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ABSTRACT
Data visualisation software provides the ability to create highly customizable choro-
pleth maps. This presents an abundance of design choices. The colour legend, one
particular aspect of choropleth map design, has the potential to effectively con-
vey data points’ absolute magnitudes (how large or small they are). Colour legends
present the mapping between a specific range of colours and a specific range of nu-
merical values. In this experiment, we demonstrate that manipulating this range af-
fects interpretations of the plotted values’ absolute magnitudes. Participants (N =
100) judged the urgency of addressing pollution levels as greater when the colour
legend’s upper bound was equal to the maximum plotted value, compared to when it
was significantly larger than themaximumplotted value. This provides insight into the
cognitive processing of plotted data in choropleth maps that are designed to promote
inferences about overall magnitude.

KEYWORDS
visualisation; cognition; colour; framing effect

1. Introduction

To make sense of statistics presented in newspaper articles or scientific reports, it
is often important to interpret their meaning in context. This may involve determining
whether the presented values represent large or small numbers. Data visualisations
are often used to convey statistics, so understanding how these tools may communi-
cate data points’ magnitudes is crucial.

Numerical values in choropleth maps are often encoded using the entire range of the
chosen colour palette, in order to aid discrimination and facilitate identification of
spatial patterns. Thus, the range of values in the accompanying colour legend typi-
cally consists of only those values which were observed. However, this is not the only
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application for a choropleth map. In certain cases, displaying values’ absolute mag-
nitudes may be considered more pertinent than displaying their relative magnitudes.
This would allow a viewer to gauge, on the whole, how large or small presented values
are, in context. To communicate this, the range of values in the accompanying colour
legendmay include values which were not observed but remain relevant nonetheless.
Designers may wish to sacrifice discrimination ability for an overt display of magni-
tude, in order to convey their intended message.

Indeed, choropleth maps displaying overall magnitudes have been used in practice.
Figure 1 depicts data concerning public support for a federal ban on abortion in the
U.S. The accompanying colour legend presents the entire range of possible values:
from 0% to 100% support. Since plotted values do not exceed 30%, their magnitudes
appear small, in context. In addition, whereas a typical colour scale would amplify dif-
ferences between regions, this design presents variability between states as low. This
lends credibility to the notion that, for this aspect of a divisive issue, public support
is consistently low across the U.S.

Figure 1.: A choropleth map displaying data from an analysis of state-level public sup-
port for a federal ban on abortion in the U.S (Fischer and Ali 2021). The colour legend
employs a diverging blue-red colour palette, with white in the centre, showing the full
range of possible values. The 30% point is marked with a dotted line and labelled to
indicate that no state exceeds this level of support. Reproduced with permission.
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The map may appear homogenous, but choropleth maps present opportunities for
conveying information beyond relative geographical differences, just as line charts
may show stagnant wages. By presenting a wider numerical context, the accompany-
ing legend imbues the map with meaning, illustrating low variability and small magni-
tudes. The simplicity of this message does not preclude its visualisation; as well as
illuminating complex patterns, data visualisations are also designed to improve reten-
tion and engagement (Bertini et al. 2020), and support cognition (Hegarty 2011).

This paper explores cognitive processing of overall magnitude in choropleth maps.
Through an empirical study, we demonstrate that colour legends, which depict the
mapping between colours and numerical values, can imply how large or small plot-
ted values’ absolute magnitudes are. Even when the mapping between colour and
numerical value remains the same, the range of the colour legend provides a crucial
source of context. The relationship between this range and the plotted data influences
viewers’ interpretations of magnitude.

2. Related Work

2.1. Choropleth Maps

Choropleth maps are thematic maps which employ colour to symbolise numerical
values, conveying quantitative data in a spatial manner. Choropleth mapping uses
datasets where each data point corresponds to a discrete area, typically defined by
administrative boundaries (e.g., national or local government regions). Ratios, propor-
tions and averages are plotted to enable appropriate comparisons between regions
(Dent et al. 2009).

Dent et al. (2009) discuss several considerations for choropleth map design, includ-
ing data pre-processing, spatial resolution, and appropriate accompanying text. How-
ever, data classification is a particularly prominent theme in guidance on choropleth
mapping. To better convey patterns in the spatial distribution of data, values can be
classified into discrete classes (Kraak and Ormeling 2013). Decisions around clas-
sification involve trade-offs between clarity of patterns in the map and clarity of the
legend. Natural Breaks methods (e.g. Jenks optimisation; (Jenks and Caspall 1971))
identify class boundaries according to the distribution of data, ensuring clusters of
similar values appear homogenous. The Equal Frequency method ensures uniform
prevalence of each class within the map, whereas the Equal Interval method sim-
ply employs the same numerical range for each class (Dent et al. 2009). Unclassed
choropleth maps (Tobler 2010), which do not employ discrete groups at all, are an al-
ternative option. Legends are not divided into classes, meaning each unique value is
represented distinctly. This may increase estimation error, yet avoids the impression
that similar values either side of a class boundary are substantially different (Kraak
and Ormeling 2013).

Regarding the minimum and maximum values used in the labels for each class, two
options are available. Continuous class ranges include non-observed values to cre-
ate a continuous sequence of numbers. This provides consistency when re-using a
legend for multiple maps. However, this may increase the chance that viewers make
imprecise estimations of specific values, compared to non-continuous class ranges
which include only observed values (Dent et al. 2009). The use of open-ended cate-
gories at a legend’s extremes (Paul 1993) is an additional consideration, generating
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a similar generalisability-precision trade-off.

Dykes et al. (2010) explored several creative approaches tomap legend design, provid-
ing alternatives to conventional implementations. One such design, displaying statis-
tical information within a legend, has been implemented in several forms, for commu-
nicating distributions (Kumar 2004, Cromley and Ye 2006) and uncertainty (Retchless
andBrewer 2016) in choroplethmaps. Several studies have illustrated the influence of
legend design on cognitive processing for a range of maps. Proximity between icons
and corresponding text within a legend was found to be the most influential aspect
of spacing on visual search (Li and Qin 2014). For thematic maps showing several
geographical features, overall task performance was found to be similar across three
different legend arrangements (list legend, grouped legend, natural legend), but user
preferences depended on legends’ suitability for specific tasks (Gołębiowska 2015).
Consistent with left-hemisphere specialised language processing, legends presented
on the right of a map were processed faster than those presented on the left (Edler
et al. 2020). Eye-movement tracking has revealed that fixation on map legends de-
creases with repeated exposure, illustrating the role of legends for developing initial
cognitive representations (Hepburn et al. 2021). This body of research provides evi-
dence that legend design influences various aspects of map interpretation.

