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Abstract

Novelties are a key driver of societal progress, yet we lack a comprehensive under-
standing of the factors that generate them. Recent evidence suggests that innovation
emerges from the balance between exploiting past discoveries and exploring new pos-
sibilities, the so-called “adjacent possible". This thesis aims at developing new analysis
tools and models to study how people navigate the seemingly infinite space of possi-
bilities.

Firstly, I extend the notion of the adjacent possible to account for novelties as com-
binations of existing elements. In particular, I model innovation as a random walk on
an expanding complex network of content, in which novelties correspond not only to
the first visit of nodes, but also of links. The model correctly reproduces how novel-
ties emerge in empirical data, highlighting the importance of the exploration process in
shaping the growth of the network.

Secondly, since people continuously interact and exchange information with each
other, I investigate the role of social interactions in enhancing discoveries. I hence pro-
pose a model where multiple agents extend their adjacent possible through the links of
a complex social network, exploiting in this way opportunities coming from their con-
tacts. By adding a social dimension to the adjacent possible, I prove that the discovery
potential of an individual is influenced by its position on the social network.

Finally, I combine the two concepts of the adjacent possible in the content and
social dimension to develop a data-driven model of music exploration on online plat-
forms. In such a model, multiple agents grow their individual space of possibilities by
exploring a network of similarity between artists, while exploiting suggestions from
their friends on the social network. The comparison with the empirical data indicates
that the adjacent possible, in both the content and the social space, plays a crucial role
in determining the individual propensity to innovate.
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Chapter 1

Introduction

Innovation is the engine of societal progress, pushing us towards uncharted territories
of knowledge and boundless possibilities. The ability to come up with novel ideas and
concepts, or make new technologies and other breakthroughs, holds the key to foster
progress and change across diverse domains, from science and technology to arts and
humanities, to cite a few. Therefore, this thesis aims to establish a comprehensive math-
ematical framework capable to address pivotal questions regarding innovation. Specif-
ically, what are the underlying mechanisms that shape the appearance and diffusion of
innovative ideas, products, technologies, or artistic creations? How do various factors
impact the delicate balance between exploiting existing knowledge and resources ver-
sus exploring new possibilities and discoveries? Additionally, what role do networks
and social interactions play in the dissemination and adoption of innovative concepts
and products across different domains?

To answer these questions, we first need to acknowledge the inherent sequentiality
in the process of innovation. Far from being just the consequence of random occur-
rences, this process can indeed be described as a structured sequence of events, char-
acterized by distinct steps and stages that build upon one another. On the one hand,
innovation involves the continuous exploitation and refinement of existing knowledge,
reinforcing their presence and influence in various aspects of society. On the other
hand, it encompasses the exploration and discovery of adjacent possibilities, pushing
the boundaries of what is currently feasible. The combination of exploitation and ex-
ploration forms a progressive series of discoveries that seamlessly integrate with the
established knowledge, fostering innovation.

To have a practical idea of how this process unfolds, let us take into considera-
tion the development of a remarkable technology that has transformed our daily lives,
the smartphone. Initially, the concept of a portable telephone emerged as a novel idea,
driven by the need for enhanced communication capabilities. As it became more acces-
sible to a broader number of people around the globe, engineers and inventors started to
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explore various technologies and components that could be integrated into the evolving
design. Through iterative steps combining existing knowledge with new discoveries,
the realization of a fully functional smartphone was approached.

In this example, the concept of a smartphone appeared distant and far-fetched ini-
tially. However, through a gradual progression and the convergence of diverse tech-
nologies and attainable adjacent possibilities, it eventually became a reality. The con-
cept of the adjacent possible and its exploration indeed offers a fascinating perspective
on innovation [8]. Pioneered by scientists such as N. Packard [9], C. Langton [10, 11]
and S. Kauffman [12, 13], it posits that, at any given moment, there exists a realm of
potential discoveries that can emerge from the existing state of the system. In partic-
ular, the adjacent possible refers to the set of potential opportunities, ideas, and other
possibilities that are only one step away and immediately accessible from the current
state of knowledge, technology, and resources. It hence represents the range of poten-
tial developments that can emerge from the existing conditions and serve as foundation
for further exploration and innovation, as it has been the case of the smartphone.

We have started to understand that representing a discovery process as a sequence
of exploration of new elements and exploitation of already known ones is the key to
answer the questions posed at the beginning of this chapter. The second step we need
is finding measures and empirical laws to analyse these processes through their se-
quences. The recent availability of vast amounts of digital data has revolutionized our
ability to track and analyze innovation processes. This wealth of data has opened up
new possibilities for understanding and uncovering empirical laws that govern the dy-
namics of innovation, such as the Heaps’ law [14, 15], which has been observed in a
variety of contexts [8].

In general, given a growing collection of items, such as words in a text or concepts
developed in a scientific field, the Heaps’ law describes the relationship between the
total size of the collection and the number of unique items in it. In particular, the
growing collection follows the Heaps’ law if the number of unique elements increases
grows as a sublinear power-law function of the total size of the collection. This law has
been successfully exploited in discovery processes to characterize the pace at which
novelties emerge along the process. In such a process the growing collection of items
can indeed be represented by the related temporally-ordered sequence containing the
concepts, technologies, artworks, or any other items explored in the process under
study. Then, counting the number of items N in the sequence, the Heaps’ law states that
the number of different elements D(N) in the sequence grows as a sublinear power-
law function of the size N of the sequence, i.e., D(N) ∼ Nβ , with 0 ≤ β ≤ 1.
For example, considering as a discovery process the listening activity of a person, the
ordered sequence is made of all the songs listened by the person. Here, a discovery
is made whenever a song is listened for the first time. The Heaps’ law hence states
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that the number of discoveries, i.e., the number of unique songs listened, grows as a
power-law function of the total size of the sequence, i.e., the total number of listening
records.

The Heaps’ law provides valuable insights into the patterns and dynamics underly-
ing the emergence of novelties. Notice in fact that, as a consequence of the Heaps’ law,
the average time between two consecutive novelties increases as the system evolves.
Drawing upon the previous example of the smartphone development, during its early
stages the collection of ideas and possibilities to apply experienced a rapid growth, ex-
panding the adjacent possible at a fast pace and giving rise to a plethora of potential
features, functionalities, and design variations. However, as smartphones evolved and
matured, the pace at which entirely new and distinct ideas emerged gradually slowed
down, leading to longer intervals between impactful discoveries. In other words, there
has been a gradual change from a phase of rapid exploration to one of incremental
refinement, or exploitation. Such change is controlled by the Heaps’ exponent: the
lower the exponent, the longer the intervals between two novelties. In particular, when
the exponent is close to its maximum value of one, discoveries occur at a nearly linear
pace, with a continuous stream of new findings. Conversely, an exponent closer to zero
indicates that after an initial burst of discoveries, the number of new breakthroughs
significantly diminishes, leaving little room for further exploration.

The exploration of the adjacent possible and the Heaps’ law discussed so far rec-
ognize that breakthroughs and novel ideas do not materialize out of thin air, and high-
light the sophisticated interplay between existing knowledge and adjacent possibilities.
Various approaches have emerged from diverse disciplines to elucidate the underly-
ing mechanisms of this process. For instance, the idea from evolutionary biology
that novel species emerge through genetic mutations and subsequent selection pro-
cesses [16] has then lead to a deeper understanding of the concept of the adjacent
possible in more recent years [8, 13]. Similarly, cognitive psychology has studied the
exploration-exploitation dilemma to understand how individuals balance between ex-
ploiting familiar options and exploring new alternatives [17, 18], advancing the theory
of reinforcement learning [19]. Furthermore, in the context of innovation economics,
the emergence of novelties is seen as the consequence of a dual process of creation and
destruction [20], where new associations of existing factors may give rise to innova-
tions (creation) and rule out of the market obsolete products and services (destruction),
thereby increasing the probability of reaching further novelties [21, 22].

Various mathematicians and physicists, among other researchers, have also pro-
posed generative models of innovation. Based on extractions from urns or on the
movement of random walkers on complex networks, such models are able to capture
the key features of innovation. In particular, Pólya’s urn model translates the concept
of reinforcement learning into the process of drawing colored balls from an urn and
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adding more balls of the same extracted color into the urn [23, 24]. Kauffman’s idea of
the adjacent possible has also been integrated in the context of urns thanks to the Urn

Model with Triggering [8], or UMT. This model extends Pólya’s urn model by adding
a triggering mechanism of new colors: whenever a color never observed before is ex-
tracted, new colors are added in the urn. In other words, the exploration of a novelty
gives rise to the expansion of the colors present in the urn, opening up more possibili-
ties of further discoveries. Through the reinforcement and triggering mechanisms, this
model is able to reproduce the statistical patterns observed in real-world data of explo-
ration and innovation processes, such as the characteristic emergence of novelties as
captured by the Heaps’ law [25–27]. Since its introduction, the UMT has been applied
in a variety of contexts, for example, to study the rise and fall of popularity in tech-
nological and artistic productions [28], the cognitive growth of knowledge in scientific
disciplines [29], the emergence and evolution of social networks [30], or the evolution
of the cryptocurrency ecosystem [31].

In addition to urn models, complex networks and random walks have provided a
powerful framework to understand how the adjacent possible unfolds, grows and is ex-
plored. By representing concepts, ideas, or technological advancements as nodes, and
the connections between them as edges, a network offers a visual and mathematical
representation of the adjacent possible. Thanks to the extensive research conducted
on the properties of complex networks [32–36], such representation enables to inves-
tigate how the interplay of ideas and their combinations can lead to the emergence of
novel and innovative elements in the system under study. For example, the preferen-
tial attachment mechanism proposed in the Barabási-Albert model [37] illustrates how
the rich-get-richer phenomenon influences the growth of networks, where nodes with
more connections have a higher probability of acquiring additional connections from
new nodes in the network.

If complex networks encrypt the topological properties of the growing space of
possibilities in their structure, random walks have proven to be a valuable and versatile
tool for modelling and understanding how such space is explored and discoveries are
made [29]. Random walks consist in exploring a network by randomly moving from
one node to another based on certain rules, from the simplest unbiased random walk in
which the next node is chosen uniformly at random among the neighbors, to the most
sophisticated ones. Thanks to their versatility, random walks have recently received
significant attention and have been extensively studied [38–40]. They have been used
to build exploration models for social annotation [41], music album popularity [42],
knowledge acquisition [43], human language complexity [44], and evolution in re-
search interests [45]. Therefore, by capturing the movement and interaction of entities
within such networks, random walks can offer valuable insights into the emergence
and propagation of ideas, the acquisition of knowledge, and the evolution of complex
systems.
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Building upon the insights provided by the Heaps’ law and the mathematical mod-
els described above, in this thesis we take a step further to understand how the space
of possibilities grows in an innovation process. The first major contribution of this
thesis is to associate innovation to the emergence and exploration of a more general
definition of novelties [6]. In particular, we consider novelties as new combinations
or associations of existing elements, which can impact on how the space of possibil-
ities being explored grows. For instance, in the context of the smartphone, various
components, features, or technologies, such as the camera, processor, display, battery,
operating system, and so on, can be combined together to obtain more complex func-
tionalities of the smartphone. Similarly in other contexts, the first association of already
known items can generate novelties, as it is the case of words to form a poem, or of
nucleic bases in a DNA sequence.

To quantify the pace at which novel associations of n elements appear in a se-
quence, we extend the Heaps’ law to what we call the n-th order Heaps’ law. Such law
characterizes the time distribution of novelties of size n, i.e., the first time n elements
are associated together, through a power law. We refer to the exponent of such power
law as the nth-order Heaps’ exponent. The analysis of higher-order Heaps’ laws in
different contexts allows us to distinguish processes that generate the same amount of
new items, but that exhibit different rates of new associations between them. In light
of this, we envision innovation as the process of exploring a network, where each node
represents a concept or item, and the edges symbolize the connections between them.
This network represents the space of possibilities of the system, growing along with
the process either by adding new nodes, making new connections, or reinforcing ex-
isting ones. By integrating the mechanisms of reinforcement learning and triggering
of adjacent possible nodes and links, we hence model innovation as a generative pro-
cess in which a weighted network grows in time while it is being explored. Building
on the Edge-Reinforced Random Walk model [29] and the Urn Model with Trigger-

ing [8], we introduce a new model, which we call the Edge-Reinforced Random Walk

with Triggering, that is able to capture not only the dynamic nature of innovation as
a sequential exploration of old and new nodes or links, but also the expansion of the
adjacent possible in conjunction with the exploration process. In fact, as the random
walker explores the growing network, it not only exploits and reinforces existing con-
nections and knowledge, but also actively triggers the addition of new elements and
associations in the network, fostering the emergence of novelties at various orders.

Another pivotal aspect of innovation lies in the power of social interactions and
human connections. Competition and cooperation are indeed two of the key drivers
behind the evolutionary success of the human species [46–48]. Such interactions can
be encoded in social networks [49], which can be studied to answer various research
questions at different levels of analysis, from the individual to the collective ones [36,
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50, 51]. In particular, social networks have been extensively used as a substrate on top
of which dynamical processes take place [35, 52]. In the context of innovation, social
interactions exert a profound influence on the individual’s propensity to generate and
diffuse novel ideas and content. As a matter of fact, even if someone does not invent a
technology or writes a song, the first time the individual uses such technology or listens
to this song can still be considered a novelty for the person. This novelty at the individ-
ual level can then open up more possibilities to discover something new, as it enlarges
the personal knowledge space. Recent empirical evidence shows that peer influence
does not necessarily need active and engaging interactions to make an impact. For
example, it has been demonstrated that even simple eye contact enhances synchroniza-
tion between the brains of two individuals [5]. This synchronization directly impacts
our choices in simple tasks, and highlights the importance of social dynamics in more
complex processes. Thus, recognizing the collective nature of innovation, it becomes
essential to unveil the interplay between social interactions and the emergence of nov-
elties.

Graph theory and network science provide valuable tools to study these intricate
networks of social interactions, uncovering patterns and structures that facilitate dis-
coveries. Network analysis indeed enables the identification of key players, influen-
tial nodes, and hidden pathways in the social network. For example, going back to
the previous example of how smartphones developed, these analyses can shed light
on how multidisciplinary teams have collaborated, leveraging their different exper-
tise. Through the exchange of ideas and integration of different perspectives, these
teams have expanded each other’s adjacent possible, thus creating something that in-
dividually would have taken much longer to develop. Therefore, the second major
contribution of this thesis is to theorize the existence of an adjacent possible in the

social space, which enlarges the adjacent possible in the content space of multiple in-
dividuals through their social interactions [1]. We incorporate this new concept in the
modelling scheme provided by the UMT, extending the model dynamics to account
for multi-agent collaborative exploration. In the model we propose, called the UrNet

model, multiple urns represent different explorers who are interconnected through a so-
cial network. This coupling allows such individuals to exploit opportunities that arise
from their social contacts. Overall, the UrNet model contributes to a more compre-
hensive understanding of innovation as a social process, emphasizing the importance
of collaboration to push the boundaries of what is possible. In particular, analyzing
various network structures, from small synthetic graphs to large real-world ones, we
demonstrate that an explorer’s pace of discovery depends on their centrality within the
social network, underscoring the crucial role that social connections play.

To further explore the influence of peers on the discovery dynamics, we employ a
real-world data set obtained from Last.fm, that is an online platform and music stream-
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ing service that focuses on music discovery, personalized recommendations, and so-
cial interactions between its users. Last.fm was originally launched in 2002 as a
music-oriented social networking site, and has since evolved into a popular music-
recommendation service. One of the key features of Last.fm is its scrobbling func-
tionality. Scrobbling means that the service automatically keeps track of the songs a
user listens to on various music streaming platforms or media players connected to the
Last.fm account, creating a comprehensive history of listening records. This informa-
tion is used to generate charts, statistics, and recommendations based on their music
tastes. Last.fm also provides users with the ability to create and join groups, share
music-related content, and connect with like-minded individuals. The platform fosters
a sense of community by allowing users to interact with each other, discover new mu-
sic based on their friends’ recommendations, and participate in various discussions and
events.

Overall, Last.fm offers a combination of music discovery and social networking,
making it a popular choice for music enthusiasts looking to explore new artists, connect
with others who share their musical interests, and expand their music library. Moreover,
this platform provides open access to the sequences of songs listened by its users, as
well as their social connections. Therefore, in the context of this thesis, Last.fm is the
perfect test bed to analyze how social interactions affect the way the adjacent possible
of each person grows. Using Last.fm APIs, we obtain a connected and representative
sample of users along with their entire listening history and their social connections.
For each user, we can hence measure their pace of discovery of new music, as well as
the structure of their space of possibilities. Moreover, thanks to the information on their
social connections, we can study how these measures relate to those of their friends.
For example, we observe that individuals with a high discovery rate tend to have a
high number of connections with others who also discover new music frequently. This
finding indicates the presence of a positive social influence, where being exposed to
peers with a strong inclination for exploration and discovery fosters an individual’s
own propensity to encounter new music.

The third major contribution of this thesis is hence to adapt and combine the
mechanisms introduced above to replicate and explain the effects of social interactions
on individual music discovery on Last.fm [2]. Specifically, we develop an agent-based
model with two main dynamics. On the one hand, agents explore the music network
and grow their individual space of possibilities as a weighted subnetwork; on the other
hand, they interact with their friends over the social network, further expanding their
adjacent-possible space. The first crucial element in our model is the representation of
the musical space as a similarity network between artists, where links signify meaning-
ful associations between them. To obtain this network, we use the same approach of the
edge-reinforced random walk with triggering, that is, we imagine that the sequences of
listening records are the result of a random walk over a network of artists. Secondly, we
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build each agent’s dynamics using the discussed mechanisms at the base of the balance
between exploitation and reinforcement of existing knowledge versus exploration and
discovery of adjacent possibilities. Finally, drawing inspiration from the UrNet model,
we also include the expansion of the adjacent possible through the social space. Specif-
ically, mimicking realistic interactions on Last.fm, agents randomly observe what their
friends have recently explored in the network, allowing for the discovery of new artists
through suggestions from their peers. This modelling approach enables us to simulate
and study the intricate process of exploration and discovery, gaining valuable insights
into the effect of social influence on the emergence of novelties. By capturing how
social interactions affect the individual exploit–explore process and replicating the dy-
namics observed in the empirical data, our model, named the ExploNet model, paves
the way for a deeper understanding of the underlying mechanisms in music exploration.

In summary, in this thesis, we present a multidimensional study of innovation and
the emergence of novelties through social interactions. By integrating empirical data
analysis, various modelling techniques, and an interdisciplinary perspective, we are
able to unveil the hidden mechanisms driving the process of innovation. Ultimately,
this work not only sheds light on the impact of social interactions on the generation
and diffusion of novelties, but also contributes to the development of powerful tools
and versatile mathematical models, based on different aspects of the concept of the
adjacent possible, to investigate how novelties emerge and how the creative process
unfolds. This general framework spans over multiple dimensions and mechanisms of
innovation, and can be potentially adapted and applied to various specific cases, as
exemplified by the application to the realm of music exploration.

1.1 Outline of the thesis

More in details, this thesis is organized in six Chapters as follows.
In Chapter 2, we conduct an extensive analysis of existing literature on innovation

dynamics. Our objective here is to review existing models that simulate human explo-
ration processes, with a specific focus on identifying the key drivers of innovation that
have been proposed thus far. The first set of models examined refers to urn models
(UMs), in which the dynamics is based on drawing colored balls from an urn [25]. By
recording the sequence of colors drawn, these models allow to study the impact of var-
ious mechanisms on the innovation dynamics [8]. Among these, the Urn Model with
Triggering (UMT) captures important aspects of real-world discovery processes thanks
to its mechanisms of reinforcement and expansion of the adjacent possible [26, 27], as
discussed in the introduction above. The second set of models reviewed in this chap-
ter pertains to random walks (RWs), which simulate exploration processes on complex
networks [40]. Contrarily to UMs where colors are mixed in the urn from which they
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are randomly extracted, RWs can naturally incorporate semantic relationships between
the elements of the network being explored. A particular set of RWs we consider
here are those with reinforcement, which have been employed to simulate innovation
processes, as demonstrated by the edge-reinforced random walk [29]. An equivalent
random-walk version of the UMT is also discussed [8]. Furthermore, we review other
models of innovation developed in other contexts. Specifically, we examine the Bak–
Sneppen model [53], which focuses on the dynamics of evolving ecosystems, where
each species is associated with a fitness value representing its competitive advantage.
We further consider Thurner’s model [20], where innovation is seen as the consequence
of a process of creation and destruction, according to Schumpeter’s theory in innova-
tion economics [21, 22]. Finally, we present an interesting application of the UMT for
the generation and growth of a social network. We also show how network theory can
be used in the context of an eye-contact experiment, highlighting, from a neurological
perspective, the importance and impact of social interactions in our every-day life.

In Chapter 3, we present a new and more general definition of novelty, representing
the first major contribution of this thesis discussed in the introduction. Acknowledging
that novelties can also stem from new combinations of existing elements, we define
a novelty of order n as the first appearance of n consecutive elements in a sequence.
To quantify the pace of discovery of novelties at different orders, we define the n-

th order Heaps’ law. Through extensive analysis of real-world sequences, we show
that processes that exhibit similar Heaps’ exponents at the first order can significantly
diverge at higher orders. Since the models described in Chapter 2 do not account for
the emergence of different paces of discovery at higher orders, we propose a novel
modelling approach, called the Edge-Reinforced Random Walk with Triggering. In this
model a random walker navigates a growing network of contents, reinforcing the edges
traversed, and triggering the addition of new nodes and edges whenever novelties are
experienced. This model captures the dynamic nature of innovation, highlighting the
complexity of the expansion of the adjacent possible.

In Chapter 4, in which we present the second major contribution of this thesis,
we shift our attention towards understanding the impact of social connections onto the
discovery process. We specifically propose a model, the UrNet model, in which many
urns, representing different explorers, are coupled through the links of a social network
and exploit opportunities coming from their contacts. Individually, the dynamics of an
explorer is governed by an UMT, which accounts for the adjacent possible in the con-
tent space. In the UrNet, instead we extend each individual urn to a socially-enriched
one, adding other colors coming from the urns of their friends, thus expanding the ad-
jacent possible through the social space. We numerically and analytically investigate
different social network structures, revealing that the pace of discovery of an agent is
influenced by its centrality in the social network. This highlights the dual nature of each
individual’s adjacent possible, encompassing both their personal exploration space and
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the opportunities arising from their social connections.
In Chapter 5, where we provide the third major contribution of this thesis, we an-

alyze a unique data set of music exploration to better understand the impact of social
interactions on individual and collective exploration with a more data-driven approach.
In particular, our data set contains the complete listening history of a large sample
of users, as well as their social connections. Firstly, analyzing this data we uncover
the heterogeneous nature of user exploration behaviors and the presence of homophily
among explorers. We thus introduce an agent-based model, the ExploNet model, draw-
ing upon the insights gained in the previous chapters regarding the expansion of the
adjacent possible in both the content and social space. In this model, each agent, repre-
senting a user on Last.fm, explores the universal network of artists, growing its space
of possibilities. At the same time, it receives recommendations from its friends, based
on their recent listened songs. Starting from a uniform population of agents, the model
reproduce an heterogeneous distribution of pace of discoveries. We find that this het-
erogeneity depends on stochastic opportunities coming from the adjacent possible in
both the content and social space. In particular, the presence of a social dimension
creates an assortative arrangement of the explorers at the local level and the emergence
of communities with similar music tastes at the global level. These findings contribute
to a deeper understanding of the role of social interactions in shaping exploration pat-
terns in online music-streaming platforms. They also provide empirical evidence of the
effectiveness and applicability of our modelling framework, highlighting its potential
application to other systems.

Finally, in Chapter 6, we summarize the main results of the thesis. Further research
ideas are also discussed, based on the findings and contributions of this thesis.
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Chapter 2

Background

2.1 Introduction and outline

Dynamical processes that emulate the way humans can explore new elements have
been the focus of many works in the last decades [25]. In this chapter, we review
some of the existing models of innovation dynamics, and analyse their main features.
In particular, we focus on understanding the key ingredients that are at the base of a
discovery process. These are indeed the fundamental building blocks of a proper model
for such processes.

The first set of models we consider is made by the so called urn models, where the
general dynamics is based on extractions of colored balls from an urn. In these models,
one can record the color of the extracted ball at each time step, creating an ordered
sequence of colors. Representing the series of items consumed, technologies used or
artworks explored, this sequence can be studied in terms of discovery rates and other
innovation footprints. In this thesis, we refer to this sequence as the sequences of events

S in the system under study.
The simplicity of these models is ideal to understand how different fundamental

mechanisms affect the discovery dynamics simulated. In particular, we check the va-
lidity of some empirical laws found across different real-world systems, such as the
Heaps’ law [14, 15] and the Zipf’s law [54–57]. The Heaps’ law describes the way nov-
elties appear in a sequence, stating that the number of different elements D(N) grows
as a power-law of the total number of items N in the sequence, i.e., D(N) ∼ Nβ , with
0 ≤ β ≤ 1. The Heaps’ law is directly related to the Zipf’s law [58–60], which instead
characterises the frequency distribution of the items in the sequence. Decreasingly or-
dering the unique elements of the sequence based on their frequency, the Zipf’s law
states that such frequency f is related to the rank R as a power-law, i.e., f(R) ∼ R−α,
with α ≥ 1.

Differently from previous urn models, the urn model with triggering (UMT) cap-
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tures both the Heaps’ and Zipf’s laws [8]. This is due to the presence of two key mech-
anisms in the UMT, namely, the reinforcement of the drawn colors, and the expansion
of the adjacent possible (AP) through the triggering of new elements in the urn when a
novelty is found. Notice that the UMT focuses on the dynamics of a single entity, for
example an individual or the society as a whole. It hence disregards the importance of
social interactions between different individuals. We will fill this gap in Chapter 4 by
coupling multiple UMTs over a social network.

The second set of models we review in this chapter concerns random walks (RWs)
for their ability to simulate exploration processes on complex networks. As a matter of
fact, even if semantic relationships between colors can be introduced in the UMT, as
done in the urn model with semantic triggering (UMST), urn models fail to properly
incorporate relationships between elements coming from empirical data. This prob-
lem is overcome by RWs on complex networks, which have been widely used to build
different exploration models [40], for example for social annotation [41], music al-
bum popularity [42], knowledge acquisition [43], human language complexity [44],
and evolution in research interests [45], among others. Interestingly, the key mech-
anisms of the UMT can also be introduced through RWs, as done for example in the
edge-reinforced random walk (ERRW) where the reinforcement mechanism acts on the
edges [29]. We will extend the ERRW to include also the expansion of the adjacent
possible in Chapter 3, where we introduce the edge-reinforced random walk with trig-
gering (ERRWT), thanks to a broader definition of novelty. Moreover, in Chapter 5,
we will consider multiple interacting agents exploring a network of artists, taking in-
spiration from the key mechanisms of discovery processes analysed in this chapter and
the advancements of Chapter 3 and Chapter 4.

Finally, we review other models coming from different fields, from biology and
economics to neuroscience and computational social science, which can help us to
understand other important factors that are not taken into consideration in the previ-
ously discussed models. On the one hand, the analysis of such models reveals the
importance of the structure of the space of possibilities in the innovation process. In
particular, we highlight how a novelty can be also a new combination of existing (or al-
ready explored) elements [20, 21]. This will be the starting point for a new measure of
the pace of discovery and a more complex representation of the space of possibilities,
discussed in Chapter 3, which relates to the appearance of novelties of higher order,
i.e., combinations of more than one element. On the other hand, these works highlight
the impact of social interactions in the innovation process. For example, in the con-
text of evolutionary biology, a mutation of a species influences the fitness landscape of
other closely connected species [53]. Moreover, thinking about human interactions, we
show that even a simple eye contact between two individuals can have a strong impact
on the brain activity and choices of the two, even for very simple tasks. In Chapter 4
and Chapter 5, we will hence study the effect of more complex social interactions in
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the innovation process, incorporating collaboration and diffusion of discoveries in our
modelling framework of innovation.

This chapter is structured as follows. Firstly, in Sec. 2.2 we analyse different urn
models in literature. Because of their simplicity, the analysis of the pace of discovery
in these models can be done analytically. The order of the models presented in this
section is merely chronological. More in details, we introduce Polya’s urn model in
Sec. 2.2.1, Yule–Simon’s model in Sec. 2.2.2, Hoppe’s urn model in Sec. 2.2.3, and
the urn model with triggering (UMT) in Sec. 2.2.4. Moreover, in Sec. 2.2.5 we go over
an extension of the UMT, i.e., the urn model with semantic triggering (UMST), where
the notions of semantics and correlated novelties are introduced in the context of urn
models.

Secondly, in Sec. 2.3 we consider two families of RWs that include the core mech-
anisms introduced in the UMT in exploration processes of networks. In particular, in
the RW version of the UMST, shown in Sec. 2.3.1, visited nodes are reinforced, while
in the ERRW introduced in Sec. 2.3.2 the reinforcement acts on the traversed edges.

Then, in Sec. 2.4 we review other models of innovation coming from other fields of
study. In particular, in Sec. 2.4.1 we take into consideration the Bak–Sneppen model,
where innovation is seen from a biological point of view as a sequence of subsequent
genetic mutations. In Sec. 2.4.2, instead, we analyze innovation from an economic
perspective through Thurner’s model. Here, innovation comes from the combination
of goods creating new ones and making other ones obsolete.

Furthermore, in Sec. 2.5.1 we go over an application of the UMT to model the
emergence and evolution of social networks. The importance of social interactions is
also highlighted in Sec. 2.5.2, where we analyze the effect of eye contact on the choices
and on the brain activity of the participants of a recent scientific experiment.

Finally, we summarize the main findings of this chapter in Sec. 2.6. Specifically, we
discuss the impact of the various mechanisms on the innovation properties of discov-
ery processes, highlighting their importance for the models proposed in the following
chapters.

2.2 Modelling discovery processes with urn models

2.2.1 Polya’s urn model

In 1930, George Polya proposed a model, that is now referred to as Polya’s urn model
(UM) [24]. In its classical version, N0 balls of different colors are initially placed in an
empty urn. Then, at each time step, a ball is drawn uniformly at random from the urn.
It is hence put back in the urn along with other ρ balls of the same color. The adopted
mechanism leads to a rich-get-richer type of dynamics. Indeed, the addition of ρ balls
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of the extracted color increases the likelihood to draw this color again in the future. For
this reason, ρ has also been referred to as the reinforcement parameter.

Notice that the reinforcement and the rich-get-richer mechanisms are present in
many natural [59, 61–64] and human [65–71] processes, as well as in reinforcement
learning algorithms [19]. Moreover, the rich-get-richer mechanism, reinvented as pref-

erential attachment mechanism in the network science community, is a key feature of
the growth of most real-world networks [36], as already pointed out in 1965 about sci-
entific citation networks [72]. This has inspired various models of network growth, for
example the Barabási-Albert (BA) model for network generation [32]. In this model,
such mechanism is present in the form of a preferential attachment rule, where a new
node connects to some existing nodes with probability proportional to their degree.
This model leads to a family of possible networks which has many statistical proper-
ties in common with most real complex networks.

In order to analyse the appearance of novelties in Polya’s urn, whenever we extract
a ball from the urn we annotate its color on a sequence S of size N , which stores
the whole history of the simulation. Therefore, each extraction increases of a unit the
intrinsic time t of the system. We can thus suppose that the length of the sequence is
equal to the number of time steps of the model, and use the variable t instead of N to
measure various discovery properties of such sequence generated by the model.

Let us hence analyze what is the time evolution of the number of novelties in time in
Polya’s urn. In particular, we check the validity of the Heaps’ law [15], which indicates
an asymptotic power-law behaviour D(t) ∼ tβ for the number of different elements
D(t) in a sequence of length t, where β ∈ [0, 1] is called the Heaps’ exponent. For the
simplicity of the model, we can study analytically the typical behaviour of D(t). The
following procedure, based on a master equation and its continuous approximation, is
standard, and can be applied to other urn models. It relies on the estimation of the
probability of drawing a new color, which is easily determined in this case. Recalling
that the total number of colors inside the urn is fixed and equal to N0, and that at each
time step we add ρ balls in the urn as a reinforcement of the drawn color, the total
number of balls in the urn after t extractions is N0 + ρt. Moreover, since there is
only one ball for each color never extracted from the urn, the number of balls of never
extracted colors is N0 − D(t). Therefore, at the next time step (t + 1), the value of
D(t+ 1) is

D(t+ 1) =

D(t) + 1 with probability P (“Extract new color") = N0−D(t)
N0+ρt

D(t) with probability P (“Extract old color") = ρt+D(t)
N0+ρt .

(2.1)

With abuse of notation, denoting with D(t) the expected value of the number of differ-
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ent elements at time t, from Eq. (2.1) the expected value of D(t+1)−D(t) is equal to
the probability of extracting a new color, i.e., we obtain the following discrete master
equation:

D(t+ 1)−D(t) = P (“Extract new color") =
N0 −D(t)

N0 + ρt
. (2.2)

For large times t ≫ 1, we can approximate the finite difference D(t+1)−D(t)
1 with the

derivative dD
dt . We thus obtain the continuous master equation:

dD

dt
=

N0 −D(t)

N0 + ρt
. (2.3)

With the initial condition D(0) = 0 the previous equation has solution

D(t) = N0

[
1−

(
1 +

ρt

N0

)− 1
ρ

]
. (2.4)

We hence find out the number of different balls D(t) does not grow as a power-law
function, resulting in the absence of the Heaps’ law, which is instead a key phenomenon
of empirical processes [8]. This result comes with no surprise, since the Heaps’ law
foresees a sublinear power-law behaviour, which is infinite by definition, while here
D(t) ≤ N0 ∀t. Continuing the comparison with the BA model, the problem is that
there is no growth of the total number of colors in the urn, which is instead present in
the BA model, where new nodes are added as the network grows.

2.2.2 Yule–Simon model

As we have seen in the last section, a classical Polya’s urn has a fixed amount of differ-
ent colors to choose from, which results in a pace of discovery too slow. Therefore, we
need to find other mechanisms to add new colors in the urn. The Yule process [73] is
one of the first mechanisms introduced that solve this issue, generating the empirically
observed power-laws. Even if it is not exactly an urn model, we include it here because
many processes with reinforcements have been extending the Yule model [39]. For
example, as we will see in Sec. 2.2.4, this model can be reformulated as a particular
case of the urn model with triggering.

In 1925, George Udny Yule [73] designed a probabilistic model generating mu-
tations to explain the evolution and diversity of species over time [56, 74, 75]. The
resulting distribution of species by genera is indeed a power law distribution, as it has
been found for many datasets [57, 61]. Following the argument of the Nobel laureate
Herbert Alexander Simon in 1955 [76], Yule’s assumptions are too restrictive and fit
only biological contexts. For this reason, we present the model generalised by Simon,
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which relies on weaker assumptions.
Simon considered in fact a stochastic process of text generation [76]. Starting with

a set of N0 words, at each time step a random word is selected and written in a sequence
S. With probability p the chosen word is a new one, i.e., different from all other
already-existing words. Notice that the existing words include the N0 initial words and
all the words in the sequence S. Finally, with probability 1 − p the word is chosen
randomly from the set of existing words. Therefore, the probability to choose a word
follows a “rich-get-richer” mechanism. In contrast to Polya’s urn model, the total
number of different words grows along with the process. Nevertheless, this model has
some limitations in terms of Heaps’ law, as we are about to show.

Similarly to what we have done for the Polya’s urn in Sec. 2.2.1, we can easily
derive the continuous form of the master equation and its solution for large times:

dD

dt
= p =⇒ D(t) = D0 + pt. (2.5)

Therefore, the Heaps’ law is present in its linear form, in contrast with what has been
found in most real cases, where a sublinear scaling is present [8].

Moreover, in order to find the frequency-rank distribution at the base of the Zipf’s
law, let us call ni(t) the number of copies of the i-th word at time t, which can be
obtained as a solution of the following differential equation:

dni

dt
= (1− p)

ni

t+N0
, ni(ti) = 1 =⇒ ni(t) =

(
t+N0

ti

)1−p

, (2.6)

where ti is the time step in which the word i has been first written in the sequence.
Notice the power law functional form of ni(t), which confirms analytically the “rich-
get-richer” mechanism: the sooner a word gets discovered, the more likely it is picked
in the future. From Eq. (2.6) we can obtain the frequency-rank distribution:

P (ni ≤ n) = P
(
ti ≥ t n− 1

1−p

)
= 1− P

(
ti < tn− 1

1−p

)
(2.7)

P
(
ti < tn− 1

1−p

)
≃ D(t n− 1

1−p )

D(t)
=

D0 + p t n− 1
1−p

D0 + pt
∼ n− 1

1−p (2.8)

=⇒ p(n) =
∂P (ni < n)

∂n
∼ n−γ =⇒ f(R) ∼ R−α, (2.9)

with γ = 1− 1/(1− p) = (2− p)/(1− p), and α = 1/(γ − 1) = 1− p.
To sum up, we have found a linear Heaps’ law, because of the constant rate of ad-

dition of new words, in contrast with what is displayed in many datasets where there is
usually a sublinear growth rate [8]. Moreover, this model does not account for higher
values of the Zipf’s exponent α in the Zipf’s law, since it is upper bounded to 1. In-
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stead, a heavy tail with exponent higher than 1 is often found in the frequency-rank
distribution. Nevertheless, this is a first remarkable result, considered its simplicity
and generality for the time it was first invented.

As a matter of fact, the model of text generation described in this section can be ex-
tended to other contexts, substituting words with any other kinds of data, colors, songs,
etc. For example, the Barabási-Albert model (BA) of network generation [25, 32] is
based on the Yule–Simon model. As we have said in Sec. 2.2.1, BA is characterised
by a growth of the network using a preferential attachment rule, which are the same
ingredients of the Yule–Simon model. Moreover, as shown in [25], we can map the two
models, so that they can be considered equivalent, even though with different interpre-
tations. In the BA model a new node of the graph is introduced at time t by connecting
it to m existing nodes chosen with probability proportional to the number of their first
neighbours. This effectively corresponds to a deterministic Simon’s process with the
probability of extracting an old token set to (1−p) = 1

2 . It is deterministic because for
a correct mapping at every even time step there is always a rich-gets-richer in action,
while in the classical Simon’s model the entrance of an old token in the stream at any
time is conditioned to the extraction of a random number. The analogy between the
two models is complete after identifying the number of occurrences of the tokens in
Simon’s stream with the connectivity of the nodes in the graph generated with the BA
model.

2.2.3 Hoppe’s urn model

Fred M. Hoppe introduced for the first time in 1984 [77] a mechanism to extend the
number of possible novelties in the framework of urn models. He took inspiration
from Ewens’ sampling formula [78], which described the allelic partition of a random
sample of n genes from an infinite population at equilibrium. Such sampling evolves
according to a discrete time neutral Wright-Fisher (WF) process [79, 80] with constant
mutation rate µ per gene. The WF model describes a population with discrete, non-
overlapping generations. In each generation the entire population is replaced by the
offspring from the previous generation. Parents are chosen via random sampling with
replacement. The allelic distribution in the offspring is obtained randomly from the
parents, with a fixed mutation rate µ for each gene. Hoppe applied the idea behind
such stochastic mutation mechanism to Polya’s urn model.

In Hoppe’s urn there are two different types of balls: normal colored balls of weight
1, as in Polya’s urn, and one special black ball of weight θ. The dynamical process
taking place in this model can be considered an upgrade of that in Polya’s urn model.
The urn is initialized with a black ball, and at each time step a ball is extracted at
random, with probabilities proportional to their weight. When a black ball is drawn, a
ball of a brand new color is added to the urn; when a colored ball is drawn, another ball
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of the same color is placed back in the urn as a reinforcement. In such dynamics, the
extraction of the black ball represents the event of a mutation.

As we did for the previous models, we can derive analytically the number of differ-
ent colors D(t) after t extractions. The probability to draw a black ball at time t, and
hence to add a new color in the urn, is θ

θ+t . The master equation is then

D(t+ 1) = D(t) +
θ

θ + t
. (2.10)

This recurrence equation is continuously approximated by

dD

dt
=

θ

θ + t
, D(0) = 0, (2.11)

with solution

D(t) = θ ln

(
1 +

t

θ

)
. (2.12)

Analogously, we can derive an analytic approximation for the Zipf’s law, which is

f(R) =
t

θ
exp

(
−R− 1

θ

)
. (2.13)

As we can see, the model predicts a novelty rate of appearance too much slower
than what is found in many real systems. Heuristically, this is because the probability
of extracting the black ball decays too fast, since its weight is fixed whilst the urn grows
linearly. As a consequence, the number D(t) of different colors in the urn grows only
logarithmically with the number of extractions t. This is due to the lack of a consistent
growth process of the balls responsible for the innovation of the system.

2.2.4 Urn model with triggering

Model definition

In 2014 Francesca Tria, Vito D. P. Servedio, Steven Strogatz and Vittorio Loreto [8]
generalised the Polya’s urn model so that one novelty can trigger further ones, from
which the name “Urn model with triggering” (UMT). In fact, the triggering of novel
colors in this model is essential to overcome the growth limitations seen in the classical
Polya’s urn.

The idea behind the UMT is to maintain the valuable “rich-get-richer” mechanism
of the precedent models, while consistently introducing new colors in the urn that are
related to each other. To this end, they generalised the mathematical framework of
Polya’s urn model, adding what is called the space of possibilities. To explain this new
concept, let us imagine that the colors inside an urn are nodes of a network, that is the
urn is embedded in an ideal space with semantic relations between the objects. These
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can be for example songs, which can be linked if they share the same artist, or any
other real network we can think of. Notice that in Polya’s urn model the number of
colors is fixed, and therefore with this embedding we obtain a space where the number
of elements is fixed. In Polya’s urn model, exploring this space means jumping from
an element to another, each time reinforcing the weight of the next element, making it
easier to move to that element again in the future.

In the UMT, we go beyond the exploration of a limited space of possibilities, with
a triggering mechanism responsible for adding new adjacent possible elements into the
space. We define the adjacent possible as the set of elements in the space of possi-
bilities that are only one step away from what has been explored so far [13], and so
are considered within reach from the current state of knowledge. Then, each time an
element is explored for the first time, such element is discovered and reveals all its
neighbouring elements, or its adjacent possible, expanding the space of possibilities.
Let us suppose that we have explored some part of the space of possibilities we have in-
troduced before and triggered other adjacent possibilities yet to be explored. Therefore,
in the next step we can either move to an element that has already explored before, or
to an adjacent possible element of some previously explored one. If we decide to move
to a new element, we continue triggering new elements and the space of possibilities
grows more and more as we explore it.

