively set to 0.02 and
.023, and SGD is used as the optimizer, incorporating a weight decay
f 0.0001. Subsequently, we refined the generated CAMs using the
andom walk algorithm (IRNet) to produce pseudo labels. Lastly, we
rained fully supervised semantic segmentation network SegNeXt (Guo
t al., 2022) using the generated pseudo labels and pretrained weights
7

rom ImageNet.
Table 1
Quality of CAM and pseudo labels (Pseudo) generated by various networks.

Methods UOPNOA MiniFrance

CAM Pseudo CAM Pseudo

AffinityNet 55.77 64.23 51.16 56.10
IRNet 54.05 61.11 55.16 57.86
SEAM 54.89 46.61 36.81 27.66
AdvCAM 50.55 57.15 50.52 53.85
OC-CSE 55.83 57.75 54.95 56.14
SIPE 56.65 57.37 48.54 47.87
VWE 49.31 56.05 45.7 48.03
MCTformer 44.75 47.66 45.17 46.95
Ours 𝟓𝟖.𝟏𝟖 𝟔𝟓.𝟗𝟑 𝟓𝟗.𝟐𝟐 𝟔𝟒.𝟐𝟒

4.4. Comparison with state-of-the-methods

Our method was compared with the following eight weakly super-
vised methods: AffinityNet (Ahn and Kwak, 2018), IRNet (Ahn et al.,
2019), SEAM (Wang et al., 2020), AdvCAM (Lee et al., 2021a), OC-
CSE (Kweon et al., 2021), SIPE (Chen et al., 2022), VWE (Ru et al.,
2021), and MCTformer (Xu et al., 2022).

4.4.1. Comparison on CAM and pseudo labels
By generating more exact CAMs, our method improves the accuracy

of the pseudo-labels. To demonstrate this, Table 1 compares the quality
of the CAM seeds and pseudo labels generated by different networks
in terms of mIoU and shows the performance of our network is better
than other networks of WSSS in both stages. Specifically, our network
achieves mIoU scores of 59.22% and 64.24% for CAM seeds and
pseudo labels, respectively on MiniFrance, and 58.18% and 65.93%
respectively on UOPNOA dataset.

Furthermore, in order to better demonstrate the advantages of our
network, we visualized the generated CAMs in Fig. 7. The CAMs for
the first and fifth input images demonstrate the superiority of our
network in multi-region focus. The CAMs for the second and third input
images showcase the advantages of our approach in identifying small-
scale regions, while the CAMs for the fourth and fifth input images
illustrate the capability of our network for comprehensive coverage of
large regions. In summary, our method excels in generating CAM of
higher quality compared to other approaches.

In addition, we also conducted an analysis of the parameters and
inference speed at the CAMs generation stage, as shown in the Table 2.
It is observed that our network maintains relatively low parameter
count and fast inference speed while achieving optimal performance.

4.4.2. Comparison of semantic segmentation results
We conducted experiments on SegNext using the generated pseudo

labels. Table 3 shows the performance of various networks on both
datasets. The evaluation metric mIoU is commonly used for seman-
tic segmentation, where the highest mIoU achieved by our network
indicates that it segments the target area more accurately than other
weakly supervised networks. High mF1-score and high average accu-
racy also reflect the higher performance of our network. Specifically,
our network achieved mIoU, mF1-score, and mAccuracy of 69.27%,
81.3%, and 81.46%, respectively on UOPONA, and 56.82%, 71.88%,
and 72.51%, respectively on MiniFrance. Compared to other weakly
supervised networks, our network achieved the best performance.

We also conducted comparative experiments on three classic fully
supervised networks. In these experiments, we maintained consistency
in the samples with weakly supervised networks, differing only in the
labels used. The results indicate that our network even outperforms
FCN, which is a well-known early work in fully supervised seman-
tic segmentation. The performance of our network is comparable to
UNet, a highly effective classic fully supervised semantic segmenta-
tion network. While our network falls short of the performance of
the classic network Deeplabv3, the mIoU on the two datasets also
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Fig. 7. CAMs generated by different networks. (a) Input image, (b) Ground truth, (c) Our network, (d) AffinityNet, (e) IRNet, (f) SEAM, (g) AdvCAM, (h) OC-CSE, (i) SIPE, (j)
VWE, and (k) MCTformer.
Table 2
Parameters(M) and Frames Per Second (FPS) at the CAMs generation stage for different networks.
Methods Affinity IRNet SEAM AdvCAM OC-CSE SIPE VWE MCTformer Ours