2.2. Communicating Absolute Magnitude Through Data Visualisation

Empirical studies in various scientific fields have explored how interpretations ofmag-
nitude are influenced by data visualisation design choices.

Recently, the practice of y-axis truncation has enjoyed attention in experiments at the
intersection of the disciplines of data visualisation and psychology. Y-axis truncation
refers to the practice of minimising the range of values that appear on the y-axis. This
typically involves starting the y-axis at a value greater than zero (Correll et al. 2020).
However, some experiments on y-axis truncation have employed axes that are roughly
symmetrical about the plotted data (Witt 2019). Truncation effects are therefore not
just associated with the exclusion of a zero value, but also the exclusion of values
above the observed data, which make differences appear smaller. Thus, more gen-
erally, truncation effects illustrate people’s treatment of axes as implicit scales for
making qualitative judgements about presented data.

Research on the effects of y-axis truncation has focused on how this practice can
alter people’s interpretations of the magnitude of the difference between plotted val-
ues. Demonstrating the effect of y-axis truncation with a large online sample, Pandey
et al. (2015) found that ratings of the magnitude of the difference between values
were greater when a truncated axis was used to display the difference between safe
drinking water levels in two towns. In both bar charts and line charts, increasing the
degree of truncation produces increasing estimations of the severity of the difference
between values (Correll et al. 2020). Encouraging careful attention to plotted data (by
ensuring that numerical values are read precisely) does not eliminate this effect (Cor-
rell et al. 2020). Warnings somewhat reduce, but do not eradicate, the difference be-
tween interpretations of truncated and non-truncated charts (Yang et al. 2021). Visual
indicators of truncation are also ineffective (Correll et al. 2020).

Witt (2019) demonstrated that using the widest possible y-axis range diminishes a
viewer’s sensitivity, which is the ability to distinguish between different degrees of sep-
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aration between values. On the other hand, using the smallest possible y-axis range
increases bias in interpretation (i.e., the extent to which judgements of themagnitude
of difference deviate from actual effect sizes). To maximise sensitivity and minimise
bias, and to ensure correspondence between the appearance of the difference and
the reality, Witt suggests using a range of 1-2 standard deviations for y-axis limits.

Witt’s (2019) recommendations are prescribed for disciplineswhich use standardised
effect sizes (e.g., Cohen’s d) in the reporting of data and statistics. Correll et al. (2020)
provide more general advice relevant to those in all disciplines: the appearance of
differences in a visualisation should be appropriate for the specific data. Therefore
the decision whether or not to truncate an axis depends on the real-world magnitude
of the difference, and ultimately designers should ensure they represent this faithfully.
Evidence suggests that viewers interpret the axis range as a representation of the
relevant numerical context within which plotted data should be assessed. When an
axis only just contains a pair of values, they will generally be considered to be highly
divergent.When an axis easily contains these values, theywill generally be considered
similar, because the difference between values will be dwarfed by the vastness of
the scale. Arbitrary rules will not absolve a chart designer’s responsibility to consider
what their visualisation implies (Correll et al. 2020).

As Yang et al. (2021) discuss, one explanation for these effects draws on Grice’s
co-operative principle (Grice 1975). This theory, originally concerning linguistic utter-
ances, would suggest that components of a chart, such as axes, will be considered
to communicate relevant information about plotted data. Thus, a viewer will derive a
designer’s intended message from the features of the visualisation. Changing one’s
interpretation ofmagnitude in accordancewith changes to axis range could therefore
be considered a coherent response.

Research on risk communication has also explored how visualisation design choices
affect interpretations of presented information. A set of experiments relevant to the
present investigation originated with empirical data which suggested that icon arrays
were more effective than text at promoting risk-averse behaviour (Stone et al. 1997).
Further research (Stone et al. 2003) suggested that this occurred because the data
visualisations only displayed the number of people affected by the negative outcome.
Therefore, unlike the text, the icon arrays made the numerator more salient than the
denominator (the total number of people in the sample). This was demonstrated em-
pirically in the same study, using bar charts: the difference between numerators (15
vs. 30) appeared much bigger when the larger numerator (30) was used for the up-
per axis limits, compared to when the denominator (5000) was used for the upper
axis limits. Risk reduction (the degree of difference between plotted values) was per-
ceived as smaller when bar charts were extended to incorporate the denominator.
Unlike studies on y-axis truncation (Pandey et al. 2015, Witt 2019, Correll et al. 2020,
Yang et al. 2021, Driessen et al. 2022), the lower axis limit was not manipulated, and
remained fixed at zero. This pattern of results has been replicated using icon arrays
(Garcia-Retamero and Galesic 2010) and pie charts (Hu et al. 2014), and a similar
effect has been reported for line charts (Taylor and Anderson 1986) suggesting this
phenomenon is driven by a common mechanism independent of chart type.

Stone et al.’s (2003) experiment demonstrated that extending the upper limit caused
participants to interpret the difference between values as smaller. Unfortunately, the
design of this experiment leaves uncertainty as to whether this extension affected
interpretations of the magnitude of the values themselves, because participants only
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compared risks between charts in the same condition, not across conditions. How-
ever, this issue was addressed by Okan et al. (2020), who found that icon arrays which
did not display the denominator increased perceived risk relative to those which did
(with larger increases at smaller probabilities). Including the denominator also re-
sulted in more accurate estimates of the underlying risk probabilities. This accords
with the finding that the apparent magnitude of risk decreases when the upper limit
is extended in a risk ladder visualisation (Sandman et al. 1994). This implies that in-
terpretations of magnitude are informed, in part, by the data point’s position within
the risk ladder’s limits.