In details, the UMT can be formulated as follows [8]:

(i) an urn is initialized with N0 balls of different colors and same weight;

(ii) at each time step a ball is randomly extracted from the urn and its color analysed;

(iii) the drawn ball is put back in the urn with other ρ new copies of the same color
(reinforcement mechanism);

(iv) moreover, if the drawn color has never been drawn in the previous extractions,
ν + 1 balls of new distinct colors are introduced inside the urn (triggering mech-
anism).

As we have done for the previous models, one can extract the sequence of extrac-
tions and make the usual analysis for the Heaps’ and Zipf’s laws [8]. The numeri-
cal simulations of the model show a power law distribution for both the Heaps’ and
Zipf’s laws. In particular, the Heaps’ exponent is found to be either linear or sublinear
depending on the set of parameters. Moreover, the Zipf’s exponent seems to be the
anti-reciprocal of the Heaps’ exponent, which is often seen in the data sets and theoret-
ically reasonable under particular hypotheses [58, 81]. All this is shown in Figure 2.1
where the Heaps’ and Zipf’s laws for some realisations of the model are compared to
those for some datasets studied in Ref. [8]. Further notice that the UMT is capable to
reproduce another empirical finding, which is the Taylor’s law [26, 27, 82, 83]. This
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Figure 2.1: Heaps’ law and Zipf’s law in real datasets and in the urn model with
triggering. Image courtesy of Ref. [8]. Heaps’ law (a–e) and Zipf’s law (f–l) in real
datasets (a–d) and (f–i) and in the urn model with triggering (e,j). Gutenberg (a), (f),
Last.fm (b), (g), Wikipedia (c), (h), del.icio.us (d), (i) datasets, and the urn model
with triggering (e), (j). Straight lines in the Heaps’ law plots show functions of the
form f(x) = axβ , with the exponent β equal respectively to β = 0.45 (Gutenberg),
β = 0.68 (Last.fm lyrics), β = 0.56 (Last.fm artist), β = 0.77 (Wikipedia) and
β = 0.78 (del.icio.us), and to the ratio ν/ρ in the urn model with triggering, showing
that the exponents for the Heaps’ law of the model predicted by the analytic results
are confirmed in the simulations. Straight lines in the Zipf’s law plots show functions
of the form f(x) = ax−α, where the exponent α is equal to β−1 for the different β’s
considered above. Note that the frequency-rank plots in real data deviate from a pure
power-law behavior and the correspondence between the β and α exponents is valid
only asymptotically (for more details see [8]).
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law quantifies the scaling properties of the fluctuations of the number of novelties in
a discovery process, stating that the standard deviation of D(t) grows as a power-law
function of its mean. We refer the interested reader to Refs. [26, 27] for the analysis of
Taylor’s law in the UMT.

Thanks to these properties, the UMT has been used to study in various contexts,
for example, to explain the rise and fall of popularity in technological and artistic pro-
ductions [28], the emergence and evolution of social networks [30], and the evolution
of the cryptocurrency ecosystem [31].

Analytical solution

Let us define U(t) the total number of balls in the urn up to time t, and U ′(t) the
number of unique elements in the urn at time t. Being D(t) the number of different
element extracted from the urn up to time t, we can write the following equation for
the Heaps’ law:

dD(t)

dt
=

U ′(t)−D(t)

U(t)
. (2.14)

Eq. (2.14) can be rewritten as a function of the parameters of the model. In particular,
we can write the total number of balls U(t) as the initial number of balls N0, plus the
ρt balls added as reinforcement at each time step, plus the (ν+1)D(t) balls added due
to the triggering mechanism:

U(t) = N0 + ρt+ (ν + 1)D(t). (2.15)

Similarly, the number of unique elements in the urn at time t, U ′(t), can be obtained
by subtracting from U(t) the ρt repeated balls coming from the reinforcement, that is:

U ′(t)−D(t) = [U(t)− ρt]−D(t) = N0 + νD(t). (2.16)

Thus, using Eq. (2.15) and Eq. (2.16) in Eq. (2.14) we obtain:

dD(t)

dt
=

N0 + νD(t)

N0 + ρt+ (ν + 1)D(t)
. (2.17)

From now onwards we suppose that t ≫ N0, so that we can disregard N0 in Eq. (2.17)
and in the similar equations in the following sections. Therefore, after the introduction
of the auxiliary variable z(t) = D(t)

t , Eq. (2.17) can be rewritten as:

dz(t)

dt
t+ z(t) =

νz(t)t

ρt+ (ν + 1)z(t)t
, (2.18)
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which can be integrated as:

∫ z(t)

z(t0)

ρ+ (ν + 1)z(t)

z(t)[ν − (ν + 1)z(t)− ρ]
dz(t) =

∫ t

t0

1

t
dt. (2.19)

The asymptotic solution (t → ∞) depends on the parameters ρ and ν. Starting from
Eq. (2.19), it can be shown, as in the Supplemental Material of Ref. [8, 26], that the
asymptotic solution for D(t) is


ρ > ν D(t) ≈

t→∞
(ρ− ν)

ν
ρ t

ν
ρ ,

ρ = ν D(t) ≈
t→∞

ν
ν+1

t
ln t ,

ρ < ν D(t) ≈
t→∞

ν−ρ
ν+1 t.

(2.20)

Notice how we obtain precisely the Heaps’ law with sublinear growth for ρ > ν, as
seen in empirical processes [8, 15].

It can also be shown analytically that the asymptotic power-law behavior of the
frequency-rank distribution typical Zipf’s law is valid for the UMT. In fact, we can set
up the differential equation for the number of elements ni of a specific color i, that
reads:

dni

dt
=

niρ+ 1

N0 + (ν + 1)D + ρt
. (2.21)

The solution of this equation is given by
ρ > ν ni ≈

t→∞

t

ti

ρ ≤ ν ni ≈
t→∞

(
t

ti

) ρ
ν (2.22)

where ti is the time at which the element i occurred for the first time in the sequence.
From this, one can obtain the Zipf’s law [8], which in this case is

f(R) ≈
t→∞

R− ρ
ν , (2.23)

Comparison with Yule–Simon model

Finally, let us notice that the Yule–Simon model can be obtained from the UMT in the
case ρ < ν, where in fact for the UMT we have a linear growth for the Heaps’ law, like
in the Yule–Simon model. In particular, we have p = ν−ρ

ν+1 . However, the dynamics
taking place in the two models are very different in nature. In the Yule–Simon model,
in fact, the linear growth comes from a constant rate of innovation p, while in the UMT,
for ρ < ν the linear growth is due to the presence in the urn of too many colors to be
discovered, which keeps triggering new ones. Finally, in both cases we have a similar
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Zipf’s law. In fact, for the UMT the Zipf’s exponent is ρ/ν, while for the Yule–Simon
model it is 1− p = 1− ν−ρ

ν+1 = ρ+1
ν+1 , having used the correspondence between the two

models given by the Heaps’ laws.

2.2.5 Urn model with semantic triggering

In the datasets studied in Ref. [8] and first analyzed in Fig. 2.1 we can also find sig-
nificant semantic correlations between the appearance of elements and novelties in the
sequence. Semantic correlations in a sequence of elements explored refer to the rela-
tionships or associations between such elements, based on their meaning or semantics.
For example, it has been seen how a novelty may trigger another one, thus correlating
an earlier novelty with a later one. For example, discovering an interesting song may
conduct to search for other music by the same artist. In the context of language or
text, semantic correlations capture the semantic connections between words, phrases,
or sentences that share related or similar meanings. When analyzing a sequence of
words or text, identifying semantic correlations can provide insights into the underly-
ing structure, context, or thematic content of the sequence. These correlations can then
be used to extract meaningful patterns, infer relationships between elements, or enable
various natural language processing tasks.

For a generic sequence of events made by words read, technologies used, songs
listened, etc., one can observe semantic correlations by studying the semantic distribu-
tion of the elements inside the sequence, for example measuring the Shannon entropy
of the events associated to the same semantic group, or label. Roughly speaking, this
entropy measures the extent of clustering among the events associated to the given
semantic group, with a larger clustering denoting stronger correlations among their
occurrences, and thus a stronger triggering effect of the adjacent possible. In order
to compute the Shannon entropy of a semantic group, we first need to introduce the
notion of semantics, identifying a semantic label to each element of the system under
study. For example, in a dataset of music listening records, where the sequence is made
of songs, the assigned label can be the corresponding artist. In the UMT, we can also
identify the labels using the triggering events. We divide the initial N0 balls of the urn
into N0/(ν + 1) groups, each ball in the same group sharing the same label. Then,
whenever a ball is drawn, the balls of the same color added to the urn get the same
label of the drawn ball. If the ball is new, a triggering event takes place, and all the new
ν + 1 balls get the same new label, since they all share the same “mother” color. Such
semantics will be used to create a more refined version of the model, called the Urn

Model with Semantic Triggering (UMST), as defined below.
Let us first show how we calculate the Shannon entropy of a the distribution of

the elements of a certain label for a given sequence with semantics. Let us consider a
label A appeared in the considered sequence and let k be the number of occurrences
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of label A in the sequence. Let us consider the subsequence beginning from the first
appearance of A to the end of the sequence and let us divide it in k equal intervals and
let fi be the number of occurrences of label A in the i-th interval. Then, the Shannon
entropy of label A is given by

SA(k) = −
k∑

i=1

fi
k
log

fi
k
. (2.24)

Let us remark that even if there is a minus sign, this number is always non-negative. Let
us show two clarifying examples. If fi = 1 for all i = 1, . . . , k, that is the occurrences
of A are equally distributed among the intervals, then SA(k) would get its maximum
value log k. On the contrary, if all the occurrences are in the same interval, for example
the first one, we have f1 = k, fi = 0 for all i = 2, . . . , k, and SA(k) = 0. This means
that low values of this entropy are related to a higher extent of clustering of the elements
sharing the label A in the sequence. However, for a more significant evaluation of this
measure, we need to compare the obtained entropy value with a random case, where
we disrupt the semantic correlations of elements in the sequence. To do so, we globally
reshuffle the sequence of labels and recalculate the entropy. Another null case can be
obtained with a local reshuffling, as explained in [8]. In this case, for each label A, we
consider the subsequence of the original sequence starting from the first appearance of
A. Then we reshuffle the subsequence obtained, keeping fixed just the first element A.
Then we calculate the entropy of A with Eq. 2.24.

From the simulations of the UMT, we observe no difference between the entropy
distribution of the simulated sequence and the distribution of the reshuffled one. This
means that in the UMT the extracted labels are almost random and show no correlations
among themselves and no clustering, which is instead observed in the datasets. To
see significant changes, the authors have introduced a new part to the model, giving
rise to the urn model with semantic triggering (UMST). Let us hence introduce a new
parameter η ∈ ]0, 1] responsible for the rise of semantic correlations. Let us save the
color of the last drawn ball and let us suppose it has color x and label Y . Let us suppose
that the first ball of color x has been introduced in the urn when extracting the color a
(i.e., a is “mother” of x), and that the new colors introduced when picking x for the first
time (the “sons” of x) have label Z. Then, at the next time step, we make an extraction
from the urn after having changed the weights of the ball according to the following
scheme:

• the balls of color a, the balls of label Y , and those of label Z get weight 1. Let
us note that these balls are all semantically correlated with the ball extracted
in the previous time step. In fact, they are in order the “mother” (the color
generating x), the “brothers” (the colors generated with x), and the “sons” (the
colors generated by x).
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Figure 2.2: Entropy distribution comparison between datasets and the urn model
with semantic triggering. Image courtesy of Ref. [8]. Normalised entropy of a se-
quence associated to a specific label A vs. the number of events, k, with that label. The
entropy is averaged for each k over the labels with the same number of occurrences.
The datasets used are (a) Wikipedia, (b) Del.icio.us, (c) Last.fm. For more insight on
those datasets see [8]. In (d) the plot for the model is an average over 10 realizations
of the process, with parameters ρ = 8, ν = 10, η = 0.3, and N0 = ν + 1.

• All the other balls in the urn get weight η ≤ 1.

With low values of η one can obtain an entropy distribution (as measured in Equa-
tion 2.24) significantly lower than that of the random sequence, and therefore more
similar to the real ones, as shown in Figure 2.2, where the entropy distribution of a
realisation of the UMST is shown in with comparison with other datasets.

Finally, let us note that for the UMST the Heaps’ and Zipf’s exponents are different
from the standard case with η = 1 of the previous section. For example, the authors
have found the following bounds for the Heaps’ exponent β:

min

(
νη

ρ
, 1

)
≤ β ≤ min

(
ν

ρ
, 1

)
. (2.25)

Even though the Heaps’ law is valid, the UMST is not able to properly model the se-
mantic associations between the elements explored, as we are going to show in Chap-
ter 3.
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2.3 Modelling discovery processes as random walks on
networks

2.3.1 Random walk model with semantic triggering

In the previous Sec. 2.2 we have reviewed and analyzed the properties of some dis-
covery models based on extractions from an urn. In particular, we have seen how the
urn model with triggering (UMT) can reproduce the empirical footprints of innova-
tion and exploration processes, such the Heaps’ law, the Zipf’s law, and the semantic
correlations [8]. Authors of Ref. [8] further introduce an equivalent version of UMT
and UMST in the form of a random walker (RW). This version builds upon the idea of
the space of possibilities as a network to be explored, where the nodes in the network
represent the colors in the urn and the weight of a node indicates number of balls of
the corresponding color. Similarly to the UMST, links between the nodes are made
depending on their semantic information (their label), based on the concept of the ad-
jacent possible.

Let us start with a graph G0 made of N0 nodes of same weight wi = 1, divided
into N0/(ν + 1) cliques, each node in the same clique sharing a common label and
connected to all other nodes in the clique. We then draw a link between each pair of
nodes belonging to different cliques with probability η ≤ 1. Let us also define the
graph Gt as the instance of the graph after t time steps. Notice that we can encode the
topological structure of the graph into its adjacency matrix At = {atij}. If two nodes i
and j are connected, then the corresponding value in the adjacency matrix is atij = 1,
otherwise it is atij = 0. Moreover, to replicate the dynamics of the UMST, we assume
that the RW can remain in the same node, i.e., each node is connected to itself, or,
mathematically, atii = 1 for all nodes i in Gt.

After initializing the network, the exploration process starts from a random node of
the network according to the following steps.

1. At each (discrete) time step t, the RW moves to a neighbour node or stays in the
previous node with a weight-dependent probability. In other words, assuming
that the RW is in node i in the previous time step, the probability that the RW
moves from node i to node j in the network is

πt
ij =

atijw
t
j∑

l∈Gt atilw
t
l

. (2.26)

Notice that here j can be the same as i.

2. Assuming that the RW moves to node j, the selected node weight is reinforced
by ρ, i.e., wt+1

j = wt
j + ρ.
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3. If the visited node j is new, i.e., it is visited for the first time by the RW, then the
adjacent possible expands, with more nodes entering in the network. In particu-
lar, a fully-connected clique of ν+1 new nodes with unitary weight and common
new label are added in Gt+1. These new nodes are connected to the visited node
j, the mother node, who triggered their appearance in the network. Moreover,
for each node in the clique and each other node in the graph, we draw a link
between them with probability η ≤ 1.

If η = 1, this model perfectly maps the UMT. In fact, for each new node, all
possible links are drawn, making the graph Gt always fully connected. Therefore, at
each time step the RW can move to any node in the graph, reinforcing its weight and
adding ν+1 new nodes if the visited node is new, like in the corresponding urn model.

On the contrary, when η < 1 the correspondence with the UMST is not one-to-
one. In fact, in the case of the graph the connections between two nodes are fixed (or
quenched) and the graph is not fully connected. This means that in the RW version
of the UMST there are some nodes that are not reachable with one step only. Instead,
in the urn version, one can go from one color to any other one, with the parameter η,
responsible for the semantic triggering, affecting the weight of the other colors dynam-
ically at each step. Despite this difference, the statistical properties of the two models
turn out to be equivalent from a qualitative point of view, also in the case η < 1 [8]. In
Fig. 2.3, we report some examples of the Heaps’ and Zipf’s laws obtained simulating
this RW model with triggering. Here you can see how the change of the parameter η
influences the appearance of novelties. A higher value of η indicates a higher number
of nodes accessible from any node, which translates into a higher Heaps’ exponent,
i.e., a higher rate of discovery.

Finally, notice that the initial topology of the network can be naturally extended
to deal with a more realistic network. The semantic relations are in fact encoded in
the growing graph topology, and one can imagine different ways of linking the new
nodes, corresponding to more complex and realistic semantic structures, as we will do
in Chapter 3 and Chapter 5.

2.3.2 Edge-reinforced random walk model

In Sec. 2.3.1 we have seen a first example of random walk (RW) with reinforcement
to model the exploration of a space of possibilities typical of innovation processes. A
lot of attention has indeed been given to the class of RWs with reinforcement [39, 84,
85], which have been successfully applied to biology [86] and mobility [87, 88], to
name a couple of examples. In the adaptation of the UMST to a RW, the reinforce-
ment is introduced at the level of the node. In other words, the probability to move to
a neighboring node depends on the weight of the adjacent nodes, which is reinforced
whenever explored. However, in literature there are other examples of RWs, where the

40



Figure 2.3: Heaps’ law and Zipf’s law for the RW model with semantic triggering.
Image courtesy of Ref. [8]. Heaps’ law (a–c) and Zipf’s law (d-f) in simulations of
the Random walk model with semantic triggering with parameters ρ = 7, ν = 10,
and η = 0.2 (a,d), 0.3 (b,e), and 0.4 (c,f). Straight lines in the Heaps’ law plots
(a-c) show functions of the form f(x) = axβ , with the exponent β representing the
Heaps’ exponent. Straight lines in the Zipf’s law plots (d-f) show functions of the form
f(x) = ax−α, where the exponent α is approximately equal to β−1 for the different
β’s considered above. Notice how the Heaps’ exponents β increase with increasing
values of η, while the value of α decrease. Further note that the frequency-rank plots
in real data deviate from a pure power-law behavior and the correspondence between
the β and α exponents is valid only asymptotically (for more details see [8]).

reinforcements acts at the level of edges instead of nodes. Specifically, the concept of
edge reinforcement [89, 90] was introduced in the mathematical literature by Copper-
smith and Diaconis in 1987 [91]. Interestingly for the scope of this thesis, in 2018,
Iacopo Iacopini, Staša Milojević and Vito Latora have developed an edge-reinforced
random walk (ERRW) model that has all the ingredients of an innovation model [29].
For instance, it can reproduce the emergence of novelties and the pace of discovery as
captured by the Heaps’ law [15].

Similarly to the RW version of the UMST, the ERRW moves from a node to a
neighboring one on an underlying network of relations among concepts, technological
advancements, or other items explored in the discovery process. However, differently
from the UMST networked model, whenever the ERRW traverses a link, the link itself
is reinforced instead of the chosen following node. More in details, the ERRW model
is initialized over a weighted connected graph G (V, E), with a fixed number of nodes
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N = |V| and links M = |E|. In the context of the exploration of concepts, each node
of the graph represents a concept, and the presence of a link (i, j) denotes the existence
of a direct relation between the two concepts i and j. In this model, the structure of
the graph is assumed to be fixed, while the weights of the edges can change in time
according to the dynamics of the RW. The evolution of the weights of the graph is fully
described by the non-negative time-dependent adjacency matrix W t =

{
wt

ij

}
. At the

beginning of the simulation, all existing links in E are initialized with unitary weight,
i.e., w0

ij = 1 ∀(i, j) ∈ E . Then, the dynamics of the walker is defined as follows.

1. At each time step t, assuming that the walker is positioned on node i, it moves
from node i to a neighboring node j with probability proportional to the weight
of the connecting edge. Formally, such probability is

πt
ij =

wt
ij∑

l∈V wt
il

. (2.27)

Notice that here we assume that G has no self-loops, so that the walker changes
position at each time step.

2. Whenever the walker moves from node i to node j, the corresponding edge (i, j)
is reinforced by a quantity ρ, i.e., wt+1

ij = wt
ij + ρ.

Similarly to the reinforcement mechanism of Polya’s urns, the edge-reinforcement
mechanism mimics the fact that the relation between two concepts is reinforced ev-
ery time the two concepts are associated in the cognitive process. As supported by
empirical observations, we expect indeed the walkers to move more frequently among
already known concepts and, from time to time, to discover new nodes. Continuing the
comparison between the ERRW model and the UMST networked model, notice how
in the ERRW model there is no triggering of new nodes or links entering the network.
Instead, the concept of the adjacent possible is naturally included through the under-
lying network, without the need of a triggering mechanism and further parameters. A
graphical representation of the ERRW model is shown in Fig. 2.4.

In Ref. [29], large small-world (SW) synthetic networks and extensive real-world
networks have been used. In particular, the SW networks have been obtained using the
Watts-Strogatz model [92, 93], while the empirical network representing the relations
among the keywords of peer-reviewed articles. In particular, the scientific articles were
taken from core journals of four fields between 1991 and 2010, using the Web of Sci-
ence database [94]. For each field, a real temporal sequence S has been created using
the relevant concepts extracted from a text analysis of each abstract. Analyzing such
sequences, the Heaps’ law has been empirically observed. For example, the number
of different concepts in astronomy grows as a power-law function of the size of the
sequence, with an Heaps’ exponent β = 0.82. Moreover, these concepts have then

42



Figure 2.4: The Edge-Reinforced Random Walk (ERRW) Table courtesy of
Ref. [29]. The ERRW produces a coevolution of the network with the dynamics of
the walker. At time t the walker is on the red node and has already visited the gray
nodes, while the shaded nodes are still unexplored. The widths of edges are propor-
tional to their weights. At time t + 1. the walker has moved to a neighbor (red) with
probability as in Eq. (2.27), and the weight of the used edge has been reinforced by ρ.
At this point, the walker will preferentially go back, although it can also access the set
of “adjacent possible” (green).

Research field Papers N ⟨k⟩ C L β ρ

Astronomy 97 255 103 069 172 0.41 2.48 0.82 330
Ecology 18 272 289 061 52 0.89 2.98 0.85 105

Economy 7 100 60 327 20 0.91 3.69 0.91 6
Mathematics 7 874 48 593 19 0.89 3.69 0.87 20

Table 2.1: Table courtesy of Ref. [29] Statistics of the network of concepts in four
research fields from Web of Science, together with the empirical Heaps exponent β
and the value of ρ that reproduces it. N is the number of concepts, ⟨k⟩ is the average
degree, C is the clustering coefficient, and L is the characteristic path length.

been used to create the underlying networks of relations among concepts from their
co-occurrence in the abstracts.

The ERRW model manages to reproduce the Heaps’ law, as well as the semantic
correlations among novelties, either exploring the synthetic networks or the network of
concepts from Web of Science. Interestingly, since the adjacent possible is naturally
accounted for inside the underlying structure, we can fit the value of the reinforcement
parameter ρ to obtain information on how strong the reinforcement mechanism has to
be in the discovery dynamics to reproduce the same pace of discovery in each field.
The statistics of the empirical networks, together with the related Heaps’ exponents
and the fitted reinforcement parameters, are shown in Table 2.1.

Finally, let us point out that there is only one tunable parameter in the ERRW,
the edge-reinforcement parameter. All the other parameters and mechanisms in the
UMST are instead accounted for in the underlying network. For example, such net-
work encodes the space of possibilities and takes the role of the semantic triggering
mechanisms controlled by the parameters ν and η in the UMST. Furthermore, the pres-
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ence of semantic correlations of the elements explored in the ERRW is ensured by the
chosen dynamics, since the RW moves from a node to an adjacent one through a link
the network, where the link itself represents a semantic relation. Nevertheless, we note
that this comes at a cost: the network needs to be sufficiently large compared to the
length of the random walk. In fact, if the walker moves indefinitely, eventually it might
explore the whole network, since there is no growth mechanism in place.

2.4 Other models

The emergence of novelties has been empirically observed in a wide range of fields,
such as science [95], gastronomy [96], goods and product [69], network science [97],
language [25, 65], information [98] and cinema [99]. For such reason, in literature
we can find other models of innovation dynamics inspired by these fields. In this sec-
tion we review two of these, with the scope of understanding how this dynamics can
be modelled in other frameworks. The first one in Sec. 2.4.1 is the Bak and Snip-
pen model, an evolutionary model with cascading mutations, while the second is the
Thurner model, introduced in Sec. 2.4.2, where innovation is seen as a process of cre-
ation and destruction.

2.4.1 Bak–Sneppen model

The Bak–Sneppen model, proposed by Per Bak and Kim Sneppen in 1993 [53], offers
an interesting perspective on how the innovation process unfolds in a biological con-
text. This model provides a framework that explores the connection between evolu-
tionary dynamics and the emergence of innovation within biological systems. By sim-
ulating co-evolutionary processes of multiple species, the Bak–Sneppen model sheds
light on the role of disruptive events and the subsequent adaptive responses in driving
species evolution and innovation through the adjacent possible.

At the core of the Bak–Sneppen model is the concept of punctuated equilibrium,
which suggests that evolutionary changes occur in bursts rather than through gradual,
continuous processes. In the model, N species are represented as agents, arranged in a
one-dimensional line. Each species is associated to a fitness parameter, called “barrier"
and denoted with Bi, randomly chosen from an uniform distribution between 0 and 1.
Such fitness represents their ability to survive and reproduce. In a biological context,
the barrier height is a measure of the amount of genetic code that has to be changed
to have significant mutations in the species, such as developing wings to allow a crea-
ture to fly. The model introduces occasional disruptive events known as “extinctions",
which can start drastic cascading changes in the environment. In particular, at each
time-step, the species with the lowest barrier goes extinct, and is replaced by a new
species with a randomly assigned barrier value. This change also affects the barriers of
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their right and left neighbors: a new barrier is hence randomly selected from the same
uniform distribution, and assigned to them. Such cascading mechanism is a funda-
mental one in biology, representing in a simplistic way how species interact with each
other. For instance, the interaction could represent the fact the two species are con-
secutive links of a food chain [53]. Therefore, a change in a species might eventually
affect the probability that a related species mutates in the future as well.

In the first steps of the evolutionary process simulated with the Bak–Sneppen model,
mutations are uncorrelated in the space (the one dimensional line). However, when the
general barrier level increases, then the exploration of the adjacent possible is trig-
gered. In fact, neighbors of mutating species are very likely to mutate, in a cascading
effect similar to the triggering mechanism in the UMT. It has been shown that the fre-
quency distribution C(x) of subsequent mutations having distance x follows a power-
law, i.e., x−α, where α ≃ 3.15 [53]. Interestingly, this result is achieved whatever
initial conditions are set. In other words, the system is self-organized. Moreover, the
distribution of barrier values B at the critical state, when C(x) becomes stationary,
unveils how mutations happen at a much faster pace for species with barrier below a
critical value B∗ = 0.67. Furthermore, the unitary fitness state in which each species
has fitness 1 and no more mutations take place is never achieved. Instead, if we remove
the interaction between species—and thus the cascading effect—, the unitary state is
reached very slowly, due to the need for coordinated mutations.

The Bak–Sneppen model demonstrates that innovation, represented by the emer-
gence of new species with different fitness values, is crucial in driving species evolu-
tion. The new species might indeed bring forth new traits and characteristics that could
have a higher fitness value. These disruptive events trigger environmental changes
that challenge the status quo in neighboring species, leading to a cascade of adaptive
responses, creating opportunities for new variations to arise. Such mechanism opens
avenues for exploring similar dynamics in other contexts, such as social or technolog-
ical innovation. In fact, even though the Bak–Sneppen model is a simplification of
the complex biological evolutionary process, it provides a valuable starting point to
investigate the relationship between innovation and evolutionary dynamics. In partic-
ular, drawing upon the parallelism between biological evolution and the dynamics of
adaptive systems, the model showcases how adaptive changes triggered by innovative
events play a pivotal role in driving evolutionary advancements.

2.4.2 Thurner’s model

Another interesting perspective on innovation comes from economy, where innovation
has been seen as the consequence of a process of creation and destruction. This is
typical of the Schumpeterian approach [21, 22], whose theory is still today considered
one of the most relevant contributions in innovation economics. According to Joseph
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Schumpeter, the appearance of new products and services is the natural consequence
of market behaviors, in which each participant maximizes its utility function, allowing
technology progress and the rise of innovations. In particular he proposed the concept
of creative destruction, i.e., the creation of new products and services, born from the
combination of already existing goods, which drives obsolete goods out of the market.

This idea is fully represented in the model by Thurner et al. [20], characterized
by a generative process of novelties based on deterministic coupling of elements. In
Thurner’s model, creation and destruction are considered as association of existing el-
ements, respectively determined by production and destruction tables. In their work,
they have studied various time series related to innovation economics, for example the
frequency distributions of percentage increase of GDP (gross domestic product) of sev-
eral nations, or of business failures, or of patents issued. They have found that such
time series assume the form of power-laws, and have hence tried to provide plausi-
ble mechanisms responsible for this peculiar finding, using a Schumpeterian approach.
Their first assumption was that discoveries are obtained through combinations of exist-
ing elements. Once an innovation arises, it can influence the market in three ways: (i)
it can become a component of a new innovation, (ii) it can spread its destructive effect
by leading out of the market other existing products, or, (iii) it does not produce any
effect on the market at all.

In the model all possibly existing goods at time t are listed in a N−dimensional
vector σ(t) = (σ1(t), .., σN (t)) where N could also be infinite. With a comparison
with the urn models of Sec. 2.2, such goods can also be imagined as “balls" of an
imaginary urn. Each component σi(t) of the vector σ(t) is 0 if the element at time
t does not exist, which can happen in two cases: either it has never appeared before,
or it has been already removed from the market. Contrarily, if the element i exists at
time t, then σi(t) = 1. Novelties in the model arise from a combination that is already
encoded in a production table, a tensor A+ = {A+

1 , .., A
+
N}, such that for each good

k, the matrix A+
k has entries a+ijk = 1 if the combination of goods i and j produce k; if

this happens, then {i, j} is a productive set for k. Instead, whenever the combination
of goods i and j does not allow the production of good k, we have a+ijk = 0. We can
hence estimate the number of possible ways to produce a given good k as

Nprod
k (t) =

∑
ij

a+ijkσi(t)σj(t). (2.28)

At the same time, a combination of elements can also produce a destructive inno-
vation, i.e., it can lead some products out of the market due to a technological obsoles-
cence. Also the destructive power of innovation is encoded in a so-called destruction

table A− = {A−
1 , .., A

−
N}. For each A−

k , the entry a−ijk is 1 if the combination of
i and j lead k out of the market, whereas a−ijk = 0 if the combination i and j does
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not influence the behavior of element k in the market. In the first case, we call {i, j}
a destructive set for k. Similarly to production processes, there could exist several
destructive processes for the same element. We define the number of destructive pro-
cesses for a given element k as

Ndestr
k (t) =

∑
ij

a−ijkσi(t)σj(t). (2.29)

At each time t, the state of the good k will depend on the number of productive and
destructive processes on it, with three different outcomes. If the number of productive
sets on k is greater than the number of destructive sets on the same k, then k will be
produced. If the family of destructive sets is strictly larger than those of productive sets,
the good k will not be produced, or it will be expelled from the market if it previously
existed. Finally, if the number of productive sets equals the one of destructive sets,
then the status of k at time t will be equal to the status of the good at time t− 1. More
precisely we have:

Nprod
k (t) > Ndestr

k (t) =⇒ σk(t) = 1

Nprod
k (t) < Ndestr

k (t) =⇒ σk(t) = 0

Nprod
k (t) = Ndestr

k (t) =⇒ σk(t) = σk(t− 1).

(2.30)

In summary, a production/destruction process will be activated only if each good of
the corresponding productive/destructive set is available at time t. In this way, changes
of state of a given good can have a relevant impact on productive/destructive sets of
other connected goods, in a cascading effect. In the original work by Stefan Thurner
et al. [20], scale-free versions of production/destruction topologies have been used for
the related tables. In fact, even though it is possible to empirically assess production
or destruction networks in the real economy, in practice, this is unrealistic and would
involve tremendous effort. Moreover, for a systemic understanding of Schumpeterian
dynamics, a detailed knowledge of these networks may not be necessary, as argued in
Ref. [20].

The results of Thurner’s model simulations are characterized by phases of boosts
in economic development (measured in the diversity of available goods), phases of
crashes and phases of relative stability followed by turbulent restructuring of the entire
economic market. It is possible to interpret the successions of characteristic phases
of construction, destruction and relative stability as Schumpeterian business “cycles’,
leading to innovation. Moreover, we observe clustered volatility and power laws distri-
butions, both in the number of goods that are produced or destroyed in a single event,
and in the lengths of the cycles. Overall, these results are aligned with those of the urn
model with triggering discussed in Sec. 2.2.4, where novelties are also correlated and
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emerge according to power-laws, but provide another perspective on the way discover-
ies can be made, i.e., through combinations of existing elements.

2.5 The influence of social interactions

2.5.1 Application of UMT to the emergence and evolution of social
networks

An interesting application of the UMT framework is given in Ref. [30], where the
model is used to generate a social network with similar properties to the way empirical
social networks grow. Here, a multi-agent version of the UMT is considered, where
agents explore a particular version of the adjacent possible space, formed by the same
agents that explore the space and can be encountered during the exploration. In other
words, each urn refers to a different agent, and the colors of the balls inside the urn
correspond to other agents. With this framework, a social network emerges and evolves
with the dynamics. In particular, the connections of an individual i are represented by
the “discovered” agents during the process, i.e., the set of agents randomly drawn from
i’s urn.

We report here the model scheme as defined in Ref [30]. The model is initialized
with two urns, Ua and Ub related to the agents a and b, having a copy of each other’s
ID inside of them. The urns also contain a set of ν +1 distinct identities (IDs) of other
urns that did not participate yet in any interaction. This set corresponds to their memory

buffer at the initial stage. As in the urn models, this model can also be characterized
by a sequence of events S , the draws from the urns, which is initially empty. After the
initialization stage, each evolutionary step of the model is defined as a repetition of the
following steps.

1. A “calling” urn i is extracted with probability proportional to the size Ui of the
urn Ui (the number of balls within the urn Ui). We then draw a ball from the
calling urn Ui, say the ID j. This double extraction corresponds to a single event
(i, j) that we append to the main sequence S.

2. Reinforcement: following the event (i, j), we add ρ copies of i in j’s urn and ρ

copies of j in i’s urn.

3. Novelty: if it is the first time that i and j interact, i and j exchange their memory
buffer. With this mechanism, we add j’s memory buffer into Ui and, vice-versa,
i’s memory buffer into Uj .

4. If a node j is called for the first time by another node (i.e., Uj is an empty urn
so that Uj = 0), ν + 1 new agents (empty urns) are created and a ball for each
of them is added into Uj . These ν +1 IDs represent the initial memory buffer of
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j. Notice here that the newly created agents are initially empty urns so that they
can participate in the dynamics (they can be included in the social network) only
if another urn (agent) calls them. Only after this first call, they become active. In
this scheme, an agent cannot join the network “from outside", i.e., it needs to be
engaged by another agent already belonging to the network.

Leveraging on these simple microscopic rules defining how people get in touch and
interact, the model not only represents a network growth model, but also reproduces
a sequence of interaction events that mimics the empirical network dynamics. In par-
ticular, the creation of new edges and the reinforcements of their weights in the model
mimics the way each individual explores the space of possible connections, strength-
ening the relation with some friends more than other distant acquaintances.

In this work, the proposed model’s parameters are fitted to three different social
networks, minimizing a cost function including various observables, both local and
global, topological and dynamical. These empirical networks are the American Phys-
ical Society (APS) co-authorship network, generated by all the papers published in
all the APS journals from January 1970 to December 2006, the Twitter Mention Net-
work (TMN), logging all the mentions between users recorded between January and
September 2008, and the Mobile Phone Network (MPN), recording the calls between
users of a national provider in an undisclosed European country between January and
July 2008. Based on the exploit–explore mechanism typical of the UMT, the proposed
model manages to predict both microscopic and macroscopic features of these social
networks. For example, it captures the probability for an individual with already k

connections to acquire new acquaintance, and reproduces the main topological and dy-
namical features of social networks: the broad distribution of degree and activity, the
average clustering coefficient, and the discovery rate of new friends at the global and
local levels. Moreover, the model offers a deeper understanding of the propensity of
people to reinforce old contacts or establish new ones in various social systems. For in-
stance, in APS network new connections massively expand the adjacent possible space
of an individual, in the TMN the exploration and reinforcement processes are of equal
importance, while in the MPN people reinforce their existing bonds more than they
explore new ones.

2.5.2 Social synchronisation of brain activity by eye contact

Innovation is only one of the many dynamical processes in which human interactions
play a pivotal role. When we engage with one another, the exchange of information and
knowledge takes on diverse forms, giving rise to potentially countless novelties on an
individual level. These novelties may manifest as learning something new, forging con-
nections with new acquaintances, discovering captivating music, and so much more.
Moreover, the collective knowledge emerging from these interactions has the potential
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Figure 2.5: Experimental setup and task. a. Two computers were synchronized
during the experiment and each computer collected EEG and eye-tracking data from
one participant but received EEG and eye-tracking event markers with no delay (all
hardware was centrally controlled through Matlab). b. Eye contact time estimation
task: participants faced each other and were required to reproduce the duration of
a tone delivered through headphones without speaking to their dyadic partner. Eye-
contact condition: during the delivery of the tone, participants were instructed to fixate
on a sticker on the other participant’s chinrest. After the tone ended, the participants
were instructed to look at other’s eyes for the duration of the tone, looking back down to
indicate that they finished reproducing the tone duration. The tone the participant heard
was either long (2.5s) or short (1.5s) and in some trials, the participants heard different
tone durations. c. Non-eye-contact control condition: participants replicated the
duration of the tone but never made eye contact. Participant A listened to the tone while
fixating on their partner’s eyes while participant B listened to the tone while fixating
on their partner’s chinrest. After the tone, both participants replicated its duration,
participant A by fixating their partner’s chinrest and participant B by fixating their
partner’s eyes. To indicate the end of the tone interval, each participant reverted their
gaze back to the starting position. In one block, participant A replicated the duration
by looking in their partners’ chinrest and the other by looking at the participant B’s
eyes (while participant B looked down to the chinrest), and in the other block, the roles
reversed. The analysis of connectivity was restricted to the data from the period where
both participants were performing the time reproduction task (step 2 of Fig.1B and C).
Drawing credits to Tatiana Adamczewska.

to catalyze transformative innovations with far-reaching impacts on society. Direct eye
contact, being an essential component of social interactions, plays a significant role
in establishing interpersonal connections and conveying emotions and intentions [100,
101]. As such, we have contributed to the analysis of the data of a recent experiment
by Caroline Di Bernardi Luft et al. [5], investigating the effects of eye contact on brain
activity synchronization between pairs of individuals, offer valuable insights into the
neural substrates of human social cognition.

In this experiment, whose setup and task is shown in Fig. 2.5, pairs of participants,
either friends or strangers, sat facing each other in a quiet lab room. Each partici-
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pant was connected to an electroencephalogram (EEG) machine and an eye tracker
was positioned eye-level in front of each participant to capture their respective eye
movements. The participants completed an eye contact time estimation task, where
they were required to reproduce the duration of a tone delivered through headphones
without speaking to their dyadic partner. During the eye contact condition, participants
were instructed to fixate on a sticker on the other participant’s chinrest while listening
to the tone, and then look at the other’s eyes for the duration of the tone. During the
non-eye-contact control condition, participants replicated the duration of the tone but
never made eye contact. The study investigated how eye contact affected the synchro-
nization of brain activity between the participants.

In this study, we have investigated the synchronization of the various brain regions
of the pair of participants synchronize their activity through eye contact. In particu-
lar, we have mapped such regions and their synchronization levels thanks to what is
called the hyperbrain, which refers to the network of connections between the brains
of two individuals engaging in a social interaction. We have measured the synchroniza-
tion between two nodes of the hyperbrain using undirected ciPLV (corrected imaginary
Phase-Locking Value) derived from the EEG data in the gamma frequency bands. The
ciPLV provides a robust measure of undirected phase synchronization which is insen-
sitive to volume conduction, with higher values indicating stronger connectivity. The
ciPLV were calculated for each pair of EEG electrodes for each participant, and then
averaged across participants to obtain a single ciPLV value for each pair of electrodes.
The ciPLV were then used to construct the connectivity matrices that were used to
generate the hyperbrain network. The connectivity matrices were further processed to
generate both an unweighted and a weighted graph representation of the hyperbrain
network.

Our analysis in Fig. 2.6 showed that making eye contact affects the general strength
of the interbrain (between the two participants) connections of the hyperbrain more
than the intrabrain (within the same participant) ones. Interestingly, the strength of
brain activity synchronization was found to be significantly higher among individuals
who shared preexisting bonds of friendship compared to pairs of strangers. This finding
suggests that the familiarity and trust established in friendships might facilitate more
pronounced neural resonance during eye contact. Furthermore, specific brain regions,
such as the superior temporal sulcus and the inferior frontal gyrus, exhibited increased
connectivity and acted as central hubs in the hyperbrain network during eye contact
interactions.

Overall, these findings suggest that the strength and pattern of interbrain connectiv-
ity during eye contact is modulated by the social relationship between the individuals
involved. The heightened synchronization observed during direct eye contact signifies
a potential mechanism through which humans establish interpersonal connections and
perceive shared intentions, emotions, and information. Moreover, the stronger brain
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Figure 2.6: Hyperbrain network during eye contact. a. Intra- (red) and inter-brain
(blue) network strength of friends and strangers measured as average of z-scores during
eye-contact against control. The shaded dots represent each participant data (n = 99,
the data of one participant was not plotted because its value was 3.90, which would in-
crease the y-axis range making the error bars illegible). b. Network measures of friends
(dark blue) and strangers (light blue) during eye contact. The measures include inter-
and intra-brain density (n = 100), global and local efficiency and modularity (n = 50
dyads). These measures are based on the binary ciPLV networks. c. ciPLV networks
during eye contact, the edges represent the phase synchronization values which in-
creased on average by more than 1 standard deviation (SD) against the control task for
friends (left) and strangers (right). Inter-brain edges are represented in blue, intra-brain
edges of participants 1 are in black and 2 are in red. Error bars represent ±1 standard
error of the mean (SEM). ‘***’ refers to p < 0.001, ‘**’ to p < 0.01, ‘*’ to p < 0.05.

activity synchronization among friends underscores the significance of social bonds in
modulating neural responses during social interactions. Such findings suggest that the
neural processes underlying innovation might be further enhanced within cohesive so-
cial networks. They emphasize that social interactions have a profound impact on the
very dynamics of brain activity, underscoring the significance of these interactions to
better grasp the intricacies of human behavior and social cognition. By unraveling the
mechanisms through which social interactions foster synchronization and innovation,
we hence wish to open doors to a deeper understanding of what drives creativity and
progress in our society.
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2.6 Summary and conclusions

In this chapter we have reviewed various models of innovation present in the literature.
For each of these models, we have particularly focused on understanding how their key
ingredients impact on the emergence of novelties in the innovation process. In this final
section, we provide a brief overview of such models and their ingredients.