Parameters 105.08 70.69 105.33 70.37 105.13 72.46 129.92 21.67 75.80
FPS 2.98 15.5 2.77 0.2 9.6 6.3 14.34 6.51 6.21
Table 3
Performances of various networks on UOPNOA and MiniFrance. The final results were obtained by training SegNeXt with
pseudo labels generated by each network and testing on the test set. The supervision types (Sup.) indicate: -Image-level label
and  -segmentation label.
Methods Sup. UOPNOA MiniFrance

mIoU (%) mF1-score (%) mAcc. (%) mIoU (%) mF1-score (%) mAcc. (%)

AffinityNet  66.35 78.92 79.06 53.41 68.7 70.34
IRNet  67.54 79.66 80.03 54.28 69.85 70.95
SEAM  40.87 57.33 57.75 27.8 41.58 47.49
AdvCAM  61.89 74.3 76.46 42.61 56.29 63.24
OC-CSE  58.77 72.86 72.67 47.55 63.82 65.28
SIPE  65.78 78.19 79.0 37.4 48.75 59.51
VWE  61.13 74.83 74.87 44.53 59.85 64.26
MCTformer  47.76 58.15 66.25 36.22 46.89 55.42

FCN  64.44 78.32 78.18 52.08 68.18 70.19
UNet  70.49 82.85 82.99 57.11 73.74 72.33
Deeplabv3  76.45 86.59 86.5 63.92 77.83 78.2

Ours  69.27 81.3 81.46 56.82 71.88 72.51
achieves 90.6% and 88.9% performance of Deeplabv3, which is highly
inspiring. In comparison to fully supervised networks, our network
achieves competitive performance while utilizing extremely low-cost
annotations.

Fig. 8 shows the P-R curves and TPR-FPR curves of different net-
works. The figure shows that for both datasets, our network attained
the highest accuracy.

4.4.3. Qualitative comparison
The comparison of segmentation results for different methods on the

two datasets is illustrated in Fig. 9. Firstly, our network demonstrates
its capability to accurately identify small target regions, as illustrated
by the segmentation results of the sixth and seventh input images.
Moreover, our network also exhibits accurate identification of large
target regions and multi-target areas, as demonstrated by the results
of the fifth and second input images. Secondly, our network is able
8

to address the issues associated with the heterogeneity that exist in
vegetation RS images, thus enabling it to perform accurate overall
segmentation of images, as illustrated by the results of the third and
fourth input images. Thirdly, our network has a greater advantage in
handling boundary details, accurately segmenting target regions with
complex boundaries, thereby capable of processing more complex scene
graphs, as illustrated by the result of the first input image. In general,
our network exhibits significant advantages over other networks.

4.4.4. Ablation experiments
The effectiveness of individual modules. In order to validate the sound-
ness of the proposed network, each component of the network archi-
tecture was incrementally integrated. We conducted experiments on
UOPONA and MiniFrance with consistent hyperparameters across all
trials. Initially, we deployed a baseline model that utilized a singular
ResNet50 branch pretrained on ImageNet weights. For assessing the ef-
fectiveness of an attention module, we performed different experiments
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Fig. 8. Quantitative curves of various methods: (a) P-R curves on UOPONA; (b) TPR-FPR curves on UOPONA; (c) P-R curves on MiniFrance; and (d) TPR-FPR curves on MiniFrance.

Fig. 9. Segmentation results using different networks. Green represents shrub areas and red represents forest areas. (a) Input image, (b) Ground truth, (c) Our network, (d)
AffinityNet, (e) IRNet, (f) SEAM, (g) AdvCAM, (h) OC-CSE, (i) SIPE, (j) VWE, and (k) MCTformer. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 10. Visualization of the ablation experiments. (a) Comparison of visualization for baseline and dual branch integration: (i) Input image; (ii) Ground truth; (iii) Baseline;
and (iv) Baseline+ARB. (b) Visualization comparison before and after adding guidance loss: (i) Input image; (ii) Ground truth; (iii) Without adding guidance loss; and (iv) With
guidance loss added.
Table 4
Results of ablation experiments on UOPONA.