2.3. Colour Legends

In data visualisations employing geometric encodings (e.g., position, extent), axes are
the dimensions along which data are plotted. In colourmap visualisations, a different
type of axis is present, which is not used to display data directly, but presents the
mapping between colours and numerical values, henceforth referred to as a ‘colour
legend’. Default settings in popular visualisation tools, such as ggplot2 (Wickham
2016) and Matplotlib (Hunter 2007) tend to employ colour legends which use the
minimum and maximum values in the data at their extremes. Thus, the potential for
values smaller than the minimum, or larger than the maximum, is not encoded by
these colour legends. This facilitates comparison between values, since using a wide
range of colours improves discrimination ability. Crucially, however, it does not facil-
itate magnitude judgements. Consider, for example, a heatmap showing profits for
each quarter over the course of five years. Using the darkest colour on the colour
legend to represent the highest profits could conceal the fact that profits in general
have been poor for the entirety of this period, because the colour legend is agnostic
towards real-world magnitude.

Research involving colour legends has often focused on assessing the appropriate-
ness of different colour scales and capturing colour discriminability through colour
difference models. Harrower and Brewer (2003) developed a tool for selecting suit-
able colour scales for particular forms of data: sequential scales for ordinal or numer-
ical data, qualitative scales for categorical data, and diverging scales for highlighting
midpoints. Using choropleth maps, Brychtova and Coltekin (2015) determined the
minimum colour distance required for reliably detecting differences between two re-
gions. Other work has identified specific features which make for an effective colour
scheme, from low-level properties such as uniform luminance (Dasgupta et al. 2020)
to high-level properties such as consistency with semantic colour associations (Lin
et al. 2013). Researchers have also modelled the impact of mark size on colour dis-
criminability (Stone et al. 2014) and demonstrated adaptation of colour difference
models to specific viewing conditions (Szafir et al. 2014).

Choropleth maps are one of several types of colourmap visualisation which map
colour to numerical data (see also, heatmaps and neuroimaging visualisations).
Schiewe (2019) illustrates that impressions of quantity are positively associated with
the proportion of a choropleth map occupied by darker colours. The size of geograph-
ical regions and the classification of values can both influence the extent to which a
map displays colours on the darker end of the chosen colour scale, which impacts
judgements of presented data. Whilst this study manipulated the appearance of plot-
ted data in maps, other research has held the appearance of plotted data constant

6



in order to study how the context surrounding a colour legend affects viewers’ in-
ferences. Schloss et al. (2019) observed that viewers’ spontaneous interpretations
of the relationship between colour and quantity can depend on which background
colour is used. Their experiment attempted to reconcile contrasting theories about
which aspects of a colour stimulus are associated with greater quantities (‘dark-is-
more’; ‘contrast-is-more’; ‘opaque-is-more’). They found that viewers associate darker
colours with greater quantities when there is no apparent variation in the colour
scale’s opacity. However, when the colour scale does appear to have varying degrees
of opacity, an ‘opaque-is-more’ association prevails. For example, black-white colour
scales appear to have low opacity against a blue background (so lighter greys are
more readily associated with smaller quantities), but high opacity against a black
background (so lighter greys are more readily associated with larger quantities).

Different interpretations of the same dataset can also arise throughmodified displays
of the same colour scale. Empirical research has compared colour legendswhich only
indicate uncertainty using colour features (e.g., increasing luminance and decreasing
saturation), to colour legends which also signal uncertainty through increasing reduc-
tion in the range of possible colours, termed Value-Suppressing Uncertainty Palettes
(VSUPs, Correll et al. (2018)). In Correll et al.’s study, participants played a ‘Battleship’
style game which involved reducing risk by balancing danger and uncertainty. Par-
ticipants were more likely to favour riskier but more certain options over uncertain
options when using VSUPs. Constraining the range of colours at higher uncertainty
levels may have reduced the impression that these data points could represent desir-
able low-danger magnitudes. The experiment we report below examines directly how
the range of values in a colour legend affects interpretations of magnitude.

3. Methodology

3.1. Outline

Thepresent experiment investigates the influence of colour legend rangeon the cogni-
tive processing of magnitude. Wemanipulated the colour legend’s upper bound, such
that it was equal to the maximum plotted value (truncated range) or it was equal to
double the maximum plotted value (extended range). We employ the term ‘truncated’
in a broad sense, referring to a scale that is constrained such that potentially relevant
values are omitted, not simply a scale that excludes a zero value. Using a lower bound
of zero reduced the number of differences between the two conditions, so that only
the upper bound was manipulated. This also meant that plotted values’ variability
appeared smaller, assisting participants in judging the overallmagnitude of these val-
ues. For each item, the colour palette, geographic regions, and the mapping between
colours and numerical values, were identical across conditions. Therefore, the only
difference between versions of a given item was the range of the colour legend: the
map itself remained unchanged.

Rather than asking participants to make abstract judgements about the size of ab-
stract values, we presented fictitious pollution data, and asked how urgently action
should be taken to address the pollution levels displayed in each data visualisation.
This captures participants’ assessments of magnitude through the type of judge-
ments which can drive behaviour. In addition to increased ecological validity, we also
anticipated that pollution data might be able to generate a balanced set of responses
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to the question of urgency. A variable evoking an extreme negative reactionmay have
elicited responses at ceiling and one too trivial may have elicited responses at floor.
We expected participants to recognize that a sufficient degree of pollution would re-
quire action, but also understand that low levels may require less urgent action. We
did not provide a specific definition of urgency for participants to use when making
their responses. Therefore, different participants’ responses may reflect different no-
tions of urgency. However, the within-participants design accounts for individual vari-
ation. Each participant’s ratings are compared against their own ratings for the alter-
native condition, allowing for meaningful comparison between conditions.

Pollution levels were displayed in choropleth maps, which use colour encoding to
display data aggregated at the level of geographic areas. Note thatwe do not consider
the designs of choropleth maps in this experiment to reflect best practice for plotting
pollution statistics. Rather, these designs were motivated by the desire to examine
the role of colour legends in the interpretation of magnitude. Previous research has
illustrated that the size of geographical regions can influence ensemble coding in
choroplethmaps (Schiewe 2019). However, we did not control for this aspect, instead
we prioritised ecological validity by usingmaps with real geographical regions. These
maps appeared identical across conditions in order to avoid this bias confounding
results.