In Polya’s urn model, analyzed in Sec. 2.2.1, we have observed the first impor-
tant ingredient present in all innovation processes: the reinforcement of the elements
explored, such that they are more likely to be exploited again in the future. Such mech-
anism is closely related to a “rich-get-richer” phenomenon, and often observed in
many complex systems [32]. However, this mechanism alone is not enough, alone, to
generate exploration sequences of events that replicate the empirical pace of discovery,
as quantified by the Heaps’ law. In fact, in this chapter we have seen how innovation
can be seen as the exploration of a growing space of possibilities, where new elements
are added over time.

Inspired by experimental data, different models have been proposed to add a growth

mechanism of the space of possibilities. For example, Hoppe’s attempt to add such a
mechanism was moved by advancements in biology and genetics [77], but, as we have
seen in Sec. 2.2.3, this urn model cannot reproduce the Heaps’ law. The first model
that has managed to reproduce the Heaps’ and Zipf’s laws, at least in some cases, is the
Yule–Simon model, discussed in Sec. 2.2.2. Inspired by linguistic studies, this model
combined both the reinforcement mechanism with a constant innovation rate in time,
such that with probability p brand new elements are added at every time step. This way,
however, the number of novelties grows linearly in time, and the model cannot catch
sublinear Heaps’ laws, which constitutes the majority of empirical cases.

The already cited models make it clear that innovation processes are to be consid-
ered as complex systems. We have indeed seen how the emergence of novelties creates
further possibilities to obtain other novelties, i.e., what we have called the expansion of
the adjacent possible, which refers to the set of all elements that are one step away from
what already explored. In this direction, other recent models have had higher success,
combining the reinforcement and growth mechanisms with the concept of the space of
possibilities and its adjacent possible. Authors of Ref. [8] argue, indeed, that each per-
son grows his space of possibilities by exploring the edge of it, with one novelty leading
to another. This reasoning has lead to the formulation of the urn model with triggering
(UMT), described in Sec. 2.2.4, which can reproduce the empirical Heaps’ laws. This
model includes Polya’s reinforcement mechanism, and adds a triggering one, which
expands the adjacent possible by triggering new colors into the urn whenever a color
is drawn for the first time. Moreover, semantic correlations in the sequence of col-
ors drawn are also reproduced in the more general urn model with semantic triggering
(UMST), reviewed in Sec. 2.2.5.
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Another set of models we have analysed makes use of networks and random walks.
Indeed, a natural way to characterize the space of possibilities and its adjacent possible
is to represent such space as a network. Random walks have hence been used to simu-
late various exploration and innovation processes, as shown for example by an equiva-
lent random-walk version of the UMST introduced in Sec. 2.3.1. The edge-reinforced
random walk (ERRW) model presented in Sec. 2.3.2 moves in a similar direction. The
main difference between UMST and ERRW is that the reinforcement is not applied on
the node but on the edge, and that the set of nodes and edges in the network is fixed
along the process. In other words, there is no growth of the network in terms of size,
but only in terms of edge weights. Notice that these RW models can also reproduce the
Heaps’ and Zipf’s laws, as well as the presence of strong semantic correlations in the
sequences of exploration.

In this chapter, we have also taken into consideration other models of innovation
from different research areas. In particular, in Sec. 2.4.1 we have reviewed the Bak–
Sneppen model for the evolution of species. Here, each species has a randomly as-
signed barrier which determines whether or not the species mutate. Novelties are seen
as mutations of a given species, which affect the barriers of neighbours, thus often com-
ing all together following a cascade effect. This model hence focuses on the effect of
novelties on adjacent species in an evolutionary dynamics of species mutations, using
a computational approach. Then, in Sec. 2.4.2 we have seen innovation from an eco-
nomic perspective. With a Schumpeterian approach, in Thurner’s model innovation is
seen as the consequence of creative destruction, namely, the creation of new products
and services, born from the combination of already existing goods, can drive obsolete
goods out of the market. We will further investigate the role of combinations in Chap-
ter 3, where we will define higher-order Heaps’ laws to measure the pace of discovery
of new combinations. We will also propose to model innovation as an edge-reinforced

random walk with triggering (ERRWT) on a co-evolving network, rooted on the rein-
forcement and triggering mechanisms described in this chapter, but adapted to a more
general definition of novelty, revealing the complexity of the growth of the underlying
network of possibilities.

Finally, in this chapter we have highlighted how important social interactions are
in dynamical processes. For example, in Sec. 2.5.1 we have investigated an application
of the UMT to mimic how social networks emerge and evolve. In particular, we have
considered many UMTs to represent different agents, while the colors of the balls in
the urn identify the possible agents that can become friends. This model gives rise to
a social network, which captures most of the microscopic and macroscopic features
found in real-world ones. Notice, however, how this model is not properly a model of
innovation, since there is no space of content being explored. We have further unveiled
the importance of social interactions in Sec. 2.5.2, where we have analyzed the effect
of eye contact in simple tasks. In fact, such interaction significantly influences the
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brain activity and choices of the participants. We will hence combine the exploration
of a space of content with social interactions in Chapter 4 and Chapter 5. In partic-
ular, in Chapter 4 we will couple many UMTs through the links of a social network,
introducing the concept of social expansion of the adjacent possible. In that model,
the urns will be enriched with the adjacent possible of their contacts in a cooperative
way, enhancing their pace of discovery. The choice of the UMT will come natural from
the capacity of the UMT to encode the fundamental ingredients of a discovery process
into a simple and analytical tractable model, as we have seen in this chapter. We will
further analyze the influence of social interactions on collective discovery processes in
Chapter 5, where we will analyze extensive music exploration data. There, we will also
model such process as a multi-agent exploration of an underlying network of music,
where multiple agents share recommendations to each other, and thus influence each
other’s musical taste and pace of discovery.
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Chapter 3

The adjacent possible in the
content space

3.1 Introduction and outline

As humans, we experience novelties as part of our daily life. By the term novelty we
generally indicate two apparently different things [8]. On the one hand, we can think of
a novelty as the first time we visit a neighborhood, enter a newly launched pub, or listen
to a song from an artist we previously did not know. In this case, the novelty represents
a discovery for a single individual of a place, an artist or, more in general, an item. On
the other hand, there are discoveries that are new to the entire population, as could be
a technological advancement or the development of a new drug. However, these two
cases are not entirely distinct, as the second set of novelties, those new to everyone,
represent just as a subset of the first one. Analysing how novelties emerge both at the
individual level, and at the level of the entire population, is key to understand human
creativity and the neural and social mechanisms that can lead to new discoveries and
innovation.

The increasing availability of data on human behavior and consumption habits has
allowed to study how humans explore the world, how novelties emerge in different con-
texts, and how they are distributed in time [8, 28, 29]. Empirical investigations cover
a broad range of different areas [102]ranging from science [95] and language [25, 65],
to gastronomy [96], goods and products [69], network science [97], information [98],
and cinema [99]. No matter the topic, one can always represent data coming from
real-world exploration processes as sequences of items that are sequentially adopted or
consumed [103]. In this way, the activity of a user of, for example, an online digital
music platform is turned into a sequence of listened songs, and a novelty is defined
as the first time a song, or an artist, appears in the sequence. Analogously, articles
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published in a scientific journal can be turned into a time-ordered sequence of con-
cepts or keywords discovered by the community, and a novelty can be defined, again,
as the first-time appearance of a keyword [29]. Under this framework, evidence shows
that novelties seem to obey the same statistical patterns on the way they are distributed
and correlated in time, independently of the system they belong to [8]. In particular,
most empirical sequences follow Heaps’ [14, 15, 58], Zipf’s [54–57, 104], and Taylor’s
laws [82].

Along with data-driven investigations, a relevant scientific problem is that of find-
ing plausible mechanisms to reproduce and explain the empirical observations. What
are the rules controlling the appearance of new items in a sequence? How do humans
explore the seemingly infinite space of possibilities in search of novelties? As we have
discussed in Chapter 2, an insightful answer comes from biology, when, in 1996, Stuart
Kauffman introduced the concept of the adjacent possible [13] (AP), referring to “all

those molecular species that are not members of the actual, but are one reaction step

away from the actual". Inspired by previous works by Packard and Langton [9–11], the
AP provides a fresh view on the problem, for which discoveries (the possible) can only
be found among those items which are close (the adjacent) to what is already known
(the actual). New discoveries would then generate an expanding space of opportunities
that are only available to us in the moment we “unlock” what is adjacent to them.

Kauffman’s AP has seen many interesting applications ranging from biology [13,
53] and economics [69, 105] to models of discovery and innovation processes. Among
these, of particular interest is the recently proposed Urn Model with Triggering [8,
25, 106] (UMT). Building upon the work of Pólya [23, 77], the UMT adds to the
traditional reinforcement mechanism of the Pólya urn’s scheme a triggering mechanism
that expands the space of possible discoveries upon the extraction of each novelty.
As we have seen in Sec. 2.2.4, the UMT is able to reproduce the empirical laws by
properly balancing these two mechanisms. The AP accounts for the emergence of the
new starting from the “edge of what is known”. In this view, one could also picture
ideas, concepts, or items as the linked elements of an abstract network, as described in
Sec. 2.3. Within this framework, the way we explore the world based on the association
of different concepts can be naturally modelled as a random walk over this network. For
example, this approach has been used to investigate the cognitive growth of knowledge
in scientific disciplines [29].

There is, however, another important mechanism of creation of the new, which is
neglected by the frameworks discussed above: novelties can arise from the combination
of already-known elements. In fact, as we have seen in Sec. 2.4.2 in the context of
innovation economics with Thurner’s model [20], innovation can be seen as a process
of “creative destruction”, where the combination of goods may activate the production
or destruction of other products. As originally discussed by Schumpeter [21, 22] and
later confirmed by recent works on the generation of technologies [107–109], new
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associations of existing factors may give rise to new discoveries, which rule out of the
market obsolete products and services [110, 111], thus increasing the probability of
reaching further novelties and innovation.

Such mechanism of combining “pre-existing” items to create something new also
applies in various other contexts. For instance, a meaningless sequence of words, if or-
dered in a different way, may generate elegant poetry. Novel combinations of existing
hashtags may lead to new social-media trends. Different orderings of the same musical
notes may in principle generate an endless number of songs. Moreover, the mechanics
of combination and association of existing elements has been studied in other fields
too, e.g., in biology, where combinations are the keys to produce new entities and or-
ganisms. For instance, it has been shown that the immune system recombines existing
segments of genes to produce new receptors [112, 113]. Furthermore, we can consider
publications and collaborations in science [114] as combinations of multiple research
ideas [115–117] and expertises [118–120].

In this chapter we hence explore a new and more general notion of novelty, de-
fined as anovel combination of existing elements. We thus investigate the dynamics of
“higher-order” novelties, i.e., novel combinations of pairs, triplets, etc., of consecutive
items in a sequence [6]. In particular, we focus on the Heaps’ law, which describes
the growth in the number of novelties as a power-law, whose exponent is a proxy for
the pace of discovery [15] in a system. Namely, in Sec. 3.2 we introduce higher-order
Heaps’ laws to characterize the pace at which novel combinations of two and more
elements appear in a sequence. In Sec. 3.3 we then analyse various types of empiri-
cal sequences ranging from music listening records, to words in texts, and concepts in
scientific articles, finding that Heaps’ laws also holds at higher orders. We discover
that individual processes with the same pace of discovery of single items, can instead
display different rates of discovery at higher orders, and can hence be differentiated in
this way. We also simulate and analyze some existing models of innovation in Sec. 3.4,
finding that they can only reproduce higher-order Heaps’ exponents equal to the 1st-
order ones.

Therefore, in Sec. 3.5, we propose a new model which is capable of reproducing
all these empirically observed features of higher-order Heaps’ laws. In our model the
process of exploration is described as an edge-reinforced random walks with triggering
(ERRWT) over a growing network. In our framework, the novelties at different orders
(nodes and links visited for the first time by the walker) shape the explored network
by reinforcing traversed links while, at the same time, triggering the expansion of the
adjacent possible. This expansion can happen whenever a node is visited for the first
time, making other nodes accessible to the explorer, but also whenever a link is firstly
used. In this case, the newly established connection will trigger novel combinations
between previously explored nodes. In other words, we propose a new mathematical
framework which describes the process of innovation as the exploration of a space of
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possibilities, which is seen as a growing network representing the relations between
elements of various types of content. With this new formulation, novelties of various
orders are the result of the exploration of a more definition of adjacent possible. At the
first and second order, the adjacent possible is represented by the set of neighboring
nodes and links, respectively, which have not been explored yet by the random walker.
In our model, we also add a mechanism to trigger new parts of the adjacent possible
whenever such adjacent possible is explored. By fitting the contributions of the two
mechanisms of reinforcement and triggering, the ERRWT model is able to reproduces
well the variety of scaling exponents found in real systems for the Heaps’ laws at differ-
ent orders. Further notice that the ERRWT model significantly differs from Thurner’s
model. The latter model, indeed, requires the presence of production and destruction
networks, which are pre-determined. Moreover, the appearance of a new product is de-
terministic, and only depends on the presence (absence) of all the necessary productive
(destructive) items related to the product. In our model, instead, new nodes and links
appear in the network as the walker explores such network, which can grow indefinitely
by expanding the adjacent possible. Additionally, the more a connection is used, the
more it is reinforced and likely to be used again in the future.

Finally, we conclude this chapter with some analytical results on the urn model
with triggering and on the ERRWT in Sec. 3.6, and summarize the main findings in
Sec. 3.7.

3.2 Higher-order Heaps’ laws

An exploration process can be represented as an ordered set of T symbols S = {a1 ,
a2, . . . , aT }. Such a set describes the sequence of “events” or “items” produced along
the journey, e.g., the songs listened by a given individual over time, the list of hashtags
posted on an online social network, the list of words in a text, or any other ordered
list of items or ideas generated by single individuals or social groups [8, 26, 103].
Similarly, in the context of some recent modelling schemes of discovery (see Sec. 2.2
and Sec. 2.3), S can represent the balls extracted from an urn [8, 26], or the nodes
visited over time by a random walker moving over a network [29]. Although real-world
events have an associated time, here, for simplicity, we focus only on their sequence,
i.e., the relative temporal order of the events, neglecting the precise time at which they
happen. For instance, if a person listens to song a1 at time t1, song a2 at time t2, song
ai at time ti, and so on, with t1 < t2 < · · · < ti < . . . , we neglect these times and
only retain the order of the songs in the sequence {a1, a2, . . . , aT }. In other words, we
assume that a1 is associated to the discrete time t = 1, a2 is associated to time t = 2,
and so forth.

Among the different ways to characterize the discovery rate of a given process, the
Heaps’ law, D(t) ∼ tβ , describes the power-law growth of the number of novelties

59



as a function of time, i.e., how the number D(t) of novel elements in the sequence S
scale with the sequence length t [15]. The so-called (standard) Heaps’ exponent β, that
from now on we indicate as 1st-order Heaps’ exponent β1, is thus a measure of the
pace of discovery of the process that generated the considered sequence. Given that
the number of different elements D(t) is smaller (or equal) than the total length t of
the sequence, the value of β1 is always bounded in the interval [0, 1], with the extreme
case β1 = 1 reached by a process that generates new elements at a linear rate.

Here, we propose to go one step beyond and look at novelties as novel pairs, triplets,
and higher-order combinations of consecutive symbols in a sequence [121]. For in-
stance, when exploring a network, a novel pair is represented by the first visit of a
link. In order to measure the pace of discovery of these higher-order compounds start-
ing from a sequence of events S, we first create the surrogate sequence of overlapping
pairs S2 = {(a1, a2), (a2, a3), . . . , (aT−1, aT )}. Considering for example the sen-
tence “One ring to rule them all”, from the sequence of events S = {one, ring, to,
rule, them, all } we obtain the sequence of overlapping pairs S2 = {(one, ring), (ring,
to), (to, rule), (rule, them), (them, all)}. From S2 we can then compute the number
D2(t) of different pairs among the first t ones, with t ≤ T − 1. Notice that, here, we
consider the pairs (one, ring) and (ring, one) as two different pairs, i.e., order matters.
By construction, we always have D1(t) ≤ D2(t) ≤ t, since, on the one hand, for each
new element added to S there is a new pair in S2, and, on the other hand, there cannot
be more than t different pairs among t items. From the power-law scaling D2(t) ∼ tβ2 ,
we can then extract the value of β2, which we refer to as the 2nd-order Heaps’ expo-

nent. This definition can be naturally extended to any order n, considering the sequence
Sn of consecutive overlapping n-tuples present in S. Notice that, if |S| = T , then
|Sn| = T −n+1. We can hence compute the number Dn(t) of different tuples among
the first t tuples in Sn, and extract the nth-order Heaps’ exponent βn ∈ [0, 1] from
Dn(t) ∼ tβn . Notice also that the nth-order Heaps’ exponent can be also interpreted
as the first order Heaps’ exponent of a sequence whose events are the overlapping n-
tuples of the original sequence. Finally, it is worth remarking that such an approach
is close to the analysis of Zipf’s law in linguistic data for n-grams or sentences [122,
123]. In this context, studies showed that as one moves from graphemes—representing
individual phonemes (speech sounds)—, to words, sentences, and n-grams, the Zipf’s
exponent (reciprocal of the Zipf’s for infinitely long sequences [58]) gradually dimin-
ishes. This implies that n-grams or sentences are characterized by a larger novelty rate
than words, a behavior analogous to what we have discussed above.

3.2.1 Power-law fit

Fundamental for the estimation of the higher-order Heaps’ exponent of a sequence is
the power-law fitting procedure for the number of novel n-tuples Dn(t) as a function
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of the sequence length t, with n ≥ 1. The sequences analyzed in this chapter come
from very different contexts, from empirical data sets to model simulations. We thus
need to take into consideration all those cases that show a transient regime—whose
length might also depend on the system structure—in which the pace of discovery can
fluctuate before reaching its stationary value. We fit each sequence according to the
following procedure. To reduce computational times, we first logarithmically sample
1000 points from each sequence in the range [1, T ], where T is the length of the consid-
ered sequence. Considering their integer part and discarding all duplicates, we obtain
a set of k integer times {ti}i=1,...,k between 1 and T . If T ≥ 1000, that is the case
of all sequences used in this work, then this process results in k ≥ 424 points. Taking
into account that the associated sequence of n-tuples has length T − n + 1, we thus
consider the points {(ti − n+ 1, Dn(t))}i=1,...,k in logarithmic scale, i.e.,

(xi, yi) = (log10(ti − n+ 1), log10(Dn(t))) , (3.1)

with i = 1, . . . , k. In order to neglect the initial transient regime, but still have enough
points for a sufficiently significant fit, we select only the last 100 of such points. We
hence look for the best fit of {(xi, yi)}i=k−100+1,...,k by optimizing the linear func-
tion y = a + b x, with a > 0, using the tool curve_fit of the Python package
Scipy [124]. If a and b are the best parameters, then the power-law fit of the Heaps’
law is Dn(t) ≈ 10a tb, that is, the nth-order Heaps’ exponent is approximated by the
slope b of the fit.

3.3 Empirical analysis

3.3.1 Data

Let us consider three different data sets on music listening records (Last.fm), books
(Project Gutenberg), and scientific articles (Semantic Scholar).

Last.fm is a digital platform for music born in 2002, famous for logging all lis-
tening activities of its users, providing both personal recommendations and a space to
interact with other users interested in music [125]. Here, we use a data set presented
in Ref. [126] and available at Ref. [127], containing all listening records of about 1000
users. In order to have sequences long enough for statistically relevant fits, only users
with more than 1000 logs have been retained. The final data set contains 890 users
having a median number of listened records of 13 985. Each record contains the times-
tamp at which a user listened to a given song. In the database, each song is associated
to a title, the artist’s name and a unique MusicBrainz Identifier (MBID), which can be
used to obtain additional metadata [128]. Using this information, we are able to cre-
ate, for each user, a temporally ordered sequence of songs together with the associated
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sequence of artists.
Project Gutenberg is an open access text corpus containing more than 50 000 books

of different nature. Here, we make use of the Standardized Project Gutenberg Cor-
pus [129], which allows to download and process an updated version of the corpus.
Using Google’s Compact Language Detector 3 (cld3 package in Python), we filter
out all non-English texts. We then discard all texts with less than 1000 words, retain-
ing a total of 19 637 books with a median number of 50 726 words. A sequence of
events for each book is hence created with the lemmatized words, disregarding punc-
tuation and putting all characters in lower case. We also extract stems from each word
using the English Snowball stemmer [130]—a more accurate extension of the Porter
stemmer [131]—, which is not as aggressive as the Lancaster stemmer [132].

Semantic Scholar is a recent project with the scope of facilitating scientific anal-
ysis of academic publications. It provides monthly snapshots of research papers pub-
lished in all fields, publicly accessible through the Semantic Scholar Academic Graph

(S2AG, pronounced “stag") [133]. This database (1st Jan. 2022 snapshot) contains
about 203.6M papers, 76.4M authors, and 2B citations. It also classifies each paper
into one or more fields of study [134], for a total of 19 different fields. For simplic-
ity, we associate each paper to its first (and most relevant) field of study. To create
the sequences to analyze, for each field we consider the first 1000 journals in terms
of number of English papers. Then, for each journal, we order the published papers
based on the respective year of publication, volume, issue, and first page. When some
of this information is not available, the Semantic Scholar unique ID of the paper is
also used in the ordering process. Thus, for each paper, we extract and lemmatize their
title, similarly to what done for the Project Gutenberg. Finally, a sequence of events is
created for each selected journal, concatenating the lemmatized words in the titles of
each paper in their temporal order, for a total of 19 000 sequences with median length
of 9 114.5. Associated to this sequence, we also consider the sequence of stemmed
words for further analysis.

All the code used to download, process and analyse the data can be found at
Ref. [135]. Finally, the distribution of the length T of each sequence in the three data
sets is shown in Fig. 3.1.

3.3.2 Analysis of empirical sequences

We start investigating the emergence of novelties of different orders in empirical ex-
ploration processes associated to three different data sets described in the previous
section. Notice that these data sets are substantially different in nature, since they re-
fer, respectively, to songs listened by users of Last.fm, words in books collected in the
Project Gutenberg, and words of titles of scientific journals from Semantic Scholar. In
Fig. 3.2(a-c) we plot the average temporal evolution of the number Dn(t) of novel-
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Figure 3.1: Length T distribution of the sequences in the data sets. Probability
density function of the length T of all sequences in the three data sets (Last.fm in
blue, Project Gutenberg in orange, Semantic Scholar in green). Moreover, the median
lengths, respectively equal to 13 985, 50 726, and 9 114.5, are shown in the plot as
vertical dashed lines, with the color corresponding to each data set.

ties of order n, with n = 1, 2, 3, in the three datasets (from left to right, respectively,
Last.fm, Project Gutenberg, Semantic Scholar). In order to avoid spurious effects due
to different lengths of the sequences, we restrict the averages to the sequences of length
T greater than the median length T̃ in the corresponding data set (see Fig. 3.1 for their
distribution). Each continuous curve, plotted up to time T̃ , is obtained by averaging
Dn(t) over all such sequences, while the shaded area represents one standard deviation
above and below the mean. We also perform power-law fits, as described in Sec. 3.2.1,
and plot the resulting curves as dashed lines. Focusing first on the broadly-studied
(1st-order) Heaps’ law, notice how the power-law fit is only accurate in the last part of
the sequence. This highlights that the Heaps’ law starts after a transient phase, where
most of the events are new for the individual, as also reported in Ref. [8] and simi-
larly reported in other contexts [136–140]. Secondly, notice how the nth-order Heaps’
law, with n = 2, 3, is valid across the data sets, but with different values of the fitted
exponents, especially for n = 2. Finally, as expected from their definition, the fitted
Heaps’ exponents of order n+ 1, i.e., βn+1, are higher than the lower-order ones, that
is, βn+1 ≥ βn.

To explore the gain in information brought by the higher-order Heaps’ exponents
with respect to the 1st-order Heaps’, we now look directly at individual sequences.
Figure 3.2(d-i) shows the scatter plots of β2 (d-f) and β3 (g-i) against β1, where each
point refers to a single sequence from Last.fm (d,g), Project Gutenberg (e,h) or Se-
mantic Scholar (f,i), with colors representing the density of points (see color bar at
the bottom of the figure). Here, we have only considered sequences whose fitted ex-
ponent has a standard error below the 0.05 threshold (see Table 3.1 for more details).
This filtering removes 30 (3.37%), 8 (0.04%), and 5 (0.03%) sequences in the three
datasets, respectively. This shows that, in almost all cases, we can consider the Heaps’
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Figure 3.2: Higher-order Heaps’ exponents and their correlations in real-world
data sets. (a-c) Average number Dn(t) of novelties of order n, with n = 1, 2, 3, as a
function of the sequence length t, and fit of the associated Heaps’ laws (dashed lines),
with estimated exponents shown in the legend. Shaded area represents one standard de-
viation above and below the average. (d-i) Scatter plots between the (1st-order) Heaps’
exponents β1 and the nth-order exponents βn, with n = 2 (d-f) and 3 (g-i). Each point
refers to a different sequence, with colors representing the density of points (see color
bar). Each panel also reports histograms of exponents distributions, the bisector y = x
(dashed gray line), as well as the fitted linear model (dotted red line) with the value of
its coefficient of determination R2. Each column refers to a different data set: (a,d,g)
Last.fm, (b,e,h) Project Gutenberg and (c,f,i) Semantic Scholar, respectively.

law assumption to be valid. Looking at the plots, we notice that some cases have a
higher density of points compared to others. For example, in (d), we see how users of
Last.fm sharing the same value of β1 can have very different values of β2. Conversely,
the other two data sets present stronger correlation between β2 and β1. To quantita-
tively characterize this, we fit a linear model with an ordinary least squares method,
displayed in each plot as a red dotted line. In the legend we also report the value of the
related coefficient of determination R2, which represents the percentage of variance of
the dependent variable explained by the linear fit with the independent variable.

For users of Last.fm, at both orders n = 2 and 3, we quantitatively confirm that
points are much more spread around the linear fit, since the values of R2 are very low,
between 0.11 and 0.16. In the other two data sets there is instead a higher correlation
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data set (βn) min 1st%ile 25th%ile median 75th%ile 99th%ile max

Last.fm (β1) 0.0007 0.0016 0.0052 0.0079 0.0129 0.0693 0.1988
Last.fm (β2) 0.0000 0.0001 0.0026 0.0047 0.0091 0.0510 0.1497
Last.fm (β3) 0.0000 0.0000 0.0019 0.0038 0.0073 0.0388 0.1366

Gutenberg (β1) 0.0000 0.0010 0.0021 0.0029 0.0043 0.0169 0.0727
Gutenberg (β2) 0.0003 0.0005 0.0010 0.0014 0.0020 0.0087 0.0522
Gutenberg (β3) 0.0001 0.0002 0.0004 0.0006 0.0009 0.0064 0.0484

S2AG (β1) 0.0003 0.0008 0.0018 0.0025 0.0035 0.0115 0.1279
S2AG (β2) 0.0002 0.0004 0.0010 0.0014 0.0021 0.0093 0.1677
S2AG (β3) 0.0000 0.0002 0.0005 0.0008 0.0013 0.0078 0.1698

Table 3.1: Statistics on the standard error of the fitted higher-order Heaps’ ex-
ponents in the empirical data. Various statistics on the standard error, or standard
deviation of the estimator, of the fitted nth-order Heaps’ exponents βn of the sequences
in the three data sets, with n = 1, 2, and 3. Notice how the standard deviation of the
distribution of the values of the exponents in the data sets (see Table. 3.2 for reference)
is about two orders of magnitude higher than the median standard error and one order
higher than its 99th percentile. Moreover, the p-values of the fits are all zero (not shown
in the table).

between β1 and both β2 (R2 around 0.70) and β3 (R2 around 0.35). Moreover, the
values of the parameters of the linear fit greatly change across datasets and orders. In
particular, in (d) there is a much lower slope and higher intercept compared to the other
data sets for the same order in (e-f). Furthermore, we notice how, for each data set, the
higher the order, the lower the fitted slope —and the higher the intercept of the linear
model. Finally, on an aggregate level, we observe that at all orders the distribution of
the Heaps’ exponents are very different across data sets (see Fig. 3.3 for a comparative
figure, while further statistical information on the Heaps’ exponents distribution can be
found in Table 3.2). The exponents are more spread in Last.fm, which also shows a
higher average of β1 and β2, but a lower one for β3 compared to the other data sets.

Moreover, notice how the distributions for Project Gutenberg and Semantic Scholar,
which are both related to linguistic data, are more peaked—at higher values for the lat-
ter dataset. This could be the result of how titles of scientific papers are written with
respect to books or poems, that is, concentrating the whole message of a scientific work
in a few significant words, avoiding stop-words and repetition. In addition, scientific
advancements tend to favor the combinations of previously existing scientific concepts
to form new ones, while the same does not apply to non-scientific literature in general,
where instead similar constructions tend to be repeated across the piece. Finally, simi-
lar results are obtained also for more coarse-grained sequences generated using artists
and stemmed words instead of songs and words, as shown in Fig 3.4.
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data set (βn) mean std

Last.fm (β1) 0.7029 0.1797
Last.fm (β2) 0.9048 0.1014
Last.fm (β3) 0.9286 0.0862

Gutenberg (β1) 0.5699 0.0973
Gutenberg (β2) 0.8527 0.0547
Gutenberg (β3) 0.9589 0.0300

S2AG (β1) 0.6695 0.1019
S2AG (β2) 0.8895 0.0536
S2AG (β3) 0.9612 0.0305

data set (βn) min 1st%ile 25th%ile median 75th%ile 99th%ile max

Last.fm (β1) 0.1063 0.2010 0.5965 0.7395 0.8436 0.9761 0.9959
Last.fm (β2) 0.3342 0.5725 0.8699 0.9388 0.9754 0.9999 0.9999
Last.fm (β3) 0.3664 0.6123 0.9041 0.9583 0.9861 0.9999 1.0000

Gutenberg (β1) 0.0000 0.3678 0.5026 0.5594 0.6285 0.8302 0.9527
Gutenberg (β2) 0.0304 0.7118 0.8191 0.8509 0.8883 0.9706 0.9919
Gutenberg (β3) 0.0307 0.8648 0.9480 0.9627 0.9765 0.9968 0.9998

S2AG (β1) 0.2225 0.4673 0.5923 0.6590 0.7436 0.8889 0.9293
S2AG (β2) 0.2587 0.7509 0.8550 0.8936 0.9303 0.9803 0.9942
S2AG (β3) 0.2665 0.8686 0.9478 0.9680 0.9825 0.9972 0.9999

Table 3.2: Statistics of the fitted higher-order Heaps’ exponents in the data. Vari-
ous statistics of the fitted nth-order Heaps’ exponents βn of the sequences in the three
data sets, with n = 1, 2, and 3.

3.4 Analysis of existing models

After studying higher-order Heaps’ laws in real data, we check whether the observed
patterns can be also reproduced by the available models for discovery processes. We
start from the Urn Model with Triggering (UMT), where a sequence of events is gen-
erated by draws of coloured balls from an urn [8], different colours corresponding to
different events/items being discovered/adopted and so on. In the UMT, for each ex-
tracted ball, the corresponding color is reinforced by adding ρ additional balls, of the
same color, to the urn. At the same time, whenever a novel color is drawn, the discov-
ery triggers the addition of ν + 1 balls of new different colors to the urn (see detailed
model definition in Sec. 2.2.4). Previous studies have shown that the 1st-order Heaps’
law is verified in sequences obtained with the UMT [8, 25]. In particular, the number
of novelties in the model grows asymptotically as D1(t) ∼ t

ν
ρ when ν < ρ, while a

linear behaviour is found in the other cases.
We hence focus on the most interesting case, that is for ν ≤ ρ, studying how

variations of the two parameters ρ and ν, respectively representing the reinforcement
and the increase in size of the adjacent possible, affect the Heaps’ law at various orders.
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Figure 3.3: Heaps’ exponent distribution of the sequences in the data sets. Prob-
ability density functions of the nth-order Heaps’ exponents βn, with n = 1, 2, 3, 4,
calculated from the empirical sequences (a-c) and respective sequences of labels (d-
f). In particular, sequences contain songs (a) and artists (d) in Last.fm, words (b) and
stemmed words (e) in Project Gutenberg books, words (c) and stemmed words (f) in
Semantic Scholar journal titles.

Since the pace of discovery, at the first order, effectively depends only on the fraction
ν/ρ, we fix ρ = 20 and numerically simulate the UMT with ν = 1, 2, 3, . . . , 20 for
T = 105 time-steps. For each set of parameters we run 100 simulations, generating a
total of 2 × 103 synthetic sequences. Then, for each generated sequence, we compute
the temporal evolution of the number of novelties Dn(t), and estimate a power-law
fit, extracting the related nth-order Heaps’ exponent βn. In Fig. 3.5(a), we show how
the extracted values of β2 change with respect to β1 across simulations. The color
represents the value of the parameter ν, as shown in the color bar. We observe that,
although the exponents are distributed all across the interval (0, 1), the points (β1, β2)

are just above the bisector (gray dashed line). Moreover, for a certain value of β1, the
model produces very similar values of β2 that do not vary much.

We can derive an analytical approximation of the higher-order Heaps’ exponents
for this model. As we show in Sec. 3.6.1, for the UMT the number of unique pairs
grows as

D2(t) ≈ a tβ2 , with β2 = β1 +
c

d+ log(t)
, (3.2)

where a, c, d > 0 depend on the parameters ρ and ν, and β1 = ν/ρ. Although the
predicted 2nd-order exponent is slightly higher than the 1st-order one, their difference
just depends on the sequence length, and vanishes at larger times. In other words, the
increased value of the higher-order Heaps’ exponent is only due to a finite time effect,
and the UMT struggles in reproducing the empirical patterns discussed in Fig. 3.2.
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Figure 3.4: Higher-order Heaps’ exponents in more coarse-grained empirical se-
quences. (a-c) Average number Dn(t) of novelties of order n, with n = 1, 2, 3, as a
function of the sequence length t, and fit of the associated Heaps’ laws (dashed lines),
with estimated exponents shown in the legend. Shaded area represents one standard de-
viation above and below the average. (d-i) Scatter plots between the (1st-order) Heaps’
exponents β1 and the nth-order exponents βn, with n = 2 (d-f) and 3 (g-i). Each point
refers to a different sequence, with colors representing the density of points (see color
bar). Each panel also reports histograms of exponents distributions, the bisector y = x
(dashed gray line), as well as the fitted linear model (dotted red line) with the value of
its coefficient of determination R2. Each column refers to a different data set: (a,d,g)
sequences of artists listened on Last.fm, (b,e,h) sequences of stemmed words of books
from Project Gutenberg and (c,f,i) sequences of stemmed words of titles in journals of
Semantic Scholar, respectively.

We repeat this analysis for the Urn Model with Semantic Triggering (UMST) [8]
and the Edge-Reinforced Random Walk (ERRW) [29], which have also been proved to
generate discovery sequences obeying to the Heaps’ law. These models share the same
foundations of the UMT, but with some crucial differences. The UMST builds on top
of the UMT introducing also semantic groups for colors (topic common to different
items). This addition effectively diminishes the probability to draw colors outside of
the semantic group of the last extracted color by a factor η. The ERRW is formulated
as a network exploration rather than a process of extractions from an urn. Instead of
a sequence of extracted balls, the ERRW features a set of nodes sequentially visited
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Figure 3.5: Higher-order Heaps’ exponents in existing models. Scatter plots be-
tween the (1st-order) Heaps’ exponent β1 and the 2nd-order exponent β2 in: (a) the
urn model with triggering (UMT), no semantic correlations (η = 1), and ρ = 20,
ν = 1, 2, . . . , 20; (b) the urn model with semantic triggering (UMST) with η = 0.1
and ρ = 4, ν = 1, 2, . . . , 20; (c) the edge-reinforced random walk (ERRW) on a
small-world network (average degree ⟨k⟩ = 4 and rewiring probability p = 0.1) with
edge reinforcement ρ ranging geometrically from 0.1 to 10. Each point refers to a dif-
ferent simulation of the related model, with colors representing the value of the free
parameter (see color bar). Each panel also reports histograms of exponent distributions
on the respective axes, and the bisector y = x (dashed gray line). All simulations have
run for 105 time steps.

by a random walker over a weighted networks, where the weight of visited edges are
reinforced at each time by ρ. A full description of the models can be found in Sec. 2.2.5
(UMST) and Sec. 2.3.2 (ERRW).

We simulate the UMST with parameters η = 0.1, ρ = 4, ν = 1, 2, . . . , 20, while
the ERRW runs over a small-world network (with average degree ⟨k⟩ = 4 and rewiring
probability p = 0.1), with edge-reinforcement ρ ranging from 0.1 to 10. Similarly to
the exploration of the UMT, we perform 100 simulations for each set of parameters and
report the results in Fig. 3.5(b-c). For both UMST and ERRW, we find that the values
of β2 do not differ much from their corresponding value of β1—as shown by the great
proximity of the points (β1, β2) to the bisector. This means that also these models fail
to reproduce the empirical variability of higher-order Heaps’ exponents with respect
to the 1st-order one. Moreover, we notice in (b) that for the UMST we only obtain
exponents with either very low (up to 0.4) or very high (close to 1) values. It seems
thus that there is an abrupt transition between the two cases, with the model not able
to cover the values in-between. This is instead a crucial point when we are confronted
with the empirical values reported in Fig. 3.2. A more detailed comparison with the
analytical results of the UMT and UMST is discussed in Sec. 3.6.2.

Overall, with the analyses above we have just shown that while the existing mod-
els for discovery and innovation dynamics are able to reproduce the empirically ob-
served pace of discovery of new items—as singletons—, they systematically fail when
it comes to capturing the distributions of the Heaps’ exponents of higher order and their
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correlations.

3.5 ERRWT: a model for higher-order Heaps’ laws

We now introduce a model that is able to generate synthetic sequences displaying dif-
ferent Heaps’ exponents at various orders. As for the previously discussed ERRW, our
novel model is formulated using a network framework in which: (i) the items to be
explored correspond to the nodes of the network; (ii) links between nodes represent
semantic associations between items that one can use to move from one to another;
(iii) the exploration process is modelled as a random walk over the network, and the
exploration sequence is given by the list of visited nodes.

Under these assumptions, the first visit of a node corresponds to a 1st-order novelty,
while a 2nd-order novelty refers to the first exploration of a link. This definition can be
trivially extended to higher orders, but here, for simplicity, we limit our attention to the
first two orders. The ERRW proposed in Ref. [29] consists of a walker exploring a static
network with a fixed topology, whose movements modify only the weights of the links.
By contrast, in our model the network structure (not just the weights) co-evolves over
time together with the exploration process such that new links can be triggered. Thus,
blending together the ERRW and the UMT [8], we call the model Edge-Reinforced

Random Walk with Triggering (ERRWT). More specifically, the model is based on
two different triggering mechanisms that add new edges and new nodes every time a
novelty appears. As per the UMT and the ERRW, exploring a node for the first time
triggers the expansion of the adjacent possible, as new nodes become now accessible.
For example, the invention of the transistor made it possible to create mobile phones,
among other things. Concerning the triggering of new edges, the idea is that whenever
two elements are associated for the first time, new possible combinations involving one
of these elements are then triggered. For instance, once a camera and a mobile phone
were firstly combined, this made clear that many more functions could be added to the
latter, e.g., a music player, a game console, a GPS, etc.

The basic mechanisms of the ERRWT model are illustrated in Fig. 3.6. Suppose
that, at a given time t, the walker is at node i of a network composed of some already
visited nodes and links (filled nodes and continuous lines), and some others that belong
to the adjacent possible (unfilled nodes and dashed lines). This is the starting point
of Fig. 3.6(a). In Fig. 3.6(b), the walker crosses an already explored link, and its
weight gets reinforced by a term ρ, meaning that the association of the two nodes
becomes more likely. This is the same reinforcement process of the ERRW in Ref. [29].
If addition, if the edge is instead traversed for the first time, along with the edge-
reinforcement the process triggers also the creation of new edges. In particular, as
displayed in Fig. 3.6(c), ν2 + 1 new edges connecting the second node of the traversed
link to other already-visited nodes are created. Finally, analogously to the triggering
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Figure 3.6: The Edge-Reinforced Random Walk with Triggering (ERRWT) model.
An exploration process is modelled as a random walk on a growing weighted network.
(a) At time t, the walker is at the red node i. Nodes that have been already visited by the
walker are colored in black, in white those left to be visited. Similarly, traversed (old)
and not-traversed (new) links are respectively depicted with continuous and dashed
lines, whose widths represent their weights. At time t+1, the walker can move to each
of the neighbours of i, e.g. j, k, or l, with a probability proportional to the weight of
the respective link. (b) If the walker moves to j, since the link (i, j) is old, its weight is
reinforced by ρ (edge reinforcement); (c) if it moves to k, since link (i, k) is new, but
node k is old, in addition to the edge reinforcement, ν2 + 1 = 2 new edges (in green)
between k and old nodes are added to the network (edge triggering); (d) if it moves to
l, since both the link and the node are new, in addition to the edge reinforcement and
the edge triggering, ν1 + 1 = 3 new nodes (in green) are added to the network and
connected to l (node and edge triggering).

mechanism of the UMT, whenever a node is visited for the first time, it triggers the
expansion of the node’s adjacent possible with ν1 + 1 new nodes added to the network
and connected to the node itself (Fig. 3.6(d)). Note that this also triggers the creation of
other ν2 + 1 new links to already known elements, since whenever a node is explored
for the first time, also the link leading to it is explored for the first time. A more
mathematical description of the ERRWT can be found in the next section.

3.5.1 Model definition

Let us consider an initial connected network G0 = (V0, E0) with N0 = |V0| ≥ 1

nodes and M0 = |E0| links. Let us suppose that the nodes of the graph are indexed,
that is, V0 = {1, 2, . . . , N0}. Similarly to the ERRW, in the ERRWT we assume that
all initial links (i, j) ∈ E0 have weight w0

ij = 1. The initial node to start the exploration
process is randomly selected from V0. We let the graph Gt evolve during the process,
adding new nodes and links. The structure of the growing network is encrypted in the
time-varying weight matrix W t = (wt

ij). Then, supposing to be on node i of the graph
Gt at time t, the model obeys to the following rules.