Base A1 A2 A3 A4 Aall Loss mIoU (%) mAccuracy (%) mF1-score (%)
√

54.05 70.22 68.77
√ √

56.46 72.02 71.15
√ √

56.02 72.26 70.38
√ √

56.3 72.48 70.67
√ √

56.88 72.55 71.41
√ √

57.53 73.13 71.97
√ √ √

𝟓𝟖.𝟏𝟖 𝟕𝟑.𝟔𝟖 𝟕𝟐.𝟓𝟑

Table 5
Results of ablation experiments on MiniFrance.

Base A1 A2 A3 A4 Aall Loss mIoU (%) mAccuracy (%) mF1-score (%)
√

55.16 70.17 69.82
√ √

57.58 73.24 71.17
√ √

57.74 73.85 71.08
√ √

57.37 73.92 70.44
√ √

57.56 73.58 70.93
√ √

58.35 74.17 71.70
√ √ √

𝟓𝟗.𝟐𝟐 𝟕𝟒.𝟑𝟎 𝟕𝟑.𝟎𝟗

on individual module integrated at diverse positions to demonstrate
the advantages of MARS. Specifically, ‘‘Base’’ denotes the scenario with
only a localization branch, ‘‘AX’’ indicates the addition of an attention
module after the 𝑋th layer of ARB, ‘‘Aall’’ represents the situation
where an attention module is added after every layer of the relocation
branch, and ‘‘Loss’’ denotes the employment of guidance loss. Tables 4
and 5 respectively show the results of the experiments conducted on
UOPONA and MiniFrance. The mIoU scores of the baseline model
are 54.05% and 55.16% for UOPONA and MiniFrance, respectively.
Although the single attention module enhances the performance of the
network, the accuracy is still lower than the result achieved with the
addition of MARS. Finally, the efficacy of the network was further en-
hanced by including a guidance loss. Ultimately, our network achieved
58.18% and 59.22% mIoU for UOPONA and MiniFrance, respectively.

We visualized the results to better demonstrate the effectiveness of
each designed component by conducting ablation studies, as shown
in Fig. 10. Fig. 10(a) shows that in comparison with the baseline
10
network, the dual-branch structure of our network which incorporates
MARS inhibits background noise, captures more precise features, and
produces more accurate CAMs. In addition, Fig. 10(b) illustrates that
incorporating guidance loss avoids the identification of incorrect re-
gions as well as highlights the identification of correct regions, which
effectively improves the correctness of the overall segmentation results.

Effectiveness of integration. To investigate the integration coefficients,
we conducted experiments on the two datasets, evaluating various coef-
ficients. Fig. 11 presents the results of our experimentation, indicating
that the maximum metric scores are achieved when the 𝛽 coefficient
is set to 0.4 for UOPNOA and 0.6 for MiniFrance. Notably, when the
coefficient increases or decreases, the performance metric decreases as
well. When the coefficient is 1, it is equivalent to using only the first
branch, whereas a coefficient of 0 is equivalent to using only the second
branch, both of which are far less effective than the two-branch fusion
approach. Our integration strategy, therefore, enhances the network
performance.

We also visualized the generated CAMs and pseudo labels in Fig. 12
to better illustrate the effectiveness of our network. The figure shows
that our first branch focuses on the most discriminative regions, while
the second branch is repositioned to capture other important features.
In addition, consistent with what was mentioned earlier, the ARB will
have a complementary (e.g., columns 1 and 2 in Fig. 12) or expansive
(e.g., columns 8 and 9 in Fig. 12) effect on the LB. Finally, weighting
and fusing these features can lead to higher quality pseudo labels.

5. Conclusion

The paper proposes a novel dual-branch integration network that
includes a LB and an ARB. The LB uses a ResNet50 classification
network to accurately identify some important areas, while the ARB
incorporates MARS based on the localization branch to effectively
extract important contextual semantic information and compensate for
the target areas that the LB cannot identify. The experimental findings
demonstrate that the utilization of our network in woody vegetation RS
image semantic segmentation effectively addresses the issues associated
with the heterogeneity of woody vegetation in RS images. Our network
also offers a solution to address challenging integrity segmentation of
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Fig. 11. mIoU(%) for two datasets with different integration coefficients.
Fig. 12. Visualization of the generated CAMs: (a) Input image; (b) LB; (c) ARB; and (d) Dual-branch integrated CAM.
target regions that existing WSSS methods have to overcome. As a
result, the performance of our network in segmenting woody vegetation
RS images has been significantly improved. Additionally, our network
attains the best performance on UOPONA and MiniFrance which are
acquired by UAVs.
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