To control for the possibility that participants used the colour legend’s numerical la-
bels, rather than the range of values displayed, as a reference for their magnitude
judgements, we omitted the colour legend’s numerical labels in half of trials. This
allowed us to test whether the presence of numerical labels affected the degree to
which magnitude judgements were influenced by the colour legend’s upper bound.

3.2. Pre-Registration

We predicted that urgency ratings would be higher for truncated legends, compared
to extended legends. In addition, we planned to compare whether any difference be-
tween these two conditions wasmoderated by the presence or absence of numerical
labels, but made no predictions about existence or direction of any main effect or
interaction. Participants completed Garcia-Retamero et al.’s (Garcia-Retamero et al.
2016) Subjective Graph Literacy scale, therefore we also planned to test whether any
observed effects (or lack of) could be explained by differences in data visualisation lit-
eracy. This five-itemscale is a quick, reliablemeasure that is correlatedwith scores on
Galesic and Garcia-Retamero’s (Galesic and Garcia-Retamero 2011) test-based mea-
sure of data visualisation literacy. The pre-registration, plus materials, experiment
script, data, analysis code, and Dockerfile are available at https://osf.io/qe9hf/. This
repository contains the requisite resources to generate a fully-reproducible version of
this paper.

3.3. Design

In each trial, we independentlymanipulated two aspects of the choroplethmap.When
the colour legend had a truncated range, its upper bound was equal to the maximum
value displayed in the map. When the colour legend had an extended range, its upper
bound was equal to double the maximum value (and the maximum value displayed
in the map appeared at the legend’s halfway point). Numerical labels on the colour
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legend were either present or absent. This resulted in four unique combinations of
conditions. We employed a Latin-squared design, ensuring that each participant was
exposed to each combination of conditions throughout the experiment, but only saw
one combination for each given map. There were a total of 54 trials (48 experimental
trials, six attention check trials). Example stimuli are shown in Figure 2.

Figure 2.: Example stimuli: six choroplethmaps showing fictitious pollution data. Four
colour legends are displayed below each map, but only one colour legend accompa-
nied the map in each trial. Colour legends with extended ranges have a maximum
value equal to double the maximum plotted value (top row: 400; bottom row: 1800).
Colour legends with truncated ranges have a maximum value equal to the maximum
plotted value in the map (top row: 200; bottom row: 900). During the experiment, all
six colour scales were used in conjunction with all maximum values.

3.4. Participants

We recruited participants using prolific.co. The experiment was advertised to users
with English language fluency, normal or corrected-to-normal vision, and no experi-
ence of colour deficiency, who had previously participated in more than 100 studies
on Prolific. Participants were paid £3.50. Ethical approval was granted by The Univer-
sity of Manchester’s Division of Neuroscience and Experimental Psychology Ethics
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Committee (Ref. 2022-11115-23778).

In our pre-registration, we planned to exclude participants who failed more than one
attention check question, in order to exclude those whowere not sufficiently engaged
in the task. However, when many more participants than expected failed more than
one attention check question, this criteria was deemed too stringent and we instead
awarded payment to all participants who returned data, regardless of their responses
to attention check questions. Consequently, due to practical constraints, we were un-
able to obtain a sample which met our originally-specified sample size (N = 160) and
our pre-registered inclusion criteria. Therefore, we terminated data collection once
the sample of those who satisfied the attention check criteria was balanced across
all four Latin-squaring lists (N = 100; 25 participants per list). We used this sample for
our main analysis. As a compromise for the reduction in experimental power, we also
demonstrate below that the pattern of effects is largely the same when analysing the
entire dataset (those who satisfied attention check criteria and those who did not; N
= 165). In the Discussion, we discuss a possible reason for the higher-than-expected
rate of incorrect responses to attention check questions. Demographic information
is shown in Table 1.

Table 1.: Demographic Information

Gender Age

Graph
Liter-
acy Education

Sample Male
(%)

Female
(%)

Prefer
not to

say
(%)

Mean SD Mean SD High
School

or
Above

(%)
N =
100

59.0 40.0 1.0 30.8 8.8 21.6 4.5 98.0

N =
165

53.9 45.5 0.6 31.8 10.1 21.8 4.5 98.8

3.5. Procedure

The experiment was programmed using PsychoPy (Peirce et al. 2019, version
2022.1.4) and hosted on pavlovia.org. A link to an interactive version of this experi-
ment is available in this project’s online repository: https://osf.io/qe9hf/. Participants
were instructed to use laptop or desktop computers, rather than another type of de-
vice and were told that the experiment was about using information to make deci-
sions. We did not calibrate or measure colour display on participants’ own screens,
but using awithin-participants design prevents this from influencing our results. Each
participant was exposed to both experimental conditions under the same display con-
ditions. Participants were informed that in each map, each region’s colour reflected
its pollution level, and that data on different types of pollution were shown throughout
the experiment, with pollution levels presented using standardised units.

In every experimental trial, the text above the map read ‘This map shows the levels of
a certain type of pollution, in four regions’. Participants were advised to read the ques-
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Figure 3.: An example of a single experiment trial, showing a choropleth map with a
truncated colour legend, plus a response marker on the visual analogue scale.

tion, which was presented below the map: ‘How urgently should pollution levels in
these regions be addressed?’ This question was used in all experimental trials, where
the left anchor on the visual analogue response scale was labelled ‘Not very urgently’
and the right anchor was labelled ‘Very urgently’. The instructions stated that higher
pollution levels need to be addressed more urgently than lower pollution levels. Par-
ticipants were permitted to move the response scale marker as many times as they
wished before continuing to the next trial. An example trial is shown in Figure 3.

Attention check items resembled normal trials except for the text displayed. Partic-
ipants were asked to move the marker to one of three locations: ‘to the middle of
the scale’, ‘all the way to the ’Not very urgently’ end of the scale’ or ‘all the way to
the ’Very urgently’ end of the scale’. In experimental trials, response scale granularity
was set to 0, which permitted participants to place the marker at any location along
the response scale. In attention check trials, response scale granularity was set to
0.5, so participants were only permitted to place the marker at one of three locations
specified in the question: the leftmost point, the centre of the scale, or the rightmost
point.