• Choice of next node. The ERRWT randomly moves to a neighbouring node j of
the current node i. The probability to move to node j depends on the weight of
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the outgoing links of i, i.e.,

P(i → j) =
wt

ij∑
l w

t
il

. (3.3)

• Edge reinforcement. The weight of the chosen edge (i, j) is reinforced by ρ, that
is,

wt+1
ij = wt

ij + ρ. (3.4)

• Edge triggering. If the walker never traversed the chosen edge (i, j) before this
time, i.e., it is a new link, then ν2+1 new possible links are added to the network.
These links are connections of unitary weight between j and previously visited
nodes l = l1, . . . , lν2 in Vt, for which the link (j, l) has never been traversed
by the walker. If one of these edges already exists in the space of possibilities,
its weight is reinforced by one more unit, otherwise, it is added to Et+1. In other
words, we have

wt+1
jl = wt

jl + 1, l = l1, . . . , lν2
| l old, (j, l) new. (3.5)

• Node triggering. If the walker never visited the chosen node j before this time,
i.e., it is a new node, then ν1 + 1 new nodes are added to the network; these are
connected to node j with unitary weights. Mathematically, we have

Vt+1 = Vt +
{
|Vt|+ 1, . . . , |Vt|+ ν1 + 2

}
wt+1

jl = 1, l = |Vt|+ 1, . . . , |Vt|+ ν1 + 2.
(3.6)

Notice that if the chosen node j is new, then also the traversed edge (i, j) is
necessarily new as well. Therefore, in this case there is also a triggering of
ν2 + 1 edges from j to other previously visited nodes, as described before.

In the following sections, we let G0 be a small graph that emulates the triggering
mechanism introduced, shown in Fig. 3.7. This is a regular tree with branching param-
eter ν1+1 and 2 levels, where the leaves are considered new, while all other nodes have
already triggered. In other words, a root node has triggered ν1 + 1 nodes connected to
it, and again these nodes have also triggered each ν1 + 1 other nodes. Therefore, we
initially suppose that the triggered nodes, which are ν1 +2 in number, are all known to
the walker at the start of the simulation, and do not trigger again when later explored.
Moreover, we assume that all links are new to the walker and have unitary weight. This
initialization makes sure that in the initial stages of the simulation there are enough
possible links between already known nodes. As we show in Sec. 3.6.3 where we test
different initial graphs, the initialization procedure only affects thermalization times,
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Figure 3.7: Representation of the chosen initial network structure used in sim-
ulations of the ERRWT. Although any initial network structure can be used for the
ERRWT, in the simulations shown in Sec. 3.5.2 we consider a regular tree with branch-
ing parameter ν1 + 1 (equal to 3 in the figure) and 2 levels. This structure resembles
the way new nodes are triggered during the exploration, so that the root and first layer
(full nodes) are considered triggered and known, while the leaves (empty nodes) are
considered new. All links are regarded as new (represented as dashed). The choice of
this tree has been done to ensure that the triggering of new edges finds nodes that are
already known by the random walker.

and becomes irrelevant asymptotically.

3.5.2 Numerical simulations

Balancing edge reinforcement and the node and edge triggering through the parameters
ρ, ν1 and ν2, it is possible to control the pace of discovery of new nodes and edges, and
consequently the exponents of the 1st-order and the 2nd-order Heaps’ law associated to
the sequences produced by the model. To systematically explore this, we simulate the
ERRWT model with parameters ρ = 10, ν1 = 0, 1, . . . , 20, and ν2 = 0, 1, . . . , 2ν1,
running 100 simulations for each set of parameters. Higher values of ν2 have not been
considered since they produce the same exponents as those for ν2 = 2ν1. Fig. 3.8(a) re-
ports the increase in the number of 1st-order and 2nd-order novelties (continuous lines)
for a specific set of parameters (ρ = 10, ν1 = 10, and ν2 = 15). The power-law fits
(dashed lines) highlight that the Heaps’ law is verified at higher-orders too, leading to
an increase of the exponents values (from β1 = 0.56 to β2 = 0.87) as we increase the
order.

The relationship between the different orders is explored in Fig. 3.8(b), where we
show the scatter plot between the 1st- and 2nd-order Heaps’ exponent. Each point refers
to a different simulation, and we use the color to indicate the value of the used parame-
ter ν1 (see color bar). We notice that the ERRWT produces a wide range of exponents at
both orders, which are no more trivially correlated as for previous models. This is even
more clear when we look at Fig. 3.8(c), where Heaps’ exponents are averaged across
simulations for each set of parameters: each trajectory relates to a different value of ν1,
with ν1 increasing from 1 to 20 from bottom left to top right of the panel. The color rep-
resents instead the variation of the parameter ν2 from 0 to 2ν1. For reference, we also
flag with a red dot the pair of exponents related to the parameters used in Fig. 3.8(a).
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Figure 3.8: Higher-order Heaps’ exponents in the ERRWT model. (a) Average
number Dn(t) of novelties of order n, with n = 1 and 2, as a function of the sequence
length t for simulations of the ERRWT with parameters ρ = 10, ν1 = 10, ν2 = 15, and
fit of the associated Heaps’ laws (dashed lines), with estimated exponents shown in the
legend. Shaded areas represent one standard deviation above and below the average.
(b) Scatter plot between the (standard) Heaps’ exponent β1 and the 2nd-order exponent
β2. Each point refers to a different simulation of the model, with colors representing
the corresponding value of the parameter ν1 ranging from 0 to 20 (see color bar), while
ρ = 10 and ν2 = 0, . . . , 2ν1. (c) Variation of the average nth-order Heaps’ exponents
βn, with n = 1, 2. Each trajectory refers to a different value of ν1, increasing from
1 to 20 from bottom left to top right, with the color depending on the value of ν2 (see
color bar). The set of parameters used in (a) is here highlighted in with a red dot.

We can immediately notice how the 1st- and 2nd-order Heaps’ exponents increase as
ν1 becomes larger. More interestingly, we can investigate the interplay with ν2: given
a single trajectory, by increasing ν2 the difference between β1 and β2 becomes larger,
and the point (β1, β2) moves away from the bisector, in a way that depends on the spe-
cific value of ν1. In particular, for low values of ν1, the trajectories are almost vertical,
with only β2 increasing. Instead, for higher values of ν1, especially when ν1 ≥ ρ, an
increase of ν2 produces a decrease of β1, while the value of β2, which is close to its
upper bound value 1, does not change.

It is also possible to perform an analytical investigation of a simplified version of
the ERRWT model, shown in Sec. 3.6.3, which leads to similar results. In particular,
for such a model, we can prove that the values of the asymptotic Heaps’ exponents β1

and β2 depend on the two ratios ν1/ρ and ν2/ρ. Moreover, we find that, for ν1/ρ > 1,
the 2nd-order Heaps’ exponent is asymptotically equal to 1, while the 1st-order one
depends on ν1/ν2, in agreement with our numerical results. Finally, the exponents
are asymptotically bounded by β1 ≤ β2 ≤ 2β1, as also shown in the simulations in
Fig. 3.8(c). This also explains why the exponents do not change when we increase ν2

above 2ν1.
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Figure 3.9: Fitting the ERRWT model to real-world data sets. (a) Distribution of
the average distance between the pair of exponents (β1, β2) of a real sequence and the
pair (β′

1, β
′
2) obtained by the best fit of the ERRWT model. (b-c) Scatter plots of the

best-fitted parameters ν1 and ν2 of the model across the sequences of the three data
sets, i.e., Last.fm (b), Project Gutenberg (c), and Semantic Scholar (d). The color of a
point refers to the number of sequences with that pair of parameters as corresponding
best fit (see color bar).

3.5.3 Comparison with data

To show that the ERRWT model is able to reproduce the properties observed in real-
world processes, we fit the model to the three data sets analyzed in Sec. 3.3, namely
Last.fm, Project Gutenberg and Semantic Scholar. Given an empirical sequence and
its pair of 1st- and 2nd-order Heaps exponents (β1, β2), we compute the Euclidean
distance between the pair (β1, β2) and each of the pairs of exponents (β′

1, β
′
2) obtained

by simulating the ERRWT model using the sets of parameters considered in Fig. 3.8.
We then select the best model parameters by minimizing the average distance over 100
simulations for each set of parameters, and repeat the procedure for all the sequences
of the three data sets.

Figure 3.9(a) shows the probability density distribution of the distances between the
empirical sequences and the simulations of the best-performing ERRWT model. Notice
how these distances are almost all below 0.1, that is below the uncertainty we expect on
the values of the parameters. In fact, being ν1, ν2 integers and ρ = 10, the maximum
precision we can gain on the estimate of the best parameters is approximately 1/ρ =

0.1. The percentage of sequences with higher distance than this threshold is 7.67%,
0.73%, and 0.05% for Last.fm, Project Gutenberg, and Semantic Scholar, respectively.

The scatter plots of the best-fitted parameters ν1 and ν2 for the three data sets are
shown in Fig. 3.9(b-d). The colors here indicate the number of empirical sequences
which are best represented by each pair of parameters. We notice that most of the
sequences of Last.fm are characterized by relatively large values of ν1. Since ν1 is
related to the triggering of new nodes, this result indicates that the discovery of a new
song exposes the user to a large variety of related songs, which were previously not
accessible and can now be discovered. Conversely, the parameter ν2, which refers to
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the triggering of new edges between already existing items, takes values in a larger
range, predominantly skewed towards the lower end. This suggests that, once a new
association of two songs is established by a user, there is a high probability that the
same association will be repeated over and over. Consequently, the user will preferably
listen to songs in a similar order, instead of creating new associations. In the case
of Project Gutenberg, most sequences have ν2 > ν1. This implies that writers tend
to frequently generate new word associations, highlighting the incredible variety of
expressions we can make combining a limited set of words. Finally, Semantic Scholar
exhibits values of ν1 and ν2 similar to Project Gutenberg. However, some sequences
of Semantic Scholar have a relatively high value of ν1 with respect to ν2. This is
an indication that, when choosing words for titles, authors tend to use more original
words, while the pace of creation of new word associations remains similar.

3.6 Analytical results

3.6.1 Analytical results for higher-order Heaps’ laws in the UMT

The Urn Model with Triggering (UMT) features a triggering mechanism for the growth
of the adjacent possible [8]. In particular, whenever a new color is drawn for the first
time, ν+1 new colors are triggered and added into the urn. Together with the reinforce-
ment mechanism introduced in Polya’s urn [24], the UMT manages to reproduce var-
ious features of innovation processes, including the Heaps’ law. In particular, varying
the parameters, the UMT produces different rates of discovery, which can be measured
by the power-law exponent β1 of the Heaps’ law. As we have seen in Sec. 3.4, the UMT
is also able to produce higher-order Heaps’ laws, measuring the pace of discovery of
combinations of more than one element. However, as shown in Fig. 3.5, the 2nd-order
Heaps’ exponents obtained in simulations of the UMT are very close to the respective
1st-order ones. In this section, we hence provide a complete analytical analysis of the
higher-order Heaps’ laws for the UMT, so as to have an analytical resulof the long-term
behavior of the higher-order Heaps’ laws

First-order Heaps’ law

Following what already discussed in Sec. 2.2.4, the evolution of the number D1(t) of
different colors that have appeared in the first t positions of the sequence S is ruled by
the following master equation:

D1(t+ 1) = D1(t) + P
(
N(t+1)

)
= D1(t) +

N0 + vD1(t)

N0 + ρt+ (v + 1)D1(t)
, (3.7)
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where N(t+1) is the event of drawing at time (t + 1) a ball of a color that has not
been observed before. Its probability P

(
N(t+1)

)
can be expressed as the number of

colors in the urn yet to be discovered, N0 + (ν + 1)D1(t) − D1(t), divided by the
total number of balls available at time t in the urn. In the long time limit, Eq. (3.7) can
be approximated by a differential equation, which leads to an analytical expression for
D1(t) (see Sec. 2.2.4 for the analytical calculations):


dD1(t)

dt = N0+vD1(t)
N0+ρt+(v+1)D1(t)

D1(0) = 0
=⇒ D1(t) ≈

t→∞


btβ1 if ν < ρ,

b t
log t if ν = ρ,

bt if ν > ρ,

(3.8)

where β1 = ν/ρ and b is a constant depending on ν and ρ. In other words, in the
sublinear case ν < ρ, the Heaps’ law is analytically verified, with asymptotic exponent
β1 = ν/ρ [8, 25, 26].

Second-order Heaps’ law

In order to write down an equation similar to Eq. (3.8) for the number D2(t) of different
pairs that have appeared in the sequence S2 of length t, i.e.,

dD2(t)
dt = P(“The t-th pair is new”),

D2(0) = 0,
(3.9)

we need to calculate the probability to observe a new pair. However, differently from
Eq. (3.8), such a probability depends not only on the total number of balls and on the
number of extracted colors, but also on the number of balls of each extracted color.
Notice that the t-th pair (x1, x2) of S2 is composed by the color x1 drawn at time t in
S and the color x2 drawn in the next time step. Hence, there are three separate events in
which the t-th pair (x1, x2) is a novelty in S2: the event A in which x1 is a novelty, i.e.,
it appears for the first time in the sequence S at time t; the event B in which x1 is not a
novelty but x2 is a novelty; the event C in which both colors x1 and x2 are not novel,
but the combination (x1, x2) appears for the first time. Consequently, the probability
that the t-th pair is new is equal to the sum of the probabilities of such events. Using
Eq. (3.8), for large values of t the probability of event A can be written as

P(A) = P
(
N(t)

)
=

dD1(t)

dt
≈

t→∞
bβ1t

β1−1. (3.10)
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Similarly, denoting with N(t) the opposite event of N(t), the probability of event B
reads

P(B) ≈ P
(
N(t)

)
P
(
N(t+1)

)
≈
(
1− dD1(t)

dt

)
dD1(t+ 1)

dt
≈ bβ1t

β1−1 = P(A),

(3.11)

where we have disregarded infinitesimals of lower order. Thirdly, we can compute the
probability of the event C by calculating the probability that each possible pair of old
colors is a novelty in this time step. Since the number of old colors up to time t is
D1(t), indicating with C(t)

i,j the event in which i and j are two already extracted colors
and their pair (i, j) is a novelty at time t in S2, we can write:

P(C) ≈ P
(
N(t)

)
P
(
N(t+1)

)
P

D1(t)⋃
i,j=1

C(t)
i,j


≈
(
1− bβ1t

β1−1
)2 P

 btβ1⋃
i,j=1

C(t)
i,j

 ≈
btβ1∑
i,j=1

P
(
C(t)

i,j

)
.

(3.12)

The last equality in Eq. (3.12) holds true because for any (i1, j1) ̸= (i2, j2) we have
C(t)

i1,j1
∩ C(t)

i2,j2
= Ø, since only one pair can be extracted at each time step, and we

have disregarded lower infinitesimals.
Let us now concentrate on computing the probability of Ci,j(t). Defining the event

E(τ)
ij = “pair (i, j) appears (not necessarily for the first time) in the sequence at time τ",

we can rewrite C(t)
i,j as

C(t)
i,j = E(1)

ij ∩ E(2)
ij ∩ · · · ∩ E(t−1)

ij ∩ E(t)
ij , (3.13)

where we denote with E(τ)
ij the opposite event of E(τ)

ij . We can hence compute its
probability as

P
(
C(t)

i,j

)
=P
(
E(1)
ij ∩ E(2)

ij ∩ · · · ∩ E(t−1)
ij ∩ E(t)

ij

)
=P
(
E(1)
ij

)
P
(
E(2)
ij |E(1)

ij

)
· · ·P

(
E(t−1)
ij |E(1)

ij ∩ · · · ∩ E(t−2)
ij

)
P
(
E(t)
ij |E(1)

ij ∩ · · · ∩ E(t−1)
ij

)
.

(3.14)

First, we notice that we can simplify the expressions in Eq. (3.14), since

P
(
E(τ)
ij |E(1)

ij ∩ · · · ∩ E(τ−1)
ij

)
= P

(
E(τ)
ij |E(τ−1)

ij

)
. (3.15)

This equality in Eq. (3.15) holds true because, the probability of extracting the pair
(i, j) at time τ can only be influenced by what has happened at time (τ −1), disregard-
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ing all previous times.

Without loss of generality, let us index the colors in the urn in the same order they
first appeared in the sequence, i.e., let us suppose that the i-th color has appeared at
time ti, with ti+1 > ti, for i = 1, 2, . . . , D1(t). Let us also suppose that the rate
at which a new color appears is given exactly by the approximated solution given by
Eq. (3.8). Then, it would be

i = D(ti) ≈ btβ1

i =⇒ ti ≈
(
i

b

) 1
β1

. (3.16)

With Eq. (3.16) we are assuming that the behaviour of D1(t) at finite times can be ap-
proximated with the asymptotic one, and that colors appear deterministically at these
expected moments. Even though strong, this assumption makes sense if we consider
that, as it has been observed before, there is a good correspondence between this ana-
lytical solution and simulations at finite times. Moreover, we will confirm a posteriori

the suitability of this assumption since, as we will see, there is correspondence between
the analytical solution of D2(t) we obtain here and the results of model simulations.

Let us now define ni(t) as the number of times the color i has appeared before time
t, supposing it has first appeared at time ti ≤ t. If E(t)

i = “i appears at time t" (not
necessarily for the first time), then we have that dni

dt = P
(
E(t)
i

)
. Thus, we can write:


dni(t)

dt = ρni(t)+1
N0+aD(t)+ρt ≈

t→∞
ni

t ,

ni(ti) = 1,
=⇒

 ni(t) ≈
t→∞

t
ti

if t ≥ ti,

ni(t) = 0 if t < ti,

=⇒


dni(t)

dt ≈
t→∞

1
ti

=
(
b
i

) 1
β1 if t ≥ ti,

dni(t)
dt = 0 if t < ti.

(3.17)

Let us observe that under these assumptions dni/dt is actually constant in time, de-
pending just on ti. Then, supposing that the number of balls ni(τ), nj(τ) of the two
colors in the urn follows exactly Eq. (3.9), we can calculate the probability of E(τ)

ij as

P
(
E(τ)
ij

)
= P

(
E(τ)
i

)
P
(
E(τ+1)
j

)
=

dni(τ)

dτ

dnj(τ + 1)

dτ

≈
t→∞

 1
titj

if τ ≥ max(ti, tj − 1),

0 if τ < max(ti, tj − 1).

(3.18)
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Furthermore, if τ ≥ max(ti, tj − 1), we can write

P
(
E(τ)

ij ∩ E(τ−1)
ij

)
= P

([(
E(τ+1)

ij ∩ E(τ)
ij

)
∩ E(τ)

j

]
∪
[(

E(τ+1)
ij ∩ E(τ)

ij

)
∩ E(τ)

j

])
= P

([
E(τ)
i ∩ E(τ+1)

j ∩ E(τ−1)
i ∩ E(τ)

j

]
∪
[
E(τ)
i ∩ E(τ+1)

j ∩ E(τ)
j

])
= P

(
E(τ)

i ∩ E(τ)
j

)
P
(
E(τ+1)
j

)
P
(
E(τ−1)
i

)
+ P

(
E(τ)
i ∩ E(τ)

j

)
P
(
E(τ+1)
j

)
= δ(i, j)

1

ti

1

tj

(
1− 1

ti

)
+ (1− δ(i, j))

1

ti

1

tj
.

(3.19)

Therefore, we get

P
(
E(τ)
ij |E(τ−1)

ij

)
=

P
(
E(τ)
ij ∩ E(τ−1)

ij

)
P
(
E(τ−1)
ij

) =
δ(i, j) 1

titj

(
1− 1

ti

)
+ 1−δ(i,j)

titj

1− 1
titj

=
δ(i, j)

(
1− 1

ti

)
+ (1− δ(i, j))

titj − 1

= δ(i, j)

(
1− 1

ti

)
titj − 1

+ (1− δ(i, j))
1

titj − 1

= δ(i, j)
1

t2i + ti
+ (1− δ(i, j))

1

titj − 1
.

(3.20)

In the following of this discussion, we make the following approximation:

δ(i, j)
1

t2i + ti
+ (1− δ(i, j))

1

titj − 1
≈ 1

titj
. (3.21)

Because of Eq. (3.18), the approximation in Eq. (3.21) implies in Eq. (3.20) that

P
(
E(τ)
ij |E(τ−1)

ij

)
≈

 1
titj

if τ ≥ max(ti, tj − 1)

0 if τ < max(ti, tj − 1)

=⇒ P
(
E(τ)
ij |E(τ−1)

ij

)
≈ P

(
E(τ)
ij

)
,

(3.22)

which is equivalent to assume that E(τ)
ij and E(τ−1)

ij are statistically independent, i.e.,
that the extraction of a certain pair (i, j) at time τ is independent of its extraction at
the previous time (τ − 1). Therefore, using Eq. (3.14), Eq. (3.15), Eq. (3.18) and
Eq. (3.22), the probability of the event C(t)

ij that the pair (i, j) is extracted at time t for
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the first time can be approximated to

P
(
C(t)

ij

)
= P

(
E(1)
ij

)
P
(
E(2)
ij

)
· · ·P

(
E(t−1)
ij

)
P
(
E(t)
ij

)
=

t−1∏
τ=1

P
(
E(τ)
ij

)
P
(
E(t)
ij

)
=

t−1∏
τ=max(ti,tj−1)

(
1− P

(
E(τ)
ij

))
P
(
E(t)
ij

)

=

(
1− 1

titj

)t−max(ti, tj−1)
1

titj
,

(3.23)

which can be used in Eq. (3.12) to obtain an approximated expression for the probabil-
ity of event C, i.e.,

P (C) ≈
btβ1∑
i,j=1

P
(
C(t)

ij

)
≈

btβ1∑
i,j=1

(
1− 1

titj

)t−max(ti, tj−1)
1

titj
. (3.24)

Summing up, by inserting Eq. (3.10), Eq. (3.11), and Eq. (3.24) into Eq. (3.9), we get
the following differential equation for the number of new pairs in time in the UMT:

dD2

dt
≈

t→∞
2bβ1t

β1−1 +

btβ1∑
i,j=1

(
1− 1

titj

)t−max(ti, tj−1)
1

titj︸ ︷︷ ︸
C(t)

. (3.25)

In order to have an estimate of C(t), let us approximate the sum with the related
integral:

C(t) ≈
t→∞

btβ1∫
1

btβ1∫
1

(
1− 1

txty

)t−max(tx, ty−1)
1

txty
dxdy. (3.26)

This way, using the change of variables u = tx =
(
x
b

) 1
β1 , v = ty =

(
y
b

) 1
β1 , we get

C(t) ≈
t→∞

(bβ1)
2

t∫
1

ρ−ν

t∫
1

ρ−ν

(
1− 1

uv

)t−max(u, v−1)
dudv

(uv)2−β1
, (3.27)

where we have substituted the initial value
(
1
b

) 1
β1 = 1

ρ−ν , since b = (ρ − ν)β1 when
ν < ρ, that is in this case [8]. Moreover, considering that u and v represent time
variables, with τ ∈ (1, t), since between t = 0 and t = 1 there are no colors extracted
yet, we can change the lower integral border to 1, i.e.,

C(t) ≈
t→∞

(bβ1)
2

t∫
1

t∫
1

(
1− 1

uv

)t−max(u, v)
dudv

(uv)2−β1
, (3.28)
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Figure 3.10: 2nd-order Heaps’ exponent in the urn model with triggering. Temporal
evolution of the 2nd-order Heaps’ exponents β2(t) of the urn model with triggering
according to the simulations (continuous blue line) and the numerical integration of
Eq. (3.25) (continuous orange line). Parameters are set to ρ = 4 and η = 1, while
ν varies across panels: ν = 1 (a), 2 (b), and 3 (c). Continuous lines are obtained by
fitting D2(t) with a function atβ1+c/(d+log(t)), as in Eq. (3.30). The expected 1st-order
Heaps’ exponent in each panel, respectively equal to β1 = ν/ρ = 0.25, 0.5, 0.75, is
displayed as a dashed gray horizontal line.

where we have also simplified the exponent in the integrand, so that we can more easily
calculate it as

C(t) ≈
t→∞

2 (bβ1)
2

t∫
1

u∫
1

(
1− 1

uv

)t−u
dudv

(uv)2−β1
. (3.29)

We numerically solve the integral in Eq. (3.29) on specified points ti using the com-
mand NIntegrate of Mathematica [141]. The points ti have been chosen on a fine
logarithmically spaced grid of N = 1601 points 1 = t0 < t1 < · · · < tN = 1016. By
plugging the numerical approximation C(ti) into Eq. (3.25), we also obtain a numerical
approximation of dD2/dt in these points. We also obtain an analytical approximation
of dD2/dt by fitting a function of the type atb+c/(d+log2(t)) using curve_fit (in
Python’s package scipy), where the minimization of the error has been done in log-
arithm scale. Finally, integrating Eq. (3.25) over t, we obtain a solution for D2(t).
Again, we are not able to solve this integral analytically, so we solve it numerically
using the analytical fit of dD2/dt. In particular, we integrate using Python’s command
odeint in the scipy package. We find that the numerical integration for D2(t) can
also be fitted by a function of the type atβ1+c/(d+log2(t)).

To sum up, we have derived a solution of Eq. (3.25) of the type

D2(t) ≈ a tβ2 , with β2 = β1 +
c

d+ log(t)
, (3.30)

where a, c, and d depend on the parameters ρ and ν. Fig. 3.10 shows that the analytical
expression of β2 we have found is in good agreement with the numerical simulations.
From left to right, we consider parameters ρ = 4 and ν = 1, 2, 3, and we run simu-

82



lations until T = 107. In each plot, continuous lines represent the 2nd-order Heaps’
exponents of the power-law fits as a function of time t. The continuous blue line is
obtained by fitting the best parameters a, c and d that minimize the error between the
points D2(t) of the simulations with a function of the type a tβ1+

c
d+log(t) . The contin-

uous orange line instead represents the result of our analytical approach in Eq. (3.30).
The expected value of β1 = ν/ρ is represented as a horizontal dashed gray line. Our
results further confirm that 2nd-order Heaps’ exponents differ from the 1st-order ones
at finite times. However, they also highlight that in the UMT the difference between β2

and β1 slowly decays in time.

Higher-order Heaps’ law

Finally, we point out that an analytical solution for higher-order Heaps’ exponents can
also be obtained by induction, with assumptions similar to those used for the 2nd-order
one. For example, for the 3rd-order, we can repeat the same process as in Sec. 3.6.1 to
compute the probabilities of obtaining a new triplet. In particular, supposing that

dD1(t)

dt
≈ a1t

β1−1,
dD2(t)

dt
≈ a2t

β1−1+
c2

d2+log2(t) , (3.31)

we can obtain a new triplet in the three following distinct cases.

(A): when at time (t− 1) a new pair is drawn, which happens with probability

P(A) =
dD2(t− 1)

dt
≈ a2t

β1−1+
c2

d2+log2(t) . (3.32)

(B): when at time (t − 1) an old pair is drawn, and at time t a new color is drawn,
which happens with probability

P(B) =
(
1− dD2(t− 1)

dt

)
dD1(t)

dt

≈
(
1− a2t

β1−1+c2/(d2+log2(t))
)
a1t

β1−1 ≈ a1t
β1−1.

(3.33)

(C): when at both times (t − 1) and t an old pair and an old color are extracted, but
the corresponding triplet has never appeared in the sequence before. Following
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the same steps of the 2nd-order case, we get the probability

P (C) ≈
btβ1∑

i,j,k=1

(
1− 1

titjtk

)t−max(ti, tj , tk) 1

titjtk

≈ (a1)
3

t∫
1

t∫
1

t∫
1

(
1− 1

uvw

)t−max(u, v−1, w−2)
dudvdw

(uvw)2−β1

≈ 3! (a1)
3

t∫
1

u∫
1

v∫
1

(
1− 1

uvw

)t−u
dudvdw

(uvw)2−β1
,

(3.34)

where 3! = 3 · 2 · 1.

Then, summing up Eq. (3.32), Eq. (3.33) and Eq. (3.34), the probability to have a new
triplet can be approximated as

dD3(t)

dt
≈ a2t

β1−1+
c2

d2+log2(t) + a1t
β1−1

+ 3! (a1)
3

t∫
1

u∫
1

v∫
1

(
1− 1

uvw

)t−u
dudvdw

(uvw)2−β1
. (3.35)

In general, for the nth-order Heaps’ law, let us suppose by induction that all lower
orders are known, i.e., for all orders k = 1, . . . , n− 1, with n ≥ 2, we have

dDk(t)

dt
≈ akt

β1−1+
ck

dk+log2(t) , Dk(t) = ãkt
β1+

ck
dk+log2(t) , (3.36)

with a, c, d > 0. Then, following the same procedure used for the 3rd-order Heaps’
law, the probability of extracting a new n-tuple is given by:

dDn(t)

dt
≈ dDn−1(t)

dt
+

dD1(t)

dt

+ n! (a1)
n

t∫
1

u1∫
1

· · ·
un−1∫
1︸ ︷︷ ︸

n integrals

(
1− 1

u1 · · ·un

)t−u1 du1 · · · dun

(u1 · · ·un)2−β1
, (3.37)

which approximately gives

dDn(t)

dt
≈ ant

β1−1+ cn
dn+log2(t) , Dn(t) = ãnt

β1+
cn

dn+log2(t) . (3.38)
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3.6.2 Comparison between analytical results and simulations of the
UMT and the UMST

According to analytical results on the asymptotic Heaps’ exponent found in the previ-
ous section, we have that the 1st-order Heaps’ exponent β1 is asymptotically ν/ρ. In
this section, we check if this relation holds true at finite times in Fig. 3.11(a), where
we show the scatter plots between ν/ρ and the fitted value of β1 for simulations of the
UMT with ρ = 20 and ν = 1, . . . , 20, run for T = 105 time steps. Each point refers to
a different simulation, and we analyze 100 simulations for each set of parameters. We
notice how the relationship holds true in most cases, although the fitted values are less
than the theoretical ones, especially for high values of ν/ρ. We repeat this check also
for higher-order Heaps’ exponents in Fig. 3.11(b-c), finding that also in this case there
is not so much difference between the theoretical value ν/ρ and the fitted β2 and β3, if
only that the points in the plot are slightly higher than the bisector.

We repeat the same analysis for the Urn Model with Semantic Triggering (UMST),
which introduces semantic triggering between the colors in the urn. In particular, two
colors are considered semantically related if they have been triggered by the same
color (siblings) or if one has triggered the other (parent and child). Then, whenever a
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Figure 3.11: Higher-order Heaps’ exponents and their correlations with the ex-
pected asymptotic value in urn model simulations. Scatter plots between the analyt-
ically expected lower bound ην/ρ for the asymptotic 1st-order Heaps’ exponent—the
theoretical upper bound being min(1, ν/ρ)—and the Heaps’ exponents β1 (a), β2 (b),
β3 (c), β4 (d). Each point refers to a different simulation of 105 time steps, colored
according to the density of points (see color bar). Each panel reports the value of the
correlation coefficient r. The first row refers to the Urn Model with Triggering (UMT),
with no semantic correlations (η = 1) and ρ = 20. The second row refers to the Urn
Model with Semantic Triggering (UMST), with ρ = 4 and η = 0.1. Here, we show the
results of 100 simulations for each set of parameters.
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η ρ ν β1 ≈ ην/ρ β1 ≈ 1

0.1 4 1 100 0
0.1 4 2 100 0
0.1 4 3 100 0
0.1 4 4 100 0
0.1 4 5 100 0
0.1 4 6 100 0
0.1 4 7 99 1
0.1 4 8 91 9
0.1 4 9 80 20
0.1 4 10 51 49
0.1 4 11 44 56
0.1 4 12 21 79
0.1 4 13 12 88
0.1 4 14 0 100
0.1 4 15 0 100
0.1 4 16 1 99
0.1 4 17 0 100
0.1 4 18 0 100
0.1 4 19 0 100
0.1 4 20 0 100

Table 3.3: Statistics on the number of simulations of urn models. Number of sim-
ulations of the UMST (η = 0.1, ρ = 4, ν = 1, . . . , 20) that have an exponent ap-
proximately equal to the lower bound ην/ρ or to the upper bound 1. For each set of
parameters, 100 simulations have been launched.

new color needs to be extracted, a ball of a certain color in the UMST has a different
weight depending on the semantic relationship with the previous color. If the two colors
are related, then the ball has weight 1, otherwise it gets weight η ≤ 1. Analytical
results on the Heaps’ law from the SI in Ref. [8] show that the asymptotic Heaps’
exponent is found between ην/ρ and min (1, ν/ρ). We test this in Fig. 3.11(d), where
we show the scatter plots between ην/ρ and the fitted value of β1 for simulations of
the UMST with ρ = 4 and ν = 1, . . . , 20. We see that for low values of the ην/ρ the
value of β1 corresponds to the theoretical lower bound. However, starting from about
ην/ρ = 0.2 there start to be simulations in which the value of β1 goes abruptly up to
1. Notice that for these values, we have that ν/ρ = 2. Interestingly, up to ην/ρ = 0.3

and sometimes up to ην/ρ = 0.4, there are both simulations with Heaps’ exponent
β1 ≈ ην/ρ and others with β1 ≈ 1, but almost none in between. After that, there
remain only simulations with linear Heaps’ law. We repeat the analysis for higher-
order Heaps’ exponents, finding the same behavior.

In Table 3.3 we also report the number of simulations with either of the two be-
haviors. Notice how the number of simulations with β1 ≈ 1 increases with higher
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values of ν. This analysis shows the inadequacy of the UMST to reproduce the whole
spectrum of paces of discovery. In fact, we are not able to obtain Heaps’ exponents
between 0.4 and 0.9 with η = 0.1. Moreover, if we knew that the Heaps’ exponent lies
in between these two bounds, simulations actually only produce exponents very close
to these two bounds. The higher the theoretical value ην/ρ, the higher the chance of
having a Heaps’ exponent close to 1. A possible explanation of why this could hap-
pen lies on the way semantic triggering happens. In the UMST, indeed, when a color is
drawn for the first time, ν+1 balls of new colors are added to the urn, and they become
semantically connected to the triggering color. Then, the probability to draw a ball of
a color semantically close to the previous one is 1/η = 10 times higher with respect to
balls of other colors. This brings about two possible scenarios. On the one hand, if a
small cluster of colors is highly reinforced in the beginning of the simulation, after one
of them is drawn it is very likely that another of these colors is extracted in the next time
step. On the other hand, if a new color is drawn, since it is highly probable to move
to a semantic close color and almost all of them are new, if ν is high enough the next
extracted color is also almost surely new. Then, once inside one of the two scenarios,
it is very unlikely to break the loop, producing the two groups of Heaps’ exponent we
observe. This also explains why the likelihood of being in the linear case increases with
ν, even though the two behaviors can coexist in the same set of parameters. Finally,
this is also confirmed by simulations with higher number steps—we tested with 107

steps—, which show the same results, indicating that the behavior has already reached
a stationary state.

3.6.3 Analytical details of ERRWT model

In this section we provide an analytical insight of the model proposed in Sec. 3.5, the
Edge-Reinforced Random Walk with Triggering, or ERRWT. In particular, we refer to
the definition of ERRWT given in Sec. 3.5.1, and try to build differential equations for
the evolution of D1(t) and D2(t). From now on, we omit the explicit time dependence
of the variables, e.g., D1 ≡ D1(t), so that the mathematical expressions are easier
to read. Moreover, in the following analysis we make an important simplification,
that is, we do not consider an undirected update as defined the main text. Undirected
update means that at any time a new link (i, j) is reinforced or triggered, the link (j, i)

is updated as well; here we consider the directed version of the model, i.e., only the
visited link (i, j) is updated.

We start from considering variables referring to the pace of discovery related to
each node i, namely Din

1i , D
out
1i , Din

2i , D
out
2i , which represent respectively the number

of times a new node is discovered arriving (in) in node i, and leaving (out) from node
i, and the same for the number of times a new link is discovered arriving or leaving
from node i. Notice that Din

1i becomes 1 as soon as node i is visited for the first time.
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These micro variables can be aggregated to obtain the macro variables D1 and D2,
considering either in or out variables and summing over all the nodes:

D1 =
∑
i

Din
1i =

∑
i

Dout
1i D2 =

∑
i

Din
2i =

∑
i

Dout
2i (3.39)

Let us now build differential equations for the evolution of such micro variables,
which will be aggregated to obtain self-consistent equations for D1 and D2. Let us
consider the probability of exploring a new node starting from node i, i.e., the proba-
bility that the variable Dout

1i increases by 1. On the one hand, the total weight of the
links outgoing from node i is equal to

M0i + ρni + (ν1 + 1)Din
1i + (ν2 + 1)Din

2i , (3.40)

where M0i is the initial number of links connected with node i at time t = 0, and
ni ≡ ni(t) is the number of times node i has been visited up to time t. The other
two terms refer to the new links triggered when arriving in node i. Indeed, when i is
visited for the first time, (ν1 + 1) links outgoing from i to new nodes are triggered.
Moreover, whenever a link ending in i is traversed for the first time, (ν2+1) new links
from i to other explored nodes are triggered. On the other hand the total weight of links
connecting i and never explored nodes is equal to

M0i + (ν1 + 1)Din
1i −Dout

1i , (3.41)

i.e., the initial number of nodes connected to i yet to be discovered, plus the num-
ber of nodes triggered when discovering node i, minus the number of nodes already
discovered starting from i. These considerations make possible to write that

dDout
1i

dt
= p(i, t)

M0i + (ν1 + 1)Din
1i −Dout

1i

M0i + ρni + (ν1 + 1)Din
1i + (ν2 + 1)Din

2i

, (3.42)

where p(i, t) is the probability of being on node i at time t, which is a needed condition
for Dout

1i to evolve. Using the same argument, we can also write an equation for the
evolution of Dout

2i :

dDout
2i

dt
= p(i, t)

M0i + (ν1 + 1)Din
1i + (ν2 + 1)Din

2i −Dout
2i

M0i + ρni + (ν1 + 1)Din
1i + (ν2 + 1)Din

2i

(3.43)

Notice that Eq. (3.42) and Eq. (3.43) cannot be obtained so easily in the undirected
case. In fact, here we have implicitly assumed that any link in the adjacent possible that
has never been visited before has weight 1. However, if the update is undirected, we
may reinforce some link (j, i) never traversed before only because the walker might
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Figure 3.12: Temporal evolution of the quantities ni(t). In these figures we show
the temporal evolution of ni(t), i.e., the number of times node i has been explored at
time t, for many choices of the node i. In order to check the assumption ni(t) ∼ t/ti,
where ti is the time when node i is discovered for the first time, we actually plotted
tini(t) vs t. We expect this quantity to go like t, which is represented by the dotted
black line. As we can see from the four panels, the assumption is valid for a wide range
of the parameters ν1 and ν2.

have visited the edge (i, j), making impossible to know the actual weight of never
traversed links.

At this point we make another assumption in order to make the equations solvable.
In particular, we assume a precise expression for the variable ni. In fact, as we have
seen in Sec. 3.6.1, in the UMT, at least in the sublinear regime, we have ni(t) ∼ t/ti,
where ti is the first time item (node) i has been visited [8]. Exploiting the analogy
between the UMT and the ERRWT model, we assume that ni(t) has the same be-
haviour. We also checked numerically the validity of this assumption. We have indeed
measured the evolution of ni(t) in simulations of the ERRWT, showing that the as-
sumption is reasonable for very different values of the parameters ν1 and ν2, as shown
in Fig. 3.12. Further notice that p(i, t) = dni(t − 1)/dt ≈ 1/ti, since the probability
of being on i at time t is equal to the probability to move to node i in the previous time
step. With all these elements we can rewrite Eq. (3.42) and Eq. (3.43) as

dDout
1i

dt
≈ 1

ti

M0i + (ν1 + 1)Din
1i −Dout

1i

M0i + ρ t
ti
+ (ν1 + 1)Din

1i + (ν2 + 1)Din
2i

(3.44)

and
dDout

2i

dt
≈ 1

ti

M0i + (ν1 + 1)Din
1i + (ν2 + 1)Din

2i −Dout
2i

M0i + ρ t
ti
+ (ν1 + 1)Din

1i + (ν2 + 1)Din
2i

. (3.45)

The last step before aggregating the equations is to further simplify the denominator.
First notice that Din

1i is a variable which can only take values 0 or 1, since an arriving
node can result to be new only once (this is not true for Dout

1i , which can be larger
than 1). Therefore, we can neglect it with respect to the term with Din

2i , because this
can be larger than 1 and can go to infinity with time with a pace dependent on the
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parameters as we will see later. Finally, we assume Din
2i ≈ D2/ti; this is a reasonable

assumption given the fact that ni(t) ≈ t/ti. Indeed, if a node i is visited with a
frequency depending on the inverse of ti, it is reasonable to assume that also the number
of new links traversed arriving in node i occurs with the same frequency as well.

We can finally aggregate Eq. (3.44) summing over all nodes i, obtaining a self
consistent equation for the evolution of D1:

dD1

dt
=

D1∑
i=1

dDout
1i

dt
≈
∑
i

1

ti

M0i + (ν1 + 1)Din
1i −Dout

1i

ρ t
ti
+ (ν2 + 1)D2

ti

≈
∑
i

M0i + (ν1 + 1)Din
1i −Dout

1i

ρt+ (ν2 + 1)D2

=
M0 + (ν1 + 1)D1 −D1

ρt+ (ν2 + 1)D2
≈ ν1D1

ρt+ (ν2 + 1)D2
,

(3.46)

where in the last approximation we have disregarded M0 in the numerator, considering
that D1(t) → ∞ is the leading term in the numerator. Similarly for the 2nd-order
Heaps’ law, using Eq. (3.45) we can write

dD2

dt
=

D1∑
i=1

dDout
2i

dt
≈

D1∑
i=1

1

ti

M0i + (ν1 + 1)Din
1i + (ν2 + 1)Din

2i −Dout
2i

ρ t
ti
+ (ν2 + 1)D2

ti

=
M0 + (ν1 + 1)D1 + (ν2 + 1)D2 −D2

ρt+ (ν2 + 1)D2
≈ (ν1 + 1)D1 + ν2D2

ρt+ (ν2 + 1)D2
.