Following the final trial, participants were informed that both the data presented, and
the standardised units used, were fictitious. Finally, participants were presented with
a text box and the prompt ‘What strategies did you use during the study? Do you have
any comments about the study? (optional)’. Average completion time was 13.57 min-
utes (SD = 6.24 minutes) for those who satisfied the pre-registered attention check
criteria and 12.56 minutes (SD = 6.20 minutes) for the full sample.
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Table 2.: CIELab Values for Colour Legends’ Start and End Colours

Start Colour End Colour
Colour Scale Range L* a* b* L* a* b*
Reds Truncated 97.17 2.50 3.58 62.89 53.29 45.11
Reds Extended 97.17 2.50 3.58 19.69 41.49 24.73
Greys Truncated 100.00 0.01 -0.01 62.31 0.01 -0.01
Greys Extended 100.00 0.01 -0.01 0.00 0.00 0.00
Purples Truncated 98.74 0.69 -0.85 65.59 11.10 -22.97
Purples Extended 98.74 0.69 -0.85 18.09 49.37 -54.13
Blues Truncated 98.43 -0.59 -2.38 68.37 -10.35 -26.64
Blues Extended 98.43 -0.59 -2.38 20.93 11.95 -38.06
Greens Truncated 98.43 -2.87 2.76 72.70 -40.34 31.54
Greens Extended 98.43 -2.87 2.76 24.36 -30.10 19.31
Oranges Truncated 97.05 1.68 5.99 69.77 36.47 59.19
Oranges Extended 97.05 1.68 5.99 29.34 36.61 39.62

3.6. Materials

Materials were generated using Python (version 3.9.12). Matplotlib (version 3.5.1)
was used to generate colour legends and geoplot (version 0.5.1) was used for plotting
geospatial data.

Each visualisation contained a unique combination of four neighbouring Chinese
provinces (except the six attention check items, which employed six existing com-
binations used in the experimental items). China was chosen to reduce the potential
impact of prior knowledge, as Prolific’s participants tend to be located outside China.
However, the choice of country was not disclosed to participants and regions were
not labelled. The pollution data usedwere entirely fictitious, as were the ‘standardised
units’ used to present the data.

The maximum value in the plotted data ranged from 200 to 900 (in multiples of 100),
and the values for the other three provinces were between 10 and 30 units below
this maximum value. Six Matplotlib colour scales (‘Reds’, ‘Greys’, ‘Purples’, ‘Blues’,
‘Greens’, ‘Oranges’) were each used once per maximum value. These scales exhibited
monotonic and approximately linear variation in lightness (L*). Monochromatic se-
quential scales were used for simplicity, avoiding additional differences between con-
ditions, such as the relative amounts of different hues (multi-hue scales) ormidpoints’
positions (diverging scales). Table 2 shows the start and end colours in CIEL*a*b*
space, using CIE standard illuminant D65.

For each item, a ‘mappable’ object defined the mapping between numerical values
and colours for both truncated and extended colour legends. The lightest colour in
the scale was mapped to zero and the darkest colour to double the maximum value.
This range was employed in the extended colour legend. The truncated colour legend,
on the other hand, terminated at the maximum value in the data, so the range was
halved (but the mapping between numerical values and colours was retained). No
classification was employed in the legends, for maximum consistency across condi-
tions. Where numerical labels were present, an identical number of labels (between
six and ten) appeared on both versions of a colour legend. Tick marks were absent
from all colour legends.
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4. Analysis

4.1. Analysis Methods

Analysis was conducted in R (R Core Team 2022, version 4.2.1).

Linear mixed-effects models were constructed using lme4 (Bates et al. 2015, version
1.1.32). Random effects structures were determined using buildmer (Voeten 2022,
version 2.7), which after identifying the most complex random effects structure that
could successfully converge (see Barr et al. 2013), then removed random effects
terms which did not significantly contribute towards explaining variance. In a diver-
sion from the pre-registered analysis plan, we excluded the interaction term from the
models used to test themain effects of colour legend range and numerical label pres-
ence.

4.2. Part 1: Participants Satisfying Attention Check Criteria (N = 100)

4.2.1. Colour Legend Ranges and Numerical Labels

Figure 4 shows the distribution of responses for colour legends with truncated and
extended ranges.

Truncated Range

Extended Range

"Not very urgently" "Very urgently"

Histograms, Boxplots, and Raw Data

Distribution of Urgency Ratings, by Colour Legend Range

Figure 4.: Visual analogue scale responses to the question “How urgently should pol-
lution levels in these regions be addressed?”. Distributions for the two conditions are
shown using histograms, boxplots, and raw data points representing individual obser-
vations. In the ‘Extended Range’ condition, the colour legend’s upper boundwas equal
to double the maximum plotted value. In the ‘Truncated Range’ condition, the colour
legend’s upper bound was equal to the maximum plotted value.

Linear mixed-effects modelling revealed that urgency was rated as significantly
higher when the colour legend had a truncated range (its upper bound was equal
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to the maximum value in the dataset) compared to when the colour legend had an
extended range (its upper bound was equal to double the maximum value): 𝜒2(1) =
225.41, p < .001, 𝜂2

𝑝 = 0.90.

Ratings were not significantly different when numerical labels were present, com-
pared to when they were absent: 𝜒2(1) = 0.35, p = .556, 𝜂2

𝑝 < 0.01.

There was no interaction between colour legend range and numerical labels: 𝜒2(1)
= 1.73, p = .189, 𝜂2

𝑝 = 0.02. These models all employed random intercepts for partici-
pants with random slopes for colour legend range, numerical label presence, and the
interaction between these terms, plus random intercepts for items.

4.2.2. Data Visualisation Literacy

Adding participants’ data visualisation literacy as an additional fixed effect did not re-
move the significant effect of colour legend range:𝜒2(1) = 260.93, p < .001, 𝜂2

𝑝 = 0.89.
This indicates that differences in data visualisation literacy cannot explain this effect.
The numerical label manipulation remained non-significant when accounting for liter-
acy (𝜒2(1) = 0.30, p = .586, 𝜂2

𝑝 < 0.01). The interaction remained non-significant when
accounting for literacy (𝜒2(1) = 3.21, p = .073, 𝜂2

𝑝 < 0.01). These models employed
random intercepts for participants with random slopes for colour legend range and
numerical label presence, plus random intercepts for items with random slopes for
colour legend range.

4.3. Part 2: All Participants (N = 165)

4.3.1. Colour Legend Ranges and Numerical Labels

The above analysiswas conducted using data from the 100 participantswho satisfied
the pre-registered attention check criteria. However, smaller samples are associated
with lower statistical power. Below, we conduct the same analysis on the full sample
of 165 participants (those who satisfied the pre-registered attention check criteria
and those who did not).

Urgency was rated as significantly higher when a truncated colour legend range was
used, compared towhen an extended colour legend rangewas used:𝜒2(1) = 272.40, p
< .001, 𝜂2

𝑝 = 0.87. Ratings were not significantly different when numerical labels were
present, compared to when they were absent:𝜒2(1) = 1.95, p = .163, 𝜂2

𝑝 = 0.01. These
models employed random intercepts for participants with random slopes for colour
legend range, numerical label presence, and the interaction between these terms, plus
random intercepts for items with random slopes for colour legend range.

There was a significant interaction between colour legend range and numerical la-
bel presence: 𝜒2(1) = 6.41, p = .011, 𝜂2

𝑝 < 0.01. This model employed random in-
tercepts for participants with random slopes for colour legend range and numeri-
cal label presence, plus random intercepts for items with random slopes for colour
legend range. We conducted pairwise comparisons with Sidak adjustment using the
emmeans package (Lenth 2021). For choropleth maps with extended colour legend
ranges, therewas no difference between ratings for labelled and unlabelled colour leg-
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ends: z = 0.59, p = .962, Cohen’s d = 0.02. For choropleth maps with truncated colour
legend ranges, higher ratings were awarded when numerical labels were absent, com-
pared to when they were present: z = 2.99, p = .011, Cohen’s d = 0.10. Figure 5 displays
themeans and 95% confidence intervals for each combination of conditions, for both
samples of participants: those who satisfied the pre-registered attention check crite-
ria, and the full sample.

Extended Colour Legend Range

Truncated Colour Legend Range

Labels Present

Labels Absent

Labels Present

Labels Absent

Satisfied Attention Check Criteria (N = 100)

Extended Colour Legend Range

Truncated Colour Legend Range

Labels Present

Labels Absent

Labels Present

Labels Absent

−−"Not very urgently"                                                                 "Very urgently"−−

All Participants (N = 165)

Shown separately for participants who satisfied pre−registered attention check criteria,
and all participants.

Urgency Ratings: Colour Legend Range x Numerical Label Interaction

Figure 5.: Mean urgency ratings showing the interaction between colour legend range
and numerical label presence, displayed separately for the different samples of par-
ticipants. Error bars show 95% confidence intervals around the means.

4.3.2. Data Visualisation Literacy

The same pattern of results was observed when accounting for differences in data
visualisation literacy. There was a significant effect of colour legend range (𝜒2(1)
= 272.45, p < .001, 𝜂2

𝑝 = 0.87) and no effect of numerical label presence (𝜒2(1) =
2.09, p = .148), 𝜂2

𝑝 = 0.01. The interaction between colour legend range and numerical
label presence remained: 𝜒2(1) = 6.47, p = .011, 𝜂2

𝑝 < 0.01. These models employed
random intercepts for participants with random slopes for colour legend range and
numerical label presence, plus random intercepts for items with random slopes for
colour legend range.
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4.4. Exploratory Analysis

Our pre-registered analysis did not detect an effect of the presence of numerical val-
ues on urgency ratings. However, a more fine-grained analysis can explore the role of
numerical labels with greater sensitivity. This exploratory analysis examines whether
urgency ratings are influenced by the actual numerical values displayed. We system-
atically varied the maximum value displayed in each map, which ranged from 200 to
900. Other plotted values were defined in relation to this value: between 10 and 30
units less than the maximum value. Modelling the effect of different maximum val-
ues on ratings will reveal whether judgements were informed by the numerical values
displayed.

When considering only maps with numerical labels present, ratings increased as a
function of maximum value (𝜒2(1) = 27.90, p < .001, 𝜂2

𝑝 = 0.48). This model employed
random intercepts for participants with random slopes for colour legend range, plus
random intercepts for items with random slopes for colour legend range. However,
ratings also increased as a function of maximum value even when numerical labels
were absent (𝜒2(1) = 16.85, p < .001, 𝜂2

𝑝 = 0.32). This model employed random inter-
cepts for participants with random slopes for colour legend range, plus random inter-
cepts for items. There was no significant interaction between maximum value and
numerical label presence (𝜒2(1) = 2.22, p = .137, 𝜂2

𝑝 < 0.01). This model employed
random intercepts for participants with random slopes for colour legend range and
numerical label presence, plus random intercepts for items with random slopes for
colour legend range.

This suggests that the numerical labels themselves were not responsible for the ef-
fect of maximum value. Instead, this effect may have been driven by the appearance
of the choropleth map. The colour for the maximum value was identical in each map
with the same colour palette, but the three accompanying values in each map were al-
ways between 10 and 30 units less than the maximum value. Consequently, these
values were represented by darker colours when the maximum value was higher,
thus conveying greater overall magnitude. Colour legend range (𝜂2

𝑝 = 0.89) remains a
greater influence than maximum value (𝜂2

𝑝 = 0.44).

In the models for participants who satisfied the pre-registered attention check crite-
ria and those who did not (N = 165), there were significant effects of maximum value,
for both maps with labelled colour legends (𝜒2(1) = 28.55, p < .001, 𝜂2

𝑝 = 0.50) and
also maps with unlabelled colour legends (𝜒2(1) = 16.27, p < .001, 𝜂2

𝑝 = 0.32). These
models employed random intercepts for participants with random slopes for colour
legend range, plus random intercepts for items with random slopes for colour legend
range. There was no significant interaction between maximum value and numerical
label presence (𝜒2(1) = 3.51, p = .061, 𝜂2

𝑝 < 0.01). This model employed random inter-
cepts for participants with random slopes for colour legend range and numerical la-
bel presence, plus random intercepts for items with random slopes for colour legend
range. Colour legend range (𝜂2

𝑝 = 0.87) remains a greater influence than maximum
value (𝜂2

𝑝 = 0.45).
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5. Discussion

Choropleth maps are typically used to convey spatial variability, but may alternatively
be employed to convey overall magnitude. This experiment clearly demonstrated that
the range of the accompanying colour legend influences interpretations of absolute
magnitude in such choropleth maps. When the colour legend’s upper bound was
equivalent to the maximum plotted value, participants rated the urgency of address-
ing pollution levels as higher, compared to when the colour legend’s upper bound was
equal to double the maximum plotted value. This illustrates that viewers use colour
legends to put numbers’ magnitudes into perspective, interpreting magnitude with
respect to the range of the colour legend. A colour legend does not only provide a
mapping between numerical values and colours, it also provides a range of values
relevant for considering the absolute magnitude of presented data.