(3.47)

Notice that the initial structure of the network only enters in the equations through
the constant M0 ≡

∑
i M0i, and, as we have already pointed out, this term can be

safely neglected with respect to the other variables. This means that the asymptotic
behaviour of D1 and D2, and so the exponents β1 and β2, should not depend on the
initial structure of the network. We have hence run simulations with different initial
conditions and measured the exponents β1 and β2, checking that we obtain similar
result in all cases. The results of this analysis is shown in Fig. 3.13. In particular,
we consider regular trees with different number of levels, but same branching size.
The idea is that we start from a node and trigger nodes, adding new levels of the tree.
Therefore, the first initial network we consider is made by a root, considered triggered,
connected to ν1 + 1 new nodes. The second one adds another level to the first one.
Therefore, it is a regular tree with branching size (ν1 + 1) and 2 levels. Here, the
root and the first level are considered triggered, while the leaves are still new. This
structure is the same used in the simulations of Sec. 3.5.2 (see also Fig. 3.7). Finally,
the third one adds one more level, thus being much bigger than the previous ones. In
the panels we show only two sets of parameters, but we find comparable results for
other choices of the parameters. For both sets of parameters, we find that by increasing
the number of levels (and hence the number of nodes and links) in the initial network,
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Figure 3.13: Heaps’ exponents for different choices of the initial conditions. The
three panels show the behaviour of D1(t), D2(t) and D3(t) versus t for three different
initial conditions (i.e., initial structure of the network). In particular, we consider a
regular tree with branching parameter ν1 + 1 and number of levels equal to 1 (gray
lines), 2 (orange lines), 3 (blue lines). All nodes apart from the leaves are considered
known (or discovered, or triggered) by the ERRWT at the beginning of the simulation.
In each panel, the lines with higher Heaps’ law (see top left legend), refer to simulations
with ρ = 10, ν1 = 8, and ν2 = 8, while the other lines (see bottom right legend) with
ρ = 10, ν1 = 3, and ν2 = 1. In the legend, the related extracted power-law exponent
is reported. As we can see, the exponents measured in the three cases are similar
across order, thus showing that the initial structure of the network is not relevant for
the asymptotic behaviour of the ERRWT.

the higher-order Heaps’ exponents slightly increase. Moreover, the bigger the network,
the longer we see a transient time in which there is a much higher Heaps’ exponent.
For example, see the blue line in Fig. 3.13(a), where we can clearly find the initial
higher slope. Nevertheless, notice that after this period, the pace of discovery, i.e.,
the exponent, seems to be similar across different initial conditions, thus showing that
the initial structure of the network is not relevant for the asymptotic behaviour of the
ERRWT.

Now, using Eq. (3.46) and Eq. (3.47), we are able to work out an analytical expres-
sion for the two exponents β1 and β2. Let us consider various cases. First, assuming a
sublinear regime for D2 (so that it can be neglected with respect to t), in the large time
limit we can further simplify the equations and get

dD1

dt
≈ ν1D1

ρt
, (3.48)

dD2

dt
≈ (ν1 + 1)D1 + ν2D2

ρt
. (3.49)

Solving both of these equations, we obtain an explicit expression for the two exponents
β1 and β2; in the sublinear case we hence have asymptotically

β1 =
ν1
ρ

, β2 = max

(
ν1
ρ
,
ν2
ρ

)
(3.50)
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From the expression of β1 and β2 in Eq. (3.50), we get that the sublinear regime holds
only if ν1 < ρ and ν2 < ρ.

Before moving on to the other regimes, let us notice that β2 is constrained to be
at most equal to 2β1. This is because if the number of nodes available to explore in
the network is O(N), then the number of available edges is O(N2). This means that
D2 can at most grow as the square of D1 in the large time limit, imposing a constraint
on the related exponents. Let us now consider the case in which D2 grows linearly in
time, but not D1. Notice that this can happen only provided that ν1 > ρ/2; in fact,
since β2 is constrained to be smaller or equal than 2β1, then it would not be possible
for β2 to be equal to 1 if β1 = ν1/ρ < 1/2. This regime can be obtained substituting
a linear expression for D2 ∼ at into Eq. (3.47). In this case, if we assume a sublinear
behaviour for D1, we can neglect the second term in the numerator, obtaining

dD2

dt
≈ ν2at

ρt+ (ν2 + 1)at
=

ν2a

ρ+ (ν2 + 1)a
= a =⇒ a =

ν2 − ρ

(ν2 + 1)
, (3.51)

thus showing that the condition for this regime to exist is ν2 > ρ, otherwise the coef-
ficient a would be negative. Then, we can substitute D2 = ν2−ρ

(ν2+1) t into Eq. (3.46), to
get the actual value of β1:

dD1

dt
≈ ν1D1

ρt+ (ν2 − ρ)t
=

ν1D1

ν2t
=⇒ β1 =

ν1
ν2

. (3.52)

Therefore, D1 keeps growing sublinearly provided that ν1 < ν2. Notice that in this case
there are no conditions on the value of ν1, which can also be larger than ρ. Reminding
also the network constraint β2 ≤ 2β1, we have that this regime holds provided that
β1 > 1/2, which means 2ν1 > ν2.

Finally, there is one last regime, in which both D1 and D2 are linear, i.e., with
exponents β1 = β2 = 1. Substituting the two linear expressions D2 ∼ at and D1 ∼ bt

in Eq. (3.46) and Eq. (3.47), we obtain the following system of equations
dD1

dt ≈ ν1b
ρ+(ν2+1)a = b

dD2

dt ≈ (ν1+1)b+ν2a
ρ+(ν2+1)a = a

(3.53)

from which we can work out the values of the two coefficients:

a =
ν1 − ρ

(ν2 + 1)
b =

(ν1 − ρ)

(ν2 + 1)

(ν1 − ν2)

(ν1 + 1)
, (3.54)

which give the conditions ν1 > ρ and ν1 > ν2 for this regime to hold. This comes
out from the fact that, as we have seen before, whenever ν2 > ν1 we have a sublinear
regime for D1.
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Summarizing the predicted exponents for the directed version of the model for any
choice of the parameter ν1, ν2 and ρ, we have:

ν2 < ρ, ν1 < ρ β1 = ν1

ρ , β2 = min
(
max

(
ν1

ρ , ν2

ρ

)
, 2ν1

ρ

)
ν2 ≥ ρ, ν1 ≤ ρ

2 β1 = ν1

ρ , β2 = 2ν1

ρ

ν2 ≥ ρ, ρ
2 < ν1 < ν2 β1 = ν1

ν2
, β2 = 1

ν1 ≥ ρ, ν1 ≥ ν2 β1 = β2 = 1

(3.55)

The results above give us an analytical overview of a simplified version of the model,
which can still provide the phenomenology we are interested in. In fact, with this
analysis we still obtain a different behaviour for D1 and D2 with two different Heaps’
exponents β1 and β2, which are controlled by the parameters ν1 and ν2, given ρ. In
particular, when β2 < 1, we have that β1 is asymptotically ν1/ρ, similarly to the UMT
for which the Heaps’ exponent is ν/ρ. In the same regime, β2 depends instead on
ν2/ρ. Notice that if ν2 < ν1, then the 2nd-order Heaps’ exponent becomes equal to the
1st-order one. Finally, when β2 = 1, the value of β1 depends on the relative value of
ν1 with respect to ν2. For higher values of the triggering parameters, instead, Heaps’
exponents at both orders are equal to 1.

3.7 Summary and conclusions

As we have seen in Chapter 2, the increasing wealth of data related to innovation pro-
cesses has inspired various models of innovation, trying to uncover what are the mech-
anisms that drive such processes. Based either on extractions from urns or on random
walks over complex networks, these models consider innovation as the exploration of a
space of possibilities, where the elements represent ideas, concepts, artworks or other
types of content that can be explored. The two key mechanisms of these models are
the reinforcement of the elements explored and the triggering of new elements, or ad-
jacent possibilities, whenever a discovery is made. Thanks to these mechanisms, such
models reproduce the empirical Heaps’ law observed in the empirical data, where the
reinforcement pushes the explorer to exploit past discoveries, while the triggering of
the adjacent possible pushes towards new ones.

However, there is more and more evidence that novelties can arise by combining
existing elements [108, 109, 115, 117, 118]. In this chapter we have hence proposed
the higher-order Heaps’ laws, and their exponents, as a measure for the pace of new
combinations realised in a system. In particular, we regard a novelty not only as the
discovery of new items, but also as the first appearance of a new combination of dif-
ferent items. Notice how higher-order Heaps’ laws differ from other measures for the
pace of discovery that have been developed in the last years. For example, in Refs. [96,

93



142], the authors have used the number of all possible valid combinations that can be
created using the elements so far acquired as a proxy of the level of innovation reached
by the system. However, this does not take into account the actual number of novelties
realised in the system, but rather their potential.

In Sec. 3.3 we have analyzed empirical data from different systems, discovering
that higher-order Heaps’ exponents can be used to distinguish users listening to music
in Last.fm who feature a similar discovery rate of new songs and artists. The higher-
order Heaps’ exponent can indeed tell apart different ways to explore the same set of
songs in terms of number of different consecutive pairs or higher-order structures ex-
plored. Analogously, we notice different patterns in texts of various nature by studying
their Heaps’ exponents at various orders: titles of peer-reviewed papers published in
scientific journals show more creative juxtaposition of words with respect to the text of
narrative books, encountering many more new n-grams, even if the total set of words
used is similar in length. Overall, our analysis shows that, no matter the context, the
space of possibilities grows in more complex ways than what was previously theorized.
In fact, it does not depend solely on the balance between old items to exploit and new
ones to explore, but also on the structure of their associations.

Then, in Sec. 3.4 we have checked if the existing models of discovery, from the
urn model with triggering [8] to the edge-reinforced random walk [29], can also repro-
duce higher-order Heaps’ exponents similar to the empirical data. On the one hand,
these models are able to reproduce different behaviors in terms of 1st-order Heaps’
exponents. On the other hand, however, we find that they are not able to reproduce
higher-order ones. As a matter of fact, they can only reproduce the same rate of dis-
covery at all orders, therefore not considering the complex evolution of the space of
possibilities and, in particular, the adjacent possible. In other words, this analysis man-
ifests the need for a new generation of exploitation-exploration models based on the
co-evolution of the network structure with the dynamical process of exploration.

In Sec. 3.5, we have thus proposed a new modelling framework, called the Edge-
Reinforced Random Walk with Triggering, or ERRWT, which takes into account not
only the exploration rate of new items, but also the predisposition to explore the same
content in a more creative way. With this model, we imagine the process of innovation
as a random walk over a growing complex network of ideas or other contents. In this
model, we include the same reinforcement and triggering mechanisms of the previous
models, but keeping into account the more general definition of novelty proposed in
this chapter. Specifically, we assume that a novelty of a higher order also triggers new
adjacent possibilities of the same order. For example, the exploration of a new link, also
triggers the addition of new links in the space of possibilities. Overall, based on the
reinforcement of links in a complex network and the triggering of new nodes and links
whenever new parts of the adjacent possible space are explored, the mechanisms intro-
duced give a new intuition of how the space of possibilities grows over time, shedding
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light on how novel elements and combinations emerge along the innovation process.
We acknowledge there are multiple venues of improvement of the model we have

proposed in this chapter. For example, the initial knowledge of the network to be ex-
plored could have an impact on the exploration process. Moreover, we have supposed
that links start with unitary weight, but this can be an unrealistic assumption in certain
contexts. Furthermore, we have assumed to trigger new links uniformly at random.
This is a reasonable assumption when all elements and associations are intrinsically
the same; in this case, the choice to explore a part or another of the space is left to
the specific explorer, driven by stochastic events. Nevertheless, there are other cases in
which there can be some preferential pathways in the space of possibilities. These can
be attributed to the specific individual represented by the random walker, but can also
be inherent in the space. For example, there can be an underlying structure that can
be discovered through subsequent triggering of the adjacent possible. This could be
implemented in our model by limiting the addition of new links to only those permitted
by the underlying network, or adding more complex ways to trigger edges, e.g., using
preferential attachment [37, 143]. Additionally, in this chapter we have not considered
the presence of semantic correlations in the temporal sequence of visited items, which
can be a consequence of the interplay between the network topology and a predispo-
sition to move to items semantically close to the recent ones, reinforcing a clustered
structure. All such limitations will be taken into account in Chapter 5, where we will
model the exploration of the music space by expanding a space of possibilities through
an underlying universal weighted network of all existing artists. Moreover, we will
consider how semantic correlations in the sequence of elements explored affect the
exploration of the content space.

Finally, so far we have considered innovation as an individual process of explo-
ration of a complex space of possibilities. However, human progress is intrinsically a
collective and social process. In fact, we learn the language and culture of our fam-
ily when we are kids, we go to school to learn various disciplines, full of discoveries
made along the history, and we keep discovering new things thanks to our peers. We
meet new people as friends of friends, we listen to new songs or read new books sug-
gested by our friends. Similarly, researchers bring their minds together to collaborate
and make important discoveries, contributing to the growth of the collective knowl-
edge [41]. Therefore, in Chapter 4 we take a step towards this direction, adding col-
laborative interactions between multiple individuals, each represented by an urn model
with triggering. Specifically, we will develop another mechanism capable of expanding
the space of possibilities in a system, which comes from the expansion of the adjacent
possible in the social space. Then, in Chapter 5 we will propose a data-driven model of
collective exploration of music, where we extend the exploration of a network of con-
tents to a multi-agent context, including the adjacent possible expansion in the social
space.
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Chapter 4

The adjacent possible in the
social space

4.1 Introduction and outline

Discoveries are essential milestones for the progress of our societies [95, 96, 144–
152]. As we have seen in Chapter 2, different mathematical approaches have been
recently proposed to model the dynamics of innovation [20, 30, 41, 68, 69, 107, 153–
158]. Among these, of particular interest are those based on random processes with
reinforcement [39, 159, 160], from basic Pòlya urns [24, 77] to more complicated urn
or random walk models [8, 29], as discussed in Chapter 2.

Urns have been extensively used to study and model a variety of systems and pro-
cesses, from evolutionary economics, voting and contagions [61, 161–163] to language
and folksonomies [164, 165]. More recently, they have been employed to filter infor-
mation [166] and grow social networks [30] (see Sec. 2.5.1). Interestingly, urns can
also be used to model discovery processes, if opportunely combined with the concept
of the adjacent possible (AP)—the set of all those things which are one step away from

what is already known (Kauffman [13]). This formulation of the AP, which dates back
to concepts previously introduced by Farmer, Langton and others [9–11], has been
translated into the urn model with triggering (UMT), a particular process in which the
space expands together with the discovery dynamics, and the appearance of a novelty
opens up the possibilities of further discoveries [8, 25, 28, 106, 149] (see more details
in Sec. 2.2.4). UMTs could successfully replicate the basic signatures of real-world
discovery processes [8, 25–27], such as the Heaps’ law [14, 15] and Zipf’s law [55–
57], often recurrent in complex systems [68, 167–172], as well as Taylor’s law [82, 83].
Moreover, in Chapter 3 we have further extended our understanding and modelling of
the AP in the content space by considering novel combinations of items as novelties.
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The analysis of higher-order Heaps’ laws, that is the pace of discovery of such com-
binations in a sequence of exploration, has revealed how complex the structure of this
space is, being shaped by the exploration itself.

However, despite the fact that existing models can capture essential underlying
mechanisms behind the discovery of novelties, little emphasis is given to the collective
dynamics of exploration and to the benefits that social interactions could bring [173]. In
fact, with the exception of Ref. [30], the modeled exploration dynamics refers to a sin-
gle entity, representing, for example, the joint effort of researchers within a field [29].
Without taking into account the multiagent nature of the process, these models (i) do
not capture the heterogeneity of the pace of the individual explorers and (ii) do not in-
clude the benefits brought by social interactions and collaborations. Indeed, empirical
evidence of these mechanisms has been found in various contexts [174–176], such as
music listening, politics, voting, and language [177–179].

In this chapter, we propose a model of interacting discovery processes, named the
UrNet model [1], where an explorer is associated to each of the nodes of a social net-
work [32, 33, 36], and its dynamics is governed by an UMT. Hence, the local dynamics
of each node accounts for the presence of an AP, more precisely the adjacent possible

in the content space, as discussed in Sec. 2.2.4 [8]. Urns are then coupled through
the links of a network so that each exploration process is also subjected to interactions
with the processes of the neighboring nodes, and explorers can exploit opportunities
(possible discoveries) coming from their social contacts, thus increasing their discov-
ery possibilities in a cooperative way. In other words, this coupling expands the notion
of the AP by adding a social dimension, represented by the set of opportunities one is
possibly exposed to through his/her social contacts. We call this the adjacent possible

in the social space.
Social networks have been extensively used as a substrate on top of which dynam-

ical processes take place [35, 52]. Notice, however, that our setting crucially differs
from the typical approach in which the network mediates, for example, the diffusion of
innovations or social contagions [180, 181]. Here, the interactions among the many dis-
covery processes reveals the twofold nature of the AP of each individual, highlighting
the crucial role played by the social structure in determining the individual exploration
dynamics.

This chapter is organized as follows. We start in Sec. 4.2 where the UrNet model
is described, providing the analytical framework for the Heaps’ laws in Sec. 4.3. Then,
we explore the main features of the proposed dynamics on some small networks with
extensive numerical simulations in Sec. 4.4, finding that the pace of innovation of an
explorer strongly correlates with its position in the social network. In Sec. 4.5 we ex-
plore analytically the impact of the social network on the Heaps’ laws of the agents,
finding a general asymptotic approximation of the Heaps’ laws enlightening the nu-
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merical results previously discussed. Moreover, in Sec. 4.4.3 we analytically identify
the key role played by node centrality measures on the discovery potential of the indi-
viduals. Finally, in Sec. 4.6 we discuss the obtained results and future perspectives.

4.2 UrNet: a model of coupled urns

Let us consider in the most general case an unweighted directed graph G(N , E), where
N and E are, respectively, a set of N = |N | nodes and a set of E = |E| links. Each
node of the graph represents an individual or agent, while the link (i, j) between two
agents i and j denotes the existence of a directed social relation from individual i to j

(such that i can benefit from j). The graph is fully described by its adjacency matrix
A ≡ {aij}, whose element aij is equal to 1 if link (i, j) is present, and is 0 otherwise.

In our UrNet model, each node i of the network represents an explorer, contribut-
ing to the collective process of discovery. Considering the ability of the urn model
with triggering (UMT) to replicate Heaps’ laws and to be analytically tractable (see
Sec. 2.2.4 and Sec. 3.6.1), we equip each node i with an urn obeying to the rules of the
UMT, describing the discovery process of the agent i [8]. We indicate the urn i at time
t as Ui(t), while Si(t) denotes the sequence of balls generated up to time t. Notice
that Ui(t) is an unordered multiset of size Ui(t) = |Ui(t)|, while Si(t) is an ordered
multiset of size |Si(t)| = t.

Each urn i is first initialized with M0 balls of different colors, and its dynamics is
characterized by two parameters, ρi and νi. As in the original UMT, the reinforcement

parameter ρi accounts for the number of balls of the same color that are added to the
urn i whenever a ball of a given color is extracted at time t. Furthermore, the triggering

parameter νi controls the size of the adjacent possible in the content space, as (νi +1)

balls of new colors are added to the urn of node i whenever at time t a color is extracted
for the first time [8]. In this abstract representation, the space of possibilities—made by
all the colors—expands in time together with each discovery process, without relying
on a predefined structure [25]. The discovery processes of different individuals are
then coupled through the links of the network G, representing social interactions, from
which the name of the model “UrNet". Namely, at each time t, the individual i draws
a ball from an enriched urn Ũi(t), the so-called social urn of node i, composed by its
own urn Ui(t) plus the additional balls present at time t in the urns of its neighbors,
without their reinforcement. The latter represents the adjacent possible in the social

space. Figure 4.1 illustrates the case of two nodes with a directed link. We thus have

Ũi(t) = Ui(t) +
⋃
j∈N

aijU ′
j(t) (4.1)

where U ′
j(t) = U [m=1]

j (t) ⊆ Uj(t) is the underlying set of the multiset Uj(t) (with
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Figure 4.1: Illustration of the UrNet model of interacting urns in the case of a network
with two nodes. Each node is equipped with an urn obeying the UMT with the same
parameters ρ = 2, ν = 1, and M0 = ν + 1. At the time t, the urns start with two
balls, one red (R) and the other blue (B). Then, each node extracts a ball (1:R, 2:B),
and therefore ρ additional balls of the same colors are added to the respective urns
(reinforcement). Also, since in both cases, the extracted balls represent a novelty for
the respective nodes, ν + 1 balls of new colors are also added (adjacent possible). At
t + 1, node 1 has access to all its balls plus two extra ones coming from the adjacent
possible in the social space, i.e., the set of balls available through its neighbor (dashed
borders).

multiplicity m = 1), i.e., the set of size U ′
j(t) = |U ′

j(t)| formed by its unique ele-
ments. Duplicates in the urn associated to node j at time t are indeed not considered.
Therefore, the “memory” of node j due to the reinforcement does not influence node
i. Similarly, let us denote with S ′

i(t) the underlying set of the sequence Si(t), i.e., the
sequence of all the unique elements of Si(t). We consider synchronous updates for all
the urns.

Finally, in our model all initial colors and the other colors added by an individual i
when triggered by a discovery will be taken from a single predefined set of discoverable
balls of different colors. Notice that this set is shared by all the urns so that once a
ball is drawn from an urn, it will not be available anymore to the others, except when
enlarging the urn through the social adjacent possible (if they are connected).

4.3 The pace of discovery

As previous works have shown [8], the dynamics of novelties and innovations share a
number of commonalities and can, thus, be thought as two sides of the same process;
a novelty refers to the discovery of something by an individual that is already known
to others, while innovations are novelties that are new to everybody. Here, we are
interested in studying the asymptotic growth of the number of novelties at the individual
level—of each sequence—as a function of time (sequence length), representing the
pace of discovery.

We know, from standard results on the UMT analyzed in Sec. 2.2.4, that an isolated
urn i follows a Heaps’ law, i.e., a power law behavior Di(t) ∼ tβi [15], Di(t) = |S ′

i(t)|
being the number of different elements contained in the sequence Si(t) up to time t.
Thus, the Heaps’ exponent βi quantifies the speed at which the urn discovers new
elements (by definition bounded by 0 < βi ≤ 1).
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Let us consider now a node i that interacts through the network. In general, since
Di(t) increases by one whenever a color is extracted for the first time, we can write

Di(t+ 1) = Di(t) + P new
i (t), (4.2)

where P new
i (t) ∈ [0, 1] is the probability that the ball extracted at node i at time t never

appeared in Si(t) before. In other words,

P new
i (t) = P [Di(t+ 1) = Di(t) + 1|Di(t)] , (4.3)

which can be expressed as the fraction of discoverable balls over the total number of
balls available to node i at time t. Thus, the master equation in Eq. (4.2) leads to an
equation for the asymptotic Heaps’ dynamics that in the continuous time limit reads

dDi(t)

dt
= P new

i (t) =
|Ũi(t)⊖ S ′

i(t)|
Ũi(t)

, (4.4)

where A⊖B denotes the multiset obtained by removing all the elements in set B from
the multiset A (all duplicates are removed).

In the most general case, where each node i is equipped with an UMT(ρi, νi), the
equation for the Heaps’ laws of each node i ∈ N in Eq. (4.4) can be explicitly written
by accounting for all the neighbors that are part of the social urn of node i. This can
be done by using the non-zero elements of A, so that the number of balls Ũi(t) in the
social urn of node i at time t reads

Ũi(t) = Ui(t) +
∑
j∈N

aij
[
M0 + (νj + 1)Dj(t)

]
= ρit+

[
M0 + (νi + 1)Di(t)

]
+
∑
j∈N

aij
[
M0 + (νj + 1)Dj(t)

]
,

(4.5)

where M0 is the initial number of balls in each urn, or in its more compact form

Ũi(t) = ρit+
∑
j∈N

[
aij + δij

][
M0 + (νj + 1)Dj(t)

]
(4.6)

where δij stands for the Kronecker delta. Similarly, counting only the number of colors
not yet discovered, the numerator in Eq. (4.4) can be written as

|Ũi(t)⊖ S ′
i(t)| =

∑
j∈N

[
aij + δij

][
M0 + (νj + 1)Dj(t)

]
−Di(t)

= M0

∑
j∈N

(
aij + δij

)
+
∑
j∈N

[
aij(νj + 1) + δijνj

]
Dj(t).

(4.7)
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Finally, using Eq. (4.6) and Eq. (4.7), Eq. (4.4) for the asymptotic Heaps’ dynamics
becomes

dDi(t)

dt
=

M0

∑
j(aij + δij) +

∑
j

[
aij(νj + 1) + δijνj

]
Dj(t)

ρit+
∑

j(aij + δij)
[
M0 + (νj + 1)Dj(t)

] . (4.8)

Equation (4.8) forms a system of N coupled non-linear ordinary differential equations,
with initial conditions Di(0) = 0 ∀i ∈ N , that can be numerically integrated for any
network topology {aij}.

Notice that if a node i has an out-degree
∑

j aij = 0, its associated Eq. (4.8) re-
duces to the one of an isolated urn, for which Ũi(t) = Ui(t). Thus, its Heaps dynamics
for ν < ρ follows Di(t) ∼ tν/ρ for t → ∞ [8, 26] (see Sec. 2.2.4).

In Sec. 4.4 we will investigate the pace of discovery of the UrNet model through
simulations and numerical results of the equations shown here. The explicit analytical
solutions to the equations will instead be discussed in Sec. 4.5.

4.4 Numerical results

In this section, we investigate the behavior of the UrNet model we have introduced
in Sec. 4.2. In particular, we simulate the model in the more simplified case where
ρi = ρ and νi = ν, focusing on the effect of the topology on the discovery dynamics.
Moreover, we test the validity of our analytical formalism comparing the pace of dis-
covery introduced in Sec. 4.3 against the simulations. To do this, we rely on small toy
graphs to understand the basic mechanisms of the model and also on bigger empirical
networks extracted from real-world data sets. Let us first give a brief overview of these
data sets.

4.4.1 Description of the data sets

We consider four data sets of real-world networks representing different types of so-
cial interactions: the Zachary Karate Club (ZKC) network [182], a network of fol-
lower relationships among Twitter users [183], a co-authorship network in Network
Science [184], and a collaboration network between jazz musicians [185]. The net-
work of Twitter from the original data set (Ref. [183]) has been reduced by performing
a random walk sampling.

Some basic properties of the networks are summarized in Table 4.1, like the total
number of nodes N , the total number of links E, the average degree ⟨k⟩, and the max-
imum eigenvalue µ̂ of the related adjacency matrix. Moreover, we have shown some
properties related to the connectivity of the networks. In particular, we distinguished
weakly-connected components (CCs) and strongly-connected components (SCCs), be-
cause they play an important role in the dynamics under investigation. Therefore we
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showed the number of both CCs and SCCs, as well as the size of the respective largest
one. As we can see, the networks we have chosen have all very different properties,
either in size, average degree, and connection.

Data set Label Type N E ⟨k⟩ µ̂

ZKC (a) Undirected 34 78 4.6 6.7
Twitter (b) Directed 4968 26875 10.8 5.2
NetSci (c) Undirected 1589 2742 3.4 19.0
Jazz (d) Undirected 198 2742 27.7 40.08

Data set Label Type N. CCs N. SCCs Size LCC Size LSCC

ZKC (a) Undirected 1 1 34 34
Twitter (b) Directed 1 4164 4968 770
NetSci (c) Undirected 396 396 379 379
Jazz (d) Undirected 1 1 198 198

Table 4.1: Statistics and properties of the four real-world networks considered (cfr.
Fig. 4.6): number of nodes N , number of edges E, average node degree k, maxi-
mum eigenvalue µ̂, number of (weakly-) connected components (CCs), and number of
strongly-connected components (SCCs), size of the largest (weakly-) connected com-
ponent (LCC), and size of the largest strongly-connected component (LSCC).

4.4.2 Numerical simulations on simple graphs

We start exploring the behavior of the UrNet model on the famous Zachary Karate Club
network (ZKC) [182]. This is a social undirected network of a university karate club
made of 34 nodes and 78 edges studied by Wayne W. Zachary for a period of three
years from 1970 to 1972 [182], often used in networks science as a test bed for com-
munity detection. In fact, during the study, because of a conflict between the instructor
and the administrator the club split, thus forming two separate communities that can
be predicted through community detection algorithms. In our modelling scheme, each
node is equipped with an UMT(ρ = 6, ν = 3) with same parameters and initial condi-

: Instructor

: Administrator

Figure 4.2: Discovery dynamics of the interacting urns on the Zachary Karate Club
network, whose nodes are colored according to the resulting Heaps’ exponent.
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tions. We run different simulations and observe, for each node i, the average growth of
the number of distinct elements Di(t) as a function of time. We then extract the value
of the Heaps’ exponent of each node as βi = βi(T ), where βi(t) = lnDi(t)/ ln t and
T = 104. Such measure can be considered as the slope in logarithmic scales of the
line connecting the origin with the last point (t,D(t)). We avoid using more compli-
cated fits, such as the one used in Chapter. 3 because of the high number of fits each
simulation requires. Figure 4.2 shows the nodes of the ZKC colored according to the
extracted Heaps’ exponents. Notice the higher pace of discovery displayed by the no-
toriously central nodes corresponding to the instructor (node 1) and the administrator
of the club (node 34). This proves that nodes with identical UMTs can have completely
different dynamics, suggesting that a strategic location on the social network correlates
with the discovery potential of an individual.

To further investigate this relation, we study the dynamics on five small directed
networks. Fig. 4.3(a-e) shows the temporal evolution of Di(t) for each node i of the
networks displayed on the left. We report the simulated Heaps’ laws (colored points),
whose extracted exponents βi are shown in the legend. In addition, to assess the validity
of Eq. (4.8), we also plot the numerically integrated solutions (continuous black lines)
obtained using the appropriate {aij}. It can be seen that the analytical formalism intro-
duced perfectly captures the Heaps’ laws, since lines are almost indistinguishable from
(simulated) points. In particular, in Fig. 4.3(a) we observe the highest pace of discov-
ery in the node with more outgoing links. However, the non-trivial behaviors observed
in Fig. 4.3(b-e) for chains and graphs containing cycles indicate that the exponent of
a node does not depend solely on local node properties. For instance, in Fig. 4.3(d)
node 2 has two outgoing links, while the others have one link only. In contrast with
what is observed in Fig. 4.3(a), here the highest pace of discovery is the one of node 1,
whose social urn gets the benefits only of the urn of node 2. Moreover, in Figs. 4.3(c)
and (d) a simple change of direction of link 4 → 2 translates into completely different
dynamics. We further notice that in both Fig. 4.3(c) and (e) the presence of a cycle
enhances the pace of discovery in a process of mutual exchange. However, while in
Fig. 4.3(d) node 1 is linked to the cycle and captures the same behavior of those in the
cycle, in Fig. 4.3(e) node 1 behaves as an individual urn.

We have also investigated whether the extracted βi may depend on the maximum
time T at which we have stopped the simulations. The curves reported in Fig. 4.3(f-
j) as a function of time for time up to 108 clearly indicate that the systems, even for
the small graphs considered, have not yet reached a stationary state. Thermalization
times, that are typical of empirical trajectories of diffusion process [186], here seem to
be strongly influenced by the topology of the network. This can be seen by compar-
ing the two β1(t) of Fig. 4.3(f) and (g), both approaching—as we will see later—the
asymptotic value ν/ρ = 0.5 but at very different timescales. Nevertheless, the ranking
induced by the pace of discovery persists at all finite times. In the next section we will
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Figure 4.3: Discovery dynamics of the interacting urns on five directed toy graphs
(different symbols correspond to different nodes). Each node is equipped with an UMT
with the same parameters ρ = 6, and ν = 3. (a-e) Temporal evolution of the number of
discoveries Di(t) for each node i (associated Heaps’ exponents βi in the legend). The
solutions of Eq. (4.8), shown as continuous black lines, are in perfect agreement with
simulations. (f-j) Temporal behavior of the associated Heaps’ exponents extracted at
different times. The gray area up to T = 104 corresponds to the values of (a-e).

further investigate this characteristic behavior, ultimately proving its universality for
all networks.

4.4.3 Node ranking persistence

In the previous sections we have developed and studied a networked model for the
dynamics of discovery that introduces an heterogeneity in the paces of discovery, as
it happens in real-world social networks. As we have seen in Fig. 4.3, the paces of
discoveries, represented by the fitted Heaps’ exponents, change in time, depending on
the network topology and the model parameters. Nonetheless, the ranking of the nodes
based on these fitted exponents always remains almost the same. This is even more
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clear looking at Fig. 4.4, where we plot the fitted Heaps’ exponents β(T ) at T = 108 as
a function of the same exponents at T = 104 for four real-world networks. These net-
works are described in Sec. 4.4.1, and represent (a) the Zachary Karate Club network
[182], (b) a network of follower relationships of Twitter [183], (c) a co-authorship net-
work in network science [184] and (d) a collaboration network between jazz musicians
[185]. All simulations in this section are performed with model parameters: ρ = 10,
ν = 1, M0 = ν + 1. In all cases, we get a Spearman’s correlation of 1.00, meaning
that even though the distribution of the fitted exponents change (plotted at the sides of
each plot), the ranking is time-invariant, i.e. it does not depend on the particular T at
which Heaps’ exponents are fitted.

This rank persistence remains also in more extreme cases, as it can be seen in
Fig. 4.4(b), where, apart from a set of nodes whose exponents span across the entire
range, most of the nodes present a very low pace of discovery, with fitted exponents
very close to 0. Similarly, at the opposite case in Fig. 4.4(d), most of the exponents are
very close to 1 (remember that these are limited between 0 and 1), but the Spearman’s
rank correlation remains equal to 1. All this is a strong indication that the various paces
of discovery have to depend on some structural characteristics of the networks. For ex-
ample, we have tested numerically the correlation between the eigenvector centralities
and the measured Heaps’ exponents at transient times. A lot of importance has been
given in the past to eigenvector centrality, also known as the Bonacich centrality [187],
which is related to the highest eigenvalue of the adjacency matrix of the graph. This
centrality measure accounts for both local and global properties of the network, as it
is not just dependent on the degree of the node, but also on the positioning of each
node in the network [188]. Figure 4.5(a) shows the scatter plot and the Spearman’s
rank correlation of the eigenvector centralities and the fitted Heaps’ exponents at time
T = 104 for the ZKC network studied in Sec. 4.4, while in Fig. 4.5(b) its visualization
with color-coded nodes can be seen (cfr. Fig. 4.2). The resulting Spearman’s rank cor-
relation higher than 0.98 persists changing the parameters in the simulations. We can
hence conclude that the eigenvector centrality is an optimal proxy for the distribution
of Heaps’ exponents, at least in this case.

However, for other graphs this node measure does not have the same optimum cor-
relation, for example in some directed graphs. As we will see analytically in Sec. 4.5.7,
the correlation with the eigenvector centralities persists if the graph is strongly con-
nected. Fortunately, a similar correlation can be found with a more general node cen-
trality, in particular the α-centrality, first introduced in Ref. [189] to extend the eigen-
vector centrality to asymmetric graphs and widely used in network analysis [190, 191].
We have investigated numerically the correlation between the α-centrality and the pace
of discovery of different nodes in real-world networks. For analytical reasons that will
be clarified in Sec. 4.5.7, we have set α to 0.85/µ̂, where λ̂ is the maximum eigenvalue
of the matrix M = ν

ρI + ν+1
ρ A, which can be numerically approximated. Fig. 4.6
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Figure 4.4: Scatter plot and Spearman’s rank correlation coefficient rS between fitted
Heaps’ exponents βi(T ) at T = 104 and T = 108 associated to the i = 1, . . . , N nodes
off the four empirical networks considered: (a) the Zachary Karate Club network [182],
(b) a network of follower relationships of Twitter [183], (c) a co-authorship network in
network science [184] and (d) a collaboration network between jazz musicians [185].
The parameters of the model are ρ = 10, ν = 1, M0 = ν + 1.

: Instructor

: Administrator

Figure 4.5: Correlation between discovery dynamics of the interacting urns and eigen-
vector centrality on the Zachary Karate Club network [182]. (a) Scatter plot and Spear-
man’s rank correlation coefficients rS between fitted Heaps’ exponents βi(T = 104)

and normalized eigenvector centrality c
[E]
i /c

[E]
max associated to the i = 1, . . . , N nodes

of the network. (b) Nodes are colored according to the resulting normalized eigenvec-
tor centrality.
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Figure 4.6: Scatter plot and Spearman’s rank correlation coefficients rS between
fitted Heaps’ exponents βi and normalized α-centrality c

[α]
i /c

[α]
max associated to the

i = 1, . . . , N nodes of four different real-world networks: (a) the Zachary Karate
Club network [182], (b) a network of follower relationships of Twitter [183], (c) a co-
authorship network in network science [184] and (d) a collaboration network between
jazz musicians [185]. The parameters of the model are ρ = 10, ν = 1, M0 = ν + 1.

shows the scatter plot of the number of discovered colors Di(T ) and the normalized
α-centrality c

[α]
i /c

[α]
max in the four empirical social networks analyzed. The high values

of the Spearman’s rank correlations (rS ≥ 0.97 in all cases) found in both undirected
(a,c,d) and directed networks (b) is in agreement with our predictions. This result con-
firms that, together with the AP in the content space, it is crucial to take into account
of an AP in the social space.

4.5 Analytical results

In this section we concentrate on finding an analytical solution to the Heaps’ law set
of equations in Sec. 4.3 [1]. As we have done in our numerical analysis in Sec. 4.4,
here we consider the same parameters for each urn, so that ρi = ρ (reinforcement) and
νi = ν (triggering) ∀i = 1, . . . , N . We will be able to extract the asymptotic values
of the Heaps’ exponents and their dependence on the network topology. In order to do
so, we first derive an analytical solution of Eq. (4.8) for t → ∞ in some simple cases,
in order to understand the underlying analytical mechanism with basic examples. In
particular, we analyse a pair of nodes in Sec. 4.5.1, a chain in Sec. 4.5.2, a cycle in
Sec. 4.5.3, and a clique in Sec. 4.5.4.

After this, in Sec. 4.5.5, we derive an explicit analytical solution for the asymp-
totic Heaps’ dynamics of a generic graph. Furthermore, in Sec. 4.5.6, we apply this
formalism to understand the dynamics taking place on the five toy graphs numerically
examined in Fig. 4.3

Finally, in Sec. 4.5.7 we explain analytically why the node ranking provided by the
Heaps’ exponents persists at different times by looking deeper into the relation between
the Heaps’ exponents and the eigenvector and α-centralities.
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4.5.1 Two coupled urns

The simplest example would be an isolated node, or equivalently, an urn on a node i for
which the out-degree

∑
j aij is null. In this case, the dynamics is the same of the Urn

Model with Triggering (UMT) [8, 26], since the node does not have access to the balls
of the neighbors, implying that its social urn will not be enriched, i.e., Ũi(t) = Ui(t).
Therefore, the Heaps’ law follows Eq. (2.20).

Let us hence consider the case of two coupled urns, that is a network with only
two nodes connected by a directed edge (1 → 2), as already shown in Fig. 4.1. This is
equivalent to a directed chain of N = 2 nodes, that will be discussed in the next section
for a general number N of nodes. As described in our general analytical framework
in Eq. (4.2) and Eq. (4.4), the associated equations to determine the asymptotic Heaps’
laws can be written expressing the probabilities P new

i (t) to draw a new ball as the
fraction of discoverable balls over the total number of balls available to node i at time
t, that is 

dD1(t)

dt
=

|Ũ1(t)⊖ S ′
1(t)|

Ũ1(t)

dD2(t)

dt
=

|Ũ2(t)⊖ S ′
2(t)|

Ũ2(t)
=

U ′
2(t)−D2(t)

U2(t)
.

(4.9a)

(4.9b)

Notice that the right-hand side of Eq. (4.9b) is simplified with respect to Eq. (4.9a),
since node 2 does not have any outgoing link, and therefore its dynamics is the same
of an isolated urn for which Ũ2(t) = U2(t). Thus, for ν < ρ we have

D2(t) ∼ (ρ− ν)
ν
ρ t

ν
ρ . (4.10)

Addressing the dynamics of node 1, the denominator Ũ1(t) of Eq. (4.9a) can be ex-
pressed in terms of the contributions coming from the two urns at time t, which reads

Ũ1(t) =

U1(t)︷ ︸︸ ︷
M0 + ρt+ (ν + 1)D1(t)+

U ′
2(t)︷ ︸︸ ︷

M0 + (ν + 1)D2(t)

= 2M0 + ρt+ (ν + 1)
[
D1(t) +D2(t)

]
.

(4.11)

Similarly, the numerator of Eq. (4.9a), consisting of the number of balls present in the
social urn of node 1 at time t which have not yet appeared in S1(t), can be written as
the total number of balls in the social urn of 1 at time t, without duplicates, minus the
number of balls that do not represent a novelty anymore with respect to the sequence
S1(t), i.e.,

|Ũ1(t)⊖ S ′
1(t)| = Ũ1(t)− ρt−D1(t). (4.12)
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Then, using Eq. (4.11) and Eq. (4.12), the final expression for Eq. (4.9a) reads

dD1(t)

dt
=

2M0 + νD1(t) + (ν + 1)D2(t)

2M0 + ρt+ (ν + 1)
[
D1(t) +D2(t)

] . (4.13)

For large times (t ≫ M0) we can approximate Eq. (4.13) as

dD1(t)

dt
≈ νD1(t) + (ν + 1)D2(t)

ρt+ (ν + 1)
[
D1(t) +D2(t)

] . (4.14)

Let us assume now that the dynamics of node 2 relaxes before the one of node 1, so
that we can solve Eq. (4.14) independently from Eq. (4.10). In addition, if we suppose
that limt→∞ Di(t)/t = 0, Eq. (4.14) can be approximated as

dD1(t)

dt
≈ νD1(t)

ρt
+

(ν + 1)D2(t)

ρt
. (4.15)

The related homogeneous equation has a similar solution of Eq. (4.10), i.e.,

dD1(t)

dt
≈ νD1(t)

ρt
=⇒ D1(t) ∼ (ρ− ν)

ν
ρ t

ν
ρ . (4.16)

We now look for a solution in the family of functions D1(t) = κ(t)D1(t). Plugging
this into Eq. (4.15), we obtain

dκ(t)

dt
D1(t) + κ(t)

dD1(t)

dt
≈ κ(t)

dD1(t)

dt
+

(ν + 1)D2(t)

ρt
. (4.17)

Thus, from Eq. (4.10) and Eq. (4.16) we get

dκ(t)

dt
=

ν + 1

ρt

D2(t)

D1(t)
≈ ν + 1

ρt
, (4.18)

whose solution is

κ(t) ≈ ν + 1

ρ
ln t. (4.19)

The asymptotic solution (t → ∞) of D1(t) is then approximated by

D1(t) ∼
ν + 1

ρ
(ρ− ν)

ν
ρ ln(t) t

ν
ρ . (4.20)

In conclusion, comparing the solutions in Eq. (4.10) and Eq. (4.20), the presence of an
outgoing link effectively increases the number of novelties with respect to the dynamics
of an isolated urn. However, as we have shown here, this increase is approximately
only given by a multiplicative logarithmic factor, meaning that we can see a slight
increase of the discovery rate at finite times, which practically disappears for larger
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times. Further notice that the presence of this logarithmic term makes the functional
form of D1(t) not follow a precise Heaps’ law. Nevertheless, since the multiplicative
factor is logarithmic, we could still locally approximate the function to a power law,
where the logarithmic factor is incorporated in the coefficient of the power-law.

Moreover, let us point out that the dynamics of the system discussed here only
applies to a pair of urns connected by a directed link. In the case of an undirected
link, instead, we would get identical Heaps’ laws for both nodes i = 1, 2, without
logarithmic corrections, but with higher exponents. This can be seen as a cycle of two
nodes, and will be explicitly discussed in Sec. 4.5.3, after solving the case of a directed
chain of N nodes.

4.5.2 Chain of N urns

Let us consider now a slightly more complicated case. Let us suppose that the network
is composed by an open chain of N urns, where there are only directed links (i →
i + 1), with i = 1, 2, . . . , N − 1. This is the case considered in Fig. 4.3(b, g), where
in that case N = 4. Analogously to the previous case, the associated set of equations
governing the growth of the number of novelties can be approximated to:

dD1(t)

dt
≈ νD1(t) + (ν + 1)D2(t)

ρt+ (ν + 1)
[
D1(t) +D2(t)

]
...

dDN−1(t)

dt
≈ νDN−1(t) + (ν + 1)DN (t)

ρt+ (ν + 1)
[
DN−1(t) +DN (t)

]
dDN (t)

dt
≈ νDN (t)

ρt+ (ν + 1)DN (t)

(4.21a)

(4.21b)

(4.21c)

Eq. (4.21) is a system of N equations, which can be solved starting from the last one
and recursively substituting its solution into the equation above. Indeed, since node i =
N does not have any outgoing links, its related equation (Eq. (4.21c)) is independent
and can be immediately solved, resulting in the known asymptotic solution:

DN (t) ∼ (ρ− ν)
ν
ρ t

ν
ρ . (4.22)

As done for the couple of nodes studied in Sec. 4.5.1, in Eq. (4.21b) we can consider
DN−1(t) to be the only unknown variable. Then, following the same analytical steps,
we obtain

DN−1(t) ≈
ν + 1

ρ
(ρ− ν)

ν
ρ ln (t)tν/ρ. (4.23)
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The same reasoning can be iterated for each node i. Let us now prove by induction on
i that the asymptotic solution is

Di(t) =
(ρ− ν)ν/ρ

(N − i)!

(
ν + 1

ρ
ln(t)

)N−i

tν/ρ. (4.24)

We have already proved that Eq. (4.24) holds for i = N and i = N − 1. Let us
now suppose that it holds for i and let us prove it for i − 1, with 1 < i < N . In the
asymptotic limit, the equation for the growth of the number of novelties of node i − 1

reads
dDi−1(t)

dt
≈ νDi−1(t) + (ν + 1)Di(t)

ρt+ (ν + 1)
[
Di−1(t) +Di(t)

] . (4.25)

For the induction hypothesis, in Eq. (4.25) the only unknown variable is Di(t). There-
fore, we can consider the homogeneous associated equation

dDi−1(t)

dt
≈ νDi−1(t)

ρt
, (4.26)

whose solution is

Di−1(t) ≈ (ρ− ν)
ν
ρ t

ν
ρ . (4.27)

As for the case of two coupled urns, we now look for a solution like Di−1(t) =

κ(t)Di−1(t), that, plugged into Eq. (4.25), leads to

dκ(t)

dt
Di−1(t) +�������

κ(t)
dDi−1(t)

dt
≈�������

κ(t)
dDi−1(t)

dt
+

(ν + 1)Di(t)

ρt
. (4.28)

Thus, we get

dκ(t)

dt
≈ ν + 1

ρt

Di(t)

Di−1(t)
≈ 1

(N − i)!

ν + 1

ρt

(
ν + 1

ρ
ln(t)

)N−i

, (4.29)

and therefore

κ(t) ≈ 1

(N − (i− 1))!

(
ν + 1

ρ
ln(t)

)N−(i−1)

. (4.30)

Finally, after combining Eq. (4.27) and Eq. (4.30), we reach the solution for the dy-
namics of node i− 1, that reads

Di−1(t) ≈
(ρ− ν)ν/ρ

(N − (i− 1))!

(
ν + 1

ρ
ln(t)

)N−(i−1)

tν/ρ, (4.31)

which completes the proof by induction.
Finally, it is worth observing that the Heaps’ laws would be very different if the

links were undirected. This would indeed result, similarly to undirected cycles, in
higher asymptotic Heaps’ exponents.
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4.5.3 Cycle of N urns

Directed cycle

Let us consider a social network in the form of a directed cycles. As we will see, this
is the simplest system leading to asymptotic Heaps’ exponents that are higher than that
of an individual urn also in the asymptotic limit (without logarithms). Let us hence
suppose that every node i is connected just to the following one with a directed link
(i → i + 1), with i = 1, 2, . . . , N , where we identify node N + 1 with node 1. For
a generic node i, the asymptotic differential equation for the growth of the number of
novelties reads

dDi(t)

dt
≈ νDi(t) + (ν + 1)Di+1(t)

ρt+ (ν + 1)
[
Di(t) +Di+1(t)

] . (4.32)

For symmetry reasons, the dynamics of each node is the same, implying that D1(t) ≈
· · · ≈ Di(t) ≈ · · · ≈ DN (t). Hence, Eq. (4.32) becomes

dDi(t)

dt
≈ (2ν + 1)Di(t)

ρt+ 2(ν + 1)Di(t)
, (4.33)

that is equal to the equation of an individual urn [see Eq. (2.17)], with ν′ = 2ν + 1.
Therefore, if ρ > ν′ we have the solution

Di(t) ≈ (ρ− 2ν − 1)
2ν+1

ρ t
2ν+1

ρ . (4.34)

Undirected cycle

Let us now consider a cycle composed by undirected links. Let us suppose that N > 2,
considered that for N = 1 the network reduces to an individual urn, and for N = 2 it
is equivalent to a directed cycle of 2 nodes. For N > 2, each node i is connected to
two different nodes, i− 1 and i+ 1, and the associated equations to be solved are

dDi(t)

dt
≈ νDi(t) + (ν + 1)Di−1(t) + (ν + 1)Di+1(t)

ρt+ (ν + 1)
[
Di(t) + (ν + 1)Di−1(t) +Di+1(t)

] . (4.35)

Again, for symmetry reasons, we can equivalently write Eq. (4.35) as

dDi(t)

dt
≈ (3ν + 2)Di(t)

ρt+ 3(ν + 1)Di(t)
, (4.36)

that is equal to the equation of an individual urn [see Eq. (2.17)], with ν′′ = 3ν + 2.
Therefore, if ρ > ν′′ we have the solution

Di(t) ≈ (ρ− 3ν − 2)
3ν+2

ρ t
3ν+2

ρ . (4.37)

Finally, notice that, in both directed and undirected version, the dynamics of each
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node does not depend on the length of the cycle. Obviously, since all connections are
mutual in an undirected network, the resulting paces of discovery are higher than those
in the directed case.

4.5.4 Clique of N urns

Let us consider a N -clique, that is a fully connected network of N nodes, either di-
rected or undirected. Being every node i connected to all other nodes, there is complete
equivalence between all nodes, and the general equation for the growth of the number
of novelties of node i reads

dDi(t)

dt
≈

νDi(t) + (ν + 1)
∑

j ̸=i Dj(t)

ρt+ (ν + 1)
∑N

j=1 Dj(t)
. (4.38)

For symmetry reasons, each urn follows the same dynamics, so that we can write
Eq. (4.38) as

dDi(t)

dt
≈ [N(ν + 1)− 1]Di(t)

ρt+N(ν + 1)Di(t)
, (4.39)

that is equal to the equation for an individual urn [see Eq. (2.17)], with ν′′′ = N(ν +

1)− 1. Therefore, if ν′′′ < ρ we have the solution

Di(t) ≈ (ρ−N(ν + 1)− 1)
N(ν+1)−1

ρ t
N(ν+1)−1

ρ . (4.40)

Let us observe that for any network with N nodes, the maximum allowed Heaps’ ex-
ponent is hence [N(ν + 1) − 1]/ρ, which occurs only in the case of a fully connected
network.

4.5.5 The general solution

Let us consider a general graph G(N , E), either directed or undirected. In order to
write and solve the equations for the growth of the number of novelties, we first have
to calculate the probability P new

i (t) of drawing a new ball from the urn of each node
i. This can be done by considering the number of different colors present in the social
urn Ũi(t) of node i at time t that have not been discovered yet by i, divided by the
total number of balls Ũi(t) present in its social urn at that time. The numerator can be
expressed as |Ũi(t)⊖ S ′

i(t)|, which is the length of the multiset obtained by removing
from the multiset Ũi(t) all the elements appeared in the sequence (taking out all dupli-
cates). In other words, it is the number of unique colors present in the urn of node i

and in the one of its neighbors (without their multiplicity) minus the number of colors
already drawn (unique elements in the sequence of i). Considering that all (and only)
the already discovered balls are those that have been reinforced and that the number of
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triggered colors added to the urn j is exactly (ν + 1)Dj(t), we can write:

dDi(t)

dt
= P new

i (t) =
|Ũi(t)⊖ S ′

i(t)|
Ũi(t)

=
M0 + νDi(t) +

∑
j ̸=i aij

[
M0 + (ν + 1)Dj(t)

]
ρt+M0 + (ν + 1)Di(t) +

∑
j ̸=i aij

[
M0 + (ν + 1)Dj(t)

] , (4.41)

or, equivalently:

dDi(t)

dt
=

M0

∑
j(aij + δij) +

∑
j

[
δijν + aij(ν + 1)

]
Dj(t)

ρt+
∑

j(aij + δij)
[
M0 + (ν + 1)Dj(t)

] . (4.42)

For t ≫ M0 we can disregard the presence of M0 in Eq. (4.42). Moreover, as shown
above for N -cliques, in the asymptotic limit t → ∞ the growth of the number of
novelties obeys an Heaps’ law with maximum exponent [N(ν+1)−1]/ρ. This means
that if ρ is high enough, we can approximate the denominator on the right hand side
of Eq. (4.42) to ρt. After finding the approximated solution, we will estimate the set
of parameters for which this approximation is valid for any given topology. Therefore,
in the asymptotic limit and with a proper choice of the parameters, Eq. (4.42) can be
rewritten as

dDi(t)

dt
≈
∑

j

[
δijν + aij(ν + 1)

]
Dj(t)

ρt
, (4.43)

which can be expressed in a more compact way as

dD⃗(t)

dt
≈ 1

t

(
ν

ρ
I +

ν + 1

ρ
A

)
D⃗(t) =

1

t

f(A)D⃗(t)

t
=

1

t
MD⃗(t), (4.44)

where I is the N × N identity matrix and M = f(A), with f(x) = ν
ρ + ν+1

ρ x.
By operating the change of variable t = ez , Eq. (4.44) can be rewritten as a standard
first-order differential system, i.e., dzD⃗(z) ≈ MD⃗(z), which leads to the solution

D⃗(t) ≈
r∑

ℓ=1

mℓ−1∑
p=0

c⃗p ln
p(t) tλℓ , (4.45)

where {λℓ}ℓ=1,...,r and {mℓ}ℓ=1,...,r are the eigenvalues of M with their respective
multiplicities, and c⃗p are vectors defined by the initial conditions. The asymptotic be-
havior of the number of novelties Di(t) discovered by node i at time t is then governed
by the leading term in Eq. (4.45), so that we can write

Di(t) ≈
t→∞

ui ln
p̂(i)(t) tλ̂(i). (4.46)
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where λ̂(i) is the eigenvalue of M with the biggest real part such that the i-th entry of
at least one of its eigenvectors c⃗p is different from zero. Similarly, p̂(i) is the maximum
value of p among these eigenvectors with non-zero i-th entries. In general, then, λ̂(i)
might not be the maximum eigenvalue of M , like p̂(i) might be less than the multi-
plicity of the eigenvalue λ̂(i) minus one. Moreover, different nodes may have different
values for these exponents. For example, in the case of a chain as in Sec.4.5.2, the
asymptotic solution is Di(t) ∼ ui ln

N−i(t) tν/ρ, where λ̂(i) = ν/ρ and p̂(i) = N − i.
In this example all the Heaps’ exponents tend to ν/ρ at large times, while at finite
times nodes with higher powers in the logarithm show higher paces of discovery, thus
explaining the behavior also seen in Fig. 4.3(g). In order to better understand the solu-
tion of Eq. (4.46), in the next paragraphs we further study the general solution taking
into consideration the strongly-connected components (SCCs) of the network. As we
will see, nodes in the same SCC have the same exponents, while they may vary from
SCC to SCC.

Strongly-connected network.

Let us first suppose that the graph G(N , E) is strongly connected. In this case the so-
lution given by Eq. (4.46) simplifies. Indeed, for such a graph the corresponding adja-
cency matrix A = {aij} is irreducible [192]. Moreover, let us recall that for irreducible
matrices the Perron–Frobenius theorem holds [193, 194], according to which there ex-
ists a positive eigenvalue µ̂ greater or equal to all other eigenvalues in absolute value.
Such eigenvalue corresponds to a simple root of the characteristic equation, and the
corresponding eigenvector u⃗ has all positive entries too. The latter vector is a multiple
of the Bonacich eigenvector centrality vector [187]. Widely used in network science,
the Bonacich eigenvector centrality is a measure that recursively accounts for local and
global properties of the network, relying on the notion that a node can be highly cen-
tral either by having a high degree or by being connected to others that themselves are
highly central [36]. Simple algebraic steps can prove that if µ is an eigenvalue for A,
then λ = f(µ) is an eigenvalue for M = f(A), where f(x) = ν

ρ + ν+1
ρ x. More-

over, if u⃗ is an eigenvector corresponding to the eigenvalue µ of A, then u⃗ is also an
eigenvector corresponding to the eigenvalue λ = f(µ) of M . Therefore, if µ̂ is the
maximum eigenvalue of A, then λ̂ = f(µ̂) = ν

ρ + ν+1
ρ µ̂ > 0 is the highest eigenvalue

of M , and with the same positive eigenvector u⃗. Thus, for strongly-connected graphs,
the approximated solution given by Eq. (4.46) becomes

Di(t) ≈
t→∞

ui t
λ̂, (4.47)

meaning that all nodes have similar Heaps’ laws, and the only difference is made by
the coefficient, which is proportional to the eigenvector centrality. As we have seen in
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the Sec. 4.4.2, these differences, more pronounced in transient times, will contribute to
determine the fastest explorers in the network. In graphs such as the ZKC (see Fig. 4.2),
the different values of ui hence play a very important role. Most central nodes, as the
instructor and the chief administrator, are the fastest explorers (highest βi), even having
the same asymptotic Heaps’ exponent λ̂. On the contrary, in the case of cycles and
cliques seen in Sec. 4.5.3 and Sec. 4.5.4, which are also strongly-connected graphs,
nodes are all structurally equivalent (so ui = u ∀i), and they have the same analytical
form for Di(t).

Finally, from these calculations we can also deduce that the approximation used in
Eq. (4.43) is valid provided that λ̂ = f(µ̂) < 1, that is ρ > ν + (ν + 1)µ̂, while for
higher values of ρ the solution is bounded by the linear solution as seen for the individ-
ual urn in Eq. (2.20), since in the original system in Eq. (4.41) we have dDi(t)/dt ≤ 1.

Non-strongly-connected network.

In the more general case in which a graph is not strongly connected, Eq. (4.46) still
holds, and the same argument can be applied to each of the strongly connected com-
ponents, i.e. maximal strongly-connected subgraphs, to recursively find the values of
ui, p̂(i), and λ̂(i). As we will see in Sec. 4.5.7, in such cases the role of the eigen-
vector centrality as a factor of nodes ranking according to the their pace of discov-
ery is replaced by its natural extension to non-strongly-connected graphs, i.e., the α-
centrality [189].

Let us hence construct an algorithm to determine the pace of discovery of each
node, which will help us to better understand analytically why some nodes have a
higher pace of discovery. Let us first partition the graph into its strongly-connected
components (SCCs), which can be found in linear computational time, for example
with a DFS-based algorithm [195]. Let all the SCCs be indexed as C1, . . . , Cp, with
Ci ∩ Cj = ∅ ∀i ̸= j. Without loss of generality, let us suppose that the graph G

is weakly connected, because otherwise we can repeat the same reasoning for each
weakly-connected component. Let us further assume that the number of SCCs is p >

1, because otherwise the graph would be strongly connected, which we have already
discussed in the previous paragraph. Notice that for a weakly-connected graph we
have more than one strongly-connected graph only if the graph is directed. Since G

is weakly connected, for each SCC Cq there must exist another component Cl, with
l ̸= q, such that there are some links from Cq to Cl or viceversa. However, there
cannot be links in both directions (from Cq to Cl and viceversa), because otherwise
they would be a unique SCC. It is also easy to show that there is always a SCC without
any outgoing links to other SCCs. Permutating the indexes of the SCCs without loss
of generality, let us call C1, . . . , Cp1

all the components with no outer links. Then, for
each 1 ≤ q ≤ p1, the respective system of differential equations for Di, i ∈ Cq , does
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not depend on any outer variable Dj , j ∈ Cl ̸= Cq . Therefore, we can consider Cq

as an independent strongly-connected subgraph of G, for which the reasoning in last
paragraph holds. The solution for these SCCs is then:

Di(t) ≈
t→∞

γ
(q)
i tλ̂

(q)

∀i ∈ Cq, 1 ≤ q ≤ p1, (4.48)

where λ̂(q) is the maximum eigenvalue of the adjacency matrix of subgraph Cq and
γ
(q)
i is a multiple of the eigenvector centrality for node i in Cq . Found all the Heaps’

laws relative to the nodes in C1, . . . , Cp1
, it is possible to show that there exist SCCs

Cp1+1, . . . , Cp2
that have links only towards the previously studied SCCs C1, . . . , Cp1

,
with p2 > p1. Then, choosing Cq one of the SCCs of the second round, let λ

(q)
be the

highest eigenvalue of the adjacency matrix of Cq . Let also λ̃(q) = maxl≤p1
(γqlλ̂

(l))

be the maximum of the Heaps’ exponents in Eq. (4.48) of the SCCs reachable from Cq ,
where γqr = 1 if there is at least a link from Cq to Cl, γqr = 0 otherwise. As we will
see further in this section, the Heaps’ solutions for the nodes in these SCCs is

Di(t) ≈
t→∞


γ
(q)
i tλ

(q)

if λ
(q)

> λ̃(q)

γ
(q)
i ln(t) tλ̃

(q)

if λ
(q)

= λ̃(q)

γ
(q)
i tλ̃

(q)

if λ
(q)

< λ̃(q)

∀i ∈ Cq, p1 + 1 ≤ q ≤ p2, (4.49)

meaning that the Heaps’ exponent λ̂(q) for node i in Cq , p1 + 1 ≤ q ≤ p2, is

λ̂(q) = max(λ
(q)

, λ̃(q)), (4.50)

that is the maximum of the highest eigenvalue λ
(q)

of M relative to Cq and the highest
λ̃(q) of the Heaps’ exponents λ̂(l) for 1 ≤ l ≤ p1. Moreover, if λ

(q)
= λ̃(q), a

factor ln(t) appears in the solution. The same procedure can be repeated for all other
successive SCCs Cq , keeping in mind that now a higher power lnp̂(q)(t) of log(t) can
appear.

In this algorithmic process, let us now consider a generic SCC, say Cq , and let us
suppose we have solved inductively all the equations for the Heaps’ law of the nodes
in the already examined SCCs, that is C1, . . . , Cq−1. Let us recall that we arranged
the indexes in such a way that the only outgoing links from Cq are pointed to nodes
in previous SCCs, i.e. in some of the SCCs C1, . . . , Cq−1. For this reason, in order to
solve the asymptotic differential equations responsible for the Heaps’ law of the nodes
in Cq , we can consider only the equations relative to the nodes in Cq in Eq. (4.44), since
the previous SCCs have been already solved and the following variables do not appear
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in these equations. We hence have to solve the following approximated equations:

dDi(t)

dt
≈ 1

t

ν

ρ
Di(t) +

ν + 1

ρ

∑
j∈Cq

aijDj(t) +
ν + 1

ρ

∑
j /∈Cq

aijDj(t)

 , (4.51)

∀i ∈ Cq , where we have isolated the contributions coming from nodes outside Cq ,
which are known by induction. Considering the general asymptotic solution for each
individual Heaps’ law derived for a strongly-connected graph in Eq. (4.46), we can
write explicitly the functions Dj(t), j /∈ Cq . We can hence write

ν + 1

ρ

∑
j /∈Cq

aijDj(t) ≈
ν + 1

ρ

∑
j /∈Cq

aijuj ln
p̂j (t) tλ̂j

≈
t→∞

ũi ln
p̃(q)

(t) tλ̃
(q)

= fi(t),

(4.52)

where we have used the fact that ũi ln
p̃i(t) tλ̃i is the leading term of the expression∑

j /∈Cq
aijuj ln

p̂j (t) tλ̂j in the asymptotic regime. Then, using Eq. (4.52) and calling
D⃗(q) and A(q) the sub-vector of D⃗ and sub-matrix of M relative to Cq , we can rewrite
Eq. (4.51) in a compact form as

dD⃗(q)(t)

dt
≈ M (q)D⃗(q)(t)

t
+

f⃗ (q)(t)

t
. (4.53)

The associated homogeneous system corresponds to the Heaps’ dynamics of the sub-
graph Cq without all the external links. For this system we get the same solution
derived for a strongly-connected graph in Eq. (4.47), which is

D⃗
(q)

(t) ≈
t→∞

u⃗
(q)

tλ
(q)

, (4.54)

where λ
(q)

is the highest eigenvalue of M (q) (positive and simple for the Perron-
Frobenious theorem), and u⃗(q) is a multiple of its eigenvector centrality. Let us search a

solution for Eq. (4.53) of the form D⃗(q)(t) = u⃗(q)(t)◦D⃗
(q)

(t), where ◦ is the Hadamard
(element-wise) product, that plugged in Eq. (4.53) gives:

du⃗(q)(t)

dt
◦ D⃗

(q)

(t) +���������

u⃗(q)(t) ◦
d
[
D⃗

(q)

(t)
]

dt

≈����������

u⃗(q)(t) ◦ M (q) D⃗
(q)

(t)

t
+

f⃗ (q)(t)

t
, (4.55)

where the cancellation is due to the general solution in Eq. (4.54) of the associated

118



homogeneous system. Therefore, recalling Eq. (4.52) and Eq. (4.54) we have

du⃗(q)(t)

dt
≈ ⃗̃u(q) ◦

(
u⃗
(q)
)−1 lnp̃

(q)

(t) tλ̃
(q)

tλ+1
= γ⃗

lnp̃
(q)

(t) tλ̃
(q)

tλ+1
, (4.56)

or equivalently, considering the i-th components:

dui(t)

dt
≈ ũ

(q)
i

[(
u⃗
(q)
)−1

]
i

lnp̃
(q)

(t) tλ̃
(q)

tλ+1
= γi

lnp̃
(q)

(t) tλ̃
(q)

tλ+1
, (4.57)

where we have defined γ⃗ = ⃗̃u(q) ◦
(
u⃗
(q)
)−1

and γi = ũ
(q)
i

[(
u⃗
(q)
)−1

]
i

its i-th com-

ponent. Let us hence distinguish three cases.

1. If λ
(q)

> λ̃(q), then we have

ui(t) ≈
γi

λ̃(q) − λ
(q)

lnp̃
(q)

(t) tλ̃
(q)−λ

(q)

+ ui ≈
t→∞

ui, (4.58)

which gives the solution:

Di(t) ≈
t→∞

uit
λ
(q)

. (4.59)

2. Similarly, for λ
(q)

= λ̃(q) we have

ui(t) ≈
γi

p̃(q) + 1
lnp̃

(q)+1(t) + ui ≈
t→∞

γi
p̃(q) + 1

lnp̃
(q)+1(t), (4.60)

which gives:

Di(t) ≈
t→∞

ui ln
p̃(q)+1(t) tλ̃

(q)

. (4.61)

3. Finally, if λ
(q)

< λ̃(q) we have

ui(t) ≈
γi

λ̃(q) − λ
(q)

lnp̃
(q)

(t) tλ̃
(q)−λ

(q)

+ d1 ≈
t→∞

≈
t→∞

γi

λ̃(q) − λ
(q)

lnp̃
(q)

(t) tλ̃
(q)−λ

(q)

,
(4.62)

hence the solution:

Di(t) ≈
t→∞

ai ln
p̃(q)

(t) tλ̃
(q)

. (4.63)

To sum up, we have the following solutions:

Di(t) ≈
t→∞


uit

λ
(q)

if λ
(q)

> λ̃(q)

ui ln
p̃(q)+1(t) tλ̃

(q)

if λ
(q)

= λ̃(q)

ui ln
p̃(q)

(t) tλ̃
(q)

if λ
(q)

< λ̃(q)

∀i ∈ Cq, q > p1, (4.64)
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Comparing this solution with the general one we gave in Eq. (4.46), we have (a) λ̂(i) =
λ
(q)

and p̂(i) = 0 if λ > λ̃, (b) λ̂(i) = λ̃(q) and p̂(i) = p̃(q) + 1 if λ = λ̃, and
(c) λ̂(i) = λ̃(q) and p̂(i) = p̃(q) if λ < λ̃.

In conclusion, when dealing with a network with multiple strongly-connected com-
ponents, we solve the equations for the components that are independent from the oth-
ers. Then we consider the SCCs that have links only to previous SCCs, applying the
method just described using Eq. (4.64). This is repeated until every SCC is studied,
thus solving the whole system and describing the pace of discovery of each node of
the entire network analytically, obtaining solutions of the type in Eq. (4.46). As an
example, in the next section this algorithmic method is applied to the simple networks
with N = 4 nodes studied numerically in Sec. 4.4.2.

4.5.6 Application to the five graphs in Fig. 4.3

As an application of the analytical results of the previous sections, we study here the
same five networks reported in Fig. 4.3. In particular, we will be able to provide an
explicit expression for the growth of the number of novelties at each of the four nodes
of the social network. Explicit solutions are summarized in Table 4.2.

Graph (a)

Let us consider a network where nodes 2, 3, and 4 do not have any outgoing links,
while node 1 has the links 1 → 2, 1 → 3, and 1 → 4 to all other nodes (see network
representation in Table 4.2). Let us observe that the dynamics here is very similar to the
case of a couple of urns with the only link 1 → 2. Nodes 2, 3, and 4 can be considered
as three individual urns, for which the Heaps’ law is the same to the classic one in
Eq. (4.10), that is

D2(t) ≈
t→∞

D3(t) ≈
t→∞

D4(t) ≈
t→∞

(ρ− ν)
ν
ρ t

ν
ρ . (4.65)

As for node 1, the differential equation for the Heaps’ law is approximated by

dD1(t)

dt
≈ νD1(t)

ρt
+

(ν + 1)
(
D2(t) +D3(t) +D4(t)

)
ρt

≈ νD1(t)

ρt
+

3(ν + 1)(ρ− ν)
ν
ρ t

ν
ρ

ρt
.

(4.66)

The resolution of Eq. (4.66) is the same as the one done for the couple of urns, with
only a multiplicative factor 3. Therefore, the Heaps’ solution for node 1 is

D1(t) ≈
t→∞

3
ν + 1

ρ
(ρ− ν)

ν
ρ ln(t) t

ν
ρ , (4.67)
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which means that node 1 has a higher pace of discovery than nodes 2, 3, and 4, but
at asymptotic times they will show the same Heaps’ exponent. Moreover, it is clear
that in star-like networks adding more nodes does not increase significantly the pace of
discovery.

Graph (b)

The next network we consider is a chain of 4 nodes, with links 1 → 2, 2 → 3, and
3 → 4. This network has already been studied in Sec. 4.5.2, and the solutions are:

Di(t) ≈
(ρ− ν)ν/ρ

(4− i)!

(
ν + 1

ρ
ln(t)

)4−i

tν/ρ, i = 1, 2, 3, 4. (4.68)

This analytical result shows us why node 1 has a higher pace of discovery than the
other nodes, which is due to the presence of different powers of the logarithm. In
the end, however, they all have the same asymptotic Heaps’ exponent (the power-law
exponent), meaning that the difference is visible only at finite times.

Graph (c)

Let us consider a network made by a directed cycle between nodes 2, 3 and 4, with
links 2 → 3, 3 → 4, and 4 → 2, and another node 1 linked directly to node 2 (1 → 2).
In this case, we can distinguish two SCCs, the cycle and node 1. Since there is no link
going out from the cycle, we start solving the Heaps’ law equations related to it. As we
have seen in Sec. 4.5.3, the solution is given by Eq. (4.34) with N = 3, that is

Di(t) ≈
t→∞

(ρ− 2ν − 1)
2ν+1

ρ t
2ν+1

ρ , i = 2, 3, 4. (4.69)

Now let us consider the remaining SCC, namely node 1. Its equation is the same as
Eq. (4.14) for the two coupled urns case in Sec. 4.5.1, with the only difference that here
the solution of D2(t) has a higher exponent. Therefore, if we search for a solution like
D1(t) = κ(t)D1(t), with D1(t) ≈ (ρ − ν)

ν
ρ t

ν
ρ being the solution of the associated

homogeneous equation, we get

dκ(t)

dt
=

ν + 1

ρt

D2(t)

D1(t)
≈ ν + 1

ρt

(ρ− 2ν − 1)
2ν+1

ρ t
2ν+1

ρ

(ρ− ν)
ν
ρ t

ν
ρ

=
ν + 1

ρ

(ρ− 2ν − 1)
2ν+1

ρ t
ν+1
ρ −1

(ρ− ν)
ν
ρ

,

(4.70)

whose solution is

κ(t) ≈ ν + 1

ρ

(ρ− 2ν − 1)
2ν+1

ρ t
ν+1
ρ

(ρ− ν)
ν
ρ

. (4.71)
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This gives the following asymptotic solution for node 1:

D1(t) ≈
ν + 1

ρ
(ρ− 2ν − 1)

2ν+1
ρ t

2ν+1
ρ . (4.72)

We could have obtained the same result using the algorithm developed in Sec. 4.5.5. In
this case, node 1 gets the same dynamics of the nodes in the cycle, with just a scaling
factor (ν+1)/ρ, since the maximum eigenvalue of its SCC (node 1 itself) is lower than
the maximum eigenvalue of the SCCs he is linked to (the cycle). This further shows
the power of the algorithmic and analytical solution we have provided.

Graph (d)

In this case we consider the same network as the last graph we have just analyzed,
but now we swap the direction of the link 4 → 2. Therefore, the cycle is broken (see
network representation in Table 4.2), and as we are about to see, the dynamics is much
more similar to a chain. We could give a detailed solution as done for the chain; instead,
we apply the algorithm we have developed to showcase a full example of how it can be
used.

Let us start from node 4, which has no outgoing links. This node is hence an
individual urn, with the usual solution:

D4(t) ≈
t→∞

(ρ− ν)
ν
ρ t

ν
ρ . (4.73)

Let us move on to the next SCC with outgoing links only towards previously studied
SCCs, that is the SCC composed by node 3. If this SCC had no outgoing links, then it
would be an isolated urn, therefore with the same exponent of the other SCC studied
(node 4). This means that the actual solution for node 3 has that same exponent and a
logarithmic factor. Indeed, the dynamics of node 3 is the same derived for the couple
of urns in Sec. 4.5.1, which is

D3(t) ≈
t→∞

ν + 1

ρ
(ρ− ν)

ν
ρ ln(t) t

ν
ρ . (4.74)

Proceeding with node 2, we compare its power-law exponent if it was isolated to the
maximum of the exponents of node 3 and 4, which are all the same. Moreover, since
node 3 has a higher power in the logarithm than node 4, in the asymptotic solution, we
can disregard the presence of the link 4 → 2. Thus, the solution for node 2 has another
logarithmic factor and another constant multiplicative factor with respect to those of
node 3. We hence get the solution

D2(t) ≈
t→∞

(
ν + 1

ρ

)2

(ρ− ν)
ν
ρ ln2(t) t

ν
ρ . (4.75)
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To complete, similarly for node 1 we obtain

D1(t) ≈
t→∞

(
ν + 1

ρ

)3

(ρ− ν)
ν
ρ ln3(t) t

ν
ρ . (4.76)

We can hence see that the asymptotic solutions are equal to those of the chain in
Sec. 4.5.2, and there are only some slight differences at finite times due to the pres-
ence of another link, which disappear at long enough times.

Graph (e)

The last case to be examined is again similar to Graph c, but this time we swap the
direction of the link between nodes 1 and 2 (see network representation in Table 4.2).
Here, the order with which we study the SCCs is inverted, because now only node 1
has no outer links. Therefore, the Heaps’ law for node 1 is the classic individual one
in Eq. (2.20). Then we have to solve the equations for the cycle, which in this case are
given by 

dD2(t)

dt
≈ νD2(t)

ρt
+

(ν + 1)D3(t)

ρt
+

(ν + 1)D1(t)

ρt

dD3(t)

dt
≈ νD3(t)

ρt
+

(ν + 1)D4(t)

ρt

dD4(t)

dt
≈ νD4(t)

ρt
+

(ν + 1)D2(t)

ρt
.

(4.77)

In this system, we can consider D1(t) known. Therefore, following the algorithm
described in Sec. 4.5.5, we first solve this system without the external sources (i.e.,
node 1), in order to find the leading solution, and then compare these exponents with
the Heaps’ exponent of node 1. The solution of the associated homogeneous system is
the same of a directed cycle as in Eq. (4.34), i.e. a power-law function with exponent
2ν + 1/ρ. Now, we observe that the Heaps’ exponent of the cycle is higher than the
exponents of outer SCCs it is linked to, that is just node 1 with exponent ν/ρ. Thus, the
asymptotic solution for the nodes in the cycle corresponds to the solution of the cycle
as if it had no outer links. Explicit solutions are given in Table 4.2.

4.5.7 Node ranking persistence

In this section, we study more in details the relation between the eigenvector centrality
and α-centrality with the Heaps’ law solutions found in the previous sections. Firstly,
we concentrate on strongly-connected graphs, and we explain why the eigenvector cen-
trality leads to the persistent ranking of the Heaps’ exponents extracted in the simula-
tions discussed in Sec. 4.4.3. Then, we consider generic networks, making use of the
α-centrality. This analysis will ultimately make us understand that the rank persistence
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Graph (a) (b) (c) (d) (e)

D1(t) u1 ln(t) t
ν
ρ u1 ln

3(t) t
ν
ρ u1 t

2ν+1
ρ u1 ln

3(t) t
ν
ρ u1 t

ν
ρ

D2(t) u2 t
ν
ρ u2 ln

2(t) t
ν
ρ u2 t

2ν+1
ρ u2 ln

2(t) t
ν
ρ u2 t

2ν+1
ρ

D3(t) u3 t
ν
ρ u3 ln(t) t

ν
ρ u3 t

2ν+1
ρ u3 ln(t) t

ν
ρ u3 t

2ν+1
ρ

D4(t) u4 t
ν
ρ u4 t

ν
ρ u4 t

2ν+1
ρ u4 t

ν
ρ u4 t

2ν+1
ρ

Table 4.2: Summary of the asymptotic Heaps’ laws derived analytically for the 4 nodes
composing the five networks reported in Fig. 4.3 here displayed at the top. The coeffi-
cients ui have not been reported to focus on the exponents of the power laws and the
logarithms, when present.

found in the Heaps’ exponents is directly connected and intertwined with the network
structure at a local and global level. Consequently, we will see how these centralities
can be used as a valid predictor of the rank of the nodes in a social network where a
cooperative discovery dynamics is in place.

Pace of discovery and eigenvector centrality

In Sec. 4.5.5 we have shown that in strongly-connected graphs each urn has the same
asymptotic Heaps’ exponent, and that the driving factor for each node is the associated
asymptotic coefficient. As we saw when we derived the asymptotic expression of the
Heaps’ law for strongly-connected graphs in Eq. (4.46), the Heaps’ exponent corre-
sponds to the maximum eigenvalue λ̂ of the matrix M = ν

ρI + ν+1
ρ A, where A is the

adjacency matrix. In particular, because of the Perron-Frobenius theorem [193, 194],
we know that λ̂ is positive and simple, and the related eigenvector u⃗ has all positive
entries. We also derived that the coefficients of the Heaps’ laws are all multiples of this
eigenvector. A lot of importance has been given in the past to this vector, from which
we can derive the eigenvector centrality, also known as the Bonacich centrality [187].
As a definition, the eigenvector centrality c

(E)
i of node i is the i-th coefficient of the

normalized solution of the equation:

M c⃗ (E) = λ̂ c⃗ (E), (4.78)

where λ̂ is the highest positive eigenvalue [193]. This centrality measure accounts for
both local and global properties of the network, as it is not just dependent on the degree
of the node, but also on the positioning of each node in the network [188].
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Our analytical investigation showed us that for strongly-connected components we
expect the same asymptotic Heaps’ exponents. However, the same analysis showed us
that the coefficients depend on the eigenvector centrality. This factor plays a role in the
transient times, when we are far from the asymptotic regime, and it is thus especially
important for real-world systems. For example, in Fig. 4.5(a) we have showed that the
correlation between the eigenvector centralities and the measured Heaps’ exponents at
transient times for a simulation on the Zachary Karate Club network is higher than 0.98,
and it persists changing the parameters in the simulations, even for sets of parameters
in contrast with the approximations used in the analytical study, i.e. ρ < ν + (ν +

1)µ̂. We can hence conclude that the eigenvector centrality is an optimal proxy for the
distribution of Heaps’ exponents in strongly-connected social networks, and it can be
used to give a faithful ranking of the individual expected paces of discovery.

Pace of discovery and α-centrality

In this section we focus on generic directed graphs and the usage of the α-centrality
as a proxy for the ranking of the nodes based on their pace of discovery in these more
general cases. The α-centrality, widely used in network analysis [190, 191], has been
first introduced in Ref. [189] to extend the eigenvector centrality to asymmetric graphs.
The underlying idea is to tune the influence of the adjacency matrix structure with a
parameter α to add exogenous sources to the centrality [36, 189]. Formally, it is defined
as the vector c⃗ (α) such that

c⃗ (α) = αAc⃗ (α) + e⃗, (4.79)

where e⃗ is an N -dimensional vector of ones. The matricial form of Eq. (4.79) reads

c⃗ (α) = (I − αA)−1e⃗ =

( ∞∑
k=0

αkAk

)
e⃗, (4.80)

where I is the N -dimensional identity matrix. It has also been shown that this centrality
is equivalent to the Katz-centrality [196] given by

c⃗ (K) =

( ∞∑
k=1

akAk

)
e⃗, (4.81)

with a being an attenuation factor. In fact, it has been shown that the equality c⃗ (K) =

−e⃗ + c⃗ (α) holds, i.e., these two centralities differ only by a constant [189]. From
Eq. (4.79) and (4.80), it is clear that the α-centrality can be both a local and global
measure. In fact, for α → 0+, the relative importance of the structure given by the
adjacency matrix A decreases, in favor of the exogenous factor given by e⃗. With higher
values of α, instead, the role of the exogenous part is damped.

For an undirected graph, the α-centrality becomes proportional to the eigenvec-
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tor centrality when α → (1/µ̂)−, where µ is the highest positive eigenvalue of the
adjacency matrix. In fact, in this case all eigenvalues are real and the eigenvectors
are orthogonal. Following Ref. [189], let {µℓ} and {u⃗ℓ} be the (eventually multiple)
eigenvalues and eigenvectors of the adjacency matrix A, with µ̂ = µ1 > µℓ for ℓ ̸= 1.
We can hence write A =

∑N
ℓ=1 µℓu⃗ℓu⃗

T
ℓ . Considering that Ak =

∑N
ℓ=1 µ

k
ℓ u⃗ℓu⃗

T
ℓ , from

Eq. (4.80) we have

c⃗ (α) =

( ∞∑
k=0

αk
N∑
ℓ=1

µk
ℓ u⃗ℓu⃗

T
ℓ

)
e⃗ =

(
N∑
ℓ=1

( ∞∑
k=0

αkµk
ℓ

)
u⃗ℓu⃗

T
ℓ

)
e⃗

=

N∑
ℓ=1

1

1− αµℓ
u⃗ℓu⃗

T
ℓ e⃗.