Crucially, the colours used to display the data in the maps, as well as the underlying
numerical values, were identical across conditions. Therefore, differences in partici-
pants’ judgements between conditions were not due to these factors. Instead, partici-
pants formed different impressions of these data based on the context in which they
were presented. We do not suggest that one colour legend arrangement used in this
experiment was misleading and the other truthful. Rather, we suggest that, under cer-
tain circumstances, either could be characterised asmisleading. Thus, doctored data
and deliberate deception are not the only practices behind problematic visualisations.

Colour legends simultaneously encode changes in number through both colour and
physical position. Different values are represented by different colours and occupy
different positions on the colour legend. In the present experiment, plotted values’
analogous positions in the truncated colour legend were on the far right hand side,
and their corresponding colours were among the darkest in the legend. On the other
hand, plotted values’ analogous positions were in the middle of the extended colour
legend, and their corresponding colours were neither the darkest nor the lightest in
the legend. This experiment cannot determine whether the location of plotted values
on the legend, the range of colours included in the legend, or both of these factors,
influenced processing of magnitude. The manipulation of numerical labels does not
assist in answering this question because colour legends still encode changes in num-
ber even when these changes are not labelled. However, this question may have little
practical relevance since these aspects are intrinsically linked in a typical colour leg-
end.

In this experiment, the width of truncated and extended colour legends was identical.
In the truncated colour legend, a smaller range of colours spanned the same distance:
there was less variation in colour over the same amount of space. We have not iden-
tified any way in which this could explain the present set of results.

5.1. Additional Analyses

Accounting for subjective data visualisation literacy did not change the pattern of re-
sults. This suggests that data visualisation literacy is not responsible for the observed
effect of colour legend range on interpretations of magnitude. This accords with the
finding that data visualisation literacy levels did not explain the bias in judgements
caused by truncated axes (Yang et al. 2021). Yang et al. (2021) suggest that data
visualisation literacy measures capture whether an individual has the skills required
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for comprehending typical chart formats. However, they do not appear to extend to
aspects of visualisation comprehension which are informed by intuitive judgements
rather than basic training.

Our results demonstrate that numerical labels did not influence judgements. Our pre-
registered analysis found that there was no difference between ratings for maps with
andwithout numerical labels on the colour legend. An exploratory analysis examining
this further also indicates that increases in the numerical values displayed on the
colour legendwere not responsible for greater urgency ratings. Instead, it is likely that
increased urgency ratings associatedwith highermaximumvalueswere related to the
presence of darker colours in the maps. This was a consequence of accompanying
data points’ increased proximity to the maximum value at higher maximum values
(see Figure 2).

For data quality reasons, we conducted our main analysis on a sample of 100 par-
ticipants who met our pre-registered attention check threshold (no more than one of
six attention check questions answered incorrectly). However, we also conducted the
same analysis on the full sample of 165 participants, in the interest of validity. The
pattern of results in the two samples was extremely similar, indicating similar levels
of engagement with the task regardless of attention check scores. Participants may
have withdrawn attention from the accompanying text and question once they were
aware that these did not change across experimental trials, consequently failing to
notice attention-check trials.

The only difference between the pattern of results for these two samples was the
interaction between colour legend range and numerical label presence. This interac-
tion was not observed in the more selective sample but observed in the full sample.
However, Figure 5 illustrates that the pattern of responses was remarkably similar. In
both samples, the difference between ratings for the labelled and unlabelled versions
of the truncated colour legend was very small, which suggests the significant result
was driven by low variance within conditions and increased statistical power in the
larger sample. The inconsistency in inferential statistics between samples suggests
that this interaction, if not spurious, is not particularly robust.

5.2. Relationship to Prior Work

Recommendations for best practice in choroplethmap design are focused on convey-
ing plotted values’ relative magnitudes (Dent et al. 2009, Kraak and Ormeling 2013).
In this work, we suggest that efficiently conveying relative magnitudes is a sufficient
condition for choropleth mapping, but not a necessary condition. We demonstrate
that encoding plotted values with a smaller range of colours, and including a wider
range in the accompanying legend, informs judgements about absolute magnitude.
This is consistent with other experiments demonstrating legend design can affect
cognitive processing of an accompanying map (Li and Qin 2014, Gołębiowska 2015,
Edler et al. 2020, Hepburn et al. 2021).

Investigations into chart design have revealed that the range of values surrounding
plotted data influences interpretations. Several experiments have observed that par-
ticipants use axes as a source of context for assessing the magnitude of difference
between values (Pandey et al. 2015, Witt 2019, Correll et al. 2020, Yang et al. 2021).
The present experiment provides further evidence for a less-frequently explored phe-
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nomenon: that design choices can affect judgements of the magnitude of values
themselves. Like Stone et al. (2003) and Sandman et al. (1994), we demonstrate
that plotted values seem greater when they are closer to a data visualisation’s up-
per bound. However, this experiment also demonstrates that these types of effects
are not unique to data visualisations using geometric encodings. Choropleth maps,
where the range of values is presented in a colour legend, can also elicit this bias.
Arguably, the manipulation in choropleth maps is even more subtle, because of the
unique way that choropleth maps separate encoded data from the colour legend. In
data visualisations such as bar charts, changing the range of values alters the ap-
pearance of the data itself (an extended y-axis results in a compressed bar). The
present experiment’s findings are particularly striking given that the appearance of
data remained consistent despite changes to the colour legend’s upper bound. This
suggests differences in judgements were not driven by the visual appearance of the
data, but by the interpretation of the data in relation to the range of values in the colour
legend.

This finding is also connected to research on the interpretation of quantity in
colourmap visualisations. Schiewe (2019) observed that assessment of values pre-
sented in choropleth maps are influenced by the coverage of different colours within
a map (i.e., the relationship between colour and region size). We expand upon this
work by identifying another factor which biases judgements of data in choropleth
maps, yet does not change the appearance of the map itself. Like Correll et al. (2018),
we demonstrate that manipulating a colour legend is sufficient to influence partic-
ipants’ responses. Schloss et al.’s (2019) results demonstrated that a colourmap’s
background colour is interpreted as corresponding to the smallest quantity when a
scale appears to vary in opacity. That is, background colour provides a cue to the size
of data points when taken to represent the minimum value. The present experiment
demonstrates that, like quantity judgements, magnitude judgements are also driven
by visual cues to the minimum and maximum values.

A bias wherein the same values are judged differently depending on their surround-
ing context is often described as a framing effect (Tversky and Kahneman 1981). This
bias involves using inessential accompanying information to inform one’s judgement,
rather than discounting this information in order to generate a wholly disinterested as-
sessment. Other research has also demonstrated that the interpretation of numerical
values depends on their placement within a range. For example, the same salary is
rated as more desirable when it appears near the top rather than the bottom of a
range (Brown et al. 2008). The present experiment translates this effect to the visual
domain. As Yang et al. (2021) suggest, biases in viewers’ processing of information in
data visualisations can be explained with reference to Grice’s (1975) cooperative prin-
ciple. Applied to the present experiment, this suggests that viewers would interpret
the implication of certain magnitudes through the colour legend design as indicative
of the designer’s intention to communicate values’ true magnitudes.

5.3. Limitations and Future Research Directions

Choropleth maps are typically designed to communicate differences between values,
rather than values’ absolute magnitudes. Discrimination between values is facilitated
when the colour legend’s bounds are equal to the minimum and maximum values in
the dataset. Therefore, designers may have to make a trade-off between conveying
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absolute magnitude and conveying differences. Which aspect of the data a designer
wishes to emphasize will depend on the purpose of their data visualisation. For exam-
ple, a designer may wish to highlight the geographical differences in the construction
of new houses, or may wish to highlight the fact that there is no region where targets
are beingmet. Thework reported here suggests that extending the range of the colour
legend beyond the range of the observed data would promote the latter message.

It is important to recognize that a colour scale’s bounds may not always be inter-
preted as a complete and accurate source of context for assessing magnitude. Pol-
lution measurements are likely not among the most intuitive numbers to interpret,
and in the present experiment, even viewers well-versed in pollution data were pro-
hibited from applying their knowledge, since the fictitious data were presented using
fictitious units. The influence of existing knowledge was eliminated to facilitate ex-
amination of the cognitive mechanism involved in magnitude judgements. Therefore,
in this experiment, there were no external cues to magnitude. Consequently, our find-
ings are most relevant for understanding interpretation of magnitude where units are
unfamiliar or insignificant. Familiarity with a data visualisation’s subject matter will
typically provide an ability to independently assess magnitudes based on presented
values only, which may reduce the influence of design choices. In addition, certain
forms of number may carry cues to magnitude even in the absence of existing knowl-
edge. For example, when assessing certain proportions, viewers are likely to be aware
that 100% is the maximum possible value and 0% the minimum. Future work should
explore the degree to which these scenarios affect how colour legends inform mag-
nitude judgements.

Future work should quantify the difference between different colour legend ranges in
concrete units (e.g., a specific difference in financial investment, or a specific time-
frame for resolving an issue). The visual analogue scale used in our investigation
does not permit this. However, it was able to reveal that interpretations of magnitude
differed between conditions, reflecting the type of inferences that are likely to precede
decision-making. The within-participants design ensures that participants’ different
notions of urgency do not interfere with comparisons between experimental condi-
tions. Future work should also examine a wider variety of topics beyond pollution
data in order to examine generalisability. However, our investigation has nonetheless
produced informative results, and the observed bias, a framing effect, occurs widely.

Numerical labels at the extremes of colour legends are sometimes open-ended. That
is, a label at the lower bound may be ‘<30’ rather than ‘30’. This interrupts the one-
to-one mapping between colours and values. Instead, a specific position and colour
on the colour legend may represent multiple corresponding numerical values. Con-
sequently, more extreme values may exist in the data than those represented by the
extremes of the legend. This introduces ambiguity regarding the relevant range of
values to consider when assessing magnitude, making the colour legend a less infor-
mative reference. Future research should examine whether the present findings are
replicated when a colour legend uses this type of numerical label at its extremes, or
whether viewers treat colour legends with these labels as a weaker cue to plotted val-
ues’ magnitudes. Experiments varying the range of values included in classified and
multi-hue legends would also be beneficial.
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5.4. Implications

The present experiment contributes to our understanding of cognitivemechanisms in-
volved in assessing magnitudes in choropleth maps. We observed that assessments
are informed by the range of the colour legend, demonstrating that colour legends can
be exploited to influence viewers’ judgements of data points’ absolute magnitudes.
Further work is required in order to identify various factors influencing the strength
of this effect, but the essential implication entails designers considering how mag-
nitude appears as a result of their chosen colour legend’s range. Without deliberate
consideration about the choice of value for a colour legend’s upper bound,misleading
visualisations may emerge. However, like Correll et al. (2020), we argue there can be
no a priori system for identifying a range of values that guarantees an unbiased visu-
alisation. Instead, the range of the colour legend should be appropriate for the data
displayed, the intended message, and the task. There are also implications for data
visualisation software developers in facilitating designers’ ability to specify a custom
colour legend range when required.

6. Conclusion

Understanding the consequences of design choices is crucial for understanding how
to present data effectively. In choroplethmaps, the upper bound of the accompanying
colour legend influences how large or small plotted values appear to viewers. Data
points’ proximity to the upper bound increases impressions of their absolute magni-
tude. This finding provides insight into the processing of choropleth maps designed
to convey overall magnitude, and promotes use of a suitable range of values on a
colour legend.
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