(4.82)

When α → (1/µ̂)−, the factor relative to ℓ = 1 in the last term of Eq. (4.82) becomes
the leading term, thanks to the Perron-Frobenius theorem, so that we can write:

lim
α→(1/µ̂)−

(1− α1)c⃗
(α) = (u⃗T

1 e⃗)u⃗1 ∝ u⃗1 ∝ c⃗ (E), (4.83)

where we have noted with c⃗ (E) the eigenvector centrality.
Let us now generalize the analytical steps above to understand why the α-centrality

correlates with the extracted Heaps’ exponents for generic graphs, as showed numeri-
cally in Fig. 4.6. Let us suppose that the social network is a weakly-connected graph,
since otherwise we can repeat the same argument for each weakly-connected compo-
nent. As we have shown before, the asymptotic behavior of the Heaps’ law for node i

is of the type ui ln
p̂(i)(t)tλ̂(i). We have shown also that the values of p̂(i) and λ̂(i) for

each strongly-connected component can be determined algorithmically. Here we will
show that not only the α-centrality can account for the coefficient ui like the eigenvec-
tor centrality, but also for the different values of p̂(i) and λ̂(i). Let us first concentrate
on what happens when the highest eigenvalues appear with multiplicity higher than 1,
for which the biggest difference in the dynamics is primarily given by p̂(i). There-
fore, let us suppose for now that all SCCs in the graph have the same Heaps’ exponent
λ̂(i) = λ̂, but different values of p̂(i), and that in the leading terms the maximum value
assumed by p̂(i) is p̂max < N . This is the case for example of an open chain (already
studied above), where p̂(i) = 0, 1, . . . , N − 1 for i = N , N − 1, . . . , 1 respectively,
and p̂max = N − 1. Notice that, in this particular case, the adjacency matrix has only
one eigenvalue µ̂, related to the Heaps’ exponent λ̂ through the relationship λ̂ = f(µ̂),
with f(x) = ν

ρ + ν+1
ρ x. Therefore, the Jordan canonical form of the adjacency matrix
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is

A = PJP−1 = P



µ̂ 1 0 · · · 0

0 µ̂ 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 µ̂ 1

0 · · · 0 0 µ̂


P−1 = P (µ̂J0 + J1)P

−1, (4.84)

where P =
[
u⃗1 u⃗2 . . . u⃗N

]
has the generalised eigenvectors in each column,

and Jj denotes the N ×N matrix with ones only in the (j + 1)-th upper diagonal and
null everywhere else, with J0 = I . From Eq. (4.84) we can write

Ak = P (µ̂J0 + J1)
kP−1 = P

min(N−1, k)∑
j=0

(
k

j

)
µ̂k−jJj

P−1. (4.85)

Hence, from Eq (4.80), similarly to what we have done in Eq. (4.82), we have

c⃗ (α) =

( ∞∑
k=0

αkP (µ̂J0 + J1)
kP−1

)
e⃗

=

 ∞∑
k=0

αkP

min(N−1, k)∑
j=0

(
k

j

)
µ̂k−jJj

P−1

 e⃗ =

=

N−1∑
j=0

 ∞∑
k=j

αk

(
k

j

)
µ̂k−j

PJjP
−1

 e⃗

=

N−1∑
j=0

( ∞∑
k=0

αk+j

(
k + j

j

)
µ̂k

)
PJjP

−1

 e⃗

=

N−1∑
j=0

αj

( ∞∑
k=0

(
k + j

j

)
αkµ̂k

)
N−j∑
ℓ=1

u⃗ℓu⃗
T
ℓ+j

 e⃗

=

N−1∑
j=0

N−j∑
ℓ=1

αj

(1− αµ̂)j+1
u⃗ℓu⃗

T
ℓ+j e⃗

=

N∑
ℓ=1

N−ℓ−1∑
j=0

αj

(1− αµ̂)j+1
u⃗T
ℓ+j e⃗

 u⃗ℓ.

(4.86)

From Eq. (4.86) above, it is clear that the nodes ℓ for which (u⃗1)ℓ is positive have the
greatest α-centrality when α → (1/µ̂)−, since in the last term the contribute related
to l = 1 and j = 0 tends to infinity for such nodes. Let us remind that these nodes
are associated to the highest power in the logarithm p̂(i) = p̂max. Among these, as
with the eigenvector centrality, nodes with higher coefficients, which correspond to the
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eigenvector centralities in that SCC, have higher ranking. Then, the nodes who have
zeroes in u⃗1 but positive entries in u⃗2 are next in the ranking, and so on. This confirms
the fact that, when comparing nodes with same asymptotic Heaps’ exponent, those with
higher discovery rates, i.e. those with higher powers in the logarithm factor, have the
highest α-centrality.

A similar approach to the one we used to derive the algorithmic solution of the
Heaps’law in Sec. 4.5.5 for a generic graph can be used to treat the ranking in generic
weakly-connected graphs. Let us divide the network into its SCCs. For each compo-
nent Cq , we denote with µ(q) the highest between the maximum eigenvalue the com-
ponent would have if isolated and the maximum eigenvalue of the neighboring SCCs,
following the same order used in the developed algorithm. In this setting, it is then
possible to compute the α-centrality at α → (1/µ(q))−, that might be different across
SCCs. The final ranking is given by ordering the evaluated α-centralities starting from
those with the highest µ(q).

It is worth noticing that this method can be computationally not efficient, especially
for big networks. For this reason, we test how reliable the α-centrality is if we choose
a unique value of α close to (1/µ̂)− for all SCCs to be compared with the Heaps’ ex-
ponents, regardless of the algorithmic procedure above. In Fig. 4.7, indeed, we inves-
tigate how the Spearman’s rank correlation coefficient between the paces of discovery
βi(10

4) and the α-centralities c
[α]
i changes as a function of α for the four considered

real-world networks. Although panel (d) displays a decrease in the correlation when
approaching 1/µ̂, setting α < 1/µ̂ leads to Spearman’s rank correlation coefficients
rS > 0.89 in all four cases for any chosen value of α in this region. These results con-
firm what we have also found numerically in Fig. 4.6, where we have compared the ex-
tracted Heaps’ exponents to the normalized α-centralities c[α]i /c

[α]
max in these networks,

with α = 0.85/µ̂. The high values of the Spearman’s rank correlations (rS ≥ 0.97 in
all cases) found in both undirected [Fig. 4.6(a,c,d)] and directed networks [Fig. 4.6(b)]
are in agreement with our analytical predictions. This confirms that, together with the
adjacent possible (AP) in the content space, it is crucial to take into account of an AP in
the social space, and that the α-centrality can be used as a predictor of the enhancement
of the individual pace of discovery due to the social structure.

4.6 Summary and conclusions

In conclusion, in this chapter we have presented the UrNet model in which multiple
processes of discovery are coupled over the nodes of a complex network, and analyt-
ical insights on the relations between structure and dynamics are possible. If in the
previous chapters we have focused on the discovery process of an individual, here we
have instead considered the dynamics of a group of individuals who explore and make
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Figure 4.7: Spearman’s rank correlation rS between paces of discovery βi(10
4) and

α-centrality c
[α]
i as a function of α for nodes i = 1, . . . , N belonging to four different

real-world networks: (a) the Zachary Karate Club network [182], (b) a network of
follower relationships of Twitter [183], (c) a co-authorship network in network science
[184] and (d) a collaboration network between jazz musicians [185]. Each dashed
vertical line corresponds the value of 1/µ̂, with µ̂ denoting the maximum eigenvalue of
the corresponding adjacency matrix. The parameters of the model are ρ = 10, ν = 1,
M0 = ν + 1.

discoveries simultaneously. In particular, in the UrNet model, each explorer is asso-
ciated to a node of a social network and equipped with an urn model with triggering
controlling the individual discovery dynamics. Then, we couple the urns over the so-
cial network, expanding each urn through the adjacent possible in the social space.
Thanks to this expansion, each urn is enriched with colors coming from their neigh-
boring urns. Simulating the model on different structures, the results highlight that
the structural—not just local—properties of the nodes can strongly affect their ability
to make novelties. Let us remark that our UrNet model of socially-enriched urns is
not just a simple extension of the UMT. What makes it novel and different is the very
same idea of coupling together many urns over a complex social network, related to
the concept of “adjacent possible in the social space” we have introduced. It is such
a network coupling that spontaneously produces novel and heterogeneous behaviors,
such as different exponents of the Heaps’ law in a single system.

The work presented in this chapter represents only a first step toward the inclusion
of structured interactions in discovery processes. Although the framework we have
proposed is general, our results have focused on identical urns, so that the topological
differences of the social network would be highlighted. Therefore, it would be inter-
esting to study the relationship between differences in individual natural propensity
to explore and their social structure. Moreover, urns can in fact result oversimplified
models for the dynamics of individual explorers. As we have seen in Chapter 3, the
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structural properties of the network of contents being explored can have a big impact
on the discovery properties of the agents in the system. Therefore, in Chapter 5 we
will consider an example where many interacting agents explore a complex network
of music content, so as to investigate the relationship between adjacent possible in the
content and social space in a real case study.

Another direct application of the UrNet could be related to team dynamics and op-
timization, in which more interdisciplinary and explorative individuals interact with
others who are more specialist in a particular sector. To this end, one could extend
the UrNet model by introducing social relationships unfolding across different net-
work layers [197] or higher-order structures [198, 199], or through weighted social
networks. For instance, we can see a team as a simplicial complex, in which each
of the individuals shares their adjacent possible with the other teammates, while for
all other pairwise connections only the discovered elements are available to the social
contacts, similarly to what happens for scientific researchers reading papers suggested
by their contacts. This study could hence lead to new insights on optimal team struc-
tures in discovery processes. This could in turn be exploited to obtain valuable insights
on how to control and predict the impact of various constraints in the team structure
on the emergence of novelties of the team, answering important questions from the
perspective of funding and management choices. Due to the collaborative nature of the
UrNet model, this could also be implemented in studies on efficient team structures
in cooperative creative tasks [114, 200–203]. Results would be based on both collec-
tive and individual creativity-related measures, such as the discovery rate of the whole
team, and the distribution of exploration rates of each team member.

Finally, let us list other possible extensions of the model, highlighting how general
this framework is. As we have seen in Sec. 2.2.1, the reinforcement mechanism present
in Polya’s urns are very similar to the Barabási-Albert (BA) model of network gener-
ation [32]. In the recent past the BA model has been incrementally refined, starting
from the Bianconi-Barabási model [143, 204] where each node is given a fitness, so
that the usual “rich-get-richer” transforms into a “fit-get-rich” mechanism. It would
hence be interesting to try and mimic a similar dynamics also on coupled urns, intro-
ducing different intrinsic weights, or fitness, to the various elements of the adjacent
possible. This could be implemented in studies of substitutive systems [110] and so-
cial spreading processes [205–207], where the adoption of the new might trigger the
abandoning of the old, thus leading to phenomena of waves of novelties [28, 97].
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Chapter 5

Modelling the exploration of
music in online platforms

5.1 Introduction and outline

In our everyday life, we are continuously exposed to novel ideas, new information,
innovative cultural and technological products, and so on [107, 146, 208, 209]. Un-
derstanding the subtle balance between the exploration of new opportunities and the
exploitation of what we already know is fundamental to unveil how we build our knowl-
edge and set of skills [210–213]. Such a task is even more challenging if we consider
that we live in a more and more interconnected society [32, 33, 36] and we do not
explore the world alone. Indeed, we are constantly influenced by our peers, directly or
indirectly [103, 176, 214, 215].

The recent increase in quantity and quality of digital traces has unlocked the possi-
bility of tracking individual exploration trajectories in systems and processes as diverse
as online music consumption [216–218], food purchases [219–221], Twitter post cre-
ation [222], and code development [28]. These opportunities have allowed, among
other things, to identify the typical exploration patterns of individual users and to in-
vestigate the drivers that lead to a novelty, defined as the first time a user adopts or
consumes a given content [8, 28, 95, 148]. We have indeed seen in Chapter 3 how the
temporal analysis of the emergence of novelties, which can be extended to new combi-
nations of a higher number of elements, can be used to characterize not only the pace
of new discoveries in different systems, but also the growth of their inherent space of
possibilities to make further discoveries.

Although social interactions play a crucial role in all these systems [1], as we have
highlighted in Chapter 4, a thorough data-driven understanding of their impact on in-
dividual and collective exploration trajectories is still lacking. In this chapter, we try to
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fill this gap by studying how social connections and communities affect the exploration
patterns of different users of online (social) music platforms [2]. Our work is based on
a unique data set that, differently from those used in previous studies [126, 223–228],
contains information on both the whole listening histories and the social connections
of a large and connected sample of users from the online music listening platform
Last.fm. This platform is particularly suitable for our purposes, since it specifically
encourages interactions among users and pushes them to explore new songs based on
the rich metadata attached to each track [125]. As such, the data set we use represents
the ideal testbed to i) characterize the exploration and discovery dynamics of each user,
ii) measure the impact of social interactions, and iii) provide a structured view of the
conceptual (or musical, in this case) space being explored by the agents [229–232].
A first analysis of the data set reveals that user exploration behaviors are very hetero-
geneous. We find that users with high discovery rates, the so-called explorers, tend
to be connected with similar users in the social network, indicating the presence of
homophily [233].

To get a better insight into the interplay between the topology of the social network
and the different propensities of the users to explore, we introduce a multiagent model
in which the agents simultaneously explore a space of contents. Our model, called
“ExploNet" is based on the so-called urn model with semantic triggering (UMST) [8]
discussed in Sec. 2.2.5, which is already capable of reproducing some statistical fea-
tures of the empirical exploration trajectories, e.g., the Zipf’s, Heaps’ and Taylor’s
laws [25, 27–29]. UMSTs have been recently adapted both to model the evolution of a
social network [30] (see Sec. 2.5.1) and to investigate peer effects in discovery dynam-
ics, which we have done in Chapter 4. While the former model approach does not deal
with content exploration [30], the latter lacks semantics in the space being explored [1].
Here, we explicitly consider a space endowed with a complex network of semantic re-
lations between artists as given by similarity. As proposed in Chapter 3, we call this
the adjacent possible in the content space. Multiple agents independently navigate this
network with a reinforcement mechanism of the visited nodes, while also triggering
the addition of new elements in the adjacent possible whenever a novelty appears. At
the same time, agents interact with each other through an underlying social network,
progressively enlarging their space of possibilities in what we have called the adjacent

possible in the social space in Chapter 4. The collective nature of the dynamics allows
us to correctly capture and reproduce the key empirical findings at a local and global
level. At the local level, one observes an assortative arrangement of explorers, while at
the global level, communities of people sharing similar music tastes emerge. The en-
semble of these results offers valuable understandings regarding the mutual influence
between the individual and collective experience of the new.

This chapter is organized as follows. In Sec. 5.2 we first crawl the Last.fm net-
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work to obtain a smaller connected sample of active users. After analyzing the social
network properties of this sample in Sec. 5.2, we download and investigate the com-
plete listening history of such users, looking at their pace of discovery of new artists
(Sec. 5.3) and at the presence of semantic correlations in the sequences (Sec. 5.2.4).
We conclude our analysis of the social network in Sec. 5.2.5 by studying the interplay
between the social network structure and both the individual rate of discovery and the
overlap of tastes between users.

We use these empirical findings to create a data-driven agent-based model (ABM)
in Sec. 5.3, leveraging on some mechanisms proposed in other models discussed in this
thesis. We extract the content semantic structure from the empirical data in Sec. 5.3.1,
and define the ABM in Sec. 5.3.2.

Subsequently, we run extensive simulations of the ABM, in which all agents follow
the same evolutionary rules with the same parameters, finding, in Sec. 5.9, a reference
set of parameters that reproduces the distribution of the pace of discovery and the se-
mantic correlations similarly to the empirical data. We also find in Sec. 5.4.2 that the
ABM correctly reproduces also the other empirical findings, for example regarding the
impact of the social network on the pace of discovery and the overlapping tastes be-
tween friends. We further test the role of the social network by running and analyzing
simulations in which, on the one hand, we switch off the interaction step in the model
(in Sec. 5.4.3), and, on the other hand, we let the social interactions dynamically shape
the social network structure (see Sec. 5.4.4). We conclude our analysis in Sec. 5.4.5
investigating how the results change if we run longer simulations, while in Sec. 5.4.6
we check the relationship between Heaps’ and Zipf’s exponent in the data and in the
ABM simulations.

Finally, in Sec. 5.5 we summarize the results of this chapter, and we discuss further
improvements of the ABM and future work.

5.2 The data set

Last.fm is an online digital music streaming platform born in 2002, famous for logging
all listening activities, known as scrobbles, of its users [125]. We have crawled the
Last.fm platform using its API, collecting all the listening sequences and social con-
nections of a group of 4836 users. Such users have been found growing a breadth-first
search sample from a random seed. We end up with 335 375 125 unique streaming
events, complete of metadata and timestamps, with a total of 6 972 047 unique tracks
authored by 958 732 artists. Let us hence start by going into more detail about how this
data has been collected.
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5.2.1 Data collection

The Last.fm data set presented in this chapter contains the complete listening history
of a group of 4836 users and their social connections. The users have been selected
randomly via a breadth-first search algorithm starting from a random seed node, using
Last.fm’s API method user.getFriends(). More in detail, the initial seed is
added to a growing list L of users to explore in a first-in-first-out manner. Therefore,
at each step, the first user in L is included in the graph and removed from L, while its
neighboring users (or friends) that have not been sampled already are added at the end
of L. This process has been repeated until the graph has reached 10 000 users. Then, we
have downloaded the complete history of streamed tracks of all users through the API
user.getrecenttracks() endpoint. For each record, besides the timestamp, the
API provides additional metadata, including the name and MusicBrainz Identifier [128]
(MBID) of the track, artist, and album if present. Some of the users were not available
to access correctly using the APIs above, or have not been very active in the platform.
Therefore, we have filtered out those with less than 1 000 scrobbles. Finally, we have
kept only the largest weakly connected component, resulting in a network of 4 836

users.
In total, the records span over almost 13 years, from August 2005 to February

2018, with 335 375 125 unique streaming events, totaling 6 972 047 tracks, 958 732
artists, and 1 807 150 albums. We find that 31.8% of the set of tracks does not have
an album, making up for 9.1% of all listening records in the data set. Considering the
vast number of different tracks and the lack of consistency of albums, the analysis in
this work has been carried out focusing only on the sequence of artists listened by the
users, even though similar results can be obtained when considering the sequence of
tracks instead.

Finally, let us remark that the data set we have collected is unique in nature and
breadth. As a comparison, on the one hand, the music-listening histories data set pre-
sented in Ref. [227] consists of more than 27B logs from 583k users, for a total of
555k different artists and 46k logs per user on average. However, no social relations
between the users are given, similarly to Refs. [126, 217]. On the other hand, in the
data set shared in Ref. [234] the social relationships are present, but for each user there
is only the tag assignments history, unfortunately much shorter (average length equal
to approximately 98).

Our data set is available for download on figshare at http://dx.doi.org/1
0.6084/m9.figshare.16652104, while all the code to reproduce the results in
this chapter is accessible at https://github.com/gabriele-di-bona/So
cially-enhanced-discovery-processes.
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5.2.2 Analysis of the social network

In Sec. 5.2.1 we have described how we have crawled the Last.fm platform growing a
breadth-first search sub-graph from a random seed, ending up with a connected network
made of 4836 users. In this section, we show that the sample we have collected is
representative of the main statistics of the whole network.

Firstly, in Fig. 5.1, we see that this sample significantly reproduces the degree that
users feature on the Last.fm platform. Quantitatively, we indeed have a Spearman rank
correlation coefficient r = 0.723. (p < 0.0001) and a Pearson coefficient r = 0.839

(p < 0.0001) between the degree of a user in the sample network and the total number
of followed users on the platform (the original degree). We further observe that the
degree of a user in the sample is, on average, almost one tenth of the original degree on
the platform. Therefore, in the sample we only maintain a smaller subset of the total
connections of each sampled user. Nevertheless, the degree distribution has the same
properties, since the original and sampled degrees are highly correlated. Notice also
that the network is almost completely reciprocal (i.e., for each link i → j, also the
reciprocal link j → i exists), since 98.5% of existing links are reciprocal.

Moreover, in Fig. 5.2(A), we show a local snapshot of the users’ social network GS ,
where nodes are colored according to their exploration propensity (i.e., their Heaps’
exponent βi defined in Sec. 5.2.3, the redder, the higher), their size is proportional to
their betweenness centrality, and the link color intensity is proportional to the dynam-
ical overlap (a measure of similarity between users based on their listening sequences,
see Sec. 5.2.5 for the definition). Here we can clearly see at a glance how clusters of
people with similar discovery rates are formed.

Furthermore, as shown in Fig. 5.2(B), we find that GS features a scale-free out-
degree distribution P (k) ∼ k−µ, where k is the out-degree of a user, i.e., the number
of users in the sample followed on Last.fm, and µ ≈ 2.15, with average out-degree

100 101 102 103 104

Original degree
100

101

102

De
gr

ee
 in

 sa
m

pl
e

Spearman: r = 0.723, p = 0.0000
Pearson: r = 0.839, p = 0.0000

Linear fit: 0.04k + 1.43
Power-law fit: 0.14k0.86

Figure 5.1: Relationship between in-sample degree and number of followers in the
data set. We show the in-sample degree (y axis) versus the total number of followed
users (x axis) on the Last.fm platform for all the users in the data set. We also plot
the linear fit (black dashed line), 0.04k + 1.43, and the power-law one (blue dashed
line), 0.14k0.86. The values of Spearman and Pearson correlation coefficient are also
displayed.
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Figure 5.2: Statistical analysis of the social network in the Last.fm data set. (A)
Sub-graph of the social network GS of the analyzed sample. The node size is propor-
tional to its betweenness centrality, while color intensity is proportional to its Heaps’
exponent β (the redder, the higher). The color intensity of a link eij is proportional to
the dynamical overlap od(i, j) of the two nodes (the bluer, the higher). (B) Out-degree
distribution P (k) ∼ k−µ (blue dots) and community size distribution P (s) ∼ s−α

(cyan squares) of GS , both fitted as a power law with exponents µ ≈ 2.147 (orange
dashed line) and α ≈ 1.612 (red dash-dot line).

⟨k⟩ ≈ 7.88. The empirical distribution is plotted as a blue line with circle markers,
while the power-law fit as a dashed orange line. GS can be considered a typical small-
world network [92], featuring, in fact, a small-world coefficient σ ≈ 1.35 [235], with
a relatively low characteristic path length (5.68) and high clustering coefficient (0.15).

Finally, the sample features a community structure [236]—i.e., nodes are arranged
in tightly connected groups that are weakly linked between each other. Using the Lou-
vain algorithm [237] we find 31 communities with more than ten users, with an average
size of 150 users. In Fig. 5.2(B), we plot the community size distribution P (s) (cyan
line with squared markers), where the power-law fit (exponent α ≈ 1.61) is indicated
as a red dash-dot line.

5.2.3 The pace of discovery

To quantify the exploration rate of new artists for the various users in the data set,
we measure the Heaps’ law exponent from the sequence Si of artists listened by each
user i in the sample, i.e., each node i of the social network GS . As we have seen in
the previous chapters, the Heaps’ law links the number D(t) of distinct elements that
are found in a sequence of t elements to a power-law behavior, namely D(t) ∼ tβ ,
where 0 ≤ β ≤ 1 is the Heaps’ exponent [15]. The Heaps’ law is also related to
the Zipf’s law [58, 81, 140], which states that the frequency f–rank R distribution of
the elements in a sequence S decays as f ∼ R−1/β for large ranks R [8, 57]. For a
comparison between Heaps’ and Zipf’s laws for this system see Sec. 5.4.6.

In our analysis, the Heaps’ exponent represents a natural proxy to measure the dis-
covery rate of each user, which we hypothesize directly related to the propensity to
search for new content during the discovery process. We extract the Heaps’ exponent
for each user by computing the slope in the log-log scale of the function D(t) counting
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Figure 5.3: The pace of discovery of new music by users of the Last.fm data set.
(A) Number D(t) of distinct artists in the listening history of four random users in the
data set as a function of the length t of the sequence (continuous lines). The Heaps’
laws are also plotted (dashed lines), with their extracted exponents displayed in the
legend. (B) Heaps’ exponent distribution P (β) for all the users in the data set. We
also show the average Heaps’ exponent β̄ ≈ 0.64 (black line), and the global Heaps’
exponent β̃ ≈ 0.64 measured on the global sequence S including all listening records
in the whole data set (red dotted line).

the number of different tokens present in the sequence up to length t. In particular,
if the sequence has length T , it is calculated as β = log(D(T ))/ log(T ). On aver-
age, for a power law behavior, this method gives a good approximation of the overall
slope. Fig. 5.3(A) displays examples of Heaps’ laws in four different users, highlight-
ing how the Heaps’ exponent is estimated from the listening sequences. Moreover, in
Fig. 5.3(B), we observe how the Heaps’ exponents β are heterogeneously distributed
in the population. Some users are in fact more open to consume new music (higher β),
while some others are more inclined to exploit already known tunes (lower β). We also
note that a large fraction of the population features a discovery rate around the average
β̄ ≈ 0.64. Interestingly, this is the same value of the Heaps’ exponent β̃ ≈ 0.64 found
by measuring the Heaps’ exponent on the whole global sequence S, i.e., the single
sequence obtained by merging, in temporal order, the records of all the users.

Notice that there are other methods to extract the Heaps’ exponent. The problem
arises when the power-law assumption is not completely verified, for example when
the slope of the power law change over time. In this case, one might be interested
in the slope of the tail specifically. Alternatively, given the points (t, D(t)), one can
approximate D(t) by fitting the best parameters of a function axβ1 or (1 + x/a)β2 .
This way, though, there might be cases in which the fitted exponents β1 or β2 are
higher than 1, which is not theoretically possible for the Heaps’ law, since D(t) ≤ t

is hardly constrained to be less than the linear function in time. The distributions of
the Heaps’ exponents according to these three different methods is shown in Fig. 5.4.
As it can be seen, the number of cases for which β1 or β2 > 1 is significant in the
two alternative methods. Since this problem does not arises with the method we have
proposed, considering also that we are interested in the overall pace of discovery, we
use the simpler approximation β = logD(t)/ log t.
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Figure 5.4: Different estimation methods for the Heaps’ exponents. Comparison
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different approximation methods. In particular, we extract β = logD(t)/ log t, while
β1 and β2 are found by fitting the functions axβ1 and (1 + x/a)β2 , respectively.

5.2.4 Semantic correlations

Another interesting observable to explore is the semantic correlations between the oc-
currences of songs from the same artist in the listening histories. It is indeed intriguing
to quantify the extent to which the appearances of an artist in a chronologically ordered
sequence of listening records are clustered, and therefore correlated. In simpler terms,
we aim to determine whether listening to a particular artist increases the likelihood of
listening to them again in the near future. To estimate these correlations, we compute,
for each user i and each artist a listened by i, a modified Shannon entropy Sa

i (f) in-
troduced in Ref. [8], where f denotes the number of streams of artist a in the user’s
sequence Si. This entropy measures the extent of clustering among the events associ-
ated to the given semantic group, i.e., listening to songs of the same artist, with a larger
cluster denoting stronger correlations among their occurrences.

In particular, let us define the number fa
i of occurrences, or frequency, of artist a

in the sequence Si (whose length is Ti) of user i. We identify the sub-sequence Sa
i of

Si starting at the first occurrence of a, and we divide Sa
i in fa

i parts of equal length.
Computing the frequency fa

i (x) of a in each xth interval, we obtain the normalized
Shannon entropy of artist a in Si as

Sa
i (f

a
i ) = − 1

log fa
i

fa
i∑

x=1

f̃a
i (x) log f̃

a
i (x), (5.1)

where f̃a
i (x) = fa

i (x)/f
a
i . When the occurrences are equally distributed in the fa

i

intervals, Sa
i (f

a
i ) hits its maximal value 1, whilst the entropy is at its minimum value

Sa
i (f

a
i ) = 0 when all the events are found in a single interval.

In Fig. 5.5 we plot the average entropy S(f) as a function of the frequency f , where
the average is made over all artists a and over all users i with frequency fa

i = f in Si.
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Figure 5.5: Semantic correlations in the empirical sequences of exploration of
users in the Last.fm data set. Average normalized Shannon entropy S(f) in the se-
quences of listened artists as a function of the artist frequency f (black line), compared
to the average entropy S̃(f) measured on the reshuffled sequences (green line). The
weights for each frequency f (cyan line) are also shown, which are used to compute
the weighted Shannon entropy difference ⟨∆S⟩ ≈ 0.394.

More precisely, we define the average Shannon entropy at a certain frequency f as

S(f) = ⟨Sa
i (f

a
i )⟩i,a|fa

i =f . (5.2)

To test the statistical significance of this measure, we compare Sa
i (f

a
i ) with the ran-

domized counterpart S̃a
i (f

a
i ), i.e., the normalized Shannon entropy related to artist a

listened by the user i computed after reshuffling the sequence Si. Therefore, we also
plot the average normalized Shannon entropy S̃(f) computed on the reshuffled se-
quence. The empirical data clearly shows a lower entropy (higher clustering) of the
same-artist streaming events when compared to the reshuffled case.

To quantify the difference with the randomized sequence, we weight each fre-
quency f with the global popularity wf , namely the number of times we find an artist
with frequency f in the different user sequences. Mathematically, we define wf as the
number of times |{i, a|fa

i = f}| an artist a appears in a sequence Si with frequency f .
The distribution of these weights is plotted in Fig. 5.5 as a blue line. Thus, we compute
the weighted Shannon entropy difference ⟨∆S⟩, defined as

⟨∆S⟩ =

∑
f wf

(
S̃(f)− S(f)

)
∑

f wf
. (5.3)

Therefore, higher values of ⟨∆S⟩ are related to the presence of non-trivial semantic
correlations in the process. In particular, in our data set, we obtain ⟨∆S⟩ ≈ 0.394.

Overall, the presence of significant semantic correlations implies that users tend to
listen to music semantically close to the recent plays. Still, they also experience new
content from time to time, according to the Heaps’ law. To take into account the balance
between semantic correlations and pace of discovery in the exploration process, both
the weighted Shannon entropy difference ⟨∆S⟩ and the Heaps’ exponent distribution
P (β) will be used in Sec. 5.3 to fit the simulations of the model to the data set.
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Figure 5.6: The influence of the social network on the pace of discovery in the data
set. (A) Assortativity of the Heaps’ exponents: the average exponent β̂ measured over
the neighbors of a user with exponent β is plotted as a function of β. Results from the
original social network GS (blue) are compared to those from the randomized network
(orange), obtained using a configuration model. (B) Dynamical overlap od of each
user with its neighbors as a function of the Heaps’ exponent β of the user. Both the
original (blue) and the randomized social network (orange) are shown. In the inset, the
intra- (blue) and inter-community (orange) dynamical overlap distribution od(C1, C2)
are compared, where in the former C1 = C2, and in the latter C1 ̸= C2.

5.2.5 The influence of the social network

We now shift the attention from the individual to the collective level. In particular,
we focus on the relationship between the position of users in the social network and
their respective exploration strategies. As we have qualitatively shown in Fig. 5.2(A),
users tend to interact with people featuring a similar discovery rate and musical tastes.
We quantitatively explore this assortativity in Fig. 5.6(A), where we observe a posi-
tive correlation between the Heaps’ exponent βi of a user i and the average exponent
β̂i = ⟨βj⟩j∼i of its neighbors, featuring a Pearson correlation coefficient r ≈ 0.31

(p < 0.0001). To test its significance, we measure the same correlation on a network
obtained by randomly rewiring the edges of GS , obtaining in this case r ≈ −0.01 (p <

0.05). This evidence is a clear sign of homophily based on the discovery rate βi. In
other words, explorers (exploiters), i.e., people with higher (lower) exponent β tend to
form clusters with other explorers (exploiters).

The influence of the social network can also be measured by looking at the dynam-
ical overlap od(i, j) of a pair of users i and j, i.e., the fraction of common artists they
listen to. This is calculated as

od(i, j) = ṽi · ṽj , (5.4)

where · is the scalar product and ṽi is the vector of the normalized frequency distribu-
tion of artists listened by user i. If we average the dynamical overlap of a node i with
its neighbors, that is

od(i) = ⟨od(i, j)⟩j∼i, (5.5)
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we can then compare it against its discovery rate βi, as shown in Fig. 5.6(B). We
find that the average dynamical overlap is much higher than the one calculated on the
rewired network. This evidence represents another signature of homophily, i.e., friends
share similar tastes. Moreover, we notice that od(i) has a small negative correlation
with the discovery rate βi of the corresponding user (Pearson’s r ≈ −0.11 against
r ≈ −0.06 in the rewired network). This result reveals that explorers tend to interact
slightly more with people sharing different musical tastes, thus enlarging the set of
artists and genres they are exposed to. On the contrary, exploiters preferably surround
themselves with people sharing similar tastes, limiting their chances to explore new
content.

Moving away from the local scale, we test if the self-organization of users based on
their tastes holds at the community level too. Therefore, for each pair of communities
C1, C2 in the social network we compute the inter-community dynamical overlap as
the average overlap of all possible pairs of individuals between C1 and C2, that is

od(C1, C2) = ⟨od(i, j)⟩i∈C1,j∈C2,i̸=j . (5.6)

When C1 = C2 = C, we obtain the intra-community overlap, defined as

od(C) = ⟨od(i, j)⟩i,j∈C,i ̸=j . (5.7)

In the inset of Fig. 5.6(B) we compare the inter- and intra-community overlap dis-
tributions, considering only communities with at least ten users. We show that the
average intra-community overlap (0.074) is significantly larger than the average inter-
community one (0.039). In other words, users tend to create contacts within a commu-
nity of people sharing similar musical tastes.

5.3 ExploNet: a model of collective exploration

In Sec. 5.2 we have analyzed different properties regarding the exploration of the space
of artists in Last.fm. In particular, we have found three main results: i) users feature
different propensities to explore new content, showing a heterogeneous distribution of
discovery rate β; ii) individuals tend to interact and cluster with others that share a
similar propensity to explore new content, highlighted by the positive assortativity of
the Heaps’ exponent β; iii) social connections are mainly established between groups
of people sharing similar tastes, as proved by the higher dynamical overlap between
friends and within communities. In this section, we develop an agent-based model
(ABM) of content exploration and social interactions that reproduces these results.
Before defining the model, which we refer to as ExploNet, let us measure the semantic
structure of the content space to be explored from the empirical data, as we show in the
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following paragraph.

5.3.1 Topology of the content space

The temporally-ordered sequences in our data set, containing the complete listening
history of each user, have allowed us to characterize the discovery process of different
people on Last.fm. Let us now use the same data to extract a semantic structure of the
content space. Because of the scarcity of other meaningful musical features attached
to the records in the data set, we quantify the similarity between artists from sequences
of listening events. In doing so, we are hypothesizing the existence of an underlying
semantic structure of the musical space that users navigate to consume content [29], as
we have also shown in Chapter 3.

To this end, we construct a bootstrap-like statistics for the number of times, Nab,
a user listens to artist a and b sequentially (irrespectively of the order of a and b). In
particular, we start from the reduced sequence S̃i of each user i, i.e., the temporally-
ordered sequence of artists listened by i without consecutive repetitions (multiple con-
secutive streams of one artist reduce to a single event). We then measure the number
of times, Na→b, users listen to artist b after listening to a, with a ̸= b. Since we aim at
an undirected network of proximity, we define Nab = Na→b + Nb→a. Notice that in
this step we filter out all artists with an overall number of appearances in the reduced
sequences less than a threshold f̄ to remove noise.

In order to have a statistically relevant measure of proximity, we repeat these steps
Q = 100 times after shuffling all reduced sequences S̃i, counting for each reshuffle q

the number Nq
ab of realization of the pair a → b or b → a. Therefore, we compute the

expectation Nab = ⟨Nq
ab⟩q and the standard deviation σab = std(Nq

ab) of the count
Nab, under the assumption that there are no semantic relations in the sequences of
streams. We hence define the proximity of two artists via the z-score zab = (Nab −
Nab)/σab. With this procedure, whose steps are illustrated in Fig. 5.7(A), we create
a similarity network, drawing a link between two artists a and b whenever the related
z-score zab is higher than a threshold z̄.

Choosing z̄ = 1 and f̄ = 100 we obtain an undirected, weighted network GC with
266 694 nodes and 17 765 819 edges, where we set the weight wab of a link to be
wab = min(zab, 100), directly related to the closeness of the two artists. A snapshot
of such space of contents is shown in Fig. 5.7(B), where a snowball sample of the
neighborhood of the artist Pink Floyd is displayed. In Fig. 5.7(C-D), we also show that
both the z-score distribution and the degree distribution of the network encoding the
space of content are stable with respect to the choice of different values of z̄ and f̄ .

In summary, the procedure defined above transforms the universe of items in the
data set—the artist IDs—into a weighted undirected network GC where we can measure
distances between nodes. This representation allows us to look at the sequence of
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Figure 5.7: From streams of songs to the creation of the content space. (A) Illus-
tration of the method. First, for each user i’s sequence Si we compress all consecutive
appearances of an artist, say a, into a single occurrence of a, forming, in this way, the
reduced sequence S̃i. Then, we count the number Nab = Na→b + Nb→a of pairs of
consecutive artists a and b in both orders in S̃i. We repeat the procedure Q = 100
times after reshuffling S̃i, calculating Nq

ab for each reshuffle q. We thus evaluate the
z-score zab = (Nab − N̄ab)/σab, where N̄ab and σab are respectively the average and
standard deviation of all Nq

ab, for each pair of artists a and b. Artists with overall fre-
quency less than f̄ are disregarded, while we draw a link between two artists a and b
if zab > z̄. (B) Snowball-sampled snapshot of the neighborhood of Pink Floyd in the
space of artists. Node sizes are proportional to their degree, while their color depends
on the community of belonging. The color of the edges denotes their weight according
to the z-scores, the bluer, the larger. (C) Comparison of the original z-score distribution
(gray) with those obtained using different thresholds on the artist frequencies f̄ . (D)
Degree distribution of the artists’ network for different values of the threshold z̄. The
inset shows the number of connected components of the network as a function of the
threshold z̄.

listening records as the sequence of exploration steps of a network of artists. Moreover,
knowing the semantic distance between artists, we can measure the propensity of users
to explore items falling outside their comfort zones, as well as their willingness to
accept recommendations (from others) not strictly meeting their current musical tastes.
This mechanism will be a crucial ingredient of the model introduced below.

5.3.2 Model definition

To better understand the interplay between individual exploration and social interac-
tions, let us develop an agent-based model (ABM), which we name “ExploNet", ca-
pable of reproducing the empirical properties found in the Last.fm data set. We build
upon the individual exploration-exploitation dynamics introduced in the Urn Model

with Semantic Triggering (UMST) and analyzed in Sec. 2.2.5, drawing on concepts
developed in Chapter 3 for the exploration of a content space and in Chapter 4 for the
expansion of such space through social interactions.

In the UMST, the dynamics of an individual, or, from now onwards, an agent, is

143



modeled as random extractions of colored balls from an urn U to form a sequence of
events S [8]. The urn U represents the space of possibilities, i.e., the set of possible
choices the agent can make in the future. This space includes the so-called actual

space, i.e., the subset of items already extracted by the agent and stored in a sequence S.
In addition to the actual space, the urn contains the so-called adjacent possible space,
which consists of all those colors that are one step away from the actual space [9, 10,
13]. In the original UMST, the concept of proximity between colors is modeled through
the definition of semantic relations between groups [8]. The idea is that the agent can
realize only a subset of all the possibilities at any given time, preferentially extracting
balls semantically related to the most recent ones. In particular, at every extraction,
balls in U whose color is semantically related to the last drawn color keep their unitary
weight. In contrast, all other balls get—temporarily—a weight η ≤ 1 (with η = 1 we
recover the classic urn model with triggering). Then, the agent draws a random ball
with a probability proportional to these weights. The selected ball is put back in the
urn with ρ additional copies of it (reinforcement step). Finally, if this ball has never
appeared in S, ν + 1 brand-new balls are added to the urn (triggering step).

For the construction of the ExploNet model, we extend the UMST to account for
the exploration of a shared conceptual space and peers’ influence, taking inspiration
from the edge reinforced random walk with triggering introduced in Chapter 3 for the
former and from the interacting urns discussed in Chapter 4 for the latter. In particular,
we allow N agents to independently explore a shared network of items GC growing
a personal space of possibilities, and also to interact with each other by exchanging
information via a social network of contacts GS . Notice that the space of contents GC

to be explored can be, in general, a directed and weighted network, where link weights
represent the strength of the semantic relation between pairs of items. Depending on
the context, these items could be ideas, molecules, genomes, technological products,
artists, etc. In the following analysis, we use the proximity network between artists we
have created in Sec. 5.3.1. Regarding instead the social network GS , this is a directed
and weighted graph too, whose links i → j, of weight wij , may generally change over
time. The weight of these links indicate the propensity of a node i to follow and copy
the tastes of a friend j. To compare the model to the empirical data set analyzed in the
previous sections, we consider the same N = 4836 agents as in the crawled Last.fm

data set, using their social relationships for GS . Since we do not have information on
how strong the relationships between users are, we assume to have unitary weights
wij = 1 for each link i → j in the social network, zero otherwise. In Sec. 5.4.4, we
will instead consider an initial complete graph, letting the agents evolve the weights of
their links according to the interactions they have.

In this ABM representation, each agent i gradually increases his space of possibil-
ities, that is, the set of all possible items that the agent can explore at any given time.
We indicate this space as Gi

C . The expansion of Gi
C happens in two dimensions. On
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the one hand, Gi
C contains the set of nodes that have been discovered by i, that is the

actual space, as well as the subset of items in GC that are one step away from elements
in i’s actual space, i.e., the adjacent possible in the content space. On the other hand,
Gi
C can be expanded through interactions with other agents, thus including an adjacent

possible in the social space.
Finally, notice that we work in the system intrinsic time t, i.e., each listening event

by any user increases the global time t to t+1. In particular, as summarized in Fig. 5.8,
each time step is composed of two processes. An agent i, active at time t, i) indepen-
dently explores its space of possibilities Gi

C , and, ii) interacts with one of its neighbors
in GS to query for recommendations. The choice of the active agent i at time t can
be done in different ways. In the following analysis, we opt for the same order found
in temporally-ordered sequences of the empirical data set. Before explaining the two
mentioned step in detail, let us go over how we initialize the space of possibilities of
each user.

Initialization

At the beginning of the simulation, each agent i is placed on a node xi(t = 0) of the
conceptual space Gi

C , so that the exploration of such space starts from these points. The
problem of the initialization is related to whether to choose more widely distributed ini-
tial nodes, or, on the other extreme, the same node for every agent. It turns out that this
choice has little impact on the outcome of the simulations, only delaying or reducing
some effects due to interactions with peers initially too distant or too close. Since in
this work we have considered the same agents as in the Last.fm data set crawled, we
choose to initialize the agent’s position with the first artist that the corresponding user
has listened to in the empirical data.

This solution becomes natural when introducing an initial warm-up phase, in which
the first steps of the model are not randomly chosen according to the rules of the model,
but are instead the same steps made by the corresponding user in the empirical data.
The impact of the length of the warm-up phase is shown in Sec. 5.4.4.

Finally, let us notice that another viable option for the initialization could be to
choose the most frequent artists in the corresponding empirical listening history. In a
way, this is similar to consider an initial warm-up phase, in which the initial space of
possibilities contains a portion of the content explored by the corresponding user in the
empirical data.

Exploration step

The exploration step of the ABM can be considered an adaptation of the UMST to
the exploration of a universal space of content GC , which guides the expansion of the
adjacent possible. Without loss of generality, let us suppose that agent i is active at
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Figure 5.8: Illustration of the ExploNet model. (A) Exploration step. Agent i
explores an item, represented by a colored node, at each time step. The node seen at
time t is the cyan one, as highlighted in the sequence Si(t) (top left). The space of
possibilities Gi

C(t) of agent i at time t is represented as a weighted network (bottom
left), where nodes that belong to the adjacent possible have a black continuous edge,
while those connected through a gray dashed edge are not yet reachable to i. The
bigger the node, the more it has been reinforced and the more likely it is to visit again.
Here, we have highlighted the position of agent i on the cyan node. With probabilities
depending on the weight of the nodes and on the semantic relation represented by the
links, agent i moves to another color at time t + 1. Notice that the outgoing links
from the current position (cyan) are bigger, indicating a higher chance to move to these
semantically related nodes. In this illustration, i chooses to move to the green node.
Hence, its color is stored in Si(t + 1) (top right), i moves to the corresponding node
in Gi

C and its weight is reinforced (bottom right). (B) Interaction step. The agents are
connected to each other through a social network GS(t) (top). We have represented
the current position of each agent in their space of possibilities with a colored node
underneath. After the exploration step, agent i randomly selects one of his friends to
interact with, for example j, and their link is activated (red link). Therefore, agent j
proposes its current pink node to i (middle). Depending on the distance of this node to
the most reinforced nodes of i, the suggestion is accepted or refused. Notice how the
addition of the pink node changes the space of possibilities Gi

C(t + 1) of i for its next
exploration step (bottom left). If the item is too far from i’s tastes, the interaction does
not lead to any change in Gi

C(t+ 1) (bottom right).

time t, and let Gi
C(t) be i’s space of possibilities. We assume that Gi

C(t) is a weighted
network growing in time, where the weight wi

a(t) of an item a in Gi
C(t) depends on

the past history of i. Let us suppose that the current position of i on Gi
C(t) is xi(t). In

the time step t → t+ 1, i randomly moves to another node of his space of possibilities
Gi
C(t), with probability depending directly on the weights wi

a(t) of all artists a in Gi
C(t)

(movement step). Similarly to the UMST, we increase the probability to move to nodes
semantically close to the last visited one. Therefore, we introduce a jump parameter
η ≤ 1 controlling the probability to move to neighbors of xi(t) versus jumping to other
nodes. In particular, 2(ν + 1) nodes a are randomly sampled from the neighbors of
xi(t) in Gi

C(t). Among these, we also allow xi(t) to be chosen again, recalling that a
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user can consecutively listen to the songs of the same artist. Moreover, in order for the
social recommendations to take effect, we further choose 2(ν + 1) nodes surrounding
(and including) the last node accepted via social interaction, if any recommendation
has been accepted in the last interaction of i. Then, for the choice of the next node, on
the one hand these sampled nodes keep their original weight wi

a(t); on the other hand
all other nodes are considered with a reduced weight ηwi

a(t). Notice that for η = 1 this
process is equivalent to the UMT discussed in Sec. 2.2.4, since the agent can move to
any node of his space of possibilities according only to their weight. On the contrary,
for η = 0 this corresponds to a standard random walk with node reinforcement on the
content space, i.e., there are no jumps to distant nodes.

After the choice of the next node x = xi(t + 1) is done, the item x is saved in the
sequence Si(t+1) of events of i. Moreover, the weight of x in Gi

C(t+1) is reinforced
by ρ > 0, i.e., its weight becomes wi

x(t + 1) = wi
x(t) + ρ (reinforcement step).

Additionally, if it is the first time that i visits x, namely x has never appeared in Si(t),
then i expands its adjacent possible space by adding ν+1 new items semantically close
to x into Gi

C(t+1) (triggering step). In particular, ν +1 new nodes randomly selected
from the neighbors a of x in GC are chosen with probability depending on the semantic
relation wxa between them. If the number of new neighbors—not already present in
Gi
C(t)—is less than ν + 1, the search extends to nodes at a distance of two from x.

The mechanisms of reinforcement and triggering, which depend respectively on
the parameters ρ and ν, account for the balance between listening again to artists al-
ready known by the agent (exploitation) and the expansion of the space of possibilities
including new artists never heard by the user but semantically close (exploration). In
particular, the ratio between ρ and ν sets the relative weight of exploitation and explo-
ration. Moreover, the value of the jump parameter η influences how easily the agent
can move to more distant items of its space of possibilities. Furthermore, as we will
show later, the presence of social interactions represent a key ingredient to reproduce
the assortativity of the exploration rates and the clustering of individuals with similar
tastes.

Interaction step

After the exploration step, agent i randomly selects another agent among its neighbors
in GS with a probability distribution given by the weights wij of the links i → j. Let us
suppose that agent j is chosen. To mimic the dynamics of an online listening platform
like Last.fm, i has the possibility to see what j is listening at the moment, i.e., what is
the last token y = xj(t) explored by j, and, if interested, include it among his future
possibilities in Gi

C(t + 1). We estimate i’s potential interest in y with the semantic
distance of y from i’s core, i.e., the set of the first c items ranked by frequency found in
the sequence Si(t), which we refer to as ci. Agent i actually adds y into Gi

C(t+1) with
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probability P = P (y|Si(t), ci, ε), where ε is a noise factor that mimics i’s imperfect
capability of estimating the distance of items from the core ci. In order to calculate the
value of P , we first define the distance of a node from the core as

dci(a) = min
b∈ci

{dist(a, b)} , (5.8)

where dist(a, b) is the standard network distance between two nodes of the space GC .
Then, we compute the following density function:

p(d|Si(t), ci) =
|{a ∈ Si(t) : dci(a) = d}|

|Si(t)|
. (5.9)

Therefore, we can calculate P as

P = P (y|Si(t), ci, ε) = max

0, min

1,

dci
(y)∑

d=0

p(d|Si(t), ci)± ε

 . (5.10)

No significant differences in the analysed observables have been detected changing the
size c of the core and the error ε. In the simulations shown in Sec. 5.4, we have fixed
c = 10 and ε = 0.1.

Finally, the ExploNet model also allows the social network to co-evolve with the
interactions. In this dynamical version, the weight of the link i → j is increased
(decreased) by +∆ (−∆) if i accepts (rejects) the recommendation. In other words,
we have wij(t+1) = wij(t)+∆ with probability P , or wij(t+1) = wij(t)−∆ with
probability (1 − P ), with minimum weight equal to ∆. In the following, for the sake
of simplicity, we focus on the case in which GS does not change over time (∆ = 0).
We refer to Sec. 5.4.4 for the results on an evolving GS , starting from a fully connected
network.

5.4 Results

In Sec. 5.2 we have investigated a data set containing the empirical sequences of lis-
tening activity of a group of users from the online plaform Last.fm, highlighting the
heterogeneity in the pace of discovery of new content and the impact of social connec-
tions on the exploration process. We have hence built an ABM where multiple agents
explore a shared network of artists, building their own space of possibilities, and in-
teract with their friends. Therefore, in this section, we numerically investigate if this
ABM is able to reproduce the key findings above. Firstly, in Sec. 5.4.1, we develop
a procedure to select the parameters that reproduce a distribution of exploration rates
similar to the empirical data. Secondly, we run multiple simulations to see if the ABM
reproduces the findings of the data in Sec. 5.4.2. In order to understand the specific
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role of social interactions, we also simulate the ABM without the interaction step in
Sec. 5.4.3, while we let the social network dynamically evolve with the process in
Sec. 5.4.4. Finally, we investigate finite-time effects on the simulations in Sec. 5.4.5
and the relationship with Zipf’s exponents in Sec. 5.4.6.

5.4.1 Selection of parameters

Let us start our analysis of the ABM by developing a method to select a reference set of
parameters that reproduce the main characteristics present in the data. Let us remember
that, although in principle different parameters can be chosen for each agent, we con-
sider the same set of parameters for all agents. We numerically simulate the ExploNet
model using the fixed social network from Last.fm and the space of tokens given by the
artists listened in the data set. Since the simulations are heavily computing-demanding,
we explore the parameter space limiting ourselves to the first 10% of the original se-
quences in the data set, that is about 33.5 million total steps. In Sec. 5.4.5 we show
how the reference set of parameters found in the limited sequence matches the empir-
ical findings even when we let the simulation run for as many steps as the empirical
number of streams. We explore the space of parameters varying the set of parameters
(η, ρ, ν). In particular, we try the following values for the jump parameter η: 0.001,
0.01, 0.05, 0.1, 0.2, 0.3, . . . , 1; we also let the reinforcement parameter ρ span from
1 to 4 at steps of 0.1. Then, based on the results given in Ref. [8] on the limits of the
Heaps’ exponents in the UMST (see also Sec. 2.2.5), we consider integer values of
the triggering parameter ν ranging from 0 to max(20, 1.5ρ/η). No significant differ-
ences have been observed changing the values of the core size c or the error ε in the
probability to accept a recommendation. We hence fix them to c = 10 and ε = 0.1.

To select the reference set of parameters, we focus on just two basic footprints
of discovery processes, namely the Heaps’ exponent distribution, responsible for the
balance between exploitation and exploration strategies, and the normalized Shannon
Entropy of the distributions of artists in the listening sequences, which captures the
presence of semantic correlations during music consumption. Since these two mea-
sures are not comparable, we first find the reference value of η by considering, for
each simulated set of parameters x, the normalized Shannon entropy weighted differ-
ence ⟨∆S(x)⟩ =

∑
f wf (S̃

(x)(f)− S(x)(f))/
∑

f wf between the normalized Shan-
non entropy S(x)(f) calculated on the sequences generated by the simulation and the
one S̃(x)(f) for the reshuffled ones (see Sec. 5.2.4 for the analysis of this measure on
the data set). We group the various values of ⟨∆S(x)⟩ by the parameter η of the cor-
responding simulations, that is 0.001, 0.01 0.05, 0.1, and > 0.1 (i.e., 0.2, 0.3, . . . , 1),
plotted in Fig. 5.9. We notice that only the groups of η = 0.01 and η = 0.001 range
in an interval that includes the value of ⟨∆S⟩ calculated in the empiric data set in their
first 10%. Therefore, we restrict our search only to simulations with η ≤ 0.01.
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Figure 5.9: Average Shannon entropy difference across simulations of the Ex-
ploNet model. Violin plot showing the distributions of the Shannon Entropy weighted
difference ⟨∆S⟩ with the randomized sequences, grouping the various simulations to-
gether according to their value of η. Notice that only the distributions relative to
η = 0.001 and η = 0.01 overlap the value of ⟨∆S⟩ = 0.334 of the empirical se-
quences stopped at 10%, i.e., the same length of the simulations.

ρ ν η KL ⟨∆S⟩
1. 2.7 9 0.01 0.213398 0.239159
2. 3.0 10 0.01 0.216276 0.232123
3. 3.1 10 0.01 0.216367 0.283424
4. 2.0 7 0.01 0.218269 0.207541
5. 2.1 7 0.01 0.220671 0.243933
6. 2.9 10 0.01 0.222252 0.239109

Table 5.1: Best parameters according to the comparison between model and data
set. The parameters ρ, ν and η related to the six best sets of parameters are shown
together with their respective Kullback-Leibler divergence KL from the empirical data
and normalized Shannon entropy weighted difference ⟨∆S⟩.

Then, for each simulated set of parameters x, we calculate how much the Heaps’
exponent distribution differs from the real one. To do this, we compute the Kullback-
Leibler divergence KL(x) between the empirical P (β) (refer to Sec. 5.2.3) and the
synthetic one. Finally, we select the reference set of parameters x, among those with
η ≤ 0.01, such that KL(x) is minimum.

The first six sets of parameters given by this process are shown in Table 5.1, to-
gether with the values of the normalized Shannon entropy weighted difference ⟨∆S(x)⟩
and the Kullback-Leibler divergence KL(x). We do not find particular differences be-
tween multiple simulations with the same quotient ρ/ν and same η. Notice indeed that
all reference simulations have a quotient value between 3 and 3.5.

5.4.2 Analysis of the model

In this section we analyze simulations of the ABM developed in Sec. 5.3 with dif-
ferent values of the parameters, testing to which extent our model can reproduce the
empirical observables investigated in Sec. 5.2. For computational reasons, we analyze
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Figure 5.10: Heaps’ exponent distribution in ABM simulations with different sets
of parameters. (A) Heaps’ exponent distribution P (β) in the reference simulation
(ρ = 2.7, ν = 9, η = 0.01) (blue dashed line), compared to two cases with a lower
(ρ = 2.5, orange line) and higher (ρ = 3.0, green line) value of ρ. (B) Heaps’ exponent
distribution P (β) in the reference simulation (orange dashed line), compared to two
cases with a lower (η = 0.001, blue line) and higher (η = 0.05, green line) value of η.

simulations with about 33.5 million time steps instead of the total 335 million present
in the data set (see Sec. 5.4.5 for a comparison with the latter case). This way, we can
inspect the influence of each parameter on the model outcomes, in relation to the empir-
ical data. As discussed in Sec. 5.4.1, we select a reference set of parameters that feature
the presence of semantic correlations similar to the empirical data and that minimize
the Kullback-Leibler divergence between the empirical and synthetic Heaps’ exponent
distributions P (β) in the population. Notice that we are not putting any constraints on
the other empirical observables, such as assortativity or taste overlaps. The reference
combination of parameters is given by ρ = 2.7, ν = 9, and η = 0.01.

First, we check in Fig. 5.10(A,B) how the distribution P (β) of Heaps’ exponents
changes, varying respectively only the reinforcement parameter ρ and the jump param-
eter η. We find that the average Heaps’ exponent decreases when increasing the value
of ρ or decreasing the value of η. In fact, the higher the reinforcement strength ρ is,
the more likely it is to exploit already discovered items. Similarly, with lower val-
ues of η, the agent has higher chances to move only within semantically close tokens,
thus usually ignoring more distant possibilities, even with large values of the triggering
parameter ν. These plots also show that the ExploNet model can reproduce hetero-
geneous Heaps’ exponents in the population, even if all agents share the same set of
parameters and evolutionary rules. This evidence represents our first finding: collective
exploration allows agents in our ABM to have heterogeneous propensities to discover
new content.

Next, in Fig. 5.11, we show that with low values of η, the synthetic individual
sequences of explored artists feature strong semantic correlations, as in the empirical
case. In particular, the lower the parameter η, the lower the Shannon entropy S(f)

is, which implies that the various occurrences of the same artist are more closer to
each other than randomly dispersed across the sequence. Hence, the evolution rule that
promotes the extraction of items semantically related to the last extracted one correctly
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Figure 5.11: Presence of semantic correlations in the sequences of ABM simula-
tions. Shannon entropy S(f) of the occurrences of the artists in the user sequences
in the same simulations showed in Fig. 5.10(B) as a function of the frequency of the
artist f , compared to the Shannon entropy calculated on the reshuffled sequences of the
reference case (green line). We also show the weights for each frequency f (red line)
used to compute the difference ⟨∆S⟩.
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Figure 5.12: Impact of the social network in the ABM. (A) Scatter plot between
the Heaps’ exponents β and the average neighbors’ Heaps’ exponent β̂, as found in the
reference simulation (blue line) and when randomly rewiring the social network links
using a configuration model (orange line). We observed the presence of assortativity
between users through their exploration rates. (B) Scatter plot between the average
dynamical overlap od of the neighbors’ and the node’s Heaps’ exponent β, as found
in the reference simulation (blue line) and when randomly rewiring the social network
links using a configuration model (orange line). In the inset, we show the average
dynamical overlap distribution between users in the same community (blue box) and
between different communities (orange box).

generates highly correlated sequences of tokens, featuring low values of the Shannon
entropy S(f).

Moreover, in Fig. 5.12(A), we see that the model reproduces the assortative ar-
rangement of explorers and exploiters in the network (Pearson correlation coefficient
r ≈ 0.21 and no correlation in the rewired case for the reference simulation). Tak-
ing into consideration the innovation rate β is heterogeneously distributed in the syn-
thetic population and all agents follow the same evolutionary rules, this evidence is
our second significant result: the social network’s topology influences how individ-
ual exploration propensities are distributed. In other words, users feature an increased
(decreased) exploration propensity when surrounded by agents with higher (lower) dis-
covery rates.

Furthermore, in Fig. 5.12(B) we show that the ABM correctly reproduces the higher
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dynamical overlap between the agent and his friends with respect to other random in-
dividuals. We also find a small negative correlation between the average dynamical
overlap od of an agent with his neighbors and his discovery rate β (Pearson correlation
coefficient r ≈ −0.12, no correlation in the rewired case). Moreover, as shown in the
inset of Fig. 5.12(B), the intra-community overlaps (⟨od(C)⟩C ≈ 0.057) are also larger
than the inter-communities ones (⟨od(C1, C2)⟩C1 ̸=C2

≈ 0.004). This last evidence is a
third tangible effect of a shift from an individual to a collective exploration mechanism.
The interaction dynamics between agents can increase their possibility to expand their
space of possibilities by receiving suggestions from their neighbors, thus increasing the
similarity of listened tokens between friends. Therefore, the different propensity for an
agent to be an explorer (exploiter) depends not only on the neighbors featuring a simi-
lar pace of discovery, but also on the opportunity to be exposed to contents and tokens
diverse (similar) from those already experienced. The model indeed pushes agents that
explore different regions of the content space to easily accept suggestions outside their
comfort zone, giving them a higher acceptance probability P (x,Si, ci, ε). In doing so,
users’ space of possibilities enlarges, and their pace of discovery increases, while the
opposite happens to nodes that explore a limited portion of the contents space, leading
to echo chambers. In Sec. 5.4.3, we further show that, when we switch off the interac-
tion step of the model, the assortativity and the high overlaps within communities drop
significantly.

5.4.3 Simulations with no interaction

Interaction is one of the important ingredients of the model we have proposed. The
social neighborhood of a user indeed influences their exploration propensities, shaping
their space of possibilities. In order to assess how much the topology has an influence
in the phenomena we have observed, we have run some simulations with no interac-
tion, and compared the results with the simulations with interaction with the same set
of parameters. We find that the distribution of the Heaps’ exponents is similar, with
more heterogeneous results with lower values of η, as expected from the analytic re-
sults in [8], due to the presence of stochastic variations in the individual exploration
process. However, as shown in Fig. 5.13(A), simulations with interaction have a higher
Spearman’s rank correlation r between the Heaps’ exponents and the average one of
their friends with respect to the simulations without interaction, also with a more sig-
nificant p-value. This confirms that the exploration rates are affected by the social
contacts in an assortative way when interaction is active: more explorative users tend
to interact with peers more prone to explore new content.

Finally, unlike the simulations with interactions (see inset of Fig. 5.12(B)), in sim-
ulations without interactions the communities found with the Louvain algorithm on the
social network have no dynamical influence on the process. Considering in fact the
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Figure 5.13: Comparison of the key features in simulations without interaction.
(A) Comparison between Spearman’s rank correlation r and related p-value between
the Heaps’ exponents β and the respective average β̂ of the neighbor Heaps’ exponents,
without (blue and green) and with interaction (orange and red). Here the same sets
of parameters have been used for both with and without interaction simulations. (B)
Comparison between the average dynamical overlap distribution between users in the
same community (blue) and between different communities (orange), calculated on the
simulation with the reference set of parameters (cfr. inset of Fig. 5.12(B)), here without
interaction.

simulation without interactions with the same reference set of parameters, the internal
overlap of listening records with users of the same community is practically indistin-
guishable to the inter-community overlap, that is the overlap between users of different
communities (see Fig. 5.13(B)). Moreover, they are much lower than the case with
interaction.

5.4.4 Dynamical network simulations

So far we have considered a static social network GS taken from the Last.fm data set,
in which all weights are fixed to 1 throughout the simulation. In this section we study
the case of dynamically evolving social networks, starting from an all-to-all network
GS with initial unitary weight w0 = 1 to the edge between each pair of users. During
the interaction step, the currently active agent i selects one of his neighbors j with
probability p(j) = wij/

∑
k∼i wik, and then sees what j has last listened to. In the

dynamical version of the ABM, each time i interacts with j we let the respective edge
weight evolve according to the law wij(t + 1) = wij(t) ±∆, with ∆ = 0.1 and with
a sign + (-) when the interaction between i and j at time t is positive (negative), i.e.,
if the node suggested by j is added (or not) to i’s space of possibilities Gi

C . During
the simulation, we clip each edge weight such that 0.1 ≤ wij(t) ≤ 10 at every time
step t. To better characterize the agents in the simulation, we let the first 1% of each
individual’s events to be equal to their original sequence as a warm-up.

We show in Fig. 5.14 the out-degree distribution P (k) and the community size
distribution P (s) obtained letting the social network evolve from an initial all-to-all
configuration for about 33.5 millions evolution steps, namely 10% of the total listening
records in the data set. These distributions feature a scale-free behavior as in the em-
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Figure 5.14: Social network characteristics in simulations with dynamics on
the social edges. The out-degree distribution P (k) ∼ k−µ (blue circles) and the
community-size distribution P (s) ∼ s−α (cyan squares) as found when letting the
social network co-evolve during the model simulation, using the reference set of pa-
rameters. We also show the power-law fitting of the two, giving µ ≈ 1.06 (orange line)
and α ≈ 1.00 (red line).
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Figure 5.15: Analysis of the pace of discovery of the model changing warm-up.
(A) Comparison of the Heaps’ exponent distribution P (β) in the empirical case (blue)
and in the simulations with the reference set of parameters, using a collective warm-up
for 1% of the events with (orange) and without (green) social dynamics on the edges
and with an individual warm-up for 1% of the events with edge dynamics (red). (B)
The same but limited to an individual warm-up of 10% of the events (orange) and 1%
(green).

pirical case, and confirm that the ABM also accounts for the emergence of a complex,
real-world-like topology based on the interactions between users alone.

Our results are robust with respect to the change of warm-up strategy and duration,
as well as to the presence, or not, of a dynamical social network. We use either in-
dividual or collective warm-up for a certain fraction of events, meaning that the first
fraction of, respectively, the agent’s or the population events in the simulations cor-
responds exactly to the one in the empirical listening sequences. In Fig. 5.15(A) we
show that the distribution of Heaps’ exponents P (β) found in the empirical case is still
well reproduced if we change the kind of warm-up. Additionally, in Fig. 5.15(B) we
highlight that the model reproduces the original distribution also varying the warm-up
duration, keeping the other parameters fixed to the reference set of parameters.

Moreover, the results are robust with respect to the change of warm-up also when
inspecting the degree distribution P (k) and community size distribution P (s), as can
be seen in Fig. 5.16. Notably, in the simulations where we switch on the dynamics on
the social edges, the model is able to reproduce both the degree and community size
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Figure 5.16: Social network analysis of the model changing warm-up. (A) Com-
parison of the out-degree distribution P (k) in the empirical social network (cyan) with
the one resulting from ABM simulations with dynamics on the social edges using an
individual warm-up for 1% of the events (blue) and for the 10% of them (orange), using
the reference set of parameters ρ = 2.7, ν = 9, η = 0.01. (B) The same but focusing
on the community-size distribution P (s).

distribution, as well as the P (β) distribution, highlighting the goodness of the chosen
modeling framework to reproduce the empirical findings. Note that, in the simulations
with the edge dynamics turned on, for the analysis of the social network in terms of
degree and communities, we consider an unweighted directed social network in which
we draw an edge between nodes i and j if the edge’s weight wij > w̄, where w̄ is the
largest weight cut-off at which we have a single weakly connected component in the
resulting social network.

Remarkably, the model with the dynamics on the social edges reproduces the em-
pirical dynamical overlap od and the assortativity between the Heaps’ exponent β of
an agent and the average exponent β̂ of his neighbors. Furthermore, the assortativity
between the focus node’s β and the dynamical overlap od with his neighbors is robust
with respect to the change of the warm-up kind and duration as well as to the presence
of a dynamics on the social network’s edge weights. As we show in Fig. 5.17(A-
B) and Table 5.2, the individual warm-up with edge dynamics turned on results in a
higher positive assortativity of β and β̂ as well as in a stronger negative correlation
between β and od, in line with the empirical findings. This is because the individual
warm-up allows to better characterize the tastes of a single node, by imposing a larger
fraction of its first exploration events. Moreover, we see in Fig. 5.17(C) that the edge
dynamics, as expected, drives the system to communities with a higher internal overlap
with respect to the non dynamical case. Notably, if we let the nodes to be character-
ized enough (individual warm-up with the first 10% of the node’s events fixed to the
original sequence, see Fig. 5.17(A)), the intra- and inter-communities overlap value
approaches the empirical one (intra-community ⟨od(C)⟩C ≈ 0.07 inter-community
⟨od(C1, C2)⟩C1 ̸=C2 ≈ 0.025).
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Figure 5.17: Analysis of the influence of the social network on the pace of discovery
changing warm-up in the model. (A) The assortativity analysis between the Heaps’
exponent β of a node and the average one β̂ of its neighbors. Different warm-up and
edge dynamics strategies are reported in the legend. The Reference case corresponds to
the reference parameters set ρ = 2.7, ν = 9, η = 0.01. The slope of the correlations
found are reported in Table 5.2. (B) The same analysis but focusing on the assortativity
of β with the dynamical overlap with neighbors od. (C) Comparison of the distribution
P (od(Ci, Cj)) of the average dynamical overlap found within a community (blue box,
intra) and between (orange box, inter) two distinct communities for different simula-
tions settings (see x axis labels for details).

Warmup Kind Fraction Edge dynamics r(β̂) r(od)

No, reference case n.a 0 No 0.05 -0.018
No, reshuffled case n.a 0 No -0.05 0.003

Yes Collective 1% No 0.12 -0.048
Yes Collective 10% No 0.18 -0.095
Yes Collective 1% Yes 0.12 -0.02
Yes Individual 1% Yes 0.22 -0.19
Yes Individual 10% Yes 0.24 -0.36

Table 5.2: The correlation coefficients r(β̂) of the assortativity between β and β̂ and
r(od) between β and od for different warm-up strategies (Kind column), fraction of the
warm-up, and with or without social edge dynamics.

5.4.5 Comparison with longer simulations

In the previous sections we have analyzed the simulations run on 10% of the total
number of records in the data set. This choice has been done to better explore the
space of parameters through a refined grid and find the reference set of parameters,
as shown in Sec. 5.4.1. In this section we analyze the simulation run for a number of
steps equal to the empirical number of streams. We hence consider the reference set
of parameters (ρ = 2.7, ν = 9, η = 0.01) found in the sequence limited to the first
10%, with the fixed parameters c = 10 and ε = 0.1, and we compare the long and
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Figure 5.18: Comparison of the key features in the whole sequences and in the first
10%. (A) Heaps’ exponent distribution of the simulation with reference set of parame-
ters, with approximations of the exponents done after 10% (orange) and 100% (blue) of
the sequences. (B) Heaps’ exponent distribution of the simulation with optimal set of
parameters constrained to 0.1 < η < 1 at 10% (dashed green) and 100% (dashed red),
compared to the empirical data at 10% (blue line) and 100% (orange line). (C) Shan-
non entropy distribution as a function of the frequency of the artists in the individual
sequences of the simulation with reference parameters at 10% (red) and 100% (blue),
compared to the empirical data at 10% (gray) and 100% (black line) and to the reshuf-
fled sequences (green). (D) Distribution of dynamical overlaps between individuals in
the same community (blue for 100%, green for 10%) or in different ones (orange for
100%, red for 10%) for the simulation with reference parameters at 100% and at 10%.

limited simulations. In Fig. 5.18(A) we show that the Heaps’ exponent distributions of
the long simulation is lower than the limited run. This is probably due to the very low
value of η chosen in this simulation and the way we extract the Heaps’ exponent. In
fact, it seems that, in the simulations with very low values of η, the power-law exponent
of the Heaps’ laws for each individual decreases after a first part of high exploration.
Moreover, the chosen approximation delays the capture of this decrease. This aspect
is left for future improvements. As a matter of fact, the Heaps’ distribution is more
or less stable when comparing the whole sequence and only its 10% when considering
either the empirical data set or simulations with η ≈ 1, as shown in Fig. 5.18(B). In any
case, even if quantitatively different, the heterogeneity of the individuals exploration
rate shown in these simulations is still present also in longer runs.

In Fig. 5.18(C) we complete the analysis by comparing the semantic correlations
of the simulation with the selected set of parameters and the empirical data set. We
find a small decrease in the value of ∆S from the whole to the 10% of the sequences,
both in the empirical data and in the simulations. Finally, there are not any significant
differences in the effect of social interactions on the long or short run, as shown in
Fig. 5.18(D) by checking the dynamical overlaps inside and outside the communities.
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Figure 5.19: Comparison between Heaps’ and Zipf’s exponents. (A) Comparison
of the Zipf’s exponents distribution on the sequences in the data set (blue) and of the
reference simulation (orange). (B) Scatter plot between the Heaps’ exponents and the
anti-reciprocal of the Zipf’s exponents for the sequences in the data set (blue) and of
the reference simulation (orange), with the respective linear regression displayed in
legend.

5.4.6 Heaps’ and Zipf’s exponent correspondence

In this chapter we have discussed at plenty about the Heaps’ law and its significance.
However, also the Zipf’s law has been of great importance for the analysis of explo-
ration and innovation processes [8, 26, 57]. Decreasingly ordering the occurrence fre-
quencies f of an element in the sequence of events, the Zipf’s law can be expressed as
f(R) ∼ R−α, where R indicates the rank and α is called the Zipf’s exponent. These
two laws have been observed in various empirical systems, producing different values
of Heaps’ exponent β and Zipf’s exponent α [8, 28, 165, 238]. Under mild assump-
tions they are asymptotically equivalent [58, 81, 140], being one the anti-reciprocal of
the other. For these reasons, all of the models that have been recently proposed keep
both of these laws into considerations [25].

We find that the Zipf’s law is also present in the ABM we have proposed. In
particular, in Fig. 5.19(A) we show the distributions of the Zipf’s exponent for the
sequences in the empirical data set (blue) and the reference simulation found in our
analysis (orange). Moreover, in Fig. 5.19(B) we compare the Heaps’ exponents β

and the anti-reciprocal −1/α of the Zipf’s exponents. As analytically found for the
UMST [8], in the simulation we observe an almost linear correlation between the two
exponents (Pearson r = 0.94, p < 0.001), although in the empirical case it is less
strong (Pearson r = 0.90, p < 0.001), with a linear regression −1/α ≈ 1.20β − 0.08

in the simulation against −1/α ≈ 2.09β − 0.46 in the data.

5.5 Summary and conclusions

In this chapter we have presented an empirical study of online music consumption, and
we have proposed a data-driven model of collective exploration, the “ExploNet" model,
highlighting the central role of the social environment in shaping how we explore mu-
sic and discover new content. Based on the concept that the space of possibilities is
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expanded through the adjacent possible in both the content and social space, our model
can indeed reproduce the considerable heterogeneity of individuals’ exploration rates
empirically observed and the relation between users’ rate of discovery and their posi-
tion in the social network. As it turns out, the opportunity to be connected to other
individuals with a high propensity to explore new content makes an individual more
likely to have a higher pace of discovery, on average. Moreover, since all the agents
in the ExploNet follow the same evolutionary rules, the observed heterogeneity of the
individual exploration rates can be explained by stochastic fluctuations (opportunities)
and social influence (environment). It also gives insights into the emergence of com-
munities composed of agents with similar tastes, as shown by the simulations in which
the social network is shaped dynamically through random interactions.

Furthermore, our ExploNet model reproduces the semantic correlations found in
the empirical sequences of music consumption by adequately modulating the individ-
ual propensity to select artists similar to their recent history or to move randomly across
the whole space of possibilities. The possibility to move between similar artists is natu-
rally accounted for in the underlying network of artists that can be explored, containing
all possible artists observed in the empirical data. Such network has been obtained by
analyzing the appearance of each pair of artists in the empirical sequences of listening
records. As we have indeed shown in Chapter 3, the structure of the content space,
and therefore the specific topology of the artist network, co-evolves along with the ex-
ploration process. We have hence used such structure as an underlying space that can
be individually discovered and accessed by each agent in the model. In other words,
we have embedded the expansion of the adjacent possible on an underlying universal
network, containing the actual pathways that let the explorer move from one artist to
another. Interestingly, even though the universal network of artists is fixed, the indi-
vidual space of possibilities grows dynamically along with the exploration process of
each individual, which defines the individual musical taste by reinforcing the explored
parts of such space.

Finally, in our analysis of the ExploNet, we have assumed that all social links of
a user in the social network of Last.fm have the same probability of being activated.
However, in real life, one social link can be different from another. Nevertheless, in the
absence of knowledge about the actual weights in the empirically studied network, our
choice represents, in our view, a good educated guess. In this direction, in Sec. 5.4.4 we
have developed and analyzed a dynamical version of the ExploNet, where the weight of
the social links changes along the process. The simulation starts from an initial all-to-
all social network, where every user can interact with any other one. Then, during the
exploration process, the agents randomly interact with their friends, with probability
proportional to their social link. Such weight is thus updated based on the outcome of
the interaction. This interaction dynamics naturally creates a social network between
the agents with topological properties similar to the empirical one. In particular, our
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dynamical social network has a similar degree distribution and community structure,
and features the same assortative mixing of users with similar musical taste and pace
of discovery. Therefore, in this model social interactions drive the social structure de-
velopment in an assortative way. However, we cannot conclude what is the precise
causal mechanism at play. In fact, in our model users become friends with those users
similar to themselves, and at the same time friends tend to induce each other to be-
come more similar. One possible explanation is hence peer influence, where friends
suggest music to their friends and therefore they actively influence their dynamics.
Nevertheless, we cannot exclude that the same result could be obtained through simple
homophily [178, 233, 239], i.e., considering that friends have a similar background
and characteristics, making similar choices even if there is no direct influence. Further-
more, the same empirical findings could be partially explained by other confounding
exogenous factors, such as the presence of a recommender system or other events. A
more thorough analysis of the causal effects in this system, distinguishing between
these various mechanisms, is left to future works with richer and more comprehen-
sive empirical data, including precise individual behavioral data, users’ demographics,
geographic location, and other attributes [239].
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Chapter 6

Conclusions and further work

6.1 Summary of contributions

In this thesis we have integrated empirical data analysis, various modelling techniques,
and an interdisciplinary perspective to get a comprehensive understanding of innova-
tion. In particular, we have emphasized the complex mechanisms that drive the growth
of the space of possibilities, as well as the importance of social interactions, collabora-
tion, and collective exploration in generating novel ideas and advancing the boundaries
of what is possible.

We have started our exploratory journey into the dynamics of innovation in Chap-
ter 2, where we have reviewed various mathematical models of innovation, mainly
based on extractions from urns or random walks on networks. Such models manage to
reproduce the Heaps’ law, revealing two key mechanisms that influence the pace of dis-
covery in these systems. On the one hand, the reinforcement of the elements explored
makes these elements more likely to be explored again in the future. On the other
hand, the appearance of novelties expands the space of potential discoveries that can
be made in the future. Combining these two mechanisms, the discovery process can
be seen as the exploration of a space of possibilities, made of the elements previously
explored in the system, which are being reinforced during the process, and of all those
elements that are one step away from the explored part of the space, or, in one expres-
sion, the adjacent possibilities. By properly balancing these two mechanisms, these
models manage to reproduce various paces of discovery, from those in which the ex-
ploitation of past discoveries is prevalent to those in which new items are continuously
explored.

Our first original contribution, in Chapter 3, has been the introduction of a more
general definition of novelty. As a matter of fact, novelties can also arise from the
combination or association of multiple elements for the first time. Therefore, we have
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defined the “n-th order Heaps’ law", which quantifies the rate of discovery of novelties
of order n in a sequence, i.e., combinations of n elements that appear for the first time
consecutively. Thanks to the analysis of empirical sequences from different contexts,
we have found that the higher-order Heaps’ laws can distinguish sequences which show
the same pace of discovery of single elements, as measured by the standard (1st-order)
Heaps law. This finding extends our understanding of how novelties emerge and how
the space of possibilities grows, and emphasizes the importance of considering higher-
order novelties in exploration processes. In fact, we have found that the existing models
of innovation cannot effectively reproduce higher-order Heaps’ laws, revealing that
there are more complex mechanisms underlying the process of innovation.

We have hence proposed a novel modelling approach, based on the exploration of a
complex network that co-evolves along with the exploration process. We can indeed see
a 1st-order or a 2nd-order novelty as the first exploration of a node or a link, respectively,
of a network, which represents the space of possibilities of the system. Therefore, the
1st-order and 2nd-order Heaps’ laws can be exploited to characterize the pace of discov-
ery of new nodes and links in this growing network. We then make use of this broader
definition of novelty to adapt the two mechanisms of reinforcement and of expansion
of adjacent possibilities present in the previous models. In particular, we propose a
new model, called the “Edge-Reinforced Random Walk with Triggering" (ERRWT), in
which we represent the explorer as a random walk over a growing network. On the one
hand, at each time step the ERRWT moves from one node to a neighboring one, re-
inforcing the traversed edge and strengthening the association between the two nodes.
On the other hand, whenever a node or a link is explored for the first time, new nodes
or links between existing nodes are added to the network. Balancing these two mech-
anisms, the ERRWT is able to simulate the emergence of novelties at various orders,
capturing the dynamic nature of innovation and the expansion of the adjacent possible
in the content space. Moreover, thanks to this new approach, we have highlighted the
importance of the networked structure of the space of possibilities, which grows while
it is being explored.

Subsequently, in Chapter 4 we have unveiled the significant role played by social
interactions and human connections in shaping an individual’s propensity to generate
novel ideas. Here, we have expanded the concept of the adjacent possible to incorporate
a social dimension, which was missing in the previous modelling frameworks. We have
proposed to model a group of individuals as an ensemble of interacting urns, coupled
through the links of a social network. In particular, each urn, which is subject to the
usual mechanisms of reinforcement and triggering of adjacent possibilities, is expanded
with the set of opportunities coming from their social contacts. Depending on the
structural properties of the network, the collaborative dynamics in our model, named
the “UrNet" model, not only increases the average pace of discovery, but also creates
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different behaviors in each agent. Simulating the model on different social structures,
from small synthetic graphs to bigger real-world networks, we have indeed found that
the structural—not just local—properties of the nodes can strongly affect their ability to
make novelties. By integrating social interactions into the context of discovery models,
we have demonstrated the crucial role of collaboration and social network properties
in driving innovation and advancing the boundaries of what is possible. Moreover, we
have revealed and characterized the impact of the expansion of the adjacent possible in
the social space on the way a group of individuals can foster progress.

Finally, we have analyzed empirical sequences of music exploration in Chapter 5
to investigate the impact of peers on the individual pace of discovery of new music.
Specifically, we have analysed a unique data set that contains information on both the
whole listening histories and the social connections of a large and connected sample
of users from the online music platform Last.fm. Our findings have shown that users
with a high pace of discovery—measured through the Heaps’ law—are more likely to
be connected with other peers with a strong inclination for exploration. These results
indicate how the pace of discovery of our friends, along with their musical taste, influ-
ences our own individual propensity to discover new music. We have thus leveraged the
modelling framework created in the previous chapters to develop a data-driven agent-
based model capable of reproducing the main empirical results and explain the effects
of social interactions on individual music discovery. Our model, named the “ExploNet"

model, combines the exploration of a growing space of possibilities—inspired by the
ERRWT—with the expansion in the social space through social interactions—inspired
by the UrNet. In this modelling scheme, each agent explores a universal network of
artists, growing their personal space of possibilities through the mechanisms of rein-
forcement and triggering of the adjacent possible, while also interacting with other
agents through means of a social network. By incorporating the expansion of the ad-
jacent possible in both the content and social space, the ExploNet model captures the
dynamics observed in the empirical data, explaining the observed heterogeneity in the
discovery rates both in terms of stochastic fluctuations and social influence.

6.2 Further work

We hope that the findings of this thesis can contribute to shed light on the underlying
rules controlling the emergence of novelties in innovation processes. Unveiling the hid-
den mechanisms behind the emergence of new ideas, understanding how novelties can
trigger further ones, and explaining how they can effectively diffuse in a population is,
indeed, not only interesting from a scientific point of view, but can also have a tangible
societal and economic impact. In this thesis, we have hence proposed a new modelling
framework capable to explain and reproduce the dynamics observed in various empir-
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ical discovery processes, based on the exploration of a space of possibilities. Previous
works have identified two important mechanisms driving these processes, namely the
reinforcement of the elements explored in such space, and the expansion of the space
through the triggering of new adjacent possibilities. Building on this, in our work, we
have highlighted the role played by network structures. We have indeed found that the
space of possibilities explored can be represented as a growing network, where new
nodes and links are added while being explored. Moreover, we have highlighted the
impact of social interactions, through the links of a social network, in influencing the
emergence of novelties, adding a social dimension to the concept of adjacent possi-
ble. The findings presented in this thesis hence constitute a starting point to answer the
following two questions:

1. How do groups of humans explore the seemingly infinite space of possibilities,
leading to innovation and diffusion of new ideas, technologies, or cultural art-
works?

2. How do group interactions influence our choices in these exploration processes?

Building on the findings of this thesis, a first natural step is to use a similar net-
worked approach to characterize the evolution of innovation processes in other con-
texts, from science [3] and technology [240] to economics [241] and biology [242]. In
order to have a richer representation of such processes, it could be worth investigating
even more complex structures, accounting for combinations of more than two elements.
To have a practical example, a patent can be considered as the combination of multiple
technologies. Similarly, a scientific paper or a protein can be seen as the combination
of various keywords or amino acids, respectively. Therefore, we can imagine the space
of possibilities as a growing weighted hypergraph [199], where a new combination
adds a new hyperedge, i.e., an edge made of more than two nodes. In this higher-order
framework, a discovery would be represented by the first exploration of either a node or
a group of already explored nodes (recombination). This higher-order structure would
be especially important in all those cases in which the innovation process cannot be
reduced to a sequence of single elements. Interestingly, in the analysis of this higher-
order process one can integrate all the topological data analysis (TDA) tools [243, 244]
if we consider simplicial complexes instead of hypergraphs, which can be obtained
considering all sub-hyperedges of each hyperedge [245].

A similar higher-order direction can be used to answer the second question, i.e.,
how group interactions influence the innovation process. As a matter of fact, even if
networks provide a powerful abstraction for complex systems representing the under-
lying set of pairwise interactions, much of the structure within social systems involves
interactions that take place among more than two nodes at once. For example, a scien-
tific paper is often the result of the collaborative effort of more than one or two authors.
In this case, their resulting work cannot be solely attributed to any single author, nor
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to the mere sum of their individual knowledge. Therefore, an interesting step forward
from the findings of this thesis could be to study the effect of higher-order social inter-
actions on innovation and exploration processes. Here, the social interactions could be
modelled through a social hypernetwork, i.e., networks with hyperlinks constituting in-
teractions between two or more individuals. Thanks to the UrNet and ExploNet models
developed in this thesis, we believe that the adaptation to a higher-order social structure
could shed light on the formation of optimal team structures and efficient collaboration
networks. This line of research has the potential to contribute to the development of
more comprehensive models of innovation dynamics, offering practical implications
for team management and promoting innovation within complex organizations.
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[155] M. Andjelković, B. Tadić, et al. “Topology of innovation spaces in the knowl-
edge networks emerging through questions-and-answers”. In: PLoS One 11.5
(2016).

176